1
|
Bhatia S, Berke CN, Rivera CA, Cleri NA, Mahavadi A, Merenzon MA, Khalafallah AM, Levy AS, Daggubati LC, Morell AA, Kaye B, Sanchez P, Shah AH, Komotar RJ, Ivan ME. The Impact of Perilesional Heatsink Structures on Ablation Volumes in Laser Interstitial Thermal Therapy for Brain Metastases. Neurosurgery 2024; 95:849-858. [PMID: 38954601 DOI: 10.1227/neu.0000000000002945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Accepted: 02/12/2024] [Indexed: 07/04/2024] Open
Abstract
BACKGROUND AND OBJECTIVES Laser interstitial thermal therapy (LITT) has demonstrated promise in surgical neuro-oncology because of its effectiveness in delivering precise thermal energy to lesions. The extent of ablation (EOA) is a prognostic factor in improving patient outcomes but is often affected by perilesional heatsink structures, which can lead to asymmetric ablations. The purpose of this study was to quantitatively evaluate the impact of various perilesional heatsink structures on the EOA in LITT for brain metastases. METHODS Twenty-seven procedures for 22 unique patients with brain metastases fit the inclusion criteria. Intracranial heatsink structures were identified: sulci, meninges, cerebrospinal fluid (CSF) spaces, and vasculature. Asymmetric ablation was determined by measuring 3 pairs of orthogonal distances from the proximal, midpoint, and distal locations along the laser catheter to the farthest edge of the ablation zone bilaterally. Distances from the same points on the laser catheter to the nearest heatsink were also recorded. The Heatsink Effect Index was created to serve as a proxy for asymmetric ablation. Pearson correlations, t -tests, and analysis of variance were the statistical analyses performed. RESULTS From the midpoint of the catheter, the 27 heatsinks were meninges (40.7%), sulci (22.2%), vasculature (22.2%), and CSF spaces (14.8%). Across all points along the catheter track, there was a significant generalized heatsink effect on asymmetric ablations ( P < .0001). There was a negative correlation observed between asymmetric ablations and EOA from the midpoint of the laser catheter (r = -0.445, P = .020). Compared with sulci, CSF spaces trended toward a greater effect on asymmetric ablation volumes ( P = .069). CONCLUSION This novel quantitative analysis shows that perilesional heatsinks contribute to asymmetric ablations. CSF spaces trended toward higher degrees of asymmetric ablations. Importantly, neurosurgeons may anticipate asymmetric ablations preoperatively if heatsinks are located within 13.3 mm of the laser probe midpoint. These preliminary results may guide surgical decision-making in LITT for metastatic brain lesions.
Collapse
Affiliation(s)
- Shovan Bhatia
- Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami , Florida , USA
| | - Chandler N Berke
- Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami , Florida , USA
| | - Cameron A Rivera
- Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami , Florida , USA
| | - Nathaniel A Cleri
- Department of Neurological Surgery, Renaissance School of Medicine at Stony Brook University, Stony Brook , New York , USA
| | - Anil Mahavadi
- Department of Neurological Surgery, University of Alabama Birmingham School of Medicine, Birmingham , Alabama , USA
| | - Martin A Merenzon
- Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami , Florida , USA
| | - Adham M Khalafallah
- Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami , Florida , USA
| | - Adam S Levy
- Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami , Florida , USA
| | - Lekhaj C Daggubati
- Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami , Florida , USA
| | - Alexis A Morell
- Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami , Florida , USA
| | - Brandon Kaye
- Dr. Kiran C. Patel College of Allopathic Medicine, Nova Southeastern University, Davie , Florida , USA
| | - Pier Sanchez
- Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami , Florida , USA
| | - Ashish H Shah
- Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami , Florida , USA
- Sylvester Comprehensive Cancer Center, University of Miami, Miami , Florida , USA
| | - Ricardo J Komotar
- Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami , Florida , USA
- Sylvester Comprehensive Cancer Center, University of Miami, Miami , Florida , USA
| | - Michael E Ivan
- Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami , Florida , USA
- Sylvester Comprehensive Cancer Center, University of Miami, Miami , Florida , USA
| |
Collapse
|
2
|
Cao P, Shi D, Li D, Zhu Z, Zhu J, Zhang J, Bai R. Modeling and in vivo experimental validation of 1,064 nm laser interstitial thermal therapy on brain tissue. Front Neurol 2023; 14:1237394. [PMID: 37869141 PMCID: PMC10588634 DOI: 10.3389/fneur.2023.1237394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 09/25/2023] [Indexed: 10/24/2023] Open
Abstract
Introduction Laser interstitial thermal therapy (LITT) at 1064 nm is widely used to treat epilepsy and brain tumors; however, no numerical model exists that can predict the ablation region with careful in vivo validation. Methods In this study, we proposed a model with a system of finite element methods simulating heat transfer inside the brain tissue, radiative transfer from the applicator into the brain tissue, and a model for tissue damage. Results To speed up the computation for practical applications, we also validated P1-approximation as an efficient and fast method for calculating radiative transfer by comparing it with Monte Carlo simulation. Finally, we validated the proposed numerical model in vivo on six healthy canines and eight human patients with epilepsy and found strong agreement between the predicted temperature profile and ablation area and the magnetic resonance imaging-measured results. Discussion Our results demonstrate the feasibility and reliability of the model in predicting the ablation area of 1,064 nm LITT, which is important for presurgical planning when using LITT.
Collapse
Affiliation(s)
- Peng Cao
- Department of Neurosurgery, Zhejiang University School of Medicine Second Affiliated Hospital, Hangzhou, Zhejiang Province, China
| | - Dingsheng Shi
- Research and Development Department, Hangzhou GenLight MedTech Co., Ltd., Hangzhou, Zhejiang Province, China
| | - Ding Li
- Research and Development Department, Hangzhou GenLight MedTech Co., Ltd., Hangzhou, Zhejiang Province, China
| | - Zhoule Zhu
- Department of Neurosurgery, Zhejiang University School of Medicine Second Affiliated Hospital, Hangzhou, Zhejiang Province, China
- Clinical Research Center for Neurological Diseases of Zhejiang Province, Hangzhou, Zhejiang Province, China
| | - Junming Zhu
- Department of Neurosurgery, Zhejiang University School of Medicine Second Affiliated Hospital, Hangzhou, Zhejiang Province, China
- Clinical Research Center for Neurological Diseases of Zhejiang Province, Hangzhou, Zhejiang Province, China
| | - Jianmin Zhang
- Department of Neurosurgery, Zhejiang University School of Medicine Second Affiliated Hospital, Hangzhou, Zhejiang Province, China
- Clinical Research Center for Neurological Diseases of Zhejiang Province, Hangzhou, Zhejiang Province, China
| | - Ruiliang Bai
- Department of Neurosurgery, Zhejiang University School of Medicine Second Affiliated Hospital, Hangzhou, Zhejiang Province, China
- Interdisciplinary Institute of Neuroscience and Technology, School of Medicine, Zhejiang University, Hangzhou, China
- MOE Frontier Science Center for Brain Science and Brain-machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
3
|
Lad Y, Jangam A, Carlton H, Abu-Ayyad M, Hadjipanayis C, Ivkov R, Zacharia BE, Attaluri A. Development of a Treatment Planning Framework for Laser Interstitial Thermal Therapy (LITT). Cancers (Basel) 2023; 15:4554. [PMID: 37760524 PMCID: PMC10526178 DOI: 10.3390/cancers15184554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 08/29/2023] [Accepted: 09/05/2023] [Indexed: 09/29/2023] Open
Abstract
PURPOSE Develop a treatment planning framework for neurosurgeons treating high-grade gliomas with LITT to minimize the learning curve and improve tumor thermal dose coverage. METHODS Deidentified patient images were segmented using the image segmentation software Materialize MIMICS©. Segmented images were imported into the commercial finite element analysis (FEA) software COMSOL Multiphysics© to perform bioheat transfer simulations. The laser probe was modeled as a cylindrical object with radius 0.7 mm and length 100 mm, with a constant beam diameter. A modeled laser probe was placed in the tumor in accordance with patient specific patient magnetic resonance temperature imaging (MRTi) data. The laser energy was modeled as a deposited beam heat source in the FEA software. Penne's bioheat equation was used to model heat transfer in brain tissue. The cerebrospinal fluid (CSF) was modeled as a solid with convectively enhanced conductivity to capture heat sink effects. In this study, thermal damage-dependent blood perfusion was assessed. Pulsed laser heating was modeled based on patient treatment logs. The stationary heat source and pullback heat source techniques were modeled to compare the calculated tissue damage. The developed bioheat transfer model was compared to MRTi data obtained from a laser log during LITT procedures. The application builder module in COMSOL Multiphysics© was utilized to create a Graphical User Interface (GUI) for the treatment planning framework. RESULTS Simulations predicted increased thermal damage (10-15%) in the tumor for the pullback heat source approach compared with the stationary heat source. The model-predicted temperature profiles followed trends similar to those of the MRTi data. Simulations predicted partial tissue ablation in tumors proximal to the CSF ventricle. CONCLUSION A mobile platform-based GUI for bioheat transfer simulation was developed to aid neurosurgeons in conveniently varying the simulation parameters according to a patient-specific treatment plan. The convective effects of the CSF should be modeled with heat sink effects for accurate LITT treatment planning.
Collapse
Affiliation(s)
- Yash Lad
- Department of Mechanical Engineering, School of Science, Engineering, and Technology, The Pennsylvania State University Harrisburg, Harrisburg, PA 17057, USA
| | - Avesh Jangam
- Department of Mechanical Engineering, School of Science, Engineering, and Technology, The Pennsylvania State University Harrisburg, Harrisburg, PA 17057, USA
| | - Hayden Carlton
- Department of Radiation Oncology and Molecular Radiation Sciences, The Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Ma’Moun Abu-Ayyad
- Department of Mechanical Engineering, School of Science, Engineering, and Technology, The Pennsylvania State University Harrisburg, Harrisburg, PA 17057, USA
| | - Constantinos Hadjipanayis
- Department of Neurological Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Robert Ivkov
- Department of Radiation Oncology and Molecular Radiation Sciences, The Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Department of Mechanical Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
- Department of Materials Science and Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Brad E. Zacharia
- Department of Neurosurgery, Pennsylvania State Health, Hershey, PA 17033, USA
| | - Anilchandra Attaluri
- Department of Mechanical Engineering, School of Science, Engineering, and Technology, The Pennsylvania State University Harrisburg, Harrisburg, PA 17057, USA
| |
Collapse
|
4
|
Muacevic A, Adler JR, Jimenez MJD, Budnick HC, Raskin J. Thermal Damage Estimate Artifact Following Antecedent Biopsy: A Case Report. Cureus 2022; 14:e31913. [PMID: 36579245 PMCID: PMC9792349 DOI: 10.7759/cureus.31913] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/25/2022] [Indexed: 11/27/2022] Open
Abstract
MR-guided laser interstitial therapy (MRgLITT) is becoming more commonly used for minimal access approaches to intracranial lesions of all etiologies. The short-term safety profile of MRgLITT is favorable compared with sweeping incisions and open craniotomies, especially for lesions located in deep, periventricular, and highly eloquent areas. The Visualase software (Medtronic Inc., Minneapolis, MN, USA) has multiple adaptations to assist with this safety margin, including the thermal damage estimate (TDE), which applies predictive mathematical modeling to a two-dimensional (2D) graphical representation. TDE has been shown to highly correlate with actual tissue destruction in a priori MRgLITT cases and to anecdotally be imprecise when MRgLITT is combined with biopsy. We present a case regarding a 17-year-old male patient with intractable focal epilepsy. He underwent stereotactic biopsy and then ablation where it was shown that TDE is ~35% larger in the coronal plane than in the actual ablation zone. Air may have caused this artifact in the biopsy cavity, which affected the proton resonance frequency (PRF) and caused TDE pigment deposition. We believe in the need for a more comprehensive understanding and investigation regarding this TDE artifact. Future prospective studies into MRgLITT should attend carefully in cases where it is combined with biopsy.
Collapse
|
5
|
Huo J, Vakharia V, Wu C, Sharan A, Ko A, Ourselin S, Sparks R. Brain Lesion Synthesis via Progressive Adversarial Variational Auto-Encoder. SIMULATION AND SYNTHESIS IN MEDICAL IMAGING : ... INTERNATIONAL WORKSHOP, SASHIMI ..., HELD IN CONJUNCTION WITH MICCAI ..., PROCEEDINGS. SASHIMI (WORKSHOP) 2022; 13570:101-111. [PMID: 39026926 PMCID: PMC7616255 DOI: 10.1007/978-3-031-16980-9_10] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
Laser interstitial thermal therapy (LITT) is a novel minimally invasive treatment that is used to ablate intracranial structures to treat mesial temporal lobe epilepsy (MTLE). Region of interest (ROI) segmentation before and after LITT would enable automated lesion quantification to objectively assess treatment efficacy. Deep learning techniques, such as convolutional neural networks (CNNs) are state-of-the-art solutions for ROI segmentation, but require large amounts of annotated data during the training. However, collecting large datasets from emerging treatments such as LITT is impractical. In this paper, we propose a progressive brain lesion synthesis framework (PAVAE) to expand both the quantity and diversity of the training dataset. Concretely, our framework consists of two sequential networks: a mask synthesis network and a mask-guided lesion synthesis network. To better employ extrinsic information to provide additional supervision during network training, we design a condition embedding block (CEB) and a mask embedding block (MEB) to encode inherent conditions of masks to the feature space. Finally, a segmentation network is trained using raw and synthetic lesion images to evaluate the effectiveness of the proposed framework. Experimental results show that our method can achieve realistic synthetic results and boost the performance of down-stream segmentation tasks above traditional data augmentation techniques.
Collapse
Affiliation(s)
- Jiayu Huo
- School of Biomedical Engineering and Imaging Sciences (BMEIS), King’s College London, London, UK
| | - Vejay Vakharia
- National Hospital for Neurology and Neurosurgery, Queen Square, London, UK
| | - Chengyuan Wu
- Division of Epilepsy and Neuromodulation Neurosurgery, Vickie and Jack Farber Institute for Neuroscience, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Ashwini Sharan
- Division of Epilepsy and Neuromodulation Neurosurgery, Vickie and Jack Farber Institute for Neuroscience, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Andrew Ko
- Department of Neurosurgery, University of Washington, Seattle, Washington, USA
| | - Sébastien Ourselin
- School of Biomedical Engineering and Imaging Sciences (BMEIS), King’s College London, London, UK
| | - Rachel Sparks
- School of Biomedical Engineering and Imaging Sciences (BMEIS), King’s College London, London, UK
| |
Collapse
|
6
|
Paulo DL, Ball TJ, Englot DJ. Emerging Technologies for Epilepsy Surgery. Neurol Clin 2022; 40:849-867. [DOI: 10.1016/j.ncl.2022.03.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
7
|
Hwang BY, Eremiev A, Palla A, Mampre D, Negoita S, Tsehay YK, Kim MJ, Coogan C, Kang JY, Anderson WS. Association of intraoperative end-tidal carbon dioxide level with ablation volume during magnetic resonance-guided laser interstitial thermal therapy for mesial temporal lobe epilepsy. J Neurosurg 2022; 137:427-433. [PMID: 34891139 DOI: 10.3171/2021.9.jns211554] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 09/03/2021] [Indexed: 11/06/2022]
Abstract
OBJECTIVE Maximal safe ablation of target structures during magnetic resonance-guided laser interstitial thermal therapy (MRgLiTT) is critical to achieving good seizure outcome in patients with mesial temporal lobe epilepsy (mTLE). The authors sought to determine whether intraoperative physiological variables are associated with ablation volume during MRgLiTT. METHODS Patients with mTLE who underwent MRgLiTT at our institution from 2014 to 2019 were retrospectively analyzed. Ablation volume was determined with volumetric analysis of intraoperative postablation MR images. Physiological parameters (systolic blood pressure [SBP], diastolic blood pressure [DBP], mean arterial pressure [MAP], end-tidal carbon dioxide [ETCO2]) measured 40 minutes prior to ablation were analyzed. Univariate and multivariate regression analyses were performed to determine independent predictors of ablation volume. RESULTS Forty-four patients met the inclusion criteria. The median (interquartile range) ablation volume was 4.27 (2.92-5.89) cm3, and median ablation energy was 7216 (6402-8784) J. The median MAP, SBP, DBP, and ETCO2 values measured during the 40-minute period leading up to ablation were 72.8 (66.2-81.5) mm Hg, 104.4 (96.4-114.4) mm Hg, 62.4 (54.1-69.8) mm Hg, and 34.1 (32.0-36.2) mm Hg, respectively. In univariate analysis, only total laser energy (r = 0.464, p = 0.003) and 40-minute average ETCO2 (r = -0.388, p = 0.012) were significantly associated with ablation volume. In multivariate analysis, only ETCO2 ≤ 33 mm Hg (p = 0.001) was significantly associated with ablation volume. CONCLUSIONS Total ablation energy and ETCO2, but not blood pressure, may significantly affect ablation volume in mTLE patients undergoing MRgLiTT. Mild hypocapnia was associated with increased extent of ablation. Intraoperative monitoring and modulation of ETCO2 may help improve extent of ablation, prediction of ablation volume, and potentially seizure outcome.
Collapse
Affiliation(s)
- Brian Y Hwang
- 1Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, Maryland; and
| | - Alexander Eremiev
- 1Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, Maryland; and
| | - Adhith Palla
- 1Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, Maryland; and
| | - David Mampre
- 1Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, Maryland; and
| | - Serban Negoita
- 1Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, Maryland; and
| | - Yohannes K Tsehay
- 1Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, Maryland; and
| | - Min Jae Kim
- 1Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, Maryland; and
- 2Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Christopher Coogan
- 1Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, Maryland; and
| | - Joon Y Kang
- 2Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - William S Anderson
- 1Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, Maryland; and
| |
Collapse
|
8
|
Cobourn KD, Qadir I, Fayed I, Alexander H, Oluigbo CO. Does the Modified Arrhenius Model Reliably Predict Area of Tissue Ablation After Magnetic Resonance-Guided Laser Interstitial Thermal Therapy for Pediatric Lesional Epilepsy? Oper Neurosurg (Hagerstown) 2021; 21:265-269. [PMID: 34270761 DOI: 10.1093/ons/opab225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 05/02/2021] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Commercial magnetic resonance-guided laser interstitial thermal therapy (MRgLITT) systems utilize a generalized Arrhenius model to estimate the area of tissue damage based on the power and time of ablation. However, the reliability of these estimates in Vivo remains unclear. OBJECTIVE To determine the accuracy and precision of the thermal damage estimate (TDE) calculated by commercially available MRgLITT systems using the generalized Arrhenius model. METHODS A single-center retrospective review of pediatric patients undergoing MRgLITT for lesional epilepsy was performed. The area of each lesion was measured on both TDE and intraoperative postablation, postcontrast T1 magnetic resonance images using ImageJ. Lesions requiring multiple ablations were excluded. The strength of the correlation between TDE and postlesioning measurements was assessed via linear regression. RESULTS A total of 32 lesions were identified in 19 patients. After exclusion, 13 pairs were available for analysis. Linear regression demonstrated a strong correlation between estimated and actual ablation areas (R2 = .97, P < .00001). The TDE underestimated the area of ablation by an average of 3.92% overall (standard error (SE) = 4.57%), but this varied depending on the type of pathologic tissue involved. TDE accuracy and precision were highest in tubers (n = 3), with average underestimation of 2.33% (SE = 0.33%). TDE underestimated the lesioning of the single hypothalamic hamartoma in our series by 52%. In periventricular nodular heterotopias, TDE overestimated ablation areas by an average of 13% (n = 2). CONCLUSION TDE reliability is variably consistent across tissue types, particularly in smaller or periventricular lesions. Further investigation is needed to understand the accuracy of this emerging minimally invasive technique.
Collapse
Affiliation(s)
- Kelsey D Cobourn
- Division of Neurosurgery, Children's National Medical Center, Washington, District of Columbia, USA.,Georgetown University School of Medicine, Washington, District of Columbia, USA
| | - Imazul Qadir
- Division of Neurosurgery, Children's National Medical Center, Washington, District of Columbia, USA.,Howard University College of Medicine, Washington, District of Columbia, USA
| | - Islam Fayed
- Division of Neurosurgery, Children's National Medical Center, Washington, District of Columbia, USA.,Department of Neurosurgery, MedStar Georgetown University Hospital, Washington, District of Columbia, USA
| | - Hepzibha Alexander
- Division of Neurosurgery, Children's National Medical Center, Washington, District of Columbia, USA
| | - Chima O Oluigbo
- Division of Neurosurgery, Children's National Medical Center, Washington, District of Columbia, USA.,Division of Neurosurgery, George Washington University School of Medicine and Health Sciences, Washington, District of Columbia, USA
| |
Collapse
|
9
|
Chen C, Guo Y, Chen Y, Li Y, Chen J. The efficacy of laser interstitial thermal therapy for brain metastases with in-field recurrence following SRS: systemic review and meta-analysis. Int J Hyperthermia 2021; 38:273-281. [PMID: 33612043 DOI: 10.1080/02656736.2021.1889696] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
Abstract
OBJECTIVE To study the efficacy of LITT for BM patients experiencing in-field recurrence following SRS. METHODS A literature search was conducted to identify studies investigating local control (LC) rate and overall survival (OS) of LITT for BMs with IFR following SRS. RESULTS Analysis included 14 studies (470 patients with 542 lesions). The 6-month (LC-6) and 12-month (LC-12) local control rates were 78.5% (95% CI: 70.6-84.8%) and 69.0% (95% CI: 60.0-76.7%) separately. Pooled median OS was 17.15 months (95% CI: 13.27-24.8). The overall OS-6 and OS-12 rates were 76.0% (95% CI: 71.4-80.0%) and 63.4% (95% CI: 52.9-72.7%) separately. LITT provided more favorable local control efficacy in RN than BM recurrence (LC-6: 87.4% vs. 67.9%, p = 0.009; LC-12: 76.3% vs. 59.9%, p = 0.041). CONCLUSIONS LITT is an effective treatment for BM patients experiencing IFR following SRS. For different pathological entities, LITT showed more satisfactory local control efficacy on RN than BM recurrence.
Collapse
Affiliation(s)
- Chao Chen
- Department of Neurosurgery, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Yibin Guo
- Department of Health Statistics, Second Military Medical University, Shanghai, China
| | - Yi Chen
- Department of Neurosurgery, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Yanan Li
- Department of Neurosurgery, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Juxiang Chen
- Department of Neurosurgery, Changhai Hospital, Second Military Medical University, Shanghai, China
| |
Collapse
|
10
|
Di L, Wang CP, Shah AH, Eichberg DG, Semonche AM, Sanjurjo AD, Luther EM, Jermakowicz WJ, Komotar RJ, Ivan ME. A Cohort Study on Prognostic Factors for Laser Interstitial Thermal Therapy Success in Newly Diagnosed Glioblastoma. Neurosurgery 2021; 89:496-503. [PMID: 34156076 DOI: 10.1093/neuros/nyab193] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 04/03/2021] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND Laser interstitial thermal therapy (LITT) is a promising approach for cytoreduction of deep-seated gliomas. However, parameters contributing to treatment success remain unclear. OBJECTIVE To identify extent of ablation (EOA) and time to chemotherapy (TTC) as predictors of improved overall and progression-free survival (OS, PFS) and suggest laser parameters to achieve optimal EOA. METHODS Demographic, clinical, and survival data were collected retrospectively from 20 patients undergoing LITT for newly diagnosed glioblastoma (nGBM). EOA was calculated through magnetic resonance imaging-based volumetric analysis. Kaplan-Meier and multivariate Cox regression were used to examine the relationship between EOA with OS and PFS accounting for covariates (age, isocitrate dehydrogenase-1 (IDH1) mutation, O6-methylguanine-DNA methyltransferase hypermethylation). The effect of laser thermodynamic parameters (power, energy, time) on EOA was identified through linear regression. RESULTS Median OS and PFS for the entire cohort were 36.2 and 3.5 mo respectively. Patient's with >70% EOA had significantly improved PFS compared to ≤70% EOA (5.2 vs 2.3 mo, P = .01) and trended toward improved OS (36.2 vs 11 mo, P = .07) on univariate and multivariate analysis. Total laser power was a significant predictor for increased EOA when accounting for preoperative lesion volume (P = .001). Chemotherapy within 16 d of surgery significantly predicted improved PFS compared to delaying chemotherapy (9.4 vs 3.1 mo, P = .009). CONCLUSION Increased EOA was a predictor of improved PFS with evidence of a trend toward improved OS in LITT treatment of nGBM. A strategy favoring higher laser power during tumor ablation may achieve optimal EOA. Early transition to chemotherapy after LITT improves PFS.
Collapse
Affiliation(s)
- Long Di
- Department of Neurosurgery, University of Miami School of Medicine, Miami, Florida, USA
| | - Christopher P Wang
- Department of Neurosurgery, University of Miami School of Medicine, Miami, Florida, USA
| | - Ashish H Shah
- Department of Neurosurgery, University of Miami School of Medicine, Miami, Florida, USA
| | - Daniel G Eichberg
- Department of Neurosurgery, University of Miami School of Medicine, Miami, Florida, USA
| | - Alexa M Semonche
- Department of Neurosurgery, University of Miami School of Medicine, Miami, Florida, USA
| | - Alexander D Sanjurjo
- Department of Neurosurgery, University of Miami School of Medicine, Miami, Florida, USA
| | - Evan M Luther
- Department of Neurosurgery, University of Miami School of Medicine, Miami, Florida, USA
| | - Walter J Jermakowicz
- Department of Neurosurgery, University of Miami School of Medicine, Miami, Florida, USA
| | - Ricardo J Komotar
- Department of Neurosurgery, University of Miami School of Medicine, Miami, Florida, USA.,Sylvestor Comprehensive Cancer Center, Miami, Florida, USA
| | - Michael E Ivan
- Department of Neurosurgery, University of Miami School of Medicine, Miami, Florida, USA.,Sylvestor Comprehensive Cancer Center, Miami, Florida, USA
| |
Collapse
|
11
|
Gschwend PM, Hintze JM, Herrmann IK, Pratsinis SE, Starsich FHL. Precision in Thermal Therapy: Clinical Requirements and Solutions from Nanotechnology. ADVANCED THERAPEUTICS 2021. [DOI: 10.1002/adtp.202000193] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Pascal M. Gschwend
- Particle Technology Laboratory Department of Mechanical and Process Engineering ETH Zurich Sonneggstrasse 3 Zurich CH‐8092 Switzerland
| | - Justin M. Hintze
- Royal College of Surgeons in Ireland 123 St Stephen's Green, Saint Peter's Dublin 2 D02 YN77 Ireland
| | - Inge K. Herrmann
- Particles‐Biology Interactions Department Materials Meet Life Swiss Federal Laboratories for Materials Science and Technology (Empa) Lerchenfeldstrasse 5 St. Gallen CH‐9014 Switzerland
- Nanoparticle Systems Engineering Laboratory Department of Mechanical and Process Engineering ETH Zurich Sonneggstrasse 3 Zurich CH‐8092 Switzerland
| | - Sotiris E. Pratsinis
- Particle Technology Laboratory Department of Mechanical and Process Engineering ETH Zurich Sonneggstrasse 3 Zurich CH‐8092 Switzerland
| | - Fabian H. L. Starsich
- Particles‐Biology Interactions Department Materials Meet Life Swiss Federal Laboratories for Materials Science and Technology (Empa) Lerchenfeldstrasse 5 St. Gallen CH‐9014 Switzerland
- Nanoparticle Systems Engineering Laboratory Department of Mechanical and Process Engineering ETH Zurich Sonneggstrasse 3 Zurich CH‐8092 Switzerland
| |
Collapse
|
12
|
Liang AS, Munier SM, Danish SF. Mathematical Modeling of Thermal Damage Estimate Volumes in MR-guided Laser Interstitial Thermal Therapy. J Neuroimaging 2021; 31:334-340. [PMID: 33471941 DOI: 10.1111/jon.12830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 12/21/2020] [Accepted: 12/22/2020] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND AND PURPOSE Magnetic resonance-guided laser interstitial thermal therapy (MRgLITT) is a minimally invasive procedure that produces real-time thermal damage estimates (TDEs) of ablation. Currently, MRgLITT software provides limited quantitative parameters for intraoperative monitoring, but orthogonal TDE-MRI slices can be utilized to mathematically estimate ablation volume. The objective of this study was to model TDE volumes and validate using post-24 hours MRI ablative volumes. METHODS Ablations were performed with the Visualase Laser Ablation System (Medtronic). Using ellipsoidal parameters determined for dual-TDEs from orthogonal MRI planes, TDE volumes were calculated by two definite integral methods (A and B) implemented in Matlab (MathWorks). Post-24 hours MRI ablative volumes were measured in OsiriX (Pixmeo) by two-blinded raters and compared to TDE volumes via paired t-test and Pearson's correlations. RESULTS Twenty-two ablations for 20 patients with various intracranial pathologies were included. Average TDE volume calculated with method A was 3.44 ± 1.96 cm3 and with method B was 4.83 ± 1.53 cm3 . Method A TDE volumes were significantly different than post-24 hours volumes (P < .001). Method B TDE volumes were not significantly different than post-24 hours volumes (P = .39) and strongly correlated with each other (r = .85, R2 = .72, P < .0001). A total of eight of 22 (36%) method A versus 17 of 22 (77%) method B TDE volumes were within 25% of the post-24 hours ablative volume. CONCLUSION We present a viable mathematical method integrating dual-plane TDEs to calculate volumes. Future algorithmic iterations will incorporate additional calculated variables that improve ablative volume estimations.
Collapse
Affiliation(s)
- Allison S Liang
- Department of Neurosurgery, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ
| | - Sean M Munier
- Department of Neurosurgery, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ
| | - Shabbar F Danish
- Department of Neurosurgery, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ
| |
Collapse
|
13
|
Youngerman BE, Save AV, McKhann GM. Magnetic Resonance Imaging-Guided Laser Interstitial Thermal Therapy for Epilepsy: Systematic Review of Technique, Indications, and Outcomes. Neurosurgery 2020; 86:E366-E382. [PMID: 31980831 DOI: 10.1093/neuros/nyz556] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Accepted: 11/20/2019] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND For patients with focal drug-resistant epilepsy (DRE), surgical resection of the epileptogenic zone (EZ) may offer seizure freedom and benefits for quality of life. Yet, concerns remain regarding invasiveness, morbidity, and neurocognitive side effects. Magnetic resonance-guided laser interstitial thermal therapy (MRgLITT) has emerged as a less invasive option for stereotactic ablation rather than resection of the EZ. OBJECTIVE To provide an introduction to MRgLITT for epilepsy, including historical development, surgical technique, and role in therapy. METHODS The development of MRgLITT is briefly recounted. A systematic review identified reported techniques and indication-specific outcomes of MRgLITT for DRE in human studies regardless of sample size or follow-up duration. Potential advantages and disadvantages compared to available alternatives for each indication are assessed in an unstructured review. RESULTS Techniques and outcomes are reported for mesial temporal lobe epilepsy, hypothalamic hamartoma, focal cortical dysplasia, nonlesional epilepsy, tuberous sclerosis, periventricular nodular heterotopia, cerebral cavernous malformations, poststroke epilepsy, temporal encephalocele, and corpus callosotomy. CONCLUSION MRgLITT offers access to foci virtually anywhere in the brain with minimal disruption of the overlying cortex and white matter, promising fewer neurological side effects and less surgical morbidity and pain. Compared to other ablative techniques, MRgLITT offers immediate, discrete lesions with real-time monitoring of temperature beyond the fiber tip for damage estimates and off-target injury prevention. Applications of MRgLITT for epilepsy are growing rapidly and, although more evidence of safety and efficacy is needed, there are potential advantages for some patients.
Collapse
Affiliation(s)
- Brett E Youngerman
- Department of Neurological Surgery, Columbia University Medical Center, New York, New York
| | - Akshay V Save
- Department of Neurological Surgery, Columbia University Medical Center, New York, New York
| | - Guy M McKhann
- Department of Neurological Surgery, Columbia University Medical Center, New York, New York
| |
Collapse
|
14
|
Liang AS, Munier SM, Patel NV, Danish SF. Characterization of ablation dimensions in magnetic resonance-guided laser interstitial thermal therapy via a semi-automated algorithm. INTERDISCIPLINARY NEUROSURGERY-ADVANCED TECHNIQUES AND CASE MANAGEMENT 2020. [DOI: 10.1016/j.inat.2020.100782] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
15
|
Montemurro N, Anania Y, Cagnazzo F, Perrini P. Survival outcomes in patients with recurrent glioblastoma treated with Laser Interstitial Thermal Therapy (LITT): A systematic review. Clin Neurol Neurosurg 2020; 195:105942. [PMID: 32470780 DOI: 10.1016/j.clineuro.2020.105942] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 05/14/2020] [Accepted: 05/17/2020] [Indexed: 12/31/2022]
Abstract
OBJECTIVE To study the role of laser interstitial thermal therapy in recurrent glioblastoma and to assess its effect in the overall survival and in progression-free survival. METHODS A MEDLINE and Pubmed search was performed for the key words "laser interstitial thermal therapy", "LITT" and "glioblastoma". Studies investigating overall survival and progression-free survival of recurrent glioblastoma after laser interstitial thermal therapy were selected. RESULTS A total of 17 studies met the selection criteria, accounting for 203 patients with recurrent glioblastoma who underwent 219 laser interstitial thermal therapy treatments. The median age was 57.4 years and there was male predominance (65.8 % male Vs 34.2 % female). The most common location resulted frontal lobe (29 %), followed by temporal (23.9 %), parietal (21.4 %) and occipital lobes (2.6 %). Additional locations included thalamus, corpus callosum and cerebellum (23.1 %). Pre-treatment median tumor size was 8.9 cm3. Morbidity was 6.4 % with a median hospital stay of 3.5 days. The most common complications were seizures (2%), motor deficits (1.5 %), wound infection (1.5 %), transient hemiparesis (1%) and hemorrhage (0.5 %). No deaths were reported due to LITT procedure. The median progression-free survival and the median overall survival after laser interstitial thermal therapy resulted 5.6 months and 10.2 months, respectively. The median overall survival from diagnosis was 14.7 months. All patients underwent adjuvant chemotherapy after treatment. CONCLUSION Laser interstitial thermal therapy provides an effective treatment with low morbidity for selected patients harboring recurrent glioblastoma. Laser interstitial thermal therapy should be included in the armamentarium of neurosurgical oncologist for treatment of recurrent glioblastomas.
Collapse
Affiliation(s)
- Nicola Montemurro
- Department of Neurosurgery, Azienda Ospedaliera Universitaria Pisana (AOUP), Pisa, Italy; Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy.
| | - Yury Anania
- Department of Neurosurgery, Azienda Ospedaliera Universitaria Pisana (AOUP), Pisa, Italy
| | - Federico Cagnazzo
- Neuroradiology Department, CHRU Gui de Chauliac, Montpellier, France
| | - Paolo Perrini
- Department of Neurosurgery, Azienda Ospedaliera Universitaria Pisana (AOUP), Pisa, Italy; Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| |
Collapse
|
16
|
Bastos DCDA, Fuentes DT, Traylor J, Weinberg J, Kumar VA, Stafford J, Li J, Rao G, Prabhu SS. The use of laser interstitial thermal therapy in the treatment of brain metastases: a literature review. Int J Hyperthermia 2020; 37:53-60. [DOI: 10.1080/02656736.2020.1748238] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Affiliation(s)
| | - David T. Fuentes
- Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jeffrey Traylor
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jeffrey Weinberg
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Vinodh A. Kumar
- Department of Neuroradiology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jason Stafford
- Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jing Li
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ganesh Rao
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Sujit S. Prabhu
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
17
|
Srinivasan ES, Sankey EW, Grabowski MM, Chongsathidkiet P, Fecci PE. The intersection between immunotherapy and laser interstitial thermal therapy: a multipronged future of neuro-oncology. Int J Hyperthermia 2020; 37:27-34. [PMID: 32672126 PMCID: PMC11229985 DOI: 10.1080/02656736.2020.1746413] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 03/04/2020] [Accepted: 03/15/2020] [Indexed: 10/23/2022] Open
Abstract
The rise of immunotherapy (IT) in oncological treatment has greatly improved outcomes in a number of disease states. However, its use in tumors of the central nervous system (CNS) remains limited for multiple reasons related to the unique immunologic tumor microenvironment. As such, it is valuable to consider the intersection of IT with additional treatment methods that may improve access to the CNS and effectiveness of existing IT modalities. One such combination is the pairing of IT with localized hyperthermia (HT) generated through technologies such as laser interstitial thermal therapy (LITT). The wide-ranging immunomodulatory effects of localized and whole-body HT have been investigated for some time. Hyperthermia has demonstrated immunostimulatory effects at the level of tumor cells, immune cells, and the broader environment governing potential immune surveillance. A thorough understanding of these effects as well as the current and upcoming investigations of such in combination with IT is important in considering the future directions of neuro-oncology.
Collapse
Affiliation(s)
- Ethan S Srinivasan
- Department of Neurosurgery, Duke University School of Medicine, Durham, NC, USA
| | - Eric W Sankey
- Department of Neurosurgery, Duke University School of Medicine, Durham, NC, USA
- Department of Neurosurgery, Duke University Medical Center, Durham, NC, USA
| | | | | | - Peter E Fecci
- Department of Neurosurgery, Duke University School of Medicine, Durham, NC, USA
- Department of Neurosurgery, Duke University Medical Center, Durham, NC, USA
| |
Collapse
|
18
|
Bastos DCDA, Weinberg J, Kumar VA, Fuentes DT, Stafford J, Li J, Rao G, Prabhu SS. Laser Interstitial Thermal Therapy in the treatment of brain metastases and radiation necrosis. Cancer Lett 2020; 489:9-18. [PMID: 32504657 DOI: 10.1016/j.canlet.2020.05.014] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 05/04/2020] [Accepted: 05/13/2020] [Indexed: 01/16/2023]
Abstract
Stereotactic Radiosurgery has become the main treatment for patients with limited number of brain metastases (BM). Recently, with the increasing use of this modality, there is a growth in recurrence cases. Recurrence after radiation therapy can be divided in changes favoring either tumor recurrence or radiation necrosis (RN). Laser Interstitial Thermal Therapy (LITT) is minimally invasive treatment modality that has been used to treat primary and metastatic brain tumors. When associated with real-time thermometry using Magnetic Resonance Imaging, the extent of ablation can be controlled to provide maximum coverage and avoid eloquent areas. The objective of this study was to investigate the use of LITT in the treatment of BM. An extensive review of the relevant literature was conducted and the outcome results are discussed. There is an emphasis on safety and local control rate of patients treated with this modality. The findings of our study suggest that LITT is a viable safe technique to treat recurrent BM, especially in patients with deep-seated lesions where surgical resection is not an option.
Collapse
Affiliation(s)
- Dhiego Chaves de Almeida Bastos
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, 1400 Holcombe Blvd, FC7.2000, Unit Number: 442, Houston, TX, 77030, USA.
| | - Jeffrey Weinberg
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, 1400 Holcombe Blvd, FC7.2000, Unit Number: 442, Houston, TX, 77030, USA.
| | - Vinodh A Kumar
- Department of Neuroradiology, The University of Texas MD Anderson Cancer Center, 1400 Pressler St, Unit 1482, Houston, Texa, 77030-4008, USA.
| | - David T Fuentes
- Department of Imaging Physics - UNIT 1472, The University of Texas MD Anderson Cancer Center, 1400 Pressler Street, FCT14.5000, Houston, TX, 77030, USA.
| | - Jason Stafford
- Department of Imaging Physics - UNIT 1472, The University of Texas MD Anderson Cancer Center, 1400 Pressler Street, FCT14.5000, Houston, TX, 77030, USA.
| | - Jing Li
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Unit 1482, PO Box 301402, Houston, TX, 77030, USA.
| | - Ganesh Rao
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, 1400 Holcombe Blvd, FC7.2000, Unit Number: 442, Houston, TX, 77030, USA.
| | - Sujit S Prabhu
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, 1400 Holcombe Blvd, FC7.2000, Unit Number: 442, Houston, TX, 77030, USA.
| |
Collapse
|
19
|
Bozinov O, Yang Y, Oertel MF, Neidert MC, Nakaji P. Laser interstitial thermal therapy in gliomas. Cancer Lett 2020; 474:151-157. [PMID: 31991153 DOI: 10.1016/j.canlet.2020.01.024] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 01/16/2020] [Accepted: 01/22/2020] [Indexed: 12/14/2022]
Abstract
Laser interstitial thermal therapy (LITT) has been used for brain metastasis, epilepsy, and necrosis, as well as gliomas as a minimally invasive treatment for many years. With the improvement of the thermal monitoring and ablation precision, especially the application of magnetic resonance (MR) thermography in the procedure and the available two commercial laser systems nowadays, LITT is gradually accepted by more neurosurgical centers. Recently, some new concepts, for example the adjuvant chemotherapy or radiation following LITT, the combination of immunotherapy and LITT regarding the glioma treatment are proposed and currently being investigated. The aim of this study is to summarize the evolution of LITT especially for brain gliomas and a possible outlook of the future.
Collapse
Affiliation(s)
- Oliver Bozinov
- Department of Neurosurgery, Clinical Neuroscience Center, University Hospital Zurich, University of Zurich, Frauenklinikstrasse 10, 8002, Zurich, Switzerland.
| | - Yang Yang
- Department of Neurosurgery, Clinical Neuroscience Center, University Hospital Zurich, University of Zurich, Frauenklinikstrasse 10, 8002, Zurich, Switzerland
| | - Markus F Oertel
- Department of Neurosurgery, Clinical Neuroscience Center, University Hospital Zurich, University of Zurich, Frauenklinikstrasse 10, 8002, Zurich, Switzerland
| | - Marian C Neidert
- Department of Neurosurgery, Clinical Neuroscience Center, University Hospital Zurich, University of Zurich, Frauenklinikstrasse 10, 8002, Zurich, Switzerland; Department of Pathology and Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02114, USA; Broad Institute of Harvard and MIT, Cambridge, MA, 02142, USA
| | - Peter Nakaji
- Department of Neurosurgery, University of Arizona College of Medicine Phoenix, Banner Health, 755 East McDowell Road, Phoenix, AZ, 85006, USA
| |
Collapse
|
20
|
Alexander H, Cobourn K, Fayed I, Oluigbo CO. Magnetic Resonance-Guided Laser Interstitial Thermal Therapy for the Treatment of Nonlesional Insular Epilepsy in Pediatric Patients: Technical Considerations. Pediatr Neurosurg 2020; 55:155-162. [PMID: 32750699 DOI: 10.1159/000509006] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Accepted: 05/26/2020] [Indexed: 11/19/2022]
Abstract
INTRODUCTION The insula presents anatomic challenges to surgical exploration and intervention. Open neurosurgical intervention is associated with high rates of complications despite improved seizure control. Minimally invasive techniques using novel energy delivery methods have gained popularity due to their relative safety and ability to overcome access-related barriers. The goal of this paper is to present an operative technical report and methodological considerations on the application of magnetic resonance-guided laser interstitial thermal therapy (MRgLITT) for the treatment of nonlesional, medically refractory, insular epilepsy in pediatric patients. METHODS Visualase laser probe(s) were implanted using ROSA robotic stereotactic guidance into the insula using a parasagittal trajectory. After confirmation of placement using intraoperative MRI, thermal energy was delivered under real-time MR guidance. Laser wire pullback was performed when the initial dose of thermal energy was insufficient to ablate the target in its entirety. Thermal ablation within the intended target was confirmed using gadolinium-enhanced brain MRI. Following removal of laser wires, a final T1-weighted axial brain MRI was performed to confirm no evidence of hemorrhage. RESULTS Three patients underwent MRgLITT of nonlesional insular epilepsy over an 11-month period. The epileptogenic focus was localized to the insula using stereoelectroencephalography. The anterior and middle portions of the insula were accessed using a parasagittal trajectory. Laser ablation was performed for up to 3 min using an output of 10.5 W. No complications were encountered, and all patients were discharged within 24 h after the surgery. At the most recent follow-up, all patients had an Engel I outcome without any new neurologic deficits. CONCLUSION This small cohort shows that insular ablation can be achieved safely with promising seizure outcomes in the short term.
Collapse
Affiliation(s)
- Hepzibha Alexander
- Division of Neurosurgery, Children's National Medical Center, Georgetown University School of Medicine, Washington, District of Columbia, USA
| | - Kelsey Cobourn
- Division of Neurosurgery, Children's National Medical Center, Georgetown University School of Medicine, Washington, District of Columbia, USA
| | - Islam Fayed
- Division of Neurosurgery, Children's National Medical Center, MedStar Georgetown University Hospital, Washington, District of Columbia, USA
| | - Chima O Oluigbo
- Division of Neurosurgery, Children's National Medical Center, George Washington University School of Medicine and Health Sciences, Washington, District of Columbia, USA,
| |
Collapse
|
21
|
Munier SM, Ginalis EE, Desai AN, Danish SF. Understanding the Relationship Between Real-Time Thermal Imaging and Thermal Damage Estimate During Magnetic Resonance-Guided Laser Interstitial Thermal Therapy. World Neurosurg 2019; 134:e1093-e1098. [PMID: 31785432 DOI: 10.1016/j.wneu.2019.11.110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2019] [Revised: 11/18/2019] [Accepted: 11/19/2019] [Indexed: 11/29/2022]
Abstract
OBJECTIVE Magnetic resonance-guided laser interstitial thermal therapy is a minimally invasive procedure that uses intraoperative magnetic resonance thermometry (MRT) to generate a thermal damage estimate (TDE) of the ablative area. This study aimed to compare areas produced by the MRT heat map with the system-generated TDE produced by Visualase software. METHODS All ablations were performed using the Visualase laser ablation system. MRT heat map and TDE were quantified using MATLAB version R2014a. TDE was compared with the summed area of green, yellow, and red areas (heat map 63.9 [HM63.9]) and the summed area of light blue, green, yellow, and red areas (heat map 50.4 [HM50.4]) produced by the MRT heat map. RESULTS Fifty-six patients undergoing magnetic resonance-guided laser interstitial thermal therapy were examined. Mean TDE produced was 236 mm2 (SEM = 9.5). Mean HM63.9 was 231 mm2 (SEM = 8.7), and mean HM50.4 was 370 mm2 (SEM = 12.8). There was no significant difference between TDE and HM63.9 (P = 0.51). There was a significant difference between TDE and HM50.4 (P < 0.001) and between HM63.9 and HM50.4 (P < 0.001). CONCLUSIONS The system-generated TDE consistently remains contained within the boundaries of the MRT heat map. At standard factory settings, TDE and the area produced within the periphery of HM63.9 are similar in magnitude. The light blue portion of the MRT heat map may serve as an additional means of predicting when critical structures may be at risk during laser ablation if exposed to further thermal stress.
Collapse
Affiliation(s)
- Sean M Munier
- Department of Neurosurgery, Robert Wood Johnson Medical School, Rutgers University, New Brunswick, New Jersey, USA.
| | - Elizabeth E Ginalis
- Department of Neurosurgery, Robert Wood Johnson Medical School, Rutgers University, New Brunswick, New Jersey, USA
| | - Akshay N Desai
- Department of Neurosurgery, Robert Wood Johnson Medical School, Rutgers University, New Brunswick, New Jersey, USA
| | - Shabbar F Danish
- Department of Neurosurgery, Robert Wood Johnson Medical School, Rutgers University, New Brunswick, New Jersey, USA
| |
Collapse
|
22
|
Munier SM, Hargreaves EL, Patel NV, Danish SF. Ablation dynamics of subsequent thermal doses delivered to previously heat-damaged tissue during magnetic resonance-guided laser-induced thermal therapy. J Neurosurg 2019; 131:1958-1965. [PMID: 30579274 DOI: 10.3171/2018.7.jns18886] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2018] [Accepted: 07/31/2018] [Indexed: 12/28/2022]
Abstract
OBJECTIVE Intraoperative dynamics of magnetic resonance-guided laser-induced thermal therapy (MRgLITT) have been previously characterized for ablations of naive tissue. However, most treatment sessions require the delivery of multiple doses, and little is known about the ablation dynamics when additional doses are applied to heat-damaged tissue. This study investigated the differences in ablation dynamics between naive versus damaged tissue. METHODS The authors examined 168 ablations from 60 patients across various surgical indications. All ablations were performed using the Visualase MRI-guided laser ablation system (Medtronic), which employs a 980-nm diffusing tip diode laser. Cases with multiple topographically overlapping doses with constant power were selected for this study. Single-dose intraoperative thermal damage was used to calculate ablation rate based on the thermal damage estimate (TDE) of the maximum area of ablation achieved (TDEmax) and the total duration of ablation (tmax). We compared ablation rates of naive undamaged tissue and damaged tissue exposed to subsequent thermal doses following an initial ablation. RESULTS TDEmax was significantly decreased in subsequent ablations compared to the preceding ablation (initial ablation 227.8 ± 17.7 mm2, second ablation 164.1 ± 21.5 mm2, third ablation 124.3 ± 11.2 mm2; p = < 0.001). The ablation rate of subsequent thermal doses delivered to previously damaged tissue was significantly decreased compared to the ablation rate of naive tissue (initial ablation 2.703 mm2/sec; second ablation 1.559 mm2/sec; third ablation 1.237 mm2/sec; fourth ablation 1.076 mm/sec; p = < 0.001). A negative correlation was found between TDEmax and percentage of overlap in a subsequent ablation with previously damaged tissue (r = -0.164; p < 0.02). CONCLUSIONS Ablation of previously ablated tissue results in a reduced ablation rate and reduced TDEmax. Additionally, each successive thermal dose in a series of sequential ablations results in a decreased ablation rate relative to that of the preceding ablation. In the absence of a change in power, operators should anticipate a possible reduction in TDE when ablating partially damaged tissue for a similar amount of time compared to the preceding ablation.
Collapse
|
23
|
Predictive modeling of brain tumor laser ablation dynamics. J Neurooncol 2019; 144:193-203. [PMID: 31240526 DOI: 10.1007/s11060-019-03220-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 06/16/2019] [Indexed: 12/12/2022]
Abstract
INTRODUCTION Laser interstitial thermal therapy (LITT) is a novel MR thermometry-guided thermoablative tool revolutionizing the clinical management of brain tumors. A limitation of LITT is our inability to estimate a priori how tissues will respond to thermal energy, which hinders treatment planning and delivery. The aim of this study was to determine whether brain tumor LITT ablation dynamics may be predicted by features of the preoperative MRI and the relevance of these data, if any, to the recurrence of metastases after LITT. METHODS Intraoperative thermal damage estimate (TDE) map pixels representative of irreversible damage were retrospectively quantified relative to ablation onset for 101 LITT procedures. Raw TDE pixel counts and TDE pixel counts modelled with first order dynamics were related to eleven independent variables derived from the preoperative MRI, demographics, laser settings, and tumor pathology. Stepwise regression analysis generated predictive models of LITT dynamics, and leave-one-out cross validation evaluated the accuracy of these models at predicting TDE pixel counts solely from the independent variables. Using a deformable atlas, TDE maps were co-registered to the immediate post-ablation MRI, allowing comparison of predicted and actual ablation sizes. RESULTS Brain tumor TDE pixel counts modelled with first order dynamics, but not raw pixel counts, are correlated with the independent variables. Independent variables showing strong relations to the TDE pixel measures include T1 gadolinium and T2 signal, perfusion, and laser power. Associations with tissue histopathology are minimal. Leave-one-out analysis demonstrates that predictive models using these independent variables account for 77% of the variance observed in TDE pixel counts. Analysis of metastases treated revealed a trend towards the over-estimation of LITT effects by TDE maps during rapid ablations, which was associated with tumor recurrence. CONCLUSIONS Features of the preoperative MRI are predictive of LITT ablation dynamics and could eventually be used to improve the clinical efficacy with which LITT is delivered to brain tumors.
Collapse
|
24
|
Cobourn K, Fayed I, Keating RF, Oluigbo CO. Early outcomes of stereoelectroencephalography followed by MR-guided laser interstitial thermal therapy: a paradigm for minimally invasive epilepsy surgery. Neurosurg Focus 2018; 45:E8. [DOI: 10.3171/2018.6.focus18209] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
OBJECTIVEStereoelectroencephalography (sEEG) and MR-guided laser interstitial thermal therapy (MRgLITT) have both emerged as minimally invasive alternatives to open surgery for the localization and treatment of medically refractory lesional epilepsy. Although some data are available about the use of these procedures individually, reports are almost nonexistent on their use in conjunction. The authors’ aim was to report early outcomes regarding efficacy and safety of sEEG followed by MRgLITT for localization and ablation of seizure foci in the pediatric population with medically refractory lesional epilepsy.METHODSA single-center retrospective review of pediatric patients who underwent sEEG followed by MRgLITT procedures was performed. Demographic, intraoperative, and outcome data were compiled and analyzed.RESULTSFour pediatric patients with 9 total lesions underwent sEEG followed by MRgLITT procedures between January and September 2017. The mean age at surgery was 10.75 (range 2–21) years. Two patients had tuberous sclerosis and 2 had focal cortical dysplasia. Methods of stereotaxy consisted of BrainLab VarioGuide and ROSA robotic guidance, with successful localization of seizure foci in all cases. The sEEG procedure length averaged 153 (range 67–235) minutes, with a mean of 6 (range 4–8) electrodes and 56 (range 18–84) contacts per patient. The MRgLITT procedure length averaged 223 (range 179–252) minutes. The mean duration of monitoring was 6 (range 4–8) days, and the mean total hospital stay was 8 (range 5–11) days. Over a mean follow-up duration of 9.3 (range 5.1–16) months, 3 patients were seizure free (Engel class I, 75%), and 1 patient saw significant improvement in seizure frequency (Engel class II, 25%). There were no complications.CONCLUSIONSThese early data demonstrate that sEEG followed by MRgLITT can be used safely and effectively to localize and ablate epileptogenic foci in a minimally invasive paradigm for treatment of medically refractory lesional epilepsy in pediatric populations. Continued collection of data with extended follow-up is needed.
Collapse
|
25
|
Jermakowicz WJ, Cajigas I, Dan L, Guerra S, Sur S, D’Haese PF, Kanner AM, Jagid JR. Ablation dynamics during laser interstitial thermal therapy for mesiotemporal epilepsy. PLoS One 2018; 13:e0199190. [PMID: 29979717 PMCID: PMC6034782 DOI: 10.1371/journal.pone.0199190] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Accepted: 06/02/2018] [Indexed: 11/18/2022] Open
Abstract
Introduction The recent emergence of laser interstitial thermal therapy (LITT) as a frontline surgical tool in the management of brain tumors and epilepsy is a result of advances in MRI thermal imaging. A limitation to further improving LITT is the diversity of brain tissue thermoablative properties, which hinders our ability to predict LITT treatment-related effects. Utilizing the mesiotemporal lobe as a consistent anatomic model system, the goal of this study was to use intraoperative thermal damage estimate (TDE) maps to study short- and long-term effects of LITT and to identify preoperative variables that could be helpful in predicting tissue responses to thermal energy. Methods For 30 patients with mesiotemporal epilepsy treated with LITT at a single institution, intraoperative TDE maps and pre-, intra- and post-operative MRIs were co-registered in a common reference space using a deformable atlas. The spatial overlap of TDE maps with manually-traced immediate (post-ablation) and delayed (6-month) ablation zones was measured using the dice similarity coefficient (DSC). Then, motivated by simple heat-transfer models, ablation dynamics were quantified at amygdala and hippocampal head from TDE pixel time series fit by first order linear dynamics, permitting analysis of the thermal time constant (τ). The relationships of these measures to 16 independent variables derived from patient demographics, mesiotemporal anatomy, preoperative imaging characteristics and the surgical procedure were examined. Results TDE maps closely overlapped immediate ablation borders but were significantly larger than the ablation cavities seen on delayed imaging, particularly at the amygdala and hippocampal head. The TDEs more accurately predicted delayed LITT effects in patients with smaller perihippocampal CSF spaces. Analyses of ablation dynamics from intraoperative TDE videos showed variable patterns of lesion progression after laser activation. Ablations tended to be slower for targets with increased preoperative T2 MRI signal and in close proximity to large, surrounding CSF spaces. In addition, greater laser energy was required to ablate mesial versus lateral mesiotemporal structures, an effect associated with laser trajectory and target contrast-enhanced T1 MRI signal. Conclusions Patient-specific variations in mesiotemporal anatomy and pathology may influence the thermal coagulation of these tissues. We speculate that by incorporating demographic and imaging data into predictive models we may eventually enhance the accuracy and precision with which LITT is delivered, improving outcomes and accelerating adoption of this novel tool.
Collapse
Affiliation(s)
- Walter J. Jermakowicz
- Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, Florida, United States of America
| | - Iahn Cajigas
- Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, Florida, United States of America
| | - Lia Dan
- Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, Florida, United States of America
| | - Santiago Guerra
- Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, Florida, United States of America
| | - Samir Sur
- Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, Florida, United States of America
| | - Pierre-Francois D’Haese
- Department of Electrical Engineering and Computer Science, Vanderbilt University, Nashville, Tennessee, United States of America
| | - Andres M. Kanner
- Epilepsy Division, Department of Neurology, University of Miami Miller School of Medicine, Miami, Florida, United States of America
| | - Jonathan R. Jagid
- Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, Florida, United States of America
- * E-mail:
| |
Collapse
|
26
|
Munier SM, Hargreaves EL, Patel NV, Danish SF. Effects of variable power on tissue ablation dynamics during magnetic resonance-guided laser-induced thermal therapy with the Visualase system. Int J Hyperthermia 2017; 34:764-772. [DOI: 10.1080/02656736.2017.1376355] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Affiliation(s)
- Sean M. Munier
- Division of Neurosurgery, Rutgers University, Robert Wood Johnson Medical School, New Brunswick, NJ, USA
| | - Eric L. Hargreaves
- Division of Neurosurgery, Rutgers University, Robert Wood Johnson Medical School, New Brunswick, NJ, USA
| | - Nitesh V. Patel
- Division of Neurosurgery, Rutgers University, Robert Wood Johnson Medical School, New Brunswick, NJ, USA
| | - Shabbar F. Danish
- Division of Neurosurgery, Rutgers University, Robert Wood Johnson Medical School, New Brunswick, NJ, USA
| |
Collapse
|
27
|
Morris SA, Rollo M, Rollo P, Johnson J, Grant GA, Friedman E, Kalamangalam G, Tandon N. Prolonged Blood-Brain Barrier Disruption Following Laser Interstitial Ablation in Epilepsy: A Case Series with a Case Report of Postablation Optic Neuritis. World Neurosurg 2017; 104:467-475. [PMID: 28502693 DOI: 10.1016/j.wneu.2017.05.009] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Revised: 04/29/2017] [Accepted: 05/02/2017] [Indexed: 01/17/2023]
Abstract
OBJECTIVE Laser interstitial thermal therapy has become increasingly popular for targeting epileptic foci in a minimally invasive fashion. Despite its use in >1000 patients, the long-term effects of photothermal injury on brain physiology remain poorly understood. METHODS We prospectively followed clinical and radiographic courses of 13 patients undergoing laser ablation for focal epilepsy by the senior author (N.T.). Only patients with nonenhancing lesions and patients who had a delayed postoperative magnetic resonance imaging (MRI) scan with gadolinium administration approximately 6 months after ablation were considered. Volumetric estimates of the amount of enhancement immediately after ablation and on the delayed MRI scan were made. RESULTS Median interval between surgery and delayed postoperative MRI scan was 6 months (range, 5-8 months). In 12 of 13 cases, persistent enhancement was seen, consistent with prolonged blood-brain barrier dysfunction. Enhancement, when present, was 9%-67% (mean 30%). There was no correlation between the time from surgery and the relative percentage of postoperative enhancement on MRI. The blood-brain barrier remained compromised to gadolinium contrast for up to 8 months after thermal therapy. There were no adverse events from surgical intervention; however, 1 patient developed delayed optic neuritis. CONCLUSIONS Prolonged incompetence of the blood-brain barrier produced by thermal ablation may provide a path for delivery of macromolecules into perilesional tissue, which could be exploited for therapeutic benefit, but rarely it may result in autoimmune central nervous system inflammatory conditions.
Collapse
Affiliation(s)
- Saint-Aaron Morris
- Vivian L. Smith Department of Neurosurgery, University of Texas Health Science Center at Houston, McGovern Medical School, Houston, Texas, USA
| | - Matthew Rollo
- Vivian L. Smith Department of Neurosurgery, University of Texas Health Science Center at Houston, McGovern Medical School, Houston, Texas, USA
| | - Patrick Rollo
- Vivian L. Smith Department of Neurosurgery, University of Texas Health Science Center at Houston, McGovern Medical School, Houston, Texas, USA
| | - Jessica Johnson
- Vivian L. Smith Department of Neurosurgery, University of Texas Health Science Center at Houston, McGovern Medical School, Houston, Texas, USA
| | - Gerald A Grant
- Department of Neurosurgery, Stanford University Medical Center, Stanford, California, USA
| | - Elliott Friedman
- Department of Radiology, University of Texas Health Science Center at Houston, McGovern Medical School, Houston, Texas, USA
| | - Giridhar Kalamangalam
- Department of Neurology, University of Texas Health Science Center at Houston, McGovern Medical School, Houston, Texas, USA
| | - Nitin Tandon
- Vivian L. Smith Department of Neurosurgery, University of Texas Health Science Center at Houston, McGovern Medical School, Houston, Texas, USA.
| |
Collapse
|
28
|
Wong T, Patel NV, Feiteiro F, Danish SF, Hanft S. Lesion Optimization for Laser Ablation: Fluid Evacuation Prior to Laser-Induced Thermal Therapy. World Neurosurg 2017; 104:192-196. [PMID: 28479523 DOI: 10.1016/j.wneu.2017.04.167] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Revised: 04/25/2017] [Accepted: 04/26/2017] [Indexed: 10/19/2022]
Abstract
BACKGROUND Magnetic resonance-guided laser-induced thermal therapy (MRgLITT) is a minimally invasive surgical procedure for ablating intracranial lesions. The presence of a fluid body can sequester thermal energy generated by the laser catheter, which compromises the performance of MRgLITT, resulting in suboptimal ablation of cystic lesions. We report our use of stereotactic fluid evacuation followed by MRgLITT in 2 patients with cystic brain tumors. This is the first report on lesion optimization by fluid aspiration before MRgLITT. METHODS Two cystic tumors in 2 patients were treated. In 1 patient, an external ventricular drain was placed stereotactically to allow drainage of cystic fluid 1 day before laser ablation. In the second patient, a stereotactic biopsy needle was used to aspirate the cystic fluid immediately before laser ablation. The remaining solid portions of the both tumors were ablated using the Visualase system. Both patients were followed clinically and radiologically after the procedures. RESULTS Stereotactic placement of an external ventricular drain and a biopsy needle both successfully resulted in fluid evacuation. MRgLITT was performed without any complications in both patients after fluid evacuation. Both patients demonstrated clinical and radiologic improvement after the procedure. CONCLUSIONS Cystic fluid evacuation is a promising strategy for optimizing intracranial cystic lesions for MRgLITT. This novel approach may broaden the utility of MRgLITT in the management of various technically demanding lesions.
Collapse
Affiliation(s)
- Timothy Wong
- Department of Neurosurgery, Rutgers Robert Wood Johnson Medical School, New Brunswick, New Jersey, USA.
| | - Nitesh V Patel
- Department of Neurosurgery, Rutgers New Jersey Medical School, New Brunswick, New Jersey, USA
| | - Filipe Feiteiro
- Cancer Institute of New Jersey, Rutgers University, New Brunswick, New Jersey, USA
| | - Shabbar F Danish
- Cancer Institute of New Jersey, Rutgers University, New Brunswick, New Jersey, USA
| | - Simon Hanft
- Cancer Institute of New Jersey, Rutgers University, New Brunswick, New Jersey, USA
| |
Collapse
|
29
|
Nagae LM, Honce JM, Nyberg E, Ojemann S, Abosch A, Drees CN. Imaging of Laser Therapy in Epilepsy. J Neuroimaging 2017; 27:292-299. [PMID: 28370739 DOI: 10.1111/jon.12438] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Revised: 02/23/2017] [Accepted: 02/25/2017] [Indexed: 12/01/2022] Open
Abstract
BACKGROUND AND PURPOSE MR-guided laser interstitial thermal therapy (MRgLITT) is an increasingly popular neuroablative method for the surgical treatment of epilepsy patients. This article intends to demonstrate the utility and pitfalls of imaging in the context of patient care with MRgLITT. MATERIAL AND METHODS A retrospective review of the medical records and imaging database with six illustrative cases selected to demonstrate the use of imaging throughout patient management with MRgLITT in diverse clinical situations and pathologies. A review of the knowledge in the literature was applied to the relevant points discussed. RESULTS Imaging findings were described in the setting of laser therapy in nonlesional epilepsy, mesial temporal sclerosis, dual pathology, periventricular nodular heterotopia, and schizencephaly. Discussion of imaging principles, potential pitfalls, as well as its use in the patient work-up and follow-up, is shown. CONCLUSIONS MRgLITT is an alternative minimally invasive therapy for refractory epilepsy, which is becoming widely sought for. Imaging plays a crucial role prior to, during, and after the procedure.
Collapse
Affiliation(s)
- Lidia M Nagae
- Department of Radiology, Neuroradiology, University of Colorado Denver School of Medicine, Aurora, CO
| | - Justin M Honce
- Department of Radiology, Neuroradiology, University of Colorado Denver School of Medicine, Aurora, CO
| | - Eric Nyberg
- Department of Radiology, Neuroradiology, University of Colorado Denver School of Medicine, Aurora, CO
| | - Steven Ojemann
- Department of Neurosurgery, University of Colorado Denver School of Medicine, Aurora, CO
| | - Aviva Abosch
- Department of Neurosurgery, University of Colorado Denver School of Medicine, Aurora, CO
| | - Cornelia N Drees
- Department of Neurology, Epilepsy Section, University of Colorado Denver School of Medicine, Aurora, CO
| |
Collapse
|
30
|
Diaz R, Ivan ME, Hanft S, Vanni S, Manzano G, Jagid J, Komotar RJ. Laser Interstitial Thermal Therapy. Neurosurgery 2016; 79 Suppl 1:S3-S7. [DOI: 10.1227/neu.0000000000001435] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Affiliation(s)
- Roberto Diaz
- Department of Neurological Surgery, The University of Miami Miller School of Medicine, Miami, Florida
| | - Michael E. Ivan
- Department of Neurological Surgery, The University of Miami Miller School of Medicine, Miami, Florida
| | - Simon Hanft
- Division of Neurosurgery, Department of Surgery, Robert Wood Johnson Medical School, Rutgers University, New Brunswick, New Jersey
| | - Steve Vanni
- Department of Neurological Surgery, The University of Miami Miller School of Medicine, Miami, Florida
| | - Glen Manzano
- Department of Neurological Surgery, The University of Miami Miller School of Medicine, Miami, Florida
| | - Jonathan Jagid
- Department of Neurological Surgery, The University of Miami Miller School of Medicine, Miami, Florida
| | - Ricardo J. Komotar
- Department of Neurological Surgery, The University of Miami Miller School of Medicine, Miami, Florida
| |
Collapse
|
31
|
Seizure outcomes in nonresective epilepsy surgery: an update. Neurosurg Rev 2016; 40:181-194. [PMID: 27206422 DOI: 10.1007/s10143-016-0725-8] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2015] [Revised: 01/31/2016] [Accepted: 03/06/2016] [Indexed: 12/18/2022]
Abstract
In approximately 30 % of patients with epilepsy, seizures are refractory to medical therapy, leading to significant morbidity and increased mortality. Substantial evidence has demonstrated the benefit of surgical resection in patients with drug-resistant focal epilepsy, and in the present journal, we recently reviewed seizure outcomes in resective epilepsy surgery. However, not all patients are candidates for or amenable to open surgical resection for epilepsy. Fortunately, several nonresective surgical options are now available at various epilepsy centers, including novel therapies which have been pioneered in recent years. Ablative procedures such as stereotactic laser ablation and stereotactic radiosurgery offer minimally invasive alternatives to open surgery with relatively favorable seizure outcomes, particularly in patients with mesial temporal lobe epilepsy. For certain individuals who are not candidates for ablation or resection, palliative neuromodulation procedures such as vagus nerve stimulation, deep brain stimulation, or responsive neurostimulation may result in a significant decrease in seizure frequency and improved quality of life. Finally, disconnection procedures such as multiple subpial transections and corpus callosotomy continue to play a role in select patients with an eloquent epileptogenic zone or intractable atonic seizures, respectively. Overall, open surgical resection remains the gold standard treatment for drug-resistant epilepsy, although it is significantly underutilized. While nonresective epilepsy procedures have not replaced the need for resection, there is hope that these additional surgical options will increase the number of patients who receive treatment for this devastating disorder-particularly individuals who are not candidates for or who have failed resection.
Collapse
|