1
|
Yan J, Wen J, Wei ZD, Li XS, Li P, Xiao SW. Prognostic and clinicopathological value of melanoma-associated antigen D4 in patients with glioma. Oncol Lett 2018. [PMID: 29541180 PMCID: PMC5835852 DOI: 10.3892/ol.2018.7884] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The aim of the present study was to evaluate the clinical importance of melanoma-associated antigen D4 (MAGE-D4) expression in glioma, and to identify it as a valuable prognostic biomarker and therapeutic target. To achieve this, the expression of MAGE-D4 protein in 124 tumor tissues from patients with glioma was measured using reverse transcription-quantitative polymerase chain reaction (RT-qPCR) and immunohistochemistry (IHC), and the associations between MAGE-D4expression and clinicopathological factors were evaluated. The survival analysis demonstrated the significant prognostic value of MAGE-D4 in glioma using follow-up data. RT-qPCR and IHC analysis confirmed that MAGE-D4 mRNA and protein expression levels were significantly increased in glioma tissues compared with those in normal brain tissues. The present study demonstrated that the percentage of glioma tissues with high expression of MAGE-D4 mRNA was 67.74%, and the percentage positive for MAGE-D4 protein expression was 78.23%. All patients with high MAGE-D4 expression in cancerous tissues experienced significantly reduced median overall survival (OS; 18.00 vs. 33.29 months; P<0.001) and recurrence-free survival (RFS; 12.7 vs. 28.3 months; P<0.001) times compared with those with low MAGE-D4 expression. In the patients with lower grade glioma [World Health Organization (WHO), I–II], similar results were obtained for the OS (26.11 vs. 57.85 months; P=0.013) and RFS (22.7 vs. 55.3 months; P=0.010) times; however, in patients with high-grade glioma (WHO, III–IV), there were no significant differences between high and low MAGE-D4 expression levels with regard to OS and RFS times (P>0.05). Multivariate analysis indicated that high MAGE-D4 protein expression was an important independent prognostic factor for patients with glioma (hazard ratio, 2.384; P=0.005), and was significantly associated with higher grade glioma (P<0.001). These results indicated that MAGE-D4 may be a potential biomarker for glioma and an important prognostic factor for patients with new or recurring glioma.
Collapse
Affiliation(s)
- Jun Yan
- Department of Neurosurgery, Affiliated Tumor Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Jing Wen
- Department of Rheumatism, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Zong-Dang Wei
- Department of Neurosurgery, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Xi-Sheng Li
- Department of Neurosurgery, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Ping Li
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Shao-Wen Xiao
- Department of Neurosurgery, Affiliated Tumor Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China.,Department of Neurosurgery, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| |
Collapse
|
2
|
Fecci PE, Sweeney AE, Grossi PM, Nair SK, Learn CA, Mitchell DA, Cui X, Cummings TJ, Bigner DD, Gilboa E, Sampson JH. Systemic anti-CD25 monoclonal antibody administration safely enhances immunity in murine glioma without eliminating regulatory T cells. Clin Cancer Res 2007; 12:4294-305. [PMID: 16857805 DOI: 10.1158/1078-0432.ccr-06-0053] [Citation(s) in RCA: 120] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE Elevated proportions of regulatory T cells (T(reg)) are present in patients with a variety of cancers, including malignant glioma, yet recapitulative murine models are wanting. We therefore examined T(regs) in mice bearing malignant glioma and evaluated anti-CD25 as an immunotherapeutic adjunct. EXPERIMENTAL DESIGN CD4+CD25+Foxp3+GITR+ T(regs) were quantified in the peripheral blood, spleens, cervical lymph nodes, and bone marrow of mice bearing malignant glioma. The capacities for systemic anti-CD25 therapy to deplete T(regs), enhance lymphocyte function, and generate antiglioma CTL responses were assessed. Lastly, survival and experimental allergic encephalitis risks were evaluated when anti-CD25 was combined with a dendritic cell-based immunization targeting shared tumor and central nervous system antigens. RESULTS Similar to patients with malignant glioma, glioma-bearing mice show a CD4 lymphopenia. Additionally, CD4+CD25+Foxp3+GITR+ T(regs) represent an increased fraction of the remaining peripheral blood CD4+ T cells, despite themselves being reduced in number. Similar trends are observed in cervical lymph node and spleen, but not in bone marrow. Systemic anti-CD25 administration hinders detection of CD25+ cells but fails to completely eliminate T(regs), reducing their number only moderately, yet eliminating their suppressive function. This elimination of T(reg) function permits enhanced lymphocyte proliferative and IFN-gamma responses and up to 80% specific lysis of glioma cell targets in vitro. When combined with dendritic cell immunization, anti-CD25 elicits tumor rejection in 100% of challenged mice without precipitating experimental allergic encephalitis. CONCLUSIONS Systemic anti-CD25 administration does not entirely eliminate T(regs) but does prevent T(reg) function. This leads to safe enhancement of tumor immunity in a murine glioma model that recapitulates the tumor-induced changes to the CD4 and T(reg) compartments seen in patients with malignant glioma.
Collapse
Affiliation(s)
- Peter E Fecci
- Department of Pathology, Duke University Medical Center, Durham, North Carolina 27710, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
3
|
Zhang JG, Eguchi J, Kruse CA, Gomez GG, Fakhrai H, Schroter S, Ma W, Hoa N, Minev B, Delgado C, Wepsic HT, Okada H, Jadus MR. Antigenic profiling of glioma cells to generate allogeneic vaccines or dendritic cell-based therapeutics. Clin Cancer Res 2007; 13:566-575. [PMID: 17255279 PMCID: PMC4030524 DOI: 10.1158/1078-0432.ccr-06-1576] [Citation(s) in RCA: 109] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
PURPOSE Allogeneic glioma cell lines that are partially matched to the patient at class I human leukocyte antigen (HLA) loci and that display tumor-associated antigens (TAA) or antigenic precursors [tumor antigen precursor proteins (TAPP)] could be used for generating whole tumor cell vaccines or, alternatively, for extraction of TAA peptides to make autologous dendritic cell vaccines. EXPERIMENTAL DESIGN Twenty human glioma cell lines were characterized by molecular phenotyping and by flow cytometry for HLA class I antigen expression. Twelve of the 20 cell lines, as well as analyses of freshly resected glioma tissues, were further characterized for protein and/or mRNA expression of 16 tumor antigen precursor proteins or TAA. RESULTS These 20 human glioma cell lines potentially cover 77%, 85%, and 78% of the U.S. Caucasian population at HLA-A, HLA-B, and HLA-C alleles, respectively. All cells exhibited multiple TAA expressions. Most glioma cells expressed antigen isolated from immunoselected melanoma-2 (Aim-2), B-cyclin, EphA2, GP100, beta1,6-N-acetylglucosaminyltransferase V (GnT-V), IL13Ralpha2, Her2/neu, hTert, Mage, Mart-1, Sart-1, and survivin. Real-time PCR technology showed that glioblastoma specimens expressed most of the TAA as well. Tumor-infiltrating lymphocytes and CD8(+) CTL killed T2 cells when loaded with specific HLA-A2(+) restricted TAA, or gliomas that were both HLA-A2(+) and also positive for specific TAA (Mart-1, GP100, Her2/neu, and tyrosinase) but not those cells negative for HLA-A2 and/or lacking the specific epitope. CONCLUSIONS These data provide proof-in-principle for the use of allogeneic, partially HLA patient-matched glioma cells for vaccine generation or for peptide pulsing with allogeneic glioma cell extracts of autologous patient dendritic cells to induce endogenous CTL in brain tumor patients.
Collapse
Affiliation(s)
- Jian Gang Zhang
- Diagnostic and Molecular Health Care Group, Veterans Affairs Medical Center, Long Beach, California
- Pathology Department, Neurooncology Program, Chao Cancer Center, University of California, Irvine, Irvine, California
| | - Junichi Eguchi
- Neurological Surgery, University of Pittsburgh School of Medicine, Brain Tumor Program, University of Pittsburgh Cancer Institute, Hillman Cancer Center, Pittsburgh, Pennsylvania
| | - Carol A. Kruse
- La Jolla Institute for Molecular Medicine, San Diego, California
| | - German G. Gomez
- La Jolla Institute for Molecular Medicine, San Diego, California
| | | | | | - Wenxue Ma
- University of California, San Diego Cancer Center, La Jolla, California
| | - Neil Hoa
- Diagnostic and Molecular Health Care Group, Veterans Affairs Medical Center, Long Beach, California
- Pathology Department, Neurooncology Program, Chao Cancer Center, University of California, Irvine, Irvine, California
| | - Boris Minev
- University of California, San Diego Cancer Center, La Jolla, California
| | - Christina Delgado
- Diagnostic and Molecular Health Care Group, Veterans Affairs Medical Center, Long Beach, California
- Pathology Department, Neurooncology Program, Chao Cancer Center, University of California, Irvine, Irvine, California
| | - H. Terry Wepsic
- Diagnostic and Molecular Health Care Group, Veterans Affairs Medical Center, Long Beach, California
- Pathology Department, Neurooncology Program, Chao Cancer Center, University of California, Irvine, Irvine, California
| | - Hideho Okada
- Neurological Surgery, University of Pittsburgh School of Medicine, Brain Tumor Program, University of Pittsburgh Cancer Institute, Hillman Cancer Center, Pittsburgh, Pennsylvania
| | - Martin R. Jadus
- Diagnostic and Molecular Health Care Group, Veterans Affairs Medical Center, Long Beach, California
- Pathology Department, Neurooncology Program, Chao Cancer Center, University of California, Irvine, Irvine, California
| |
Collapse
|
4
|
Barth RF, Coderre JA, Vicente MGH, Blue TE. Boron neutron capture therapy of cancer: current status and future prospects. Clin Cancer Res 2005; 11:3987-4002. [PMID: 15930333 DOI: 10.1158/1078-0432.ccr-05-0035] [Citation(s) in RCA: 678] [Impact Index Per Article: 33.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Boron neutron capture therapy (BNCT) is based on the nuclear reaction that occurs when boron-10 is irradiated with low-energy thermal neutrons to yield high linear energy transfer alpha particles and recoiling lithium-7 nuclei. Clinical interest in BNCT has focused primarily on the treatment of high-grade gliomas and either cutaneous primaries or cerebral metastases of melanoma, most recently, head and neck and liver cancer. Neutron sources for BNCT currently are limited to nuclear reactors and these are available in the United States, Japan, several European countries, and Argentina. Accelerators also can be used to produce epithermal neutrons and these are being developed in several countries, but none are currently being used for BNCT. BORON DELIVERY AGENTS Two boron drugs have been used clinically, sodium borocaptate (Na(2)B(12)H(11)SH) and a dihydroxyboryl derivative of phenylalanine called boronophenylalanine. The major challenge in the development of boron delivery agents has been the requirement for selective tumor targeting to achieve boron concentrations ( approximately 20 microg/g tumor) sufficient to deliver therapeutic doses of radiation to the tumor with minimal normal tissue toxicity. Over the past 20 years, other classes of boron-containing compounds have been designed and synthesized that include boron-containing amino acids, biochemical precursors of nucleic acids, DNA-binding molecules, and porphyrin derivatives. High molecular weight delivery agents include monoclonal antibodies and their fragments, which can recognize a tumor-associated epitope, such as epidermal growth factor, and liposomes. However, it is unlikely that any single agent will target all or even most of the tumor cells, and most likely, combinations of agents will be required and their delivery will have to be optimized. CLINICAL TRIALS Current or recently completed clinical trials have been carried out in Japan, Europe, and the United States. The vast majority of patients have had high-grade gliomas. Treatment has consisted first of "debulking" surgery to remove as much of the tumor as possible, followed by BNCT at varying times after surgery. Sodium borocaptate and boronophenylalanine administered i.v. have been used as the boron delivery agents. The best survival data from these studies are at least comparable with those obtained by current standard therapy for glioblastoma multiforme, and the safety of the procedure has been established. CONCLUSIONS Critical issues that must be addressed include the need for more selective and effective boron delivery agents, the development of methods to provide semiquantitative estimates of tumor boron content before treatment, improvements in clinical implementation of BNCT, and a need for randomized clinical trials with an unequivocal demonstration of therapeutic efficacy. If these issues are adequately addressed, then BNCT could move forward as a treatment modality.
Collapse
Affiliation(s)
- Rolf F Barth
- Department of Pathology, The Ohio State University, Columbus, Ohio 43210, USA.
| | | | | | | |
Collapse
|