1
|
Islam J, Rahman MT, Ali M, Kc E, Lee HJ, Hyun SH, Park YS. CaMKIIα-NpHR-Mediated Optogenetic Inhibition of DRG Glutamatergic Neurons by Flexible Optic Fiber Alleviates Chronic Neuropathic Pain. Neuromolecular Med 2025; 27:26. [PMID: 40227491 DOI: 10.1007/s12017-025-08848-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Accepted: 03/22/2025] [Indexed: 04/15/2025]
Abstract
Glutamatergic neurons of the dorsal root ganglion (DRGg) exert a significant effect on peripheral nociceptive signal transmission. However, assessing the explicit modulatory effect of DRGg during chronic neuropathic pain (CNP) with neuromodulation techniques remains largely unexplored. Therefore, we inhibited DRGg by optogenetic stimulation and examined whether it could alleviate CNP and associated anxiety-related behaviors in a chronic compressed DRG (CCD) rat model. The CCD pain model was established by inserting an L-shaped rod into the lumbar 5 (L5) intervertebral foramen, and either AAV2-CaMKIIα-eNpHR3.0-mCherry or AAV2-CaMKIIα-mCherry was injected into the L5 DRG. Flexible optic fibers were implanted to direct yellow light into the L5 DRG. Pain and anxiety-related behavioral responses were assessed using mechanical threshold, mechanical latency, thermal latency, and open field tests. In vivo single-unit extracellular recording from the DRG and ventral posterolateral (VPL) thalamus was performed. CNP and anxiety-related behavioral responses along with increased neural firing activity of the DRG and VPL thalamus were observed in CCD animals. Enhanced expression of nociception-influencing molecules was found in the DRG and spinal dorsal horn (SDH). In contrast during optogenetic stimulation, specific DRGg inhibition markedly alleviated the CNP responses and reduced the DRG and VPL thalamic neural hyperactivity in CCD animals. Inhibition of DRGg also reduced the active expression of nociceptive signal mediators in the DRG and SDH. Taken together, our findings suggest that CaMKIIα-NpHR-mediated optogenetic inhibition of DRGg can produce antinociceptive effects in CCD rats during peripheral nerve injury-induced CNP condition by altering peripheral nociceptive signal input in the spinothalamic tract.
Collapse
Affiliation(s)
- Jaisan Islam
- Department of Neuroscience, College of Medicine, Chungbuk National University, Cheongju, Korea
| | - Md Taufiqur Rahman
- Department of Neuroscience, College of Medicine, Chungbuk National University, Cheongju, Korea
| | - Muhammad Ali
- Department of Neuroscience, College of Medicine, Chungbuk National University, Cheongju, Korea
| | - Elina Kc
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Hyun Jik Lee
- Laboratory of Veterinary Physiology, College of Veterinary Medicine, Chungbuk National University, Cheongju, Korea
| | - Sang Hwan Hyun
- Laboratory of Veterinary Physiology, College of Veterinary Medicine, Chungbuk National University, Cheongju, Korea
| | - Young Seok Park
- Department of Neuroscience, College of Medicine, Chungbuk National University, Cheongju, Korea.
- Department of Neurosurgery, Chungbuk National University Hospital, College of Medicine, Chungbuk National University, 776, 1 Sunhwanro, Seowon-gu, Cheongju, 28644, Chungbuk, Korea.
| |
Collapse
|
2
|
Jiang C, Zhao J, Zhang Y, Zhu X. Role of EPAC1 in chronic pain. Biochem Biophys Rep 2024; 37:101645. [PMID: 38304575 PMCID: PMC10832381 DOI: 10.1016/j.bbrep.2024.101645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 01/08/2024] [Accepted: 01/10/2024] [Indexed: 02/03/2024] Open
Abstract
Chronic pain usually lasts over three months and commonly occurs in chronic diseases (cancer, arthritis, and diabetes), injuries (herniated discs, torn ligaments), and many major pain disorders (neuropathic pain, fibromyalgia, chronic headaches). Unfortunately, there is currently a lack of effective treatments to help people with chronic pain to achieve complete relief. Therefore,it is particularly important to understand the mechanism of chronic pain and find new therapeutic targets. The exchange protein directly activated by cyclic adenosine monophosphate(cAMP) (EPAC) has been recognized for its functions in nerve regeneration, stimulating insulin release, controlling vascular pressure, and controlling other metabolic activities. In recent years, many studies have found that the subtype of EPAC, EPAC1 is involved in the regulation of neuroinflammation and plays a crucial role in the regulation of pain, which is expected to become a new therapeutic target for chronic pain. This article reviews the major contributions of EPAC1 in chronic pain.
Collapse
Affiliation(s)
- Chenlu Jiang
- Department of Anesthesiology, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, 226001, China
- Medical School of Nantong University, Nantong, 226001, China
| | - Jiacheng Zhao
- Department of Anesthesiology, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, 226001, China
- Medical School of Nantong University, Nantong, 226001, China
| | - Yihang Zhang
- Medical School of Nantong University, Nantong, 226001, China
| | - Xiang Zhu
- Department of Anesthesiology, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, 226001, China
| |
Collapse
|
3
|
Kao HL, Huang GS, Tang CT, Yang FC, Chao KH, Huang HB, Hsu YC. Usefulness of cone-beam computed tomography-reformatted epidurography in percutaneous epidural adhesiolysis: A pilot study. J Chin Med Assoc 2024; 87:131-137. [PMID: 37967463 DOI: 10.1097/jcma.0000000000001024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2023] Open
Abstract
BACKGROUND Conventional epidurography (CE) is thought to have insufficient usefulness on percutaneous epidural adhesiolysis (PEA). We aimed to evaluate the association between the outcome of PEA and cone-beam computed tomography-reformatted epidurography (CBCT-RE). METHODS After ethics board approval and written informed consent were obtained, we performed 30 PEA in 26 participants, and evaluated their post-PEA image findings. Two independent radiologists categorized and recorded the occurrence of contrast in the intracanal ventral and extraforaminal regions on CE, and in the dorsal canal (DC), ventral canal (VC), dorsal foramen (DF), and ventral foramen (VF) on CBCT-RE. Reproducibility was assessed using intraclass correlation coefficients (ICCs). Baseline characteristics along with contrast distribution patterns of CE and CBCT-RE were analyzed in terms of their association with symptom relief at 1 month after PEA. RESULTS The rate of patients with symptoms relief >50% after PEA was 63.3%. The inter-reader agreement was higher for CBCT-RE (ICC = 0.955) than for CE (ICC = 0.793). Participants with contrast coexisting in VC and DF adjacent to the irritated nerve root on CBCT-RE ( p = 0.015) had a significantly better response after PEA than those without contrast at these locations on CBCT-RE, independent of baseline characteristics (adjusted odds ratio: 11.414 [ p = 0.012]). CONCLUSION CBCT-RE with identifying contrast distribution patterns is useful for predicting outcome of PEA.
Collapse
Affiliation(s)
- Hao-Lun Kao
- Department of Radiology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan, ROC
| | - Guo-Shu Huang
- Department of Radiology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan, ROC
- Department of Medical Research, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan, ROC
| | - Chi-Tun Tang
- Department of Neurosurgery, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan, ROC
| | - Fu-Chi Yang
- Department of Neurology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan, ROC
| | - Kuo-Hua Chao
- Department of Orthopedics, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan, ROC
| | - Han-Bin Huang
- School of Public Health, National Defense Medical Center, Taipei, Taiwan, ROC
| | - Yi-Chih Hsu
- Department of Radiology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan, ROC
| |
Collapse
|
4
|
Xian H, Guo H, Liu YY, Zhang JL, Hu WC, Yu MJ, Zhao R, Xie RG, Zhang H, Cong R. Peripheral BDNF Regulates Somatosensory-Sympathetic Coupling in Brachial Plexus Avulsion-Induced Neuropathic Pain. Neurosci Bull 2023; 39:1789-1806. [PMID: 37335428 PMCID: PMC10661543 DOI: 10.1007/s12264-023-01075-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Accepted: 03/19/2023] [Indexed: 06/21/2023] Open
Abstract
Brachial plexus avulsion (BPA) is a combined injury involving the central and peripheral nervous systems. Patients with BPA often experience severe neuropathic pain (NP) in the affected limb. NP is insensitive to the existing treatments, which makes it a challenge to researchers and clinicians. Accumulated evidence shows that a BPA-induced pain state is often accompanied by sympathetic nervous dysfunction, which suggests that the excitation state of the sympathetic nervous system is correlated with the existence of NP. However, the mechanism of how somatosensory neural crosstalk with the sympathetic nerve at the peripheral level remains unclear. In this study, through using a novel BPA C7 root avulsion mouse model, we found that the expression of BDNF and its receptor TrκB in the DRGs of the BPA mice increased, and the markers of sympathetic nervous system activity including α1 and α2 adrenergic receptors (α1-AR and α2-AR) also increased after BPA. The phenomenon of superexcitation of the sympathetic nervous system, including hypothermia and edema of the affected extremity, was also observed in BPA mice by using CatWalk gait analysis, an infrared thermometer, and an edema evaluation. Genetic knockdown of BDNF in DRGs not only reversed the mechanical allodynia but also alleviated the hypothermia and edema of the affected extremity in BPA mice. Further, intraperitoneal injection of adrenergic receptor inhibitors decreased neuronal excitability in patch clamp recording and reversed the mechanical allodynia of BPA mice. In another branch experiment, we also found the elevated expression of BDNF, TrκB, TH, α1-AR, and α2-AR in DRG tissues from BPA patients compared with normal human DRGs through western blot and immunohistochemistry. Our results revealed that peripheral BDNF is a key molecule in the regulation of somatosensory-sympathetic coupling in BPA-induced NP. This study also opens a novel analgesic target (BDNF) in the treatment of this pain with fewer complications, which has great potential for clinical transformation.
Collapse
Affiliation(s)
- Hang Xian
- Department of Orthopedics, Xijing Hospital, The Air Force Medical University, Xi'an, 710032, China
| | - Huan Guo
- Pain and Related Diseases Research Laboratory, Medical College of Shantou University, Shantou, 515041, China
- Department of Neurobiology, School of Basic Medicine, The Air Force Medical University, Xi'an, 710032, China
| | - Yuan-Ying Liu
- School of Life Science and Research Center for Resource Peptide Drugs, Shaanxi Engineering and Technological Research Center for Conversation and Utilization of Regional Biological Resources, Yanan University, Yanan, 716000, China
- Department of Neurobiology, School of Basic Medicine, The Air Force Medical University, Xi'an, 710032, China
| | - Jian-Lei Zhang
- Department of Orthopedics, Xijing Hospital, The Air Force Medical University, Xi'an, 710032, China
| | - Wen-Chao Hu
- Department of Neurobiology, School of Basic Medicine, The Air Force Medical University, Xi'an, 710032, China
- The Sixth Regiment, School of Basic Medicine, The Air Force Medical University, Xi'an, 710032, China
| | - Ming-Jun Yu
- The Tenth Squadron of the Third Regiment, School of Basic Medicine, The Air Force Medical University, Xi'an, 710032, China
| | - Rui Zhao
- Department of Orthopedics, Xijing Hospital, The Air Force Medical University, Xi'an, 710032, China
| | - Rou-Gang Xie
- Department of Neurobiology, School of Basic Medicine, The Air Force Medical University, Xi'an, 710032, China.
| | - Hang Zhang
- Department of Orthopedics, Xijing Hospital, The Air Force Medical University, Xi'an, 710032, China.
| | - Rui Cong
- Department of Orthopedics, Xijing Hospital, The Air Force Medical University, Xi'an, 710032, China.
| |
Collapse
|
5
|
Yazar U, Guvercin AR, Rouhikia M, Aktoklu M, Demirci MA, Erbay I, Ayar A. Cerebrolysin provides effective protection on high glucose-induced neuropathy in cultured rat dorsal root ganglion neurons. J Recept Signal Transduct Res 2023; 43:109-114. [PMID: 38079610 DOI: 10.1080/10799893.2023.2291566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 11/23/2023] [Indexed: 01/25/2024]
Abstract
Cerebrolysin, an endogenous peptide with neuroprotective and neurotrophic properties, indicated to be beneficial on diabetic neuropathy by preliminary clinical and experimental studies but without evidence on central or peripheral action. Dorsal root ganglion (DRG) neurons, based on involvement of pain sensation in both health and disease as first relay centers for transmission and processing of peripheral nociceptive sensory signals, was used to investigate possible effects of Cerebrolysin on high glucose-induced neuropathy, as model. DRG's were obtained from adult rats and the isolated neurons were seeded on E-Plate®'s equipped with gold microelectrodes, and incubated in culture media in a CO2 incubator at 37 C. DRGs were exposed to high glucose (50 mM) in the absence and presence of different concentrations of Cerebrolysin ® (2-40 mg/ml). Cell index (derived from cell viability and neurite outgrowth) was recorded with Real-Time Cell Analyzer and was used as primary outcome measure. High glucose-induced cellular neuropathy and neuroprotective effects of Cerebrolysin was evaluated from area under the curve (AUC) of cell index-time graphs. Exposure of DRG neurons to high glucose caused a rapid and persistent decrease in the mean AUC values compared to normoglycemic controls. Co-treatment with Cerebrolysin (40 mg/ml) attenuated this high glucose-induced effect in a concentration-dependent manner. In normoglycemic conditions, treatment with Cerebrolysin caused a dose-dependent increase in the mean AUC values. Cerebrolysin treatment resulted in maintenance of the functional integrity, survival, and promotion of neurite outgrowth of the cultured DRG neurons exposed to high glucose, indicating involvement of peripheral sensory neurons.
Collapse
Affiliation(s)
- Ugur Yazar
- Departments of Neurosurgery, Faculty of Medicine, Karadeniz Technical University, Trabzon, Turkey
| | - Ali Rıza Guvercin
- Departments of Neurosurgery, Faculty of Medicine, Karadeniz Technical University, Trabzon, Turkey
| | - Mahindokht Rouhikia
- Departments of Physiology, Faculty of Medicine, Karadeniz Technical University, Trabzon, Turkey
| | - Mehmet Aktoklu
- Departments of Neurosurgery, Faculty of Medicine, Karadeniz Technical University, Trabzon, Turkey
| | - Mehmet Ali Demirci
- Departments of Neurosurgery, Faculty of Medicine, Karadeniz Technical University, Trabzon, Turkey
| | - Ibrahim Erbay
- Departments of Physiology, Faculty of Medicine, Karadeniz Technical University, Trabzon, Turkey
| | - Ahmet Ayar
- Departments of Physiology, Faculty of Medicine, Karadeniz Technical University, Trabzon, Turkey
| |
Collapse
|
6
|
Li Q, Mathena RP, Li F, Dong X, Guan Y, Mintz CD. Effects of Early Exposure to Isoflurane on Susceptibility to Chronic Pain Are Mediated by Increased Neural Activity Due to Actions of the Mammalian Target of the Rapamycin Pathway. Int J Mol Sci 2023; 24:13760. [PMID: 37762067 PMCID: PMC10530853 DOI: 10.3390/ijms241813760] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 09/01/2023] [Accepted: 09/04/2023] [Indexed: 09/29/2023] Open
Abstract
Patients who have undergone surgery in early life may be at elevated risk for suffering neuropathic pain in later life. The risk factors for this susceptibility are not fully understood. Here, we used a mouse chronic pain model to test the hypothesis that early exposure to the general anesthetic (GA) Isoflurane causes cellular and molecular alterations in dorsal spinal cord (DSC) and dorsal root ganglion (DRG) that produces a predisposition to neuropathic pain via an upregulation of the mammalian target of the rapamycin (mTOR) signaling pathway. Mice were exposed to isoflurane at postnatal day 7 (P7) and underwent spared nerve injury at P28 which causes chronic pain. Selected groups were treated with rapamycin, an mTOR inhibitor, for eight weeks. Behavioral tests showed that early isoflurane exposure enhanced susceptibility to chronic pain, and rapamycin treatment improved outcomes. Immunohistochemistry, Western blotting, and q-PCR indicated that isoflurane upregulated mTOR expression and neural activity in DSC and DRG. Accompanying upregulation of mTOR and rapamycin-reversible changes in chronic pain-associated markers, including N-cadherin, cAMP response element-binding protein (CREB), purinergic P2Y12 receptor, glial fibrillary acidic protein (GFAP) in DSC; and connexin 43, phospho-extracellular signal-regulated kinase (p-ERK), GFAP, Iba1 in DRG, were observed. We concluded that early GA exposure, at least with isoflurane, alters the development of pain circuits such that mice are subsequently more vulnerable to chronic neuropathic pain states.
Collapse
Affiliation(s)
- Qun Li
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; (R.P.M.); (F.L.); (Y.G.)
| | - Reilley Paige Mathena
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; (R.P.M.); (F.L.); (Y.G.)
| | - Fengying Li
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; (R.P.M.); (F.L.); (Y.G.)
| | - Xinzhong Dong
- Solomon H. Snyder Department of Neuroscience and Center for Sensory Biology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA;
| | - Yun Guan
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; (R.P.M.); (F.L.); (Y.G.)
| | - Cyrus David Mintz
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; (R.P.M.); (F.L.); (Y.G.)
| |
Collapse
|
7
|
Mei C, Pan C, Xu L, Miao M, Lu Q, Yu Y, Lin P, Wu W, Ni F, Gao Y, Xu Y, Xu J, Chen X. Trimethoxyflavanone relieves Paclitaxel-induced neuropathic pain via inhibiting expression and activation of P2X7 and production of CGRP in mice. Neuropharmacology 2023; 236:109584. [PMID: 37225085 DOI: 10.1016/j.neuropharm.2023.109584] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 04/28/2023] [Accepted: 05/07/2023] [Indexed: 05/26/2023]
Abstract
Paclitaxel (PTX) is an anticancer drug used to treat solid tumors, but one of its common adverse effects is chemotherapy-induced peripheral neuropathy (CIPN). Currently, there is limited understanding of neuropathic pain associated with CIPN and effective treatment strategies are inadequate. Previous studies report the analgesic actions of Naringenin, a dihydroflavonoid compound, in pain. Here we observed that the anti-nociceptive action of a Naringenin derivative, Trimethoxyflavanone (Y3), was superior to Naringenin in PTX-induced pain (PIP). An intrathecal injection of Y3 (1 μg) reversed the mechanical and thermal thresholds of PIP and suppressed the PTX-induced hyper-excitability of dorsal root ganglion (DRG) neurons. PTX enhanced the expression of ionotropic purinergic receptor P2X7 (P2X7) in satellite glial cells (SGCs) and neurons in DRGs. The molecular docking simulation predicts possible interactions between Y3 and P2X7. Y3 reduced the PTX-enhanced P2X7 expression in DRGs. Electrophysiological recordings revealed that Y3 directly inhibited P2X7-mediated currents in DRG neurons of PTX-treated mice, suggesting that Y3 suppressed both expression and function of P2X7 in DRGs post-PTX administration. Y3 also reduced the production of calcitonin gene-related peptide (CGRP) in DRGs and at the spinal dorsal horn. Additionally, Y3 suppressed the PTX-enhanced infiltration of Iba1-positive macrophage-like cells in DRGs and overactivation of spinal astrocytes and microglia. Therefore, our results indicate that Y3 attenuates PIP via inhibiting P2X7 function, CGRP production, DRG neuron sensitization, and abnormal spinal glial activation. Our study implies that Y3 could be a promising drug candidate against CIPN-associated pain and neurotoxicity.
Collapse
Affiliation(s)
- Changqing Mei
- Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Ningbo University, Ningbo, 315211, China
| | - Chen Pan
- Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Ningbo University, Ningbo, 315211, China
| | - Linbin Xu
- Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Ningbo University, Ningbo, 315211, China
| | - Mengmeng Miao
- Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Ningbo University, Ningbo, 315211, China
| | - Qichen Lu
- Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Ningbo University, Ningbo, 315211, China
| | - Yang Yu
- Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Ningbo University, Ningbo, 315211, China
| | - Pengyu Lin
- Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Ningbo University, Ningbo, 315211, China
| | - Wenwei Wu
- Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Ningbo University, Ningbo, 315211, China
| | - Feng Ni
- Institute of Drug Discovery Technology, Ningbo University, Ningbo, 315211, China; LeadArt Technologies Ltd., Ningbo, 315201, China
| | - Yinping Gao
- Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Ningbo University, Ningbo, 315211, China
| | - Yuhao Xu
- Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Ningbo University, Ningbo, 315211, China
| | - Jia Xu
- Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Ningbo University, Ningbo, 315211, China.
| | - Xiaowei Chen
- Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Ningbo University, Ningbo, 315211, China.
| |
Collapse
|
8
|
Musharbash FN, Lee SH. A Modified Endoscopic Access for Lumbar Foraminal Pathologies; Posterolateral “Intertransverse” Endoscopic Approach to Minimize Postoperative Dysesthesia Following Transforaminal Approach. Neurospine 2023; 20:150-157. [PMID: 37016863 PMCID: PMC10080430 DOI: 10.14245/ns.2346076.038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 03/01/2023] [Indexed: 04/03/2023] Open
Abstract
Objective: To present an innovative, modified endoscopic approach for foraminal/extraforaminal pathologies, to reduce postoperative dysesthesia (POD) following the conventional transforaminal endoscopic approach (the access angle more than 45° from the midline), since POD is one of the major documented disadvantages that may compromise patient satisfaction.Methods: We introduce a modified posterolateral technique, termed the intertransverse approach, utilizing a steeper access angle less than 25° through the intertransversarii muscle and the intertransverse space with expanding Kambin triangle via lateral facetectomy/foraminoplasty, to reduce dorsal root ganglion/exiting nerve root irritation under direct visualization and lower the incidence of POD. Consecutive patients undergoing endoscopic spine surgery via the intertransverse approach for foraminal and/or extraforaminal disc herniations or bony stenosis were retrospectively reviewed. Clinical outcomes were reviewed with the primary outcome being POD.Results: Twenty-two patients were included in the review. Patients showed significantly improved clinical outcomes (visual analogue scale leg and back pain and Oswestry Disability Index) postoperatively. There was a low rate of dorsal root ganglion (DRG)-related POD (9.1%, 2 of 22) that was minimal and resolved soon.Conclusion: The inter-transverse endoscopic approach is feasible for lumbosacral foraminal and extraforaminal decompression with significantly improved clinical outcomes and the added advantage of a low rate of DRG-related POD compared to traditionally reported rates in the literature for the conventional transforaminal approach.
Collapse
Affiliation(s)
- Farah N. Musharbash
- Department of Orthopaedic Surgery, The Johns Hopkins Hospital, Baltimore, MD, USA
| | - Sang Hun Lee
- Department of Orthopaedic Surgery, The Johns Hopkins Hospital, Baltimore, MD, USA
- Corresponding Author Sang Hun Lee The Johns Hopkins University, 601 North Caroline Street, Suite 5250, Baltimore, MD 21287, USA
| |
Collapse
|
9
|
Mechanisms underlying paclitaxel-induced neuropathic pain: Channels, inflammation and immune regulations. Eur J Pharmacol 2022; 933:175288. [PMID: 36122757 DOI: 10.1016/j.ejphar.2022.175288] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 09/07/2022] [Accepted: 09/13/2022] [Indexed: 11/22/2022]
Abstract
Paclitaxel is a chemotherapeutic agent widely used for many types of malignancies. However, when paclitaxel is used to treat tumors, patients commonly experience severe neuropathic pain that is difficult to manage. The mechanism underlying paclitaxel-induced neuropathic pain remains unclear. Evidence demonstrates correlations between mechanisms of paclitaxel-mediated pain and associated actions of ion channels, neuroinflammation, mitochondrial damage, and other factors. This review provides a comprehensive analysis of paclitaxel-induced neuropathic pain mechanisms and suggestions for effective interventions.
Collapse
|
10
|
Story MR, Nout-Lomas YS, Aboellail TA, Selberg KT, Barrett MF, Mcllwraith CW, Haussler KK. Dangerous Behavior and Intractable Axial Skeletal Pain in Performance Horses: A Possible Role for Ganglioneuritis (14 Cases; 2014-2019). Front Vet Sci 2021; 8:734218. [PMID: 34957274 PMCID: PMC8702524 DOI: 10.3389/fvets.2021.734218] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 11/03/2021] [Indexed: 12/02/2022] Open
Abstract
Introduction: Dangerous behavior is considered an undesired trait, often attributed to poor training or bad-tempered horses. Unfortunately, horses with progressive signs of dangerous behavior are often euthanized due to concerns for rider safety and limitations in performance. However, this dangerous behavior may actually originate from chronic axial skeleton pain. This case series describes the medical histories and clinical presentations of horses presented for performance limitations and dangerous behavior judged to be related to intractable axial skeleton pain. Material and Methods: Fourteen horses that developed severe performance limitations resulting in euthanasia were included. A complete spinal examination and behavioral responses, gait and neurologic evaluations, diagnostic imaging, gross pathologic and histopathologic examinations of the axial skeleton were performed on all horses. A tentative diagnosis of the affected spinal region was formulated using medical records, owner and trainer complaints, and antemortem examination findings. The selected spinal regions were further examined with gross and histopathologic evaluations of the associated osseous, soft tissue and neural tissues. Results: Ten horses showed severe behavioral responses during the myofascial and mobilization examinations. Based on an aggregate evaluation, the cervicothoracic and lumbosacral regions were the most common regions believed to be the primary area of concern. All horses had moderate to severe ganglionitis present at multiple vertebral levels. Subdural and epidural hemorrhage or hematomas were a common finding (71%) in the cervicothoracic and lumbosacral regions. Discussion: In this case series, neuropathic (i.e., structural) pain was judged to be the underlying cause of dangerous behavior. The dorsal root ganglia (DRG) serve an important role in relaying peripheral sensory information to the central nervous system and ganglionitis has been associated with neuropathic pain syndromes. This series highlights the need for more in-depth understanding of pain behavior and its clinical presentation and progression in chronic or severely affected horses. Limitations of the study are the lack of age-matched control DRG and the incomplete collection of DRG from every vertebral level of interest.
Collapse
Affiliation(s)
- Melinda R. Story
- Department of Clinical Sciences, Orthopaedic Research Center, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, United States
| | - Yvette S. Nout-Lomas
- Department of Clinical Sciences, Orthopaedic Research Center, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, United States
| | - Tawfik A. Aboellail
- Department of Microbiology, Immunology, and Pathology, College of Veterinary Medicine and Biomedical Science, Colorado State University, Fort Collins, CO, United States
| | - Kurt T. Selberg
- Department of Clinical Sciences, Orthopaedic Research Center, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, United States
- Department of Environmental and Radiological Health Sciences, College of Veterinary Medicine and Biomedical Science, Colorado State University, Fort Collins, CO, United States
| | - Myra F. Barrett
- Department of Clinical Sciences, Orthopaedic Research Center, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, United States
- Department of Environmental and Radiological Health Sciences, College of Veterinary Medicine and Biomedical Science, Colorado State University, Fort Collins, CO, United States
| | - C. Wayne Mcllwraith
- Department of Clinical Sciences, Orthopaedic Research Center, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, United States
| | - Kevin K. Haussler
- Department of Clinical Sciences, Orthopaedic Research Center, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, United States
| |
Collapse
|
11
|
Dai Z, Xu X, Chen Y, Lin C, Lin F, Liu R. Effects of High-Voltage Pulsed Radiofrequency on the Ultrastructure and Nav1.7 Level of the Dorsal Root Ganglion in Rats With Spared Nerve Injury. Neuromodulation 2021; 25:980-988. [PMID: 34487572 DOI: 10.1111/ner.13527] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Revised: 07/18/2021] [Accepted: 08/03/2021] [Indexed: 11/30/2022]
Abstract
OBJECTIVES To investigate the analgesic effect of high-voltage pulsed radiofrequency (HV-PRF) on the dorsal root ganglion (DRG) for neuropathic pain induced by spared nerve injury (SNI) in rats, especially the influence of this treatment on the DRG ultrastructure and voltage-gated sodium channel 1.7 (Nav1.7) level in the DRG. MATERIALS AND METHODS One hundred fifty adult male Sprague-Dawley rats were randomly divided into five groups: Sham, SNI, Free-PRF, standard-voltage PRF (SV-PRF), and HV-PRF. The 45V-PRF and 85V-PRF procedures applied to the left L5 DRG were performed in SV-PRF group and the HV-PRF group respectively on day 7 after SNI, whereas no PRF was concurrently delivered in Free-PRF group. The paw mechanical withdrawal threshold (PMWT) was detected before SNI (baseline) and on days 1, 3, 7, 8, 10, 14, and 21. The changes of left L5 DRG ultrastructure were analyzed with transmission electron microscopy on days 14 and 21. The expression levels of Nav1.7 in left L5 DRG were detected by immunofluorescence and Western blot. RESULTS Compared with the Free-PRF group, PMWT in the SV-PRF group and HV-PRF group were both significantly increased after PRF (all p < 0.05). Meanwhile, the PMWT was significantly higher in the HV-PRF group than that in the SV-PRF group on days 14 and 21 all (p < 0.05). There were statistically significant differences between the SV-PRF and Free-PRF groups (p < 0.05). Similarly, statistically significant difference was found between the HV-PRF and Free-PRF groups (p < 0.05). Especially, comparison of the SV-PRF group and the HV-PRF group revealed statistically significant difference (p < 0.05). The Nav1.7 levels were significantly down-regulated in the SV-PRF group and HV-PRF groups compared to that in the Free-PRF group (all p < 0.01). A significantly lower Nav1.7 level was also found in the HV-PRF group compared to that in the SV-PRF group (p < 0.05). CONCLUSIONS The HV-PRF produces a better analgesic effect than SV-PRF applied to the DRG in SNI rats. The underlying mechanisms may be associated with improving the histopathological prognosis and the downregulation of Nav1.7 levels in the DRG.
Collapse
Affiliation(s)
- Zhisen Dai
- Department of Pain Management, Fujian Provincial Hospital, Shengli Clinical Medical College of Fujian Medical University, Fuzhou, China
| | - Xueru Xu
- Department of Pain Management, Fujian Provincial Hospital, Shengli Clinical Medical College of Fujian Medical University, Fuzhou, China
| | - Yanqin Chen
- Department of Pain Management, Fujian Provincial Hospital, Shengli Clinical Medical College of Fujian Medical University, Fuzhou, China
| | - Chun Lin
- Laboratory of Pain Research, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Fan Lin
- Fujian Key Laboratory of Geriatrics, Fujian Provincial Hospital, Shengli Clinical Medical College of Fujian Medical University, Fuzhou, China
| | - Rongguo Liu
- Department of Pain Management, Fujian Provincial Hospital, Shengli Clinical Medical College of Fujian Medical University, Fuzhou, China
| |
Collapse
|
12
|
Shin SM, Itson-Zoske B, Cai Y, Qiu C, Pan B, Stucky CL, Hogan QH, Yu H. Satellite glial cells in sensory ganglia express functional transient receptor potential ankyrin 1 that is sensitized in neuropathic and inflammatory pain. Mol Pain 2021; 16:1744806920925425. [PMID: 32484015 PMCID: PMC7268132 DOI: 10.1177/1744806920925425] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Transient receptor potential ankyrin 1 (TRPA1) is well documented as an important molecule in pain hypersensitivity following inflammation and nerve injury and in many other cellular biological processes. Here, we show that TRPA1 is expressed not only by sensory neurons of the dorsal root ganglia (DRG) but also in their adjacent satellite glial cells (SGCs), as well as nonmyelinating Schwann cells. TRPA1 immunoreactivity is also detected in various cutaneous structures of sensory neuronal terminals, including small and large caliber cutaneous sensory fibers and endings. The SGC-expressed TRPA1 is functional. Like DRG neurons, dissociated SGCs exhibit a robust response to the TRPA1-selective agonist allyl isothiocyanate (AITC) by an increase of intracellular Ca2+ concentration ([Ca2+]i). These responses are abolished by the TRPA1 antagonist HC030031 and are absent in SGCs and neurons from global TRPA1 null mice. SGCs and neurons harvested from DRG proximal to painful tissue inflammation induced by plantar injection of complete Freund’s adjuvant show greater AITC-evoked elevation of [Ca2+]i and slower recovery compared to sham controls. Similar TRPA1 sensitization occurs in both SGCs and neurons during neuropathic pain induced by spared nerve injury. Together, these results show that functional TRPA1 is expressed by sensory ganglia SGCs, and TRPA1 function in SGCs is enhanced after both peripheral inflammation and nerve injury, and suggest that TRPA1 in SGCs may contribute to inflammatory and neuropathic pain.
Collapse
Affiliation(s)
- Seung Min Shin
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, WI, USA.,Clement J. Zablocki VA Medical Center, Milwaukee, WI, USA
| | - Brandon Itson-Zoske
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Yongsong Cai
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, WI, USA.,Xi'an Jiaotong University Health Science Center, Xi'an, P.R. China
| | - Chensheng Qiu
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, WI, USA.,Department of Orthopedic Surgery, Affiliated Hospital of Qingdao University, Qingdao, P.R. China
| | - Bin Pan
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Cheryl L Stucky
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Quinn H Hogan
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, WI, USA.,Clement J. Zablocki VA Medical Center, Milwaukee, WI, USA
| | - Hongwei Yu
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, WI, USA.,Clement J. Zablocki VA Medical Center, Milwaukee, WI, USA
| |
Collapse
|
13
|
Zhang Q, Zhou L, Xie H, Zhang H, Gao X. HAGLR aggravates neuropathic pain and promotes inflammatory response and apoptosis of lipopolysaccharide-treated SH-SY5Y cells by sequestering miR-182-5p from ATAT1 and activating NLRP3 inflammasome. Neurochem Int 2021; 145:105001. [PMID: 33626373 DOI: 10.1016/j.neuint.2021.105001] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 01/27/2021] [Accepted: 02/16/2021] [Indexed: 01/09/2023]
Abstract
BACKGROUND Chronic neuropathic pain is characterized by neuroinflammation. Previously, long noncoding RNA (lncRNA) HAGLR was reported to regulate the inflammatory response of SH-SY5Y cells. However, neither the specific function nor the potential mechanism of HAGLR in neuropathic pain has been explored. AIM OF THE STUDY Our study is aimed to figure out the role of HAGLR in neuropathic pain. METHODS SH-SY5Y cells were treated with lipopolysaccharide (LPS) to mimic neuron injury in vitro. The chronic constriction injury (CCI) rat models were established by ligation of sciatic nerve to mimic neuropathic pain in vivo. Behavioral assessment assays were performed to determine the effects of HAGLR on hypersensitivity in neuropathic pain. Enzyme-linked immunosorbent assay kits were used for detection of inflammatory cytokines. Flow cytometry analysis and Western blot were applied to detect apoptosis. RESULTS HAGLR displayed high levels in spinal cords of CCI rats and in LPS treated SH-SY5Y cells. Knockdown of HAGLR inhibited inflammation and neuron apoptosis of LPS treated SH-SY5Y cells. Mechanistically, HAGLR bound with miR-182-5p in SH-SY5Y cells. ATAT1 served as a target of miR-182-5p. HAGLR activated the NLRP3 inflammasome by ATAT1. Rescue assays demonstrated that overexpression of ATAT1 or NLRP3 reversed the suppressive effects of HAGLR silencing on apoptosis and inflammatory response in SH-SY5Y cells and in spinal cords of CCI rats. The inhibitory effects of silenced HAGLR on hypersensitivity in neuropathic pain were also rescued by ATAT1 or NLRP3. CONCLUSIONS HAGLR aggravates neuropathic pain by sequestering miR-182-5p from ATAT1 and activating NLRP3 inflammasome, which may provide a potential therapeutic target for neuropathic pain treatment.
Collapse
Affiliation(s)
- QuanYun Zhang
- Department of Anesthesiology, Second Affiliated Hospital of Soochow University, Suzhou, 215000, Jiangsu, China; Department of Pain Medical Center, Lianyungang Second People's Hospital, Lianyungang, 222000, Jiangsu, China
| | - Li Zhou
- Department of Anaesthesia, Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221006, Jiangsu, China
| | - Hong Xie
- Department of Anesthesiology, Second Affiliated Hospital of Soochow University, Suzhou, 215000, Jiangsu, China.
| | - HongJin Zhang
- Department of Anesthesiology, Second Affiliated Hospital of Soochow University, Suzhou, 215000, Jiangsu, China
| | - XuZhu Gao
- Department of Anesthesiology, Second Affiliated Hospital of Soochow University, Suzhou, 215000, Jiangsu, China
| |
Collapse
|
14
|
The Role of Nucleotide Excision Repair in Cisplatin-Induced Peripheral Neuropathy: Mechanism, Prevention, and Treatment. Int J Mol Sci 2021; 22:ijms22041975. [PMID: 33671279 PMCID: PMC7921932 DOI: 10.3390/ijms22041975] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 02/02/2021] [Accepted: 02/03/2021] [Indexed: 02/06/2023] Open
Abstract
Platinum-based chemotherapy-induced peripheral neuropathy (CIPN) is one of the most common dose-limiting effects of cancer treatment and results in dose reduction and discontinuation of life-saving chemotherapy. Its debilitating effects are often permanent and lead to lifelong impairment of quality of life in cancer patients. While the mechanisms underlying the toxicity are not yet fully defined, dorsal root ganglia sensory neurons play an integral role in symptom development. DNA-platinum adducts accumulate in these cells and inhibit normal cellular function. Nucleotide excision repair (NER) is integral to the repair of platinum adducts, and proteins involved in its mechanism serve as potential targets for future therapeutics. This review aims to highlight NER’s role in cisplatin-induced peripheral neuropathy, summarize current clinical approaches to the toxicity, and discuss future perspectives for the prevention and treatment of CIPN.
Collapse
|
15
|
Lo Bianco G, Papa A, Gazzerro G, Rispoli M, Tammaro D, Di Dato MT, Vernuccio F, Schatman M. Dorsal Root Ganglion Stimulation for Chronic Postoperative Pain Following Thoracic Surgery: A Pilot Study. Neuromodulation 2020; 24:774-778. [PMID: 32909359 DOI: 10.1111/ner.13265] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 07/13/2020] [Accepted: 08/05/2020] [Indexed: 12/28/2022]
Abstract
OBJECTIVES Post-thoracotomy pain syndrome (PTPS) is defined as persistent pain following a thoracotomy and has an incidence of 21-61%. Dorsal root ganglion stimulation (DRG-S) is a form of neuromodulation that modulates pain signal transmission to the spinal cord. The aims of this study were to investigate the efficacy of DRG-S for the management of PTPS and to assess the role of thoracic paravertebral blocks (t-PVB) as a tool for prediction of success of DRG-S. MATERIALS AND METHODS In this prospective study, we included all patients undergoing thoracic surgery, with PTPS not responding to pharmacotherapy and treated with DRG-S from September 2018 to February 2019. t-PVB followed by a percutaneous DRG-S trial was performed on all patients. Pain intensity was assessed through a numeric rating scale (NRS) and Douleur Neuropathique en 4 Questions (DN4) at baseline, post-trial, at 14 days, 90 days, and at one year after DRG-S implantation. Data summarized as continuous variables were expressed as means and standard deviations (SDs), and categorical variables were expressed as raw numbers and percentages. RESULTS Four patients out of 51 who underwent thoracic surgery at our institution surveyed were included (mean age ± SD, 56 ± 16 years old). Mean NRS and DN4 were, respectively, 7.2 ± 0.96 SD and 8.2 ± 0.5 SD at baseline, 2.5 ± 0.6 SD and 3.2 ± 0.5 SD after t-PVB, 2.2 ± 0.5 SD and 2.2 ± 0.5 SD at 14 days, 90 days, and at one year after DRG-S implantation. No complications or side effects were reported. CONCLUSIONS Our preliminary results show that DRG-S is an effective therapy for PTPS after thoracic surgery. In addition, thoracic paravertebral blocks performed prior to DRG-S correlated with a positive outcome with treatment.
Collapse
Affiliation(s)
- Giuliano Lo Bianco
- Pain Department, A.O. Dei Colli - V. Monaldi Hospital, Napoli, Italy.,Università di Catania, Dipartimento di Scienze Biomediche e Biotecnologiche (BIOMETEC), Catania, Italy.,Anesthesiology and Pain Department, Fondazione Istituto G. Giglio, Cefalù, Italy.,Pain Management and Neuromodulation, Basildon and Thurrock University Hospitals NHSFT, Orsett Hospital, London, UK
| | - Alfonso Papa
- Pain Department, A.O. Dei Colli - V. Monaldi Hospital, Napoli, Italy
| | - Giuseppe Gazzerro
- Pain Department, A.O. Dei Colli - V. Monaldi Hospital, Napoli, Italy
| | - Marco Rispoli
- Anesthesiology Department, Thoracic Surgery, A.O. Dei Colli - V. Monaldi Hospital, Napoli, Italy
| | - Dario Tammaro
- Pain Department, A.O. Dei Colli - V. Monaldi Hospital, Napoli, Italy.,Anesthesiology Department, Thoracic Surgery, A.O. Dei Colli - V. Monaldi Hospital, Napoli, Italy
| | | | - Federica Vernuccio
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties, University of Palermo, Palermo, Italy
| | - Michael Schatman
- Department of Diagnostic Sciences, Tufts University School of Dental Medicine, Boston, MA, USA.,Department of Public Health and Community Medicine, Tufts University School of Medicine, Boston, MA, USA
| |
Collapse
|
16
|
Hanani M, Spray DC. Emerging importance of satellite glia in nervous system function and dysfunction. Nat Rev Neurosci 2020; 21:485-498. [PMID: 32699292 PMCID: PMC7374656 DOI: 10.1038/s41583-020-0333-z] [Citation(s) in RCA: 218] [Impact Index Per Article: 43.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/09/2020] [Indexed: 02/08/2023]
Abstract
Satellite glial cells (SGCs) closely envelop cell bodies of neurons in sensory, sympathetic and parasympathetic ganglia. This unique organization is not found elsewhere in the nervous system. SGCs in sensory ganglia are activated by numerous types of nerve injury and inflammation. The activation includes upregulation of glial fibrillary acidic protein, stronger gap junction-mediated SGC-SGC and neuron-SGC coupling, increased sensitivity to ATP, downregulation of Kir4.1 potassium channels and increased cytokine synthesis and release. There is evidence that these changes in SGCs contribute to chronic pain by augmenting neuronal activity and that these changes are consistent in various rodent pain models and likely also in human pain. Therefore, understanding these changes and the resulting abnormal interactions of SGCs with sensory neurons could provide a mechanistic approach that might be exploited therapeutically in alleviation and prevention of pain. We describe how SGCs are altered in rodent models of four common types of pain: systemic inflammation (sickness behaviour), post-surgical pain, diabetic neuropathic pain and post-herpetic pain.
Collapse
Affiliation(s)
- Menachem Hanani
- Laboratory of Experimental Surgery, Hadassah-Hebrew University Medical Center and Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel.
| | - David C Spray
- Dominick Purpura Department of Neuroscience, Albert Einstein College of Medicine, New York, NY, USA
| |
Collapse
|
17
|
Depletion of senescent-like neuronal cells alleviates cisplatin-induced peripheral neuropathy in mice. Sci Rep 2020; 10:14170. [PMID: 32843706 PMCID: PMC7447787 DOI: 10.1038/s41598-020-71042-6] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 07/23/2020] [Indexed: 12/21/2022] Open
Abstract
Chemotherapy-induced peripheral neuropathy is among the most common dose-limiting adverse effects of cancer treatment, leading to dose reduction and discontinuation of life-saving chemotherapy and a permanently impaired quality of life for patients. Currently, no effective treatment or prevention is available. Senescence induced during cancer treatment has been shown to promote the adverse effects. Here, we show that cisplatin induces senescent-like neuronal cells in primary culture and in mouse dorsal root ganglia (DRG), as determined by the characteristic senescence markers including senescence-associated beta-galactosidase, accumulation of cytosolic p16INK4A and HMGB1, as well as increased expression of p16Ink4a, p21, and MMP-9. The accumulation of senescent-like neuronal cells in DRG is associated with cisplatin-induced peripheral neuropathy (CIPN) in mice. To determine if depletion of senescent-like neuronal cells may effectively mitigate CIPN, we used a pharmacological ‘senolytic’ agent, ABT263, which inhibits the anti-apoptotic proteins BCL-2 and BCL-xL and selectively kills senescent cells. Our results demonstrated that clearance of DRG senescent neuronal cells reverses CIPN, suggesting that senescent-like neurons play a role in CIPN pathogenesis. This finding was further validated using transgenic p16-3MR mice, which permit ganciclovir (GCV) to selectively kill senescent cells expressing herpes simplex virus 1 thymidine kinase (HSV-TK). We showed that CIPN was alleviated upon GCV administration to p16-3MR mice. Together, the results suggest that clearance of senescent DRG neuronal cells following platinum-based cancer treatment might be an effective therapy for the debilitating side effect of CIPN.
Collapse
|
18
|
Qiu S, Liu B, Mo Y, Wang X, Zhong L, Han X, Mi F. MiR-101 promotes pain hypersensitivity in rats with chronic constriction injury via the MKP-1 mediated MAPK pathway. J Cell Mol Med 2020; 24:8986-8997. [PMID: 32656992 PMCID: PMC7417728 DOI: 10.1111/jcmm.15532] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 05/30/2020] [Accepted: 06/03/2020] [Indexed: 12/12/2022] Open
Abstract
This study was performed to characterize the effect of microRNA‐101 (miR‐101) on the pain hypersensitivity in CCI rat models with the involvement of mitogen‐activated protein kinase phosphatase 1 (MKP‐1) in spinal cord microglial cells. The mechanical withdrawal threshold (MWT) and thermal withdrawal latency (TWL) in the developed CCI models were determined to assess the hypersensitivity of rats to mechanical stimulation and thermal pain. To assess inflammation, the levels of interleukin (IL)‐1β, IL‐6 and tumour necrosis factor‐α (TNF‐α) in the spinal dorsal horns of CCI rats and lipopolysaccharide (LPS)‐activated microglial cells were examined. miR‐101 and MKP‐1 gain‐ and loss‐of‐function experiments were conducted in in vivo and in vitro settings to examine the roles of miR‐101 and MKP‐1 in CCI hypersensitivity and inflammation. The results showed that miR‐101 was highly expressed in the spinal dorsal horn and microglial cells of CCI rat models. Furthermore, overexpression of miR‐101 promoted the pain hypersensitivity in CCI rat models by reducing MWT and TWL. The overexpression of miR‐101 also promoted inflammation in LPS‐exposed microglial cells, as indicated by increased levels of IL‐1β, IL‐6 and TNF‐α. MiR‐101 was shown to target MKP‐1, inhibiting its expression. Moreover, miR‐101 promoted pain hypersensitivity in CCI rat models by inhibiting MKP‐1 expression and activating the mitogen‐activated protein kinase (MAPK) signalling pathway. Taken together, miR‐101 could potentially promote hypersensitivity and inflammatory response of microglial cells and aggravate neuropathic pain in CCI rat models by inhibiting MKP‐1 in the MAPK signalling pathway.
Collapse
Affiliation(s)
- Shuang Qiu
- Department of Anesthesiology, Linyi People's Hospital, Linyi, China
| | - Benjuan Liu
- Department of Anesthesiology, Linyi People's Hospital, Linyi, China
| | - Yanshuai Mo
- Department of Anesthesiology, Linyi People's Hospital, Linyi, China
| | - Xueqin Wang
- Department of Anesthesiology, Linyi People's Hospital, Linyi, China
| | - Lina Zhong
- Department of Anesthesiology, Linyi People's Hospital, Linyi, China
| | - Xiao Han
- Department of Anesthesiology, Linyi People's Hospital, Linyi, China
| | - Fuli Mi
- Department of Anesthesiology, Linyi People's Hospital, Linyi, China
| |
Collapse
|
19
|
Zhang M, Du W, Acklin S, Jin S, Xia F. SIRT2 protects peripheral neurons from cisplatin-induced injury by enhancing nucleotide excision repair. J Clin Invest 2020; 130:2953-2965. [PMID: 32134743 PMCID: PMC7260000 DOI: 10.1172/jci123159] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Accepted: 02/26/2020] [Indexed: 01/01/2023] Open
Abstract
Platinum-based chemotherapy-induced peripheral neuropathy is one of the most common causes of dose reduction and discontinuation of life-saving chemotherapy in cancer treatment; it often causes permanent impairment of quality of life in cancer patients. The mechanisms that underlie this neuropathy are not defined, and effective treatment and prevention measures are not available. Here, we demonstrate that SIRT2 protected mice against cisplatin-induced peripheral neuropathy (CIPN). SIRT2 accumulated in the nuclei of dorsal root ganglion sensory neurons and prevented neuronal cell death following cisplatin treatment. Mechanistically, SIRT2, an NAD+-dependent deacetylase, protected neurons from cisplatin cytotoxicity by promoting transcription-coupled nucleotide excision repair (TC-NER) of cisplatin-induced DNA cross-links. Consistent with this mechanism, pharmacological inhibition of NER using spironolactone abolished SIRT2-mediated TC-NER activity in differentiated neuronal cells and protection of neurons from cisplatin-induced cytotoxicity and CIPN in mice. Importantly, SIRT2's protective effects were not evident in lung cancer cells in vitro or in tumors in vivo. Taken together, our results identified SIRT2's function in the NER pathway as a key underlying mechanism of preventing CIPN, warranting future investigation of SIRT2 activation-mediated neuroprotection during platinum-based cancer treatment.
Collapse
|
20
|
Fakhoury M, Salman I, Najjar W, Merhej G, Lawand N. The Lateral Hypothalamus: An Uncharted Territory for Processing Peripheral Neurogenic Inflammation. Front Neurosci 2020; 14:101. [PMID: 32116534 PMCID: PMC7029733 DOI: 10.3389/fnins.2020.00101] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 01/24/2020] [Indexed: 12/20/2022] Open
Abstract
The roles of the hypothalamus and particularly the lateral hypothalamus (LH) in the regulation of inflammation and pain have been widely studied. The LH consists of a parasympathetic area that has connections with all the major parts of the brain. It controls the autonomic nervous system (ANS), regulates feeding behavior and wakeful cycles, and is a part of the reward system. In addition, it contains different types of neurons, most importantly the orexin neurons. These neurons, though few in number, perform critical functions such as inhibiting pain transmission and interfering with the reward system, feeding behavior and the hypothalamic pituitary axis (HPA). Recent evidence has identified a new role for orexin neurons in the modulation of pain transmission associated with several inflammatory diseases, including rheumatoid arthritis and ulcerative colitis. Here, we review recent findings on the various physiological functions of the LH with special emphasis on the orexin/receptor system and its role in mediating inflammatory pain.
Collapse
Affiliation(s)
- Marc Fakhoury
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Israa Salman
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Wassim Najjar
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - George Merhej
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Nada Lawand
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut, Lebanon.,Department of Neurology, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| |
Collapse
|
21
|
Park CH. In Response to Dr. Chang. PAIN MEDICINE 2020; 21:433. [PMID: 32034412 DOI: 10.1093/pm/pnz306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- Chang Hong Park
- Department of Anesthesiology and Pain Medicine, Wooridul Spine Hospital, Daegu, South Korea
| |
Collapse
|
22
|
KC E, Moon HC, Kim S, Kim HK, Won SY, Hyun S, Park YS. Optical Modulation on the Nucleus Accumbens Core in the Alleviation of Neuropathic Pain in Chronic Dorsal Root Ganglion Compression Rat Model. Neuromodulation 2019; 23:167-176. [DOI: 10.1111/ner.13059] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 08/20/2019] [Accepted: 09/10/2019] [Indexed: 12/12/2022]
Affiliation(s)
- Elina KC
- Department of NeuroscienceCollege of Medicine, Chungbuk National University Cheongju South Korea
| | - Hyeong Cheol Moon
- Department of NeuroscienceCollege of Medicine, Chungbuk National University Cheongju South Korea
- Department of NeurosurgeryChungbuk National University Hospital Cheongju South Korea
| | - Soochong Kim
- Laboratory of Veterinary Pathology and Platelets Signaling, College of Veterinary Medicine, Chungbuk National University Cheongju South Korea
| | - Hyong Kyu Kim
- Department of Medicine and MicrobiologyChungbuk National University Cheongju South Korea
| | - So Yoon Won
- Department of Biochemistry and Medical Research CenterChungbuk National University Cheongju South Korea
| | - Sang‐Hwan Hyun
- Laboratory of Veterinary Embryology and Biotechnology, College of Veterinary Medicine, Chungbuk National University Cheongju South Korea
- Institute of Stem Cell & Regenerative Medicine, Chungbuk National University Cheongju South Korea
| | - Young Seok Park
- Department of NeuroscienceCollege of Medicine, Chungbuk National University Cheongju South Korea
- Department of NeurosurgeryChungbuk National University Hospital Cheongju South Korea
| |
Collapse
|
23
|
盛 恒, 磨 凯. [Role of ZHX2 in regulating dorsal root ganglion μ-opioid receptor expression in mice with peripheral nerve injuryinduced pain hypersensitivity]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2019; 39:917-922. [PMID: 31511211 PMCID: PMC6765599 DOI: 10.12122/j.issn.1673-4254.2019.08.07] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Indexed: 11/24/2022]
Abstract
OBJECTIVE To investigate the role of zinc-fingers and homeoboxes 2 (ZHX2) in regulating μ-opioid receptor expression in the dorsal root ganglion (DRG) in mice with peripheral nerve injury-induced pain hypersensitivity. METHODS Forty-eight male adult C57BL6J mice were randomized into 4 groups and subjected to chronic constriction injury (CCI) of the sciatic nerve or sham operation followed by microinjection of a specific small interfering RNA (siRNA) of ZHX2 or a negative control siRNA sequence (siNC) into the DRG. Seven days later, the mice were examined for changes in the hind paw withdrawal frequency (PWF), after which the DRG tissue was collected for detecting the expressions of μ-opioid receptor at the mRNA and protein levels using RT-qPCR and Western blotting. In another experiment, the DRG tissues were collected from 6 mice (21-day-old) for primary culture of the DRG neurons, which were transfected with ZHX2 siRNA or the siNC to observe the changes in the expressions of ZHX2 and μ-pioid receptor. RESULTS Microinjection of ZHX2 siRNA into the ipsilateral L3 and L4 DRGs significantly reversed CCI-induced μ-pioid receptor downregulation in the injured DRG and alleviated CCI-induced mechanical allodynia in the mice. In the cell experiment, ZHX2 knockdown obviously upregulated the mRNA and protein expressions of opioid receptor in the primary cultured DRG neurons. CONCLUSIONS ZHX2 knockdown in the DRG reverses CCI-induced down-regulation of μ opioid receptor to alleviate periphery nerve injury-induced pain hypersensitivity in mice.
Collapse
Affiliation(s)
- 恒炜 盛
- 南部战区总医院麻醉科,广东 广州 510010Department of Anesthesiology, General Hospital of Southern Theatre Command, Guangzhou 510010, China
| | - 凯 磨
- 南方医科大学珠江医院麻醉科,广东 广州 510282Department of Anesthesiology, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China
| |
Collapse
|
24
|
Yu H, Shin SM, Xiang H, Chao D, Cai Y, Xu H, Khanna R, Pan B, Hogan QH. AAV-encoded Ca V2.2 peptide aptamer CBD3A6K for primary sensory neuron-targeted treatment of established neuropathic pain. Gene Ther 2019; 26:308-323. [PMID: 31118475 DOI: 10.1038/s41434-019-0082-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 02/25/2019] [Accepted: 03/20/2019] [Indexed: 12/17/2022]
Abstract
Transmission of pain signals from primary sensory neurons to secondary neurons of the central nervous system is critically dependent on presynaptic voltage-gated calcium channels. Calcium channel-binding domain 3 (CBD3), derived from the collapsin response mediator protein 2 (CRMP2), is a peptide aptamer that is effective in blocking N-type voltage-gated calcium channel (CaV2.2) activity. We previously reported that recombinant adeno-associated virus (AAV)-mediated restricted expression of CBD3 affixed to enhanced green fluorescent protein (EGFP) in primary sensory neurons prevents the development of cutaneous mechanical hypersensitivity in a rat neuropathic pain model. In this study, we tested whether this strategy is effective in treating established pain. We constructed AAV6-EGFP-CBD3A6K (AAV6-CBD3A6K) expressing a fluorescent CBD3A6K (replacing A to K at position 6 of CBD3 peptide), which is an optimized variant of the parental CBD3 peptide that is a more potent blocker of CaV2.2. Delivery of AAV6-CBD3A6K into lumbar (L) 4 and 5 dorsal root ganglia (DRG) of rats 2 weeks following tibial nerve injury (TNI) induced transgene expression in neurons of these DRG and their axonal projections, accompanied by attenuation of pain behavior. We additionally observed that the increased CaV2.2α1b immunoreactivity in the ipsilateral spinal cord dorsal horn and DRG following TNI was significantly normalized by AAV6-CBD3A6K treatment. Finally, the increased neuronal activity in the ipsilateral dorsal horn that developed after TNI was reduced by AAV6-CBD3A6K treatment. Collectively, these results indicate that DRG-restricted AAV6 delivery of CBD3A6K is an effective analgesic molecular strategy for the treatment of established neuropathic pain.
Collapse
Affiliation(s)
- Hongwei Yu
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, WI, 53226, USA. .,Zablocki Veterans Affairs Medical Center, Milwaukee, WI, 53295, USA.
| | - Seung Min Shin
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, WI, 53226, USA.,Zablocki Veterans Affairs Medical Center, Milwaukee, WI, 53295, USA
| | - Hongfei Xiang
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, WI, 53226, USA.,Department of Orthopedic Surgery, Affiliated Hospital of Qingdao University, 266000, Qingdao, PR China
| | - Dongman Chao
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - Yongsong Cai
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, WI, 53226, USA.,Xi'an Jiaotong University Health Science Center, 710061, Xi'an, Shaanxi, PR China
| | - Hao Xu
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, WI, 53226, USA.,Department of Orthopedic Surgery, Affiliated Hospital of Qingdao University, 266000, Qingdao, PR China
| | - Rajesh Khanna
- Departments of Pharmacology, Neuroscience and Anesthesiology, College of Medicine, University of Arizona, Tucson, AZ, 85724, USA
| | - Bin Pan
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - Quinn H Hogan
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, WI, 53226, USA.,Zablocki Veterans Affairs Medical Center, Milwaukee, WI, 53295, USA
| |
Collapse
|
25
|
Morgalla MH, de Barros Filho MF, Chander BS, Soekadar SR, Tatagiba M, Lepski G. Neurophysiological Effects of Dorsal Root Ganglion Stimulation (DRGS) in Pain Processing at the Cortical Level. Neuromodulation 2018; 22:36-43. [PMID: 30561852 DOI: 10.1111/ner.12900] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2018] [Revised: 10/25/2018] [Accepted: 10/25/2018] [Indexed: 12/14/2022]
Abstract
OBJECTIVES Dorsal root ganglion stimulation (DRGS) has been used successfully against localized neuropathic pain. Nevertheless, the effects of DRGS on pain processing, particularly at the cortical level, remain largely unknown. In this study, we investigated whether positive responses to DRGS treatment would alter patients' laser-evoked potentials (LEP). METHODS We prospectively enrolled 12 adult patients with unilateral localized neuropathic pain in the lower limbs or inguinal region and followed them up for six months. LEPs were assessed at baseline, after one month of DRGS, and after six months of DRGS. Clinical assessment included the Numerical Rating Scale (NRS), Brief Pain Inventory (BPI), SF-36, and Beck Depression Inventory (BDI). For each patient, LEP amplitudes and latencies of the N2 and P2 components on the deafferented side were measured and compared to those of the healthy side and correlated with pain intensity, as measured with the NRS. RESULTS At the one- and six-month follow-ups, N2-P2 amplitudes were significantly greater and NRS scores were significantly lower compared with baseline (all p's < 0.01). There was a negative correlation between LEP amplitudes and NRS scores (rs = -0.31, p < 0.10). CONCLUSIONS DRGS is able to restore LEPs to normal values in patients with localized neuropathic pain, and LEP alterations are correlated with clinical response in terms of pain intensity.
Collapse
Affiliation(s)
| | - Marcos Fortunato de Barros Filho
- Department of Neurosurgery, University of Tuebingen, Tuebingen, Germany.,Applied Neurotechnology Laboratory, Department of Psychiatry and Psychotherapy, University of Tuebingen, Tuebingen, Germany.,Division of Functional Neurosurgery, School of Medicine, Universidade de São Paulo, São Paulo, Brazil
| | - Bankim Subhash Chander
- Department of Neurosurgery, University of Tuebingen, Tuebingen, Germany.,Applied Neurotechnology Laboratory, Department of Psychiatry and Psychotherapy, University of Tuebingen, Tuebingen, Germany
| | - Surjo Raphael Soekadar
- Applied Neurotechnology Laboratory, Department of Psychiatry and Psychotherapy, University of Tuebingen, Tuebingen, Germany.,Clinical Neurotechnology Laboratory, Neuroscience Research Center (NWFZ) & Department of Psychiatry and Psychotherapy, Charité - University Medicine Berlin, Berlin, Germany
| | - Marcos Tatagiba
- Department of Neurosurgery, University of Tuebingen, Tuebingen, Germany
| | - Guilherme Lepski
- Department of Neurosurgery, University of Tuebingen, Tuebingen, Germany.,Division of Functional Neurosurgery, School of Medicine, Universidade de São Paulo, São Paulo, Brazil
| |
Collapse
|
26
|
Beom J, Kim S, Suh HC, Kim DK, Kang SH, Lee SU, Lee SY. Association between sensory nerve action potential and lumbar dorsal root ganglion area. J Clin Neurosci 2018; 59:37-40. [PMID: 30446365 DOI: 10.1016/j.jocn.2018.11.019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Accepted: 11/05/2018] [Indexed: 11/30/2022]
Abstract
OBJECTIVE To quantify the cross-sectional area (CSA) of lumbar dorsal root ganglion (DRG) by magnetic resonance imaging (MRI) and investigate the relationship between the cross-sectional area (CSA) of DRGs and sensory nerve action potentials (SNAP) amplitude in the lower extremities. METHODS Thirty-eight DRGs (20 L5 roots and 18 S1 roots) in 10 adult subjects were reviewed retrospectively. The CSA of the DRG was calculated from MR images of the coronal plane. SNAP amplitudes of the superficial peroneal nerve and sural nerve were corresponded to L5 and S1-DRGs. RESULTS The mean CSA of DRGs was 66.6 ± 13.7 mm2 in L5-DRG and 79.5 ± 14.3 mm2 in S1-DRG. The means of SNAP amplitudes were 19.6 ± 6.2 μV in superficial peroneal nerves and 24.6 ± 9.0 μV in sural nerves. In multivariate regression analysis, the CSA of DRGs had a significant correlation with SNAP amplitude. CONCLUSION The area of L5 and S1-DRGs may be positively correlated with SNAP amplitude.
Collapse
Affiliation(s)
- Jaewon Beom
- Department of Physical Medicine and Rehabilitation, Chung-Ang University College of Medicine, Seoul, Republic of Korea
| | - Sujin Kim
- Department of Radiology, Chung-Ang University College of Medicine, Seoul, Republic of Korea
| | - Hoon Chang Suh
- Department of Physical Medicine and Rehabilitation, Chung-Ang University College of Medicine, Seoul, Republic of Korea
| | - Don-Kyu Kim
- Department of Physical Medicine and Rehabilitation, Chung-Ang University College of Medicine, Seoul, Republic of Korea
| | - Si Hyun Kang
- Department of Physical Medicine and Rehabilitation, Chung-Ang University College of Medicine, Seoul, Republic of Korea
| | - Shi-Uk Lee
- Department of Rehabilitation Medicine, Seoul National University College of Medicine, SMG-SNU Boramae Medical Center, Seoul, Republic of Korea
| | - Sang Yoon Lee
- Department of Rehabilitation Medicine, Seoul National University College of Medicine, SMG-SNU Boramae Medical Center, Seoul, Republic of Korea.
| |
Collapse
|
27
|
Uttam S, Wong C, Amorim IS, Jafarnejad SM, Tansley SN, Yang J, Prager-Khoutorsky M, Mogil JS, Gkogkas CG, Khoutorsky A. Translational profiling of dorsal root ganglia and spinal cord in a mouse model of neuropathic pain. NEUROBIOLOGY OF PAIN 2018; 4:35-44. [PMID: 30906902 PMCID: PMC6428075 DOI: 10.1016/j.ynpai.2018.04.001] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Translational landscape in DRG and spinal cord in SNI assay of neuropathic pain was established. ERK is a central hub of both transcriptionally and translationally controlled genes. Changes in translation efficiency and mRNA levels occur in the opposite direction for multiple mRNAs.
Acute pain serves as a protective mechanism, guiding the organism away from actual or potential tissue injury. In contrast, chronic pain is a debilitating condition without any obvious physiological function. The transition to, and the maintenance of chronic pain require new gene expression to support biochemical and structural changes within the pain pathway. The regulation of gene expression at the level of mRNA translation has emerged as an important step in the control of protein expression in the cell. Recent studies show that signaling pathways upstream of mRNA translation, such as mTORC1 and ERK, are upregulated in chronic pain conditions, and their inhibition effectively alleviates pain in several animal models. Despite this progress, mRNAs whose translation is altered in chronic pain conditions remain largely unknown. Here, we performed genome-wide translational profiling of dorsal root ganglion (DRG) and spinal cord dorsal horn tissues in a mouse model of neuropathic pain, spared nerve injury (SNI), using the ribosome profiling technique. We identified distinct subsets of mRNAs that are differentially translated in response to nerve injury in both tissues. We discovered key converging upstream regulators and pathways linked to mRNA translational control and neuropathic pain. Our data are crucial for the understanding of mechanisms by which mRNA translation promotes persistent hypersensitivity after nerve injury.
Collapse
Affiliation(s)
- Sonali Uttam
- Department of Anesthesia, McGill University, Montreal, QC H3A 0G1, Canada
| | - Calvin Wong
- Department of Anesthesia, McGill University, Montreal, QC H3A 0G1, Canada
| | - Inês S Amorim
- Patrick Wild Centre and Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh EH8 9XD, UK
| | - Seyed Mehdi Jafarnejad
- Department of Biochemistry and Goodman Cancer Research Centre, McGill University, Montreal, QC H3A 1A3, Canada
| | - Shannon N Tansley
- Department of Anesthesia, McGill University, Montreal, QC H3A 0G1, Canada.,Department of Psychology, McGill University, Montreal QC H3A 1B1, Canada
| | - Jieyi Yang
- Department of Anesthesia, McGill University, Montreal, QC H3A 0G1, Canada
| | | | - Jeffrey S Mogil
- Department of Anesthesia, McGill University, Montreal, QC H3A 0G1, Canada.,Department of Psychology, McGill University, Montreal QC H3A 1B1, Canada.,Alan Edwards Centre for Research on Pain, McGill University, Montreal QC H3A 0G1, Canada
| | - Christos G Gkogkas
- Patrick Wild Centre and Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh EH8 9XD, UK
| | - Arkady Khoutorsky
- Department of Anesthesia, McGill University, Montreal, QC H3A 0G1, Canada.,Alan Edwards Centre for Research on Pain, McGill University, Montreal QC H3A 0G1, Canada
| |
Collapse
|
28
|
Kaneski CR, Brady RO, Hanover JA, Schueler UH. Development of a model system for neuronal dysfunction in Fabry disease. Mol Genet Metab 2016; 119:144-50. [PMID: 27471012 PMCID: PMC5031533 DOI: 10.1016/j.ymgme.2016.07.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Revised: 07/21/2016] [Accepted: 07/21/2016] [Indexed: 10/21/2022]
Abstract
Fabry disease is a glycosphingolipid storage disorder that is caused by a genetic deficiency of the enzyme alpha-galactosidase A (AGA, EC 3.2.1.22). It is a multisystem disease that affects the vascular, cardiac, renal, and nervous systems. One of the hallmarks of this disorder is neuropathic pain and sympathetic and parasympathetic nervous dysfunction. The exact mechanism by which changes in AGA activity result in change in neuronal function is not clear, partly due to of a lack of relevant model systems. In this study, we report the development of an in vitro model system to study neuronal dysfunction in Fabry disease by using short-hairpin RNA to create a stable knock-down of AGA in the human cholinergic neuronal cell line, LA-N-2. We show that gene-silenced cells show specifically reduced AGA activity and store globotriaosylceramide. In gene-silenced cells, release of the neurotransmitter acetylcholine is significantly reduced, demonstrating that this model may be used to study specific neuronal functions such as neurotransmitter release in Fabry disease.
Collapse
Affiliation(s)
- Christine R Kaneski
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA.
| | - Roscoe O Brady
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - John A Hanover
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Ulrike H Schueler
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|