1
|
Pichardo-Rojas PS, Garcia-Torrico F, Espinosa-Cantú CB, Rodriguez-Elvir FA, la Fuente ACBD, Hernandez-Garcia MS, Trippett JS, Morell A, Shah AH, Komotar RJ, Esquenazi Y. Current trends in reoperation for recurrent glioblastoma: a meta-analysis (2007-2023). J Neurooncol 2025:10.1007/s11060-025-05058-1. [PMID: 40314867 DOI: 10.1007/s11060-025-05058-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2025] [Accepted: 04/18/2025] [Indexed: 05/03/2025]
Abstract
PURPOSE Despite conflicting evidence, reoperation for recurrent glioblastoma (rGBM) achieving complete resection of enhancing-tumor (CRET) may offer benefits over partial resection or salvage therapy alone. However, pooled analyses remain limited. METHODS A systematic search identified rGBM studies comparing reoperation and non-reoperation, including chemotherapy with/without radiotherapy, radiation-based therapies (RBT), and best supportive care (BSC). RESULTS Thirty-six studies, comprising 10,738 patients, were included, with 2,806 undergoing reoperation. Nine propensity-score-matched studies and one clinical trial were identified. Mean overall survival (OS) favored reoperation (19.66 months) over chemotherapy with/without radiotherapy (12.56 months, p < 0.00001) and BSC (4.04 months, p < 0.00001), but not over chemotherapy alone (14.60 months) or RBT (14.26 months)(p > 0.05). Multivariate OS favored reoperation over chemotherapy with/without radiation(HR = 0.62,95%CI:0.50-0.76,p < 0.00001), but not to stereotactic radiosurgery (SRS) (HR = 0.52,95%CI:0.25-1.08,p = 0.08) or chemotherapy alone (HR = 0.80,95%CI:0.63-1.00,p = 0.05). Progression-free survival after recurrence (PFS2) was only compared between reoperation and chemotherapy with/without radiotherapy, favoring reoperation (8.36 vs. 4.97 months, p < 0.00001). Multivariate analysis also favored reoperation (HR = 0.56, 95% CI:0.41-0.76,p = 0.0002).The mean post-recurrence survival (PRS) was 12.18 months in the reoperation group, 9.19 months in the chemotherapy with/without radiotherapy, and 9.64 months in SRS. Multivariate PRS favored reoperation over chemotherapy with/without radiotherapy (HR = 0.78, 95%CI: 0.62-0.98,p = 0.04). CRET with < 1 cm3 residual tumor correlated with improved PRS over incomplete resection (HR: 0.54, 95%CI:0.39-0.73, p = 0.04). CONCLUSION The role of reoperation in rGBM remains uncertain. While it may improve survival in selected cases, limited high-quality data hinder definitive conclusions. Achieving CRET may correlate with improved PRS over partial resection. Further prospective trials are necessary to guide optimal management of rGBM.
Collapse
Affiliation(s)
- Pavel S Pichardo-Rojas
- The Vivian L. Smith Department of Neurosurgery, The University of Texas Health Science Center at Houston McGovern Medical School, Houston, TX, USA
| | | | | | | | | | - Myriam S Hernandez-Garcia
- Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlanepantla, México
| | - James S Trippett
- The Vivian L. Smith Department of Neurosurgery, The University of Texas Health Science Center at Houston McGovern Medical School, Houston, TX, USA
| | - Alexis Morell
- Department of Critical Care Medicine, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Ashish H Shah
- Department of Neurological Surgery, Leonard M. Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Ricardo J Komotar
- Vivian L. Smith Department of Neurosurgery and Center for Precision Health, McGovern Medical School, The University of Texas Health Science Center at Houston, 6400 Fannin Street Suite # 2800, Houston, TX, 77030, USA
| | - Yoshua Esquenazi
- The Vivian L. Smith Department of Neurosurgery, The University of Texas Health Science Center at Houston McGovern Medical School, Houston, TX, USA.
- Vivian L. Smith Department of Neurosurgery and Center for Precision Health, McGovern Medical School, The University of Texas Health Science Center at Houston, 6400 Fannin Street Suite # 2800, Houston, TX, 77030, USA.
| |
Collapse
|
2
|
Khilar S, Dembinska-Kenner A, Hall H, Syrmos N, Ligarotti GKI, Plaha P, Apostolopoulos V, Chibbaro S, Barbagallo GMV, Ganau M. Towards a New Dawn for Neuro-Oncology: Nanomedicine at the Service of Drug Delivery for Primary and Secondary Brain Tumours. Brain Sci 2025; 15:136. [PMID: 40002469 PMCID: PMC11852924 DOI: 10.3390/brainsci15020136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 01/21/2025] [Accepted: 01/28/2025] [Indexed: 02/27/2025] Open
Abstract
(1) Background/Objectives: Primary and secondary brain tumours often hold devastating prognoses and low survival rates despite the application of maximal neurosurgical resection, and state-of-the-art radiotherapy and chemotherapy. One limiting factor in their management is that several antineoplastic agents are unable to cross the blood-brain barrier (BBB) to reach the tumour microenvironment. Nanomedicine could hold the potential to become an effective means of drug delivery to overcome previous hurdles towards effective neuro-oncological treatments. (2) Methods: A scoping review following the PRISMA-ScR guidelines and checklist was conducted using key terms input into PubMed to find articles that reflect emerging trends in the utilisation of nanomedicine in drug delivery for primary and secondary brain tumours. (3) Results: The review highlights various strategies by which different nanoparticles can be exploited to bypass the BBB; we provide a synthesis of the literature on the ongoing contributions to therapeutic protocols based on chemotherapy, immunotherapy, focused ultrasound, radiotherapy/radiosurgery, and radio-immunotherapy. (4) Conclusions: The emerging trends summarised in this scoping review indicate encouraging advantageous properties of nanoparticles as potential effective drug delivery mechanisms; however, there are still nanotoxicity issues that largely remain to be addressed before the translation of these innovations from laboratory to clinical practice.
Collapse
Affiliation(s)
- Smita Khilar
- Department of Neurosurgery, Oxford University Hospitals NHS Foundation Trust, Oxford OX3 0AG, UK; (S.K.); (H.H.)
| | - Antonina Dembinska-Kenner
- Department of Neurosurgery, Oxford University Hospitals NHS Foundation Trust, Oxford OX3 0AG, UK; (S.K.); (H.H.)
| | - Helen Hall
- Department of Neurosurgery, Oxford University Hospitals NHS Foundation Trust, Oxford OX3 0AG, UK; (S.K.); (H.H.)
| | - Nikolaos Syrmos
- School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | | | - Puneet Plaha
- Department of Neurosurgery, Oxford University Hospitals NHS Foundation Trust, Oxford OX3 0AG, UK; (S.K.); (H.H.)
| | - Vasileios Apostolopoulos
- Department of Neurosurgery, Oxford University Hospitals NHS Foundation Trust, Oxford OX3 0AG, UK; (S.K.); (H.H.)
| | - Salvatore Chibbaro
- Neurosurgery Unit, Department of Medical and Surgical Sciences and Neurosciences, Siena University, 53100 Siena, Italy
| | | | - Mario Ganau
- Department of Neurosurgery, Oxford University Hospitals NHS Foundation Trust, Oxford OX3 0AG, UK; (S.K.); (H.H.)
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX3 9DU, UK
| |
Collapse
|
3
|
Pepper NB, Prange NG, Troschel FM, Kröger K, Oertel M, Kuhlmann T, Müther M, Grauer O, Stummer W, Eich HT. Efficacy and Low Toxicity of Normo-Fractionated Re-Irradiation with Combined Chemotherapy for Recurrent Glioblastoma-An Analysis of Treatment Response and Failure. Cancers (Basel) 2024; 16:3652. [PMID: 39518091 PMCID: PMC11545019 DOI: 10.3390/cancers16213652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 10/25/2024] [Accepted: 10/28/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND Glioblastoma is the most common malignant brain tumor in adults. Even after maximal safe resection and adjuvant chemoradiotherapy, patients normally relapse after a few years or even months. Standard treatment for recurrent glioblastoma is not yet defined, with re-resection, re-irradiation, and systemic therapy playing key roles. Usually, re-irradiation is combined with concurrent chemotherapy, harnessing the radiosensitizing effects of alkylating agents. METHODS A retrospective analysis of 101 patients with recurrent glioblastoma treated with re-irradiation was conducted, evaluating the survival impact of concurrent chemotherapy regimens, as well as prior resection. Patients were subcategorized according to concurrent chemotherapy (temozolomide vs. CCNU vs. combination of both vs. none) and details are given regarding treatment toxicity and patterns of relapse after first- and second-line treatment. RESULTS Patients were treated with normo-fractionated re-irradiation (with prescription dose of ~40 Gy to the PTV), resulting in a moderate cumulative EQD2 (~100 Gy). The mean overall survival was 11.3 months (33.5 months from initial diagnosis) and mean progression free survival was 9.5 months. Prior resection resulted in increased survival (p < 0.001), especially when gross total resection was achieved. Patients who received concurrent chemotherapy had significantly longer survival vs. no chemotherapy (p < 0.01), with the combination of CCNU and TMZ achieving the best results. Overall survival was significantly better in patients who received the CCNU + TMZ combination at any time during treatment (first or second line) vs. monotherapy only. The treatment of larger volumes (mean PTV size = 112.7 cm3) was safe and did not result in worse prognosis or increased demand for corticosteroids. Overall, the incidence of high-grade toxicity or sequential radionecrosis (5%) was reasonably low and treatment was tolerated well. While second-line chemotherapy did not seem to influence patterns of relapse, patients who received TMZ + CCNU as first-line treatment had a tendency towards better local control with more out-field recurrence. CONCLUSIONS Normo-fractionated re-irradiation appears to be safe and is accompanied by good survival outcomes, even when applied to larger treatment volumes. Patients amenable to undergo re-resection and achieving concurrent systemic therapy with alkylating agents had better OS, especially when gross total resection was possible. Based on existing data and experiences reflected in this analysis, we advocate for a multimodal approach to recurrent glioblastoma with maximal safe re-resection and adjuvant second chemoradiation. The combination of TMZ and CCNU for patients with methylated MGMT promoter yielded the best results in the primary and recurrent situation (together with re-RT). Normo-fractionated RT enables the use of more generous margins and is tolerated well.
Collapse
Affiliation(s)
| | | | | | - Kai Kröger
- Department of Radiation Oncology, University Hospital Muenster, 48149 Muenster, Germany
| | - Michael Oertel
- Department of Radiation Oncology, University Hospital Muenster, 48149 Muenster, Germany
| | - Tanja Kuhlmann
- Department of Neuropathology, University Hospital Muenster, 48149 Muenster, Germany
| | - Michael Müther
- Department of Neurosurgery, University Hospital Muenster, 48149 Muenster, Germany
| | - Oliver Grauer
- Department of Neurology with Institute of Translation Neurology, University Hospital Muenster, 48149 Muenster, Germany
| | - Walter Stummer
- Department of Neurosurgery, University Hospital Muenster, 48149 Muenster, Germany
| | - Hans Theodor Eich
- Department of Radiation Oncology, University Hospital Muenster, 48149 Muenster, Germany
| |
Collapse
|
4
|
Valerio JE, Wolf AL, Mantilla-Farfan P, Aguirre Vera GDJ, Fernández-Gómez MP, Alvarez-Pinzon AM. Efficacy and Cognitive Outcomes of Gamma Knife Radiosurgery in Glioblastoma Management for Elderly Patients. J Pers Med 2024; 14:1049. [PMID: 39452556 PMCID: PMC11508357 DOI: 10.3390/jpm14101049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 09/19/2024] [Accepted: 09/23/2024] [Indexed: 10/26/2024] Open
Abstract
BACKGROUND Gamma Knife Radiosurgery (GKRS), a specific type of Stereotactic Radiosurgery (SRS), has developed as a significant modality in the treatment of glioblastoma, particularly in conjunction with standard chemotherapy. The goal of this study is to evaluate the efficacy of combining GKRS with surgical resection and chemotherapy in enhancing therapeutic effects for glioblastoma patients aged 55 years and older. METHODS This prospective clinical study, conducted in accordance with the STROBE guidelines, involved 49 glioblastoma patients aged 55 years and older, treated between January 2013 and January 2023. Data were collected prospectively, and strict adherence to the STUPP protocol was maintained. Only patients who conformed to the STUPP protocol were included in the analysis. Due to concerns regarding the cognitive impairment associated with conventional radiotherapy, and at the patients' request, a radiosurgery plan was offered. Radiosurgery was administered for 4-8 weeks following surgical resection. Any patients who had not received previous radiotherapy received open surgical tumor removal, followed by GKRS along with adjuvant chemotherapy. RESULTS In this prospective clinical study of 49 glioblastoma patients aged 55 years and older, the average lifespan post-histopathological diagnosis was established at 22.3 months (95% CI: 12.0-28.0 months). The median time before disease progression was 14.3 months (95% CI: 13.0-29.7 months). The median duration until the first recurrence after treatment was 15.2 months, with documented cases varying between 4 and 33 months. The Gamma Knife Radiosurgery (GKRS) treatment involved a median marginal recommended dose of 12.5 Gy, targeting an average volume of 5.7 cm3 (range: 1.6-39 cm3). Local recurrence occurred in 21 patients, while distant recurrence was identified in 8 patients. Within the cohort, 34 patients were subjected to further therapeutic approaches, including reoperation, a second GKRS session, the administration of bevacizumab and irinotecan, and PCV chemotherapy. A cognitive function assessment revealed that the patients treated with GKRS experienced significantly less cognitive decline compared to the historical controls, who were treated with conventional radiotherapy. The median MMSE scores declined by 1.9 points over 12 months, and the median MoCA scores declined by 2.9 points. CONCLUSION This study demonstrates that Gamma Knife Radiosurgery (GKRS), when integrated with surgical resection and adjuvant chemotherapy, offers a substantial benefit for glioblastoma patients aged 55 years and older. The data reveal that GKRS not only prolongs overall survival and progression-free survival but also significantly reduces cognitive decline compared to conventional radiotherapy. These findings underscore the efficacy and safety of GKRS, advocating for its incorporation into standard treatment protocols for older glioblastoma patients. The potential of GKRS to improve patient outcomes while preserving cognitive function is compelling and warrants further research to optimize and confirm its role in glioblastoma management.
Collapse
Affiliation(s)
- José E. Valerio
- Department of Neurosurgery, Neurosurgery Oncology Center of Excellence, Miami Neuroscience Center at Larkin, South Miami, FL 33143, USA; (J.E.V.); (A.L.W.); (P.M.-F.)
- GW School of Business, The George Washington University, Washington, DC 20052, USA
| | - Aizik L. Wolf
- Department of Neurosurgery, Neurosurgery Oncology Center of Excellence, Miami Neuroscience Center at Larkin, South Miami, FL 33143, USA; (J.E.V.); (A.L.W.); (P.M.-F.)
| | - Penelope Mantilla-Farfan
- Department of Neurosurgery, Neurosurgery Oncology Center of Excellence, Miami Neuroscience Center at Larkin, South Miami, FL 33143, USA; (J.E.V.); (A.L.W.); (P.M.-F.)
- Department of Neurosurgery, Latino America Valerio Foundation, Weston, FL 33331, USA; (G.d.J.A.V.); (M.P.F.-G.)
| | - Guillermo de Jesús Aguirre Vera
- Department of Neurosurgery, Latino America Valerio Foundation, Weston, FL 33331, USA; (G.d.J.A.V.); (M.P.F.-G.)
- Tecnológico de Monterrey School of Medicine and Health Sciences Mexico City, Monterrey 64710, Mexico
| | - María P. Fernández-Gómez
- Department of Neurosurgery, Latino America Valerio Foundation, Weston, FL 33331, USA; (G.d.J.A.V.); (M.P.F.-G.)
| | - Andrés M. Alvarez-Pinzon
- Department of Neurosurgery, Latino America Valerio Foundation, Weston, FL 33331, USA; (G.d.J.A.V.); (M.P.F.-G.)
- Cancer Neuroscience, The Institute of Neuroscience of Castilla y León (INCYL), University of Salamanca (USAL), 37008 Salamanca, Spain
- Stanford LEAD Program, Graduate School of Business, Stanford University, Palo Alto, CA 94305, USA
- Institute for Human Health and Disease Intervention (I-HEALTH), Florida Atlantic University, Jupiter, FL 33431, USA
| |
Collapse
|
5
|
Habibi MA, Ghorbani M, Esmaeilian S, Tajvidi F, Nekutalaban P, Boskabadi AR, Alemi F, Zafari R, Mirjani MS, Eazi S, Minaee P. Stereotactic radiosurgery versus combined stereotactic radiosurgery and bevacizumab for recurrent glioblastoma; a systematic review and meta-analysis of survival. Neurosurg Rev 2024; 47:323. [PMID: 39002028 DOI: 10.1007/s10143-024-02585-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 05/21/2024] [Accepted: 07/08/2024] [Indexed: 07/15/2024]
Abstract
Recurrent glioblastoma (rGBM) is a brain tumor that is resistant to standard treatments. Although stereotactic radiosurgery (SRS) is a non-invasive radiation technique, it cannot fully prevent tumor recurrence and progression. Bevacizumab blocks tumor blood supply and has been approved for rGBM. However, the best way to combine SRS and bevacizumab is still unclear. We did a systematic review and meta-analysis of studies comparing SRS alone and SRS plus bevacizumab for rGBM. We searched three databases for articles published until June 2023. All statistical analysis was performed by STATA v.17. Our meta-analysis included 20 studies with 926 patients. We found that the combination therapy had a significantly lower rate of overall survival (OS) than SRS alone at 6-month 0.77[95%CI:0.74-0.85] for SRS alone and (100%) for SRS plus bevacizumab. At 1-year OS, 0.39 [95%CI: 0.32-0.47] for SRS alone and 0.61 [95%CI:0.44-0.77] for SRS plus bevacizumab (P-value:0.02). However, this advantage was not seen in the long term (18 months and two years). Additionally, the combination therapy had lower chances of progression-free survival (PFS) than SRS alone at the 6-month and 1-year time points, but the differences were insignificant. Our study indicates that incorporating bevacizumab with SRS may lead to a short-term increase in OS for rGBM patients but not long-term. Additionally, the PFS rate did not show significant improvement in the group receiving combination therapy. Further clinical trials are necessary to validate the enhanced overall survival with combination therapy for rGBM.
Collapse
Affiliation(s)
- Mohammad Amin Habibi
- Department of Neurosurgery, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran.
| | - Mohammad Ghorbani
- Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Saeid Esmaeilian
- General Radiologist, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Forouhar Tajvidi
- Student Research Committee, Abadan University of Medical Sciences, Abadan, Iran
| | - Parham Nekutalaban
- Clinical Research Development Center, Qom University of Medical Sciences, Qom, Iran
| | | | - Fakhroddin Alemi
- Faculty of Medicine, Mazandaran University of Medical Science, Mazandaran, Iran
| | - Rasa Zafari
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Sina Mirjani
- Student Research Committee, Faculty of Medicine, Qom University of Medical Sciences, Qom, Iran
| | - SeyedMohammad Eazi
- Student Research Committee, Faculty of Medicine, Qom University of Medical Sciences, Qom, Iran
| | - Poriya Minaee
- Student Research Committee, Faculty of Medicine, Qom University of Medical Sciences, Qom, Iran
| |
Collapse
|
6
|
Hatiboglu MA, Akdur K, Sakarcan A, Seyithanoglu MH, Turk HM, Sinclair G, Oztanir MN. Promising outcome of patients with recurrent glioblastoma after Gamma Knife-based hypofractionated radiotherapy. Neurochirurgie 2024; 70:101532. [PMID: 38215936 DOI: 10.1016/j.neuchi.2024.101532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 12/24/2023] [Accepted: 12/29/2023] [Indexed: 01/14/2024]
Abstract
BACKGROUND The role of Gamma Knife radiosurgery (GKRS) in recurrent glioblastoma remains unclear. The purpose of this study is to evaluate the effects of GKRS in a group of patients with recurrent glioblastoma, focusing on survival and safety. METHODS Patients undergoing GKRS for recurrent glioblastoma between September 2014 and April 2019 were included in this study. Relevant clinical and radiosurgical data, including GKRS-related complications, were recorded and analyzed. Overall survival (OS), local progression free survival (LPFS) and prognostic factors for outcome were thoroughly evaluated. RESULTS Fifty-three patients were analyzed (24 female, 29 male). The median age was 50 years (range, 19-78 years). The median GKRS treatment volume was 35.01 cm3 (range, 2.38-115.57 cm3). Twenty patients (38%) were treated with single fraction GKRS, while 33 (62%) were treated with GKRS-based hypofractionated stereotactic radiotherapy (HSRT). The median prescription dose for single fraction GKRS, 3-fractions HSRT and 5-fractions HSRT were 16 Gy (range, 10-20 Gy), 27 Gy (range, 18-33 Gy) and 25 Gy (range, 25-30 Gy), respectively. The median LPFS and OS times were 8.1 months and 11.4 months after GKRS, respectively. HSRT and Bevacizumab were associated with improved LPFS, while HSRT alone was associated with longer OS. CONCLUSION Our findings suggested that HRST would likely improve LPFS and OS in definite settings; the addition of Bevacizumab to GKRS was associated with increased rates of local control. No major complications were reported. Further prospective studies are warranted to confirm our findings.
Collapse
Affiliation(s)
- Mustafa Aziz Hatiboglu
- Department of Neurosurgery, Bezmialem Vakif University Medical School, Vatan Street, Fatih, Istanbul, Turkey; Beykoz Institute of Life Sciences and Biotechnology, Bezmialem Vakif University, Yalıkoy Mahallesi, Beykoz, Istanbul, Turkey.
| | - Kerime Akdur
- Department of Neurosurgery, Bezmialem Vakif University Medical School, Vatan Street, Fatih, Istanbul, Turkey
| | - Ayten Sakarcan
- Department of Neurosurgery, Bezmialem Vakif University Medical School, Vatan Street, Fatih, Istanbul, Turkey
| | - Mehmet Hakan Seyithanoglu
- Department of Neurosurgery, Bezmialem Vakif University Medical School, Vatan Street, Fatih, Istanbul, Turkey
| | - Haci Mehmet Turk
- Department of Medical Oncology Bezmialem Vakif University Medical School, Vatan Street, Fatih, Istanbul, Turkey
| | - Georges Sinclair
- Department of Neurosurgery, Bezmialem Vakif University Medical School, Vatan Street, Fatih, Istanbul, Turkey; Department of Radiation Oncology, University Hospital Southampton, UK
| | - Mustafa Namik Oztanir
- Department of Neurosurgery, Bezmialem Vakif University Medical School, Vatan Street, Fatih, Istanbul, Turkey
| |
Collapse
|
7
|
Sun Y, Liu P, Wang Z, Zhang H, Xu Y, Hu S, Yan Y. Efficacy and indications of gamma knife radiosurgery for recurrent low-and high-grade glioma. BMC Cancer 2024; 24:37. [PMID: 38183008 PMCID: PMC10768340 DOI: 10.1186/s12885-023-11772-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 12/17/2023] [Indexed: 01/07/2024] Open
Abstract
PURPOSE To investigate the indications and efficacy of gamma knife radiosurgery (GKRS) as a salvage treatment for recurrent low-and high-grade glioma. METHODS This retrospective study of 107 patients with recurrent glioma treated with GKRS between 2009 and 2022, including 68 high-grade glioma (HGG) and 39 low-grade glioma (LGG) cases. The Kaplan-Meier method was used to calculate the overall survival (OS) and progression-free survival (PFS). The log-rank test was used to analyze the multivariate prognosis of the Cox proportional hazards model. Adverse reactions were evaluated according to the Common Terminology Criteria for Adverse Events version 4.03. The prognostic value of main clinical features was estimated, including histopathology, Karnofsky performance status (KPS), recurrence time interval, target location, two or more GKRS, surgery for recurrence, site of recurrence, left or right side of the brain and so on. RESULTS The median follow-up time was 74.5 months. The median OS and PFS were 17.0 months and 5.5 months for all patients. The median OS and PFS were 11.0 months and 5.0 months for HGG, respectively. The median OS and PFS were 49.0 months and 12.0 months for LGG, respectively. Multivariate analysis showed that two or more GKRS, left or right side of the brain and brainstem significantly affected PFS. Meanwhile, the KPS index, two or more GKRS, pathological grade, and brainstem significantly affected OS. Stratified analysis showed that surgery for recurrence significantly affected OS and PFS for LGG. KPS significantly affected OS and PFS for HGG. No serious adverse events were noted post-GKRS. CONCLUSION GKRS is a safe and effective salvage treatment for recurrent glioma. Moreover, it can be applied after multiple recurrences with tolerable adverse effects.
Collapse
Affiliation(s)
- Ying Sun
- Department of Radiation Oncology, General Hospital of Northern Theater Command, 110016, Shenyang, China
| | - Peiru Liu
- Beifang Hospital of China Medical University, 110016, Shenyang, China
| | - Zixi Wang
- Graduate School of Dalian Medical University, 116000, Dalian, China
| | - Haibo Zhang
- Department of Radiation Oncology, General Hospital of Northern Theater Command, 110016, Shenyang, China
| | - Ying Xu
- Department of Radiation Oncology, General Hospital of Northern Theater Command, 110016, Shenyang, China
| | - Shenghui Hu
- Department of Radiation Oncology, General Hospital of Northern Theater Command, 110016, Shenyang, China
| | - Ying Yan
- Department of Radiation Oncology, General Hospital of Northern Theater Command, 110016, Shenyang, China.
| |
Collapse
|
8
|
Xiang X, Ji Z, Jin J. Brachytherapy is an effective and safe salvage option for re-irradiation in recurrent glioblastoma (rGBM): A systematic review. Radiother Oncol 2024; 190:110012. [PMID: 37972737 DOI: 10.1016/j.radonc.2023.110012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 10/30/2023] [Accepted: 11/01/2023] [Indexed: 11/19/2023]
Abstract
PURPOSE To evaluate the clinical efficacy and toxicity of brachytherapy as a salvage therapy for patients with recurrent glioblastoma (rGBM). METHODS AND MATERIALS We searched the PubMed, Embase, and Cochrane libraries from its inception to June 2023, for eligible studies in which patients underwent brachytherapy for rGBM. Outcomes of interest were mOS, mPFS, OS, PFS, and adverse events (AEs). For individual clinical survival outcomes and common AEs, weighted-mean descriptive statistics were calculated as a summary measure using study sample size as the weight. The calculation formula is as follows: weighted-mean = Σwx/Σw (w is the sample size and x is the outcome). RESULTS This review included 29 studies with a total of 1202 rGBM patients, including 22 retrospective and 7 prospective studies. The results showed that from the time of brachytherapy, the mOS and mPFS were 6.8 to 24.4 months and 3.7 to 11.7 months. The OS of 6 months, 1 year, 18 months, 2 years, and 3 years after brachytherapy were 58.3 % to 85.2 % (weighted-mean 76.2 %), 26 % to 66 % (weighted-mean 41.9 %), 20 % to 37 % (weighted-mean 27.6 %), 11 % to 23 % (weighted-mean 14.8 %), and 8 % to 15 % (weighted-mean 12.1 %), respectively. The PFS of 6 months and 1 year after brachytherapy were 26.7 % to 86 % (weighted-mean 53.4 %) and 14 % to 81 % (weighted-mean 24.1 %). Most patients with rGBM will experience treatment failure again during the follow-up period, mainly local (10.7 % to 79.4 %) or marginal(3.6 % to 22.2 %) recurrence, followed by distant failure (6.7 % to 57.7 %). Although therapeutic AEs had not been uniformly reported, the overall toxicity rate was considered to be low. The common AEs reported included progressive neurologic deterioration, seizures, CSF leak, brain necrosis, hemorrhage, and infection/meningitis, with a weighted-mean incidence of 1.9 %, 2.4 %, 4.1 %, 5.4 %, 2.1 %, and 3.8 %, respectively. CONCLUSIONS The evidence summarized above, albeit mostly level III, suggests that brachytherapy has acceptable safety and good post-treatment clinical efficacy for selected patients with rGBM. Well-designed, high-quality, large-sample randomized controlled and prospective studies are needed to further validate these findings.
Collapse
Affiliation(s)
- Xiaoyong Xiang
- Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen 518116, China
| | - Zhe Ji
- Department of Radiation Oncology, Peking University Third Hospital, 49 North Garden Road, Haidian District, Beijing 100191, China
| | - Jing Jin
- Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen 518116, China; Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China.
| |
Collapse
|
9
|
De Pietro R, Zaccaro L, Marampon F, Tini P, De Felice F, Minniti G. The evolving role of reirradiation in the management of recurrent brain tumors. J Neurooncol 2023; 164:271-286. [PMID: 37624529 PMCID: PMC10522742 DOI: 10.1007/s11060-023-04407-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Accepted: 07/24/2023] [Indexed: 08/26/2023]
Abstract
Despite aggressive management consisting of surgery, radiation therapy (RT), and systemic therapy given alone or in combination, a significant proportion of patients with brain tumors will experience tumor recurrence. For these patients, no standard of care exists and management of either primary or metastatic recurrent tumors remains challenging.Advances in imaging and RT technology have enabled more precise tumor localization and dose delivery, leading to a reduction in the volume of health brain tissue exposed to high radiation doses. Radiation techniques have evolved from three-dimensional (3-D) conformal RT to the development of sophisticated techniques, including intensity modulated radiation therapy (IMRT), volumetric arc therapy (VMAT), and stereotactic techniques, either stereotactic radiosurgery (SRS) or stereotactic radiotherapy (SRT). Several studies have suggested that a second course of RT is a feasible treatment option in patients with a recurrent tumor; however, survival benefit and treatment related toxicity of reirradiation, given alone or in combination with other focal or systemic therapies, remain a controversial issue.We provide a critical overview of the current clinical status and technical challenges of reirradiation in patients with both recurrent primary brain tumors, such as gliomas, ependymomas, medulloblastomas, and meningiomas, and brain metastases. Relevant clinical questions such as the appropriate radiation technique and patient selection, the optimal radiation dose and fractionation, tolerance of the brain to a second course of RT, and the risk of adverse radiation effects have been critically discussed.
Collapse
Affiliation(s)
- Raffaella De Pietro
- Department of Radiological Sciences, Oncology and Anatomical Pathology, Sapienza University of Rome, Policlinico Umberto I, Rome, Italy
| | - Lucy Zaccaro
- Department of Radiological Sciences, Oncology and Anatomical Pathology, Sapienza University of Rome, Policlinico Umberto I, Rome, Italy
| | - Francesco Marampon
- Department of Radiological Sciences, Oncology and Anatomical Pathology, Sapienza University of Rome, Policlinico Umberto I, Rome, Italy
| | - Paolo Tini
- Department of Medicine, Surgery and Neurosciences, University of Siena, Siena, Italy
| | - Francesca De Felice
- Department of Radiological Sciences, Oncology and Anatomical Pathology, Sapienza University of Rome, Policlinico Umberto I, Rome, Italy
| | - Giuseppe Minniti
- Department of Radiological Sciences, Oncology and Anatomical Pathology, Sapienza University of Rome, Policlinico Umberto I, Rome, Italy.
- IRCCS Neuromed, Pozzilli (IS), Isernia, Italy.
| |
Collapse
|
10
|
Bunevicius A, Pikis S, Kondziolka D, Patel DN, Bernstein K, Sulman EP, Lee CC, Yang HC, Delabar V, Mathieu D, Cifarelli CP, Arsanious DE, Dahshan BA, Weir JS, Speckter H, Mota A, Tripathi M, Kumar N, Warnick RE, Sheehan JP. Stereotactic radiosurgery for glioblastoma considering tumor genetic profiles: an international multicenter study. J Neurosurg 2022; 137:42-50. [PMID: 34740186 DOI: 10.3171/2021.7.jns211277] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 07/12/2021] [Indexed: 11/06/2022]
Abstract
OBJECTIVE Molecular profiles, such as isocitrate dehydrogenase (IDH) mutation and O6-methylguanine-DNA methyltransferase (MGMT) methylation status, have important prognostic roles for glioblastoma patients. The authors studied the efficacy and safety of stereotactic radiosurgery (SRS) for glioblastoma patients with consideration of molecular tumor profiles. METHODS For this retrospective observational multiinstitutional study, the authors pooled consecutive patients who were treated using SRS for glioblastoma at eight institutions participating in the International Radiosurgery Research Foundation. They evaluated predictors of overall and progression-free survival with consideration of IDH mutation and MGMT methylation status. RESULTS Ninety-six patients (median age 56 years) underwent SRS (median dose 15 Gy and median treatment volume 5.53 cm3) at 147 tumor sites (range 1 to 7). The majority of patients underwent prior fractionated radiation therapy (92%) and temozolomide chemotherapy (98%). Most patients were treated at recurrence (85%), and boost SRS was used for 12% of patients. The majority of patients harbored IDH wild-type (82%) and MGMT-methylated (62%) tumors. Molecular data were unavailable for 33 patients. Median survival durations after SRS were similar between patients harboring IDH wild-type tumors and those with IDH mutant tumors (9.0 months vs 11 months, respectively), as well as between those with MGMT-methylated tumors and those with MGMT-unmethylated tumors (9.8 vs. 9.0 months, respectively). Prescription dose > 15 Gy (OR 0.367, 95% CI 0.190-0.709, p = 0.003) and treatment volume > 5 cm3 (OR 1.036, 95% CI 1.007-1.065, p = 0.014) predicted overall survival after controlling for age and IDH status. Treatment volume > 5 cm3 (OR 2.215, 95% CI 1.159-4.234, p = 0.02) and absence of gross-total resection (OR 0.403, 95% CI 0.208-0.781, p = 0.007) were associated with inferior local control of SRS-treated lesions in multivariate models. Nine patients experienced adverse radiation events after SRS, and 7 patients developed radiation necrosis at 59 to 395 days after SRS. CONCLUSIONS Post-SRS survival was similar as a function of IDH mutation and MGMT promoter methylation status, suggesting that molecular profiles of glioblastoma should be considered when selecting candidates for SRS. SRS prescription dose > 15 Gy and treatment volume ≤ 5 cm3 were associated with longer survival, independent of age and IDH status. Prior gross-total resection and smaller treatment volume were associated with superior local control.
Collapse
Affiliation(s)
- Adomas Bunevicius
- 1Department of Neurosurgery, University of Virginia, Charlottesville, Virginia
| | - Stylianos Pikis
- 1Department of Neurosurgery, University of Virginia, Charlottesville, Virginia
| | | | - Dev N Patel
- 2Department of Neurosurgery, NYU Langone Health, New York, New York
| | - Kenneth Bernstein
- 3Department of Radiation Oncology, NYU Langone Health, New York, New York
| | - Erik P Sulman
- 3Department of Radiation Oncology, NYU Langone Health, New York, New York
| | - Cheng-Chia Lee
- 4Department of Neurosurgery, Neurological Institute, Taipei Veteran General Hospital, Taipei, Taiwan
- 5School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Huai-Che Yang
- 5School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Violaine Delabar
- 6Division of Neurosurgery, Université de Sherbrooke, Centre de recherche du CHUS, Sherbrooke, Quebec, Canada
| | - David Mathieu
- 6Division of Neurosurgery, Université de Sherbrooke, Centre de recherche du CHUS, Sherbrooke, Quebec, Canada
| | | | - David E Arsanious
- 7Department of Neurosurgery, West Virginia University, Morgantown, West Virginia
| | - Basem A Dahshan
- 8Department of Radiation Oncology, West Virginia University, Morgantown, West Virginia
| | - Joshua S Weir
- 8Department of Radiation Oncology, West Virginia University, Morgantown, West Virginia
| | - Herwin Speckter
- 9Gamma Knife Radiology Department, Dominican Gamma Knife Center and CEDIMAT, Santo Domingo, Dominican Republic
| | - Angel Mota
- 9Gamma Knife Radiology Department, Dominican Gamma Knife Center and CEDIMAT, Santo Domingo, Dominican Republic
| | - Manjul Tripathi
- 10Department of Neurosurgery, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Narendra Kumar
- 11Department of Radiotherapy, Postgraduate Institute of Medical Education and Research, Chandigarh, India; and
| | - Ronald E Warnick
- 12Gamma Knife Center, Jewish Hospital, Mayfield Clinic, Cincinnati, Ohio
| | - Jason P Sheehan
- 1Department of Neurosurgery, University of Virginia, Charlottesville, Virginia
| |
Collapse
|
11
|
Understanding nanomedicine treatment in an aggressive spontaneous brain cancer model at the stage of early blood brain barrier disruption. Biomaterials 2022; 283:121416. [DOI: 10.1016/j.biomaterials.2022.121416] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 02/13/2022] [Accepted: 02/15/2022] [Indexed: 11/19/2022]
|
12
|
High grade gliomas. PROGRESS IN BRAIN RESEARCH 2022; 268:259-270. [DOI: 10.1016/bs.pbr.2021.10.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
13
|
Yakar F, Egemen E, Dere ÜA, Sağınç H, Gökdeniz U, Bakırarar B, Gökdeniz CG, Baltalarlı B, Coşkun ME, Acar F. The effectiveness of gamma knife radiosurgery for the management of residual high-grade gliomas: A single institutional study. J Clin Neurosci 2021; 95:159-163. [PMID: 34929640 DOI: 10.1016/j.jocn.2021.12.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 11/24/2021] [Accepted: 12/11/2021] [Indexed: 10/19/2022]
Abstract
High-grade gliomas (HGGs) are presently managed via surgical resection, external beam radiation therapy (EBRT), and chemotherapy. Although Gamma Knife radiosurgery (GKRS) is currently used to manage HGGs, it has not been considered standard care. This paper aims to compare the contribution of GKRS to clinical outcomes in patients in which gross total resection (GTR) cannot be achieved. We retrospectively reviewed the data of 99 patients with HGG (World Health Organization (WHO) grade III and IV) from two groups: group 1 consisted of 68 patients for which only EBRT was administered, and group 2 consisted of 31 patients for which EBRT and GKRS were administered. Patient demographic data, the extent of resection, IDH mutation, radiation dosage, progression-free survival (PFS), overall survival (OS), and follow-up time were recorded and compared across groups. The grade III/IV tumor ratio was 10/58 and 10/21 in groups 1 and 2, respectively. In group 2, PFS and OS were higher than in group 1 (P = 0.030 and 0.021). The mean follow-up time was 15.02 ± 11.8 (3-52) and 18.9 ± 98.6 (7-43) months in groups 1 and 2, respectively. In addition to the standard management of HGGs in patients without GTR, boost GKRS during the early postoperative period is beneficial for increasing PFS and OS.
Collapse
Affiliation(s)
- Fatih Yakar
- Pamukkale University School of Medicine, Department of Neurosurgery, Çamlaraltı, Kınıklı Cd No:37, 20160 Pamukkale/Denizli, Turkey.
| | - Emrah Egemen
- Pamukkale University School of Medicine, Department of Neurosurgery, Çamlaraltı, Kınıklı Cd No:37, 20160 Pamukkale/Denizli, Turkey
| | - Ümit A Dere
- Pamukkale University School of Medicine, Department of Neurosurgery, Çamlaraltı, Kınıklı Cd No:37, 20160 Pamukkale/Denizli, Turkey
| | - Halil Sağınç
- Pamukkale University School of Medicine, Department of Radiation Oncology, Çamlaraltı, Kınıklı Cd No:37, 20160 Pamukkale/Denizli, Turkey
| | - Ulaş Gökdeniz
- Pamukkale University School of Medicine, Department of Neurosurgery, Çamlaraltı, Kınıklı Cd No:37, 20160 Pamukkale/Denizli, Turkey
| | - Batuhan Bakırarar
- Ankara University, School of Medicine, Department of Biostatistics, Hacettepe, A. Adnan Saygun Cd, 06230 Altındağ/Ankara, Turkey
| | - Ceyda G Gökdeniz
- Pamukkale University School of Medicine, Department of Public Health, Çamlaraltı, Kınıklı Cd No:37, 20160 Pamukkale/Denizli, Turkey
| | - Bahar Baltalarlı
- Pamukkale University School of Medicine, Department of Radiation Oncology, Çamlaraltı, Kınıklı Cd No:37, 20160 Pamukkale/Denizli, Turkey.
| | - Mehmet E Coşkun
- Pamukkale University School of Medicine, Department of Neurosurgery, Çamlaraltı, Kınıklı Cd No:37, 20160 Pamukkale/Denizli, Turkey
| | - Feridun Acar
- Odak Hospital, Department of Neurosurgery, Sümer Mah. No: 18, 20100 Merkez/Denizli, Turkey
| |
Collapse
|
14
|
Stereotactic radiosurgery for IDH wild type glioblastoma: an international, multicenter study. J Neurooncol 2021; 155:343-351. [PMID: 34797526 DOI: 10.1007/s11060-021-03883-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 10/21/2021] [Indexed: 10/19/2022]
Abstract
OBJECTIVE Isocitrate dehydrogenase (IDH) mutation status is recommended used for diagnosis and prognostication of glioblastoma patients. We studied efficacy and safety of stereotactic radiosurgery (SRS) for patients with recurrent IDH-wt glioblastoma. METHODS Consecutive patients treated with SRS for IDH-wt glioblastoma were pooled for this retrospective observational international multi-institutional study from institutions participating in the International Radiosurgery Research Foundation. RESULTS Sixty patients (median age 61 years) underwent SRS (median dose 15 Gy and median treatment volume: 7.01 cm3) for IDH-wt glioblastoma. All patients had histories of surgery and chemotherapy with temozolomide, and 98% underwent fractionated radiation therapy. MGMT status was available for 42 patients, of which half of patients had MGMT mutant glioblastomas. During median post-SRS imaging follow-up of 6 months, 52% of patients experienced tumor progression. Median post-SRS progression free survival was 4 months. SRS prescription dose of > 14 Gy predicted longer progression free survival [HR 0.357 95% (0.164-0.777) p = 0.009]. Fifty-percent of patients died during post-SRS clinical follow-up that ranged from 1 to 33 months. SRS treatment volume of > 5 cc emerged as an independent predictor of shorter post-SRS overall survival [HR 2.802 95% CI (1.219-6.444) p = 0.02]. Adverse radiation events (ARE) suggestive of radiation necrosis were diagnosed in 6/55 (10%) patients and were managed conservatively in the majority of patients. CONCLUSIONS SRS prescription dose of > 14 Gy is associated with longer progression free survival while tumor volume of > 5 cc is associated with shorter overall survival after SRS for IDH-wt glioblastomas. AREs are rare and are typically managed conservatively.
Collapse
|
15
|
Lovo EE, Moreira A, Barahona KC, Ramirez J, Campos F, Tobar C, Caceros V, Sallabanda M, Sallabanda K. Stereotactic Radiosurgery for Recurrent Glioblastoma Multiforme: A Retrospective Multi-Institutional Experience. Cureus 2021; 13:e18480. [PMID: 34754642 PMCID: PMC8569687 DOI: 10.7759/cureus.18480] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/04/2021] [Indexed: 12/15/2022] Open
Abstract
Introduction Glioblastoma multiforme (GBM) is the most common and lethal primary malignancy of the central nervous system. Despite standard therapy protocols, such as aggressive surgical resection, radiotherapy, and chemotherapy, GBM's aggressive nature produces low survival rates. Tumor recurrence and progression are nearly universal. Stereotactic radiosurgery (SRS) has been studied as an alternative treatment for recurrent GBM as a minimally invasive option that might prolong survival. The objective of this retrospective study was to evaluate the efficacy of SRS as a treatment modality considering overall survival (OS) in patients with GBM who had tumor recurrence and were treated with SRS in three different institutions. Materials and methods We retrospectively reviewed patients who received SRS for recurrent GBM between 1992 and 2020. A total of 46 patients were included in this study. We recorded age at diagnosis, the extent of surgical resection, radiation treatment, chemotherapy regimen, Karnofsky Performance Status at the time of SRS and at last follow-up, use of adjuvant chemotherapy after SRS, and response evaluation criteria in solid tumors. Primary endpoints were OS after initial diagnosis and OS from the date of the SRS procedure. Results Patients received SRS at a median of 10 months (range, 1 to 94 months) after their initial diagnoses. Median follow-up was seven months from the time of SRS and 22.8 months since diagnosis. The estimated median OS for all patients was nine months (range, 1 to 42 months) after SRS and 23.8 months (range, 4 to 102 months) after diagnosis. Median OS after SRS was seven months for patients treated from 1992 to 2011 and nine months for those treated from 2012 to 2020 (p = 0.008; X2 = 7.008). Median OS for younger patients (i.e., those aged <50 years) was 37.1 months compared to 18.6 months for older patients (i.e., those aged >50 years; p = 0.04; X2 = 3.870). Patients who received SRS after 10 months since diagnosis had a median OS of 36.2 months versus those who received SRS sooner than 10 months, who had an OS of 15 months (p = 0.004; X2 = 8.145). Radiosurgery doses larger than 15 Gy correlated with a median survival of nine months versus seven months in those treated with doses <15 Gy (p = 0.01; X2 = 6.756). Lastly, patients who received adjuvant bevacizumab (BEV) and or chemotherapy after SRS had a median survival of 12 months versus seven months for patients who did not receive any additional therapy after SRS (p = 0.04; X2 = 4.196). Conclusion SRS focal recurrent GBM in selected patients may improve OS, especially when combined with adjuvant therapy such as BEV and chemotherapy. Other prognostic variables proved relevant such as patients' age, the dose delivered, and surgery-to-SRS time that translates to the time of recurrence. Our results were consistent with the published literature and added to the accumulating evidence regarding SRS in recurrent GBM; however, extensive, multi-center studies are required to make definitive recommendations on this treatment approach.
Collapse
Affiliation(s)
- Eduardo E Lovo
- Radiosurgery/Neurosurgery, International Cancer Center, Diagnostic Hospital, San Salvador, SLV
| | - Alejandra Moreira
- Neurosurgery, International Cancer Center, Diagnostic Hospital, San Salvador, SLV
| | - Kaory C Barahona
- Radiation Oncology, International Cancer Center, Diagnostic Hospital, San Salvador, SLV
| | | | - Fidel Campos
- Radiosurgery, International Cancer Center, Diagnostic Hospital, San Salvador, SLV
| | - Carlos Tobar
- Radiation Oncology, International Cancer Center, Diagnostic Hospital, San Salvador, SLV
| | - Victor Caceros
- Radiosurgery, International Cancer Center, Diagnostic Hospital, San Salvador, SLV
| | | | - Kita Sallabanda
- Radiosurgery/Neurosurgery, Hospital Clinico Universitario San Carlos, Madrid, ESP
| |
Collapse
|
16
|
Zhao M, Fu X, Zhang Z, Ma L, Wang X, Li X. Gamma Knife Radiosurgery for High-Grade Gliomas: Single-Center Experience of Six Years in China. Stereotact Funct Neurosurg 2021; 99:181-186. [PMID: 33756470 DOI: 10.1159/000509782] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Accepted: 06/22/2020] [Indexed: 11/19/2022]
Abstract
OBJECTIVE The aim of this study was to evaluate the efficacy of Gamma Knife radiosurgery (GKRS) as a salvage therapy for high-grade glioma in our center. METHODS A total of 167 patients with malignant glioma were treated with GKRS in our Gamma Knife Center between January 2013 and December 2017; 140 patients (85 males and 55 females) were followed up and enrolled in our study. A single lesion was found in 110 cases, and multiple lesions were found in 30 cases; 108 cases received a single therapy, and in 32 cases, at least 2 GKRSs were performed. The median tumor volume was 13.5 cm3. The mean radiation dosage was 14.35 Gy (range, 6-18 Gy). MRI was performed regularly. The RANO criteria and Cox analysis were used to evaluate the therapeutic efficiency. RESULTS Follow-up MRI showed the local control rate was 61.4% at 3 months after GKRS, 25.0% at 6 months, and 7.1% at 12 months. The mean and median progression-free survival (PFS) periods were 8.6 (95% CI, 6.3-11.0) and 4 (95% CI, 3.5-4.5) (range, 1-60) months, respectively. The overall survival (OS) after GKRS was 3-62 months, with a mean of 16.7 (95% CI, 14.6-18.9) months, and the median survival was 13 (95% CI, 12.1-13.9) months. The 1-, 2-, and 5-year survival rates were 51.4, 10.0, and 2.9%, respectively. No severe complications occurred. Cox regression showed that glioma pathology was closely related to prognosis (p < 0.05). The Karnofsky Performance Score had little influence on PFS (p > 0.05) but influenced OS significantly (p < 0.05). CONCLUSION GKRS can be used to effectively treat malignant brain glioma and can therefore be used as an alternative treatment option.
Collapse
Affiliation(s)
- Ming Zhao
- Department of Neurosurgery, Fourth Medical Center, Chinese PLA General Hospital, Beijing, China,
| | - Xiangping Fu
- Department of Neurosurgery, Fourth Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Zhiwen Zhang
- Department of Neurosurgery, Fourth Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Liang Ma
- Department of Neurosurgery, Fourth Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Xiaopeng Wang
- Department of Neurosurgery, Fourth Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Xuexiu Li
- Department of Neurosurgery, Fourth Medical Center, Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
17
|
Dono A, Amsbaugh M, Martir M, Smilie RH, Riascos RF, Zhu JJ, Hsu S, Kim DH, Tandon N, Ballester LY, Blanco AI, Esquenazi Y. Genomic alterations predictive of response to radiosurgery in recurrent IDH-WT glioblastoma. J Neurooncol 2021; 152:153-162. [PMID: 33492602 PMCID: PMC8354320 DOI: 10.1007/s11060-020-03689-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 12/26/2020] [Indexed: 12/13/2022]
Abstract
INTRODUCTION Despite aggressive treatment, glioblastoma invariably recurs. The optimal treatment for recurrent glioblastoma (rGBM) is not well defined. Stereotactic radiosurgery (SRS) for rGBM has demonstrated favorable outcomes for selected patients; however, its efficacy in molecular GBM subtypes is unknown. We sought to identify genetic alterations that predict response/outcomes from SRS in rGBM-IDH-wild-type (IDH-WT). METHODS rGBM-IDH-WT patients undergoing SRS at first recurrence and tested by next-generation sequencing (NGS) were reviewed (2009-2018). Demographic, clinical, and molecular characteristics were evaluated. NGS interrogating 205-genes was performed. Primary outcome was survival from GK-SRS assessed by Kaplan-Meier method and multivariable Cox proportional-hazards. RESULTS Sixty-three lesions (43-patients) were treated at 1st recurrence. Median age was 61-years. All patients were treated with resection and chemoradiotherapy. Median time from diagnosis to 1st recurrence was 8.7-months. Median cumulative volume was 2.895 cm3 and SRS median marginal dose was 18 Gy (median isodose-54%). Bevacizumab was administered in 81.4% patients. PFS from SRS was 12.9-months. Survival from SRS was 18.2-months. PTEN-mutant patients had a longer PFS (p = 0.049) and survival from SRS (p = 0.013) in multivariable analysis. Although no statistically significant PTEN-mutants patients had higher frequency of radiation necrosis (21.4% vs. 3.4%) and lower in-field recurrence (28.6% vs. 37.9%) compared to PTEN-WT patients. CONCLUSIONS SRS is a safe and effective treatment option for selected rGBM-IDH-WT patients following first recurrence. rGBM-IDH-WT harboring PTEN-mutation have improved survival with salvage SRS compared to PTEN-WT patients. PTEN may be used as a molecular biomarker to identify a subset of rGBM patients who may benefit the most from SRS.
Collapse
Affiliation(s)
- Antonio Dono
- Vivian L. Smith Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA
- Department of Pathology and Laboratory Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Mark Amsbaugh
- Vivian L. Smith Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA
- Memorial Hermann Hospital-TMC, Houston, TX, USA
| | - Magda Martir
- Vivian L. Smith Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA
- Memorial Hermann Hospital-TMC, Houston, TX, USA
| | - Richard H Smilie
- Vivian L. Smith Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Roy F Riascos
- Memorial Hermann Hospital-TMC, Houston, TX, USA
- Department of Diagnostic and Interventional Imaging, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Jay-Jiguang Zhu
- Vivian L. Smith Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA
- Memorial Hermann Hospital-TMC, Houston, TX, USA
| | - Sigmund Hsu
- Vivian L. Smith Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA
- Memorial Hermann Hospital-TMC, Houston, TX, USA
| | - Dong H Kim
- Vivian L. Smith Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA
- Memorial Hermann Hospital-TMC, Houston, TX, USA
| | - Nitin Tandon
- Vivian L. Smith Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA
- Memorial Hermann Hospital-TMC, Houston, TX, USA
| | - Leomar Y Ballester
- Vivian L. Smith Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA.
- Department of Pathology and Laboratory Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA.
- Memorial Hermann Hospital-TMC, Houston, TX, USA.
| | - Angel I Blanco
- Vivian L. Smith Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA
- Memorial Hermann Hospital-TMC, Houston, TX, USA
| | - Yoshua Esquenazi
- Vivian L. Smith Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA.
- Memorial Hermann Hospital-TMC, Houston, TX, USA.
- Center for Precision Health, School of Biomedical Informatics, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA.
| |
Collapse
|
18
|
Hadi I, Reitz D, Bodensohn R, Roengvoraphoj O, Lietke S, Niyazi M, Tonn JC, Belka C, Thon N, Nachbichler SB. Radiation necrosis after a combination of external beam radiotherapy and iodine-125 brachytherapy in gliomas. Radiat Oncol 2021; 16:40. [PMID: 33622365 PMCID: PMC7903688 DOI: 10.1186/s13014-021-01762-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 02/11/2021] [Indexed: 11/29/2022] Open
Abstract
PURPOSE Frequency and risk profile of radiation necrosis (RN) in patients with glioma undergoing either upfront stereotactic brachytherapy (SBT) and additional salvage external beam radiotherapy (EBRT) after tumor recurrence or vice versa remains unknown. METHODS Patients with glioma treated with low-activity temporary iodine-125 SBT at the University of Munich between 1999 and 2016 who had either additional upfront or salvage EBRT were included. Biologically effective doses (BED) were calculated. RN was diagnosed using stereotactic biopsy and/or metabolic imaging. The rate of RN was estimated with the Kaplan Meier method. Risk factors were obtained from logistic regression models. RESULTS Eighty-six patients (49 male, 37 female, median age 47 years) were included. 38 patients suffered from low-grade and 48 from high-grade glioma. Median follow-up was 15 months after second treatment. Fifty-eight patients received upfront EBRT (median total dose: 60 Gy), and 28 upfront SBT (median reference dose: 54 Gy, median dose rate: 10.0 cGy/h). Median time interval between treatments was 19 months. RN was diagnosed in 8/75 patients. The 1- and 2-year risk of RN was 5.1% and 11.7%, respectively. Tumor volume and irradiation time of SBT, number of implanted seeds, and salvage EBRT were risk factors for RN. Neither of the BED values nor the time interval between both treatments gained prognostic influence. CONCLUSION The combination of upfront EBRT and salvage SBT or vice versa is feasible for glioma patients. The risk of RN is mainly determined by the treatment volume but not by the interval between therapies.
Collapse
Affiliation(s)
- Indrawati Hadi
- Department of Radiation Oncology, University Hospital, LMU Munich, Marchioninistr. 15, 81377, Munich, Germany
| | - Daniel Reitz
- Department of Radiation Oncology, University Hospital, LMU Munich, Marchioninistr. 15, 81377, Munich, Germany
| | - Raphael Bodensohn
- Department of Radiation Oncology, University Hospital, LMU Munich, Marchioninistr. 15, 81377, Munich, Germany
| | - Olarn Roengvoraphoj
- Department of Radiation Oncology, University Hospital, LMU Munich, Marchioninistr. 15, 81377, Munich, Germany
| | - Stefanie Lietke
- Department of Neurosurgery, University Hospital, LMU Munich, Munich, Germany
| | - Maximilian Niyazi
- Department of Radiation Oncology, University Hospital, LMU Munich, Marchioninistr. 15, 81377, Munich, Germany
- German Cancer Consortium (DKTK), Munich, Germany
| | - Jörg-Christian Tonn
- Department of Neurosurgery, University Hospital, LMU Munich, Munich, Germany
| | - Claus Belka
- Department of Radiation Oncology, University Hospital, LMU Munich, Marchioninistr. 15, 81377, Munich, Germany
- German Cancer Consortium (DKTK), Munich, Germany
| | - Niklas Thon
- Department of Neurosurgery, University Hospital, LMU Munich, Munich, Germany
| | - Silke Birgit Nachbichler
- Department of Radiation Oncology, University Hospital, LMU Munich, Marchioninistr. 15, 81377, Munich, Germany.
| |
Collapse
|
19
|
Minniti G, Niyazi M, Alongi F, Navarria P, Belka C. Current status and recent advances in reirradiation of glioblastoma. Radiat Oncol 2021; 16:36. [PMID: 33602305 PMCID: PMC7890828 DOI: 10.1186/s13014-021-01767-9] [Citation(s) in RCA: 117] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 02/11/2021] [Indexed: 12/12/2022] Open
Abstract
Despite aggressive management consisting of maximal safe surgical resection followed by external beam radiation therapy (60 Gy/30 fractions) with concomitant and adjuvant temozolomide, approximately 90% of WHO grade IV gliomas (glioblastomas, GBM) will recur locally within 2 years. For patients with recurrent GBM, no standard of care exists. Thanks to the continuous improvement in radiation science and technology, reirradiation has emerged as feasible approach for patients with brain tumors. Using stereotactic radiosurgery (SRS) or stereotactic radiotherapy (SRT), either hypofractionated or conventionally fractionated schedules, several studies have suggested survival benefits following reirradiation of patients with recurrent GBM; however, there are still questions to be answered about the efficacy and toxicity associated with a second course of radiation. We provide a clinical overview on current status and recent advances in reirradiation of GBM, addressing relevant clinical questions such as the appropriate patient selection and radiation technique, optimal dose fractionation, reirradiation tolerance of the brain and the risk of radiation necrosis.
Collapse
Affiliation(s)
- Giuseppe Minniti
- Department of Medicine, Surgery and Neurosciences, University of Siena, Policlinico le Scotte, 53100, Siena, Italy. .,IRCCS Neuromed, Pozzilli, IS, Italy.
| | - Maximilian Niyazi
- Department of Radiation Oncology, University Hospital, LMU Munich, Munich, Germany.,German Cancer Consortium (DKTK), Partner Site Munich, Munich, Germany
| | - Filippo Alongi
- Advanced Radiation Oncology Department, Cancer Care Center, IRCCS Sacro Cuore Don Calabria Hospital, Negrar, VR, Italy
| | - Piera Navarria
- Radiotherapy and Radiosurgery Department, Humanitas Clinical and Research Hospital-IRCCS, Rozzano, MI, Italy
| | - Claus Belka
- Department of Radiation Oncology, University Hospital, LMU Munich, Munich, Germany
| |
Collapse
|
20
|
Zhang Y, Wang J. Research progress on radiotherapy technology and dose fraction scheme for advanced gliomas. Transl Cancer Res 2020; 9:7642-7651. [PMID: 35117363 PMCID: PMC8799171 DOI: 10.21037/tcr-20-1891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 08/28/2020] [Indexed: 11/06/2022]
Abstract
Glioma is the most common central malignant tumor. High-grade glioma (HGG) has high malignancy and a short median survival. Complete surgical resection and comprehensive treatment with postoperative radiotherapy and chemotherapy is the recommended treatment for HGGs at present in clinic. Postoperative radiotherapy can reduce the local recurrence rate and prolong the survival time of patients. In recent years, researchers have made some progress on different radiotherapy technologies and dose fraction schemes. With the continuous development of medical technology, different groups of people should choose different dose fraction schemes, in order to realize the individualization of treatment schemes, and provide more benefits to patients. At present, the optimal radiotherapy dose, the fraction model, and how to achieve individualized radiotherapy remains unclear. In view of the poor prognosis of this disease, patients should be encouraged to participate in properly conducted experimental studies.
Collapse
Affiliation(s)
- Yu Zhang
- Department of Radiation Oncology, Peking University International Hospital, Beijing, China
| | - Junjie Wang
- Department of Radiation Oncology, Peking University Third Hospital, Beijing, China
| |
Collapse
|
21
|
Scoccianti S, Perna M, Olmetto E, Delli Paoli C, Terziani F, Ciccone LP, Detti B, Greto D, Simontacchi G, Grassi R, Scoccimarro E, Bonomo P, Mangoni M, Desideri I, Di Cataldo V, Vernaleone M, Casati M, Pallotta S, Livi L. Local treatment for relapsing glioblastoma: A decision-making tree for choosing between reirradiation and second surgery. Crit Rev Oncol Hematol 2020; 157:103184. [PMID: 33307416 DOI: 10.1016/j.critrevonc.2020.103184] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 05/21/2020] [Accepted: 11/23/2020] [Indexed: 12/22/2022] Open
Abstract
In case of circumscribed recurrent glioblastoma (rec-GBM), a second surgery (Re-S) and reirradiation (Re-RT) are local strategies to consider. The aim is to provide an algorithm to use in the daily clinical practice. The first step is to consider the life expectancy in order to establish whether the patient should be a candidate for active treatment. In case of a relatively good life expectancy (>3 months) and a confirmed circumscribed disease(i.e. without multiple lesions that are in different lobes/hemispheres), the next step is the assessment of the prognostic factors for local treatments. Based on the existing prognostic score systems, patients who should be excluded from local treatments may be identified; based on the validated prognostic factors, one or the other local treatment may be preferred. The last point is the estimation of expected toxicity, considering patient-related, tumor-related and treatment-related factors impacting on side effects. Lastly, patients with very good prognostic factors may be considered for receiving a combined treatment.
Collapse
Affiliation(s)
- Silvia Scoccianti
- Azienda Ospedaliera Universitaria Careggi, Radiotherapy Unit, Oncology Department, University of Florence, Florence, Italy.
| | - Marco Perna
- Azienda Ospedaliera Universitaria Careggi, Radiotherapy Unit, Oncology Department, University of Florence, Florence, Italy
| | - Emanuela Olmetto
- Azienda Ospedaliera Universitaria Careggi, Radiotherapy Unit, Oncology Department, University of Florence, Florence, Italy
| | - Camilla Delli Paoli
- Azienda Ospedaliera Universitaria Careggi, Radiotherapy Unit, Oncology Department, University of Florence, Florence, Italy
| | - Francesca Terziani
- Azienda Ospedaliera Universitaria Careggi, Radiotherapy Unit, Oncology Department, University of Florence, Florence, Italy
| | - Lucia Pia Ciccone
- Azienda Ospedaliera Universitaria Careggi, Radiotherapy Unit, Oncology Department, University of Florence, Florence, Italy
| | - Beatrice Detti
- Azienda Ospedaliera Universitaria Careggi, Radiotherapy Unit, Oncology Department, University of Florence, Florence, Italy
| | - Daniela Greto
- Azienda Ospedaliera Universitaria Careggi, Radiotherapy Unit, Oncology Department, University of Florence, Florence, Italy
| | - Gabriele Simontacchi
- Azienda Ospedaliera Universitaria Careggi, Radiotherapy Unit, Oncology Department, University of Florence, Florence, Italy
| | - Roberta Grassi
- Azienda Ospedaliera Universitaria Careggi, Radiotherapy Unit, Oncology Department, University of Florence, Florence, Italy
| | - Erika Scoccimarro
- Azienda Ospedaliera Universitaria Careggi, Radiotherapy Unit, Oncology Department, University of Florence, Florence, Italy
| | - Pierluigi Bonomo
- Azienda Ospedaliera Universitaria Careggi, Radiotherapy Unit, Oncology Department, University of Florence, Florence, Italy
| | - Monica Mangoni
- Azienda Ospedaliera Universitaria Careggi, Radiotherapy Unit, Oncology Department, University of Florence, Florence, Italy
| | - Isacco Desideri
- Azienda Ospedaliera Universitaria Careggi, Radiotherapy Unit, Oncology Department, University of Florence, Florence, Italy
| | - Vanessa Di Cataldo
- Azienda Ospedaliera Universitaria Careggi, Radiotherapy Unit, Oncology Department, University of Florence, Florence, Italy
| | - Marco Vernaleone
- Azienda Ospedaliera Universitaria Careggi, Radiotherapy Unit, Oncology Department, University of Florence, Florence, Italy
| | - Marta Casati
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", Medical Physics Unit, Azienda Ospedaliera Universitaria Careggi, University of Florence, Florence, Italy
| | - Stefania Pallotta
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", Medical Physics Unit, Azienda Ospedaliera Universitaria Careggi, University of Florence, Florence, Italy
| | - Lorenzo Livi
- Azienda Ospedaliera Universitaria Careggi, Radiotherapy Unit, Oncology Department, University of Florence, Florence, Italy
| |
Collapse
|
22
|
Abstract
Glioblastoma (GBM) is infiltrative neoplasm with limited treatment options and poor overall survival. Stereotactic radiosurgery (SRS) allows spatially precise and conformal delivery of high doses of radiation. Salvage SRS for locally recurrent GBM was shown to improve patient survival and have more favorable safety profile than repeated surgical resection. Boost SRS after fractionated radiation therapy is sometimes attempted; however, Radiation Therapy Oncology Group 93-05 randomized clinical trial did not demonstrate benefits of upfront SRS that was administered before fractionated radiation. Administration of bevacizumab with SRS is associated with improved survival and can allow SRS dose escalation.
Collapse
Affiliation(s)
- Adomas Bunevicius
- Department of Neurosurgery, University of Virginia Health System, Charlottesville, VA 22908, USA
| | - Jason P Sheehan
- Department of Neurosurgery, University of Virginia Health System, Charlottesville, VA 22908, USA.
| |
Collapse
|
23
|
Bergman D, Modh A, Schultz L, Snyder J, Mikkelsen T, Shah M, Ryu S, Siddiqui MS, Walbert T. Randomized prospective trial of fractionated stereotactic radiosurgery with chemotherapy versus chemotherapy alone for bevacizumab-resistant high-grade glioma. J Neurooncol 2020; 148:353-361. [PMID: 32444980 DOI: 10.1007/s11060-020-03526-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 05/04/2020] [Indexed: 12/21/2022]
Abstract
PURPOSE Outcomes for patients with recurrent high-grade glioma (HGG) progressing on bevacizumab (BEV) are dismal. Fractionated stereotactic radiosurgery (FSRS) has been shown to be feasible and safe when delivered in this setting, but prospective evidence is lacking. This single-institution randomized trial compared FSRS plus BEV-based chemotherapy versus BEV-based chemotherapy alone for BEV-resistant recurrent malignant glioma. MATERIALS AND METHODS HGG patients on BEV with tumor progression after 2 previous treatments were randomized to 1) FSRS plus BEV-based chemotherapy or 2) BEV-based chemotherapy with irinotecan, etoposide, temozolomide, or carboplatin. FSRS was delivered as 32 Gy (8 Gy × 4 fractions within 2 weeks) to the gross target volume and 24 Gy (6 Gy × 4 fractions) to the clinical target volume (fluid-attenuated inversion recovery abnormality). The primary endpoints were local control (LC) at 2 months and progression-free survival (PFS). RESULTS Of the 35 patients enrolled, 29 had glioblastoma (WHO IV) and 6 had anaplastic glioma (WHO III). The median number of prior recurrences was 3. Patients treated with FSRS had significantly improved PFS (5.1 vs 1.8 months, P < .001) and improved LC at 2 months (82% [14/17] vs 27% [4/15], P = .002). The overall median survival was 6.6 months (7.2 months with FSRS vs 4.8 months with chemotherapy alone, P = .11). CONCLUSIONS FSRS combined with BEV-based chemotherapy in recurrent HGG patients progressing on BEV is feasible and improves LC and PFS when compared to treatment with BEV-based chemotherapy alone.
Collapse
Affiliation(s)
- David Bergman
- Department of Radiation Oncology, Henry Ford Health System, 2799 W Grand Blvd, Detroit, MI, 48202, USA
| | - Ankit Modh
- Department of Radiation Oncology, Henry Ford Health System, 2799 W Grand Blvd, Detroit, MI, 48202, USA
| | - Lonni Schultz
- Department of Neurosurgery, Henry Ford Health System, 2799 W Grand Blvd, Detroit, MI, 48202, USA
- Department of Public Health Sciences, Henry Ford Health System, 2799 W Grand Blvd, Detroit, MI, 48202, USA
| | - James Snyder
- Department of Neurosurgery, Henry Ford Health System, 2799 W Grand Blvd, Detroit, MI, 48202, USA
- Department of Neurology, Henry Ford Health System, 2799 W Grand Blvd, Detroit, MI, 48202, USA
| | - Tom Mikkelsen
- Department of Neurosurgery, Henry Ford Health System, 2799 W Grand Blvd, Detroit, MI, 48202, USA
- Department of Neurology, Henry Ford Health System, 2799 W Grand Blvd, Detroit, MI, 48202, USA
| | - Mira Shah
- Department of Radiation Oncology, Henry Ford Health System, 2799 W Grand Blvd, Detroit, MI, 48202, USA
| | - Samuel Ryu
- Department of Radiation Oncology, Stony Brook University Hospital, 101 Nicolls Road, Stony Brook, NY, 11794, USA
| | - M Salim Siddiqui
- Department of Radiation Oncology, Henry Ford Health System, 2799 W Grand Blvd, Detroit, MI, 48202, USA
| | - Tobias Walbert
- Department of Neurosurgery, Henry Ford Health System, 2799 W Grand Blvd, Detroit, MI, 48202, USA.
- Department of Neurology, Henry Ford Health System, 2799 W Grand Blvd, Detroit, MI, 48202, USA.
| |
Collapse
|
24
|
Choi SW, Cho KR, Choi JW, Kong DS, Seol HJ, Nam DH, Lee JI. Pattern of disease progression following stereotactic radiosurgery in malignant glioma patients. J Clin Neurosci 2020; 76:61-66. [PMID: 32312626 DOI: 10.1016/j.jocn.2020.04.047] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 04/09/2020] [Indexed: 10/24/2022]
Abstract
INTRODUCTION The clinical benefit of stereotactic radiosurgery (SRS) in the treatment of malignant glioma remains controversial. We analyzed failure patterns of malignant gliomas following SRS to identify the clinical implications of SRS against these malignancies. MATERIALS AND METHODS We retrospectively reviewed 58 consecutive patients who received SRS with a gamma knife for their malignant glioma from January 2013 to December 2018. A total of 51 patients were available for analysis of failure patterns. Failure patterns were defined by the recurrent tumors' spatial relation to SRS target as follows: in-field local recurrence, remote recurrence, and leptomeningeal seeding. If patients demonstrated several types of failure patterns simultaneously, we categorized them as a combined failure pattern. RESULTS In-field local recurrence was found in 47.1% of patients. Other types of failure patterns were as follows: remote recurrence (19.6%), leptomeningeal seeding (13.7%), and combined failure pattern (19.6%). The majority of patients (52.9%) experienced disease progression beyond the radiation field of SRS, which implies limited efficacy of local therapy against these invasive tumors. The prognosis of patients differed according to failure pattern and patients with local recurrence had better survival outcomes compared to other types of disease progression (p-value = 0.0015, log-rank test). CONCLUSIONS This study illustrated that SRS could not improve survival of malignant gliomas significantly even when it had some effect within radiation field. Our findings support utilizing a multidisciplinary treatment strategy to improve the prognosis of malignant gliomas and suggest that SRS is one element of that treatment strategy.
Collapse
Affiliation(s)
- Seung Won Choi
- Department of Neurosurgery, Sungkyunkwan University School of Medicine, Samsung Medical Center, Seoul, Republic of Korea
| | - Kyung Rae Cho
- Department of Neurosurgery, Sungkyunkwan University School of Medicine, Samsung Medical Center, Seoul, Republic of Korea
| | - Jung Won Choi
- Department of Neurosurgery, Sungkyunkwan University School of Medicine, Samsung Medical Center, Seoul, Republic of Korea
| | - Doo-Sik Kong
- Department of Neurosurgery, Sungkyunkwan University School of Medicine, Samsung Medical Center, Seoul, Republic of Korea
| | - Ho Jun Seol
- Department of Neurosurgery, Sungkyunkwan University School of Medicine, Samsung Medical Center, Seoul, Republic of Korea
| | - Do-Hyun Nam
- Department of Neurosurgery, Sungkyunkwan University School of Medicine, Samsung Medical Center, Seoul, Republic of Korea
| | - Jung-Il Lee
- Department of Neurosurgery, Sungkyunkwan University School of Medicine, Samsung Medical Center, Seoul, Republic of Korea.
| |
Collapse
|
25
|
Ene CI, Macomber MW, Barber JK, Ferreira MJ, Ellenbogen RG, Holland EC, Rockhill JK, Silbergeld DL, Halasz LM. Patterns of Failure After Stereotactic Radiosurgery for Recurrent High-Grade Glioma: A Single Institution Experience of 10 Years. Neurosurgery 2020; 85:E322-E331. [PMID: 30576476 DOI: 10.1093/neuros/nyy520] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Accepted: 10/04/2018] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Stereotactic radiosurgery (SRS) is a treatment modality that is frequently used as salvage therapy for small nodular recurrent high-grade gliomas (HGG). Due to the infiltrative nature of HGG, it is unclear if this highly focused technique provides a durable local control benefit. OBJECTIVE To determine how demographic or clinical factors influence the pattern of failure following SRS for recurrent high-grade gliomas. METHODS We retrospectively reviewed clinical, radiographic, and follow-up information for 47 consecutive patients receiving SRS for recurrent HGG at our institution between June 2006 and July 2016. All patients initially presented with an HGG (WHO grade III and IV). Following SRS for recurrence, all patients experienced treatment failure, and we evaluated patterns of local, regional, and distant failure in relation to the SRS 50% isodose line. RESULTS Most patients with recurrent HGG developed "in-field" treatment failure following SRS (n = 40; 85%). Higher SRS doses were associated with longer time to failure (hazards ratio = 0.80 per 1 Gy increase; 95% confidence interval 0.67-0.96; P = .016). There was a statistically significant increase in distant versus in-field failure among older patients (P = .035). This effect was independent of bevacizumab use (odds ratio = 0.54, P = 1.0). CONCLUSION Based on our experience, the majority of treatment failures after SRS for recurrent HGG were "in-field." Older patients, however, presented with more distant failures. Our results indicate that higher SRS doses delivered to a larger area as fractioned or unfractioned regimen may prolong time to failure, especially in the older population.
Collapse
Affiliation(s)
- Chibawanye I Ene
- Department of Neurological Surgery, University of Washington, Seattle, Washington
| | - Meghan W Macomber
- Department of Radiation Oncology, University of Washington, Seattle, Washington
| | - Jason K Barber
- Department of Neurological Surgery, University of Washington, Seattle, Washington
| | - Manuel J Ferreira
- Department of Neurological Surgery, University of Washington, Seattle, Washington.,Alvord Brain Tumor Center, University of Washington, Seattle, Washington
| | - Richard G Ellenbogen
- Department of Neurological Surgery, University of Washington, Seattle, Washington.,Alvord Brain Tumor Center, University of Washington, Seattle, Washington
| | - Eric C Holland
- Department of Neurological Surgery, University of Washington, Seattle, Washington.,Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, Washington.,Alvord Brain Tumor Center, University of Washington, Seattle, Washington
| | - Jason K Rockhill
- Department of Radiation Oncology, University of Washington, Seattle, Washington.,Alvord Brain Tumor Center, University of Washington, Seattle, Washington
| | - Daniel L Silbergeld
- Department of Neurological Surgery, University of Washington, Seattle, Washington.,Alvord Brain Tumor Center, University of Washington, Seattle, Washington
| | - Lia M Halasz
- Department of Radiation Oncology, University of Washington, Seattle, Washington.,Alvord Brain Tumor Center, University of Washington, Seattle, Washington
| |
Collapse
|
26
|
Fractionated stereotactic radiosurgery for malignant gliomas: comparison with single session stereotactic radiosurgery. J Neurooncol 2019; 145:571-579. [DOI: 10.1007/s11060-019-03328-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2019] [Accepted: 10/31/2019] [Indexed: 12/29/2022]
|
27
|
Abbassy M, Missios S, Barnett GH, Brewer C, Peereboom DM, Ahluwalia M, Neyman G, Chao ST, Suh JH, Vogelbaum MA. Phase I Trial of Radiosurgery Dose Escalation Plus Bevacizumab in Patients With Recurrent/Progressive Glioblastoma. Neurosurgery 2019; 83:385-392. [PMID: 28973311 DOI: 10.1093/neuros/nyx369] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Accepted: 06/25/2017] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND The effectiveness of stereotactic radiosurgery (SRS) for recurrent glioblastoma (rGBM) remains uncertain. SRS has been associated with a high risk of radionecrosis in gliomas. OBJECTIVE To determine the safety of dose escalation of single-fraction radiosurgery for rGBM in the setting of bevacizumab therapy. METHODS We conducted a prospective trial to determine the safety and synergistic benefit of higher doses of SRS administered with bevacizumab for rGBM. A single dose of bevacizumab was given prior to SRS and continued until progression. Dose-limiting toxicity was evaluated in successive cohorts of 3 patients. RESULTS Seven males and 2 females entered the study. The maximum linear diameter of the enhancing tumor was 2.58 cm (2.04-3.09). Prescription dose was escalated from 18 to 22 Gy. The radiosurgery target was chosen before the first dose of bevacizumab, about 1 wk prior to SRS treatment. Pre-SRS bevacizumab treatment was associated with a reduction of the mean volume of the enhancing lesion from 4.7 to 2.86 cm3 on the day of SRS (P = .103). No patient developed an acute side effect related to SRS treatment. The combination of SRS and bevacizumab resulted in a partial response in 3 patients and stable disease in 6 patients. Median progression-free and overall survival were 7.5 and 13 mo, respectively. CONCLUSION A single dose of bevacizumab prior to SRS permitted safe prescription dose escalation up to 22 Gy for rGBM. Further evaluation of the efficacy of SRS for rGBM should be performed in the setting of bevacizumab treatment.
Collapse
Affiliation(s)
- Mahmoud Abbassy
- Rose Ella Burkhardt Brain Tumor and Neuro-Oncology Center, Department of Neurosurgery, Neurological Institute, Cleveland Clinic, Cleveland, Ohio.,Department of Neurosurgery, Alexandria University, Alexandria, Egypt
| | - Symeon Missios
- Rose Ella Burkhardt Brain Tumor and Neuro-Oncology Center, Department of Neurosurgery, Neurological Institute, Cleveland Clinic, Cleveland, Ohio
| | - Gene H Barnett
- Rose Ella Burkhardt Brain Tumor and Neuro-Oncology Center, Department of Neurosurgery, Neurological Institute, Cleveland Clinic, Cleveland, Ohio
| | - Cathy Brewer
- Rose Ella Burkhardt Brain Tumor and Neuro-Oncology Center, Department of Neurosurgery, Neurological Institute, Cleveland Clinic, Cleveland, Ohio
| | - David M Peereboom
- Rose Ella Burkhardt Brain Tumor and Neuro-Oncology Center, Department of Neurosurgery, Neurological Institute, Cleveland Clinic, Cleveland, Ohio.,Department of Hematology and Oncology, Taussig Cancer Institute, Cleveland Clinic, Cleveland, Ohio
| | - Manmeet Ahluwalia
- Rose Ella Burkhardt Brain Tumor and Neuro-Oncology Center, Department of Neurosurgery, Neurological Institute, Cleveland Clinic, Cleveland, Ohio.,Department of Hematology and Oncology, Taussig Cancer Institute, Cleveland Clinic, Cleveland, Ohio
| | - Gennady Neyman
- Rose Ella Burkhardt Brain Tumor and Neuro-Oncology Center, Department of Neurosurgery, Neurological Institute, Cleveland Clinic, Cleveland, Ohio.,Department of Radiation Oncology, Taussig Cancer Institute, Cleveland Clinic, Cleveland, Ohio
| | - Samuel T Chao
- Rose Ella Burkhardt Brain Tumor and Neuro-Oncology Center, Department of Neurosurgery, Neurological Institute, Cleveland Clinic, Cleveland, Ohio.,Department of Radiation Oncology, Taussig Cancer Institute, Cleveland Clinic, Cleveland, Ohio
| | - John H Suh
- Rose Ella Burkhardt Brain Tumor and Neuro-Oncology Center, Department of Neurosurgery, Neurological Institute, Cleveland Clinic, Cleveland, Ohio.,Department of Radiation Oncology, Taussig Cancer Institute, Cleveland Clinic, Cleveland, Ohio
| | - Michael A Vogelbaum
- Rose Ella Burkhardt Brain Tumor and Neuro-Oncology Center, Department of Neurosurgery, Neurological Institute, Cleveland Clinic, Cleveland, Ohio
| |
Collapse
|
28
|
Anthony C, Mladkova-Suchy N, Adamson DC. The evolving role of antiangiogenic therapies in glioblastoma multiforme: current clinical significance and future potential. Expert Opin Investig Drugs 2019; 28:787-797. [PMID: 31356114 DOI: 10.1080/13543784.2019.1650019] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Introduction: Glioblastoma multiforme (GBM) is the most common primary malignant brain tumor in adults, but its prognosis remains poor despite significant advances in our understanding of its molecular biology and investigation of numerous treatment modalities. Despite conventional treatment consisting of surgical resection, radiotherapy, and temozolomide marginally prolonging survival, most GBM patients die within 2 years of initial diagnosis. Bevacizumab (Bev) is the best-studied antiangiogenic agent for GBM and currently the only FDA-approved second-line treatment. Areas covered: Areas covered in this review include the molecular pathways of angiogenesis in glioblastoma, specifically the overexpression of vascular endothelial growth factor (VEGF) and robust formation of tumor neovasculature. In addition, this review covers pharmacological targeting of this process as a longstanding attractive clinical strategy, specifically by Bev. Expert opinion: This review attempts to discuss the history of early studies of antiangiogenic treatment for GBM that eventually failed in subsequent studies and the evolving modern role of Bev in the course of treatment for a variety of indications, including symptom control, reduced glucocorticoid use, and improved quality of life.
Collapse
Affiliation(s)
- Casey Anthony
- Department of Neurosurgery, Emory University , Atlanta , GA , USA
| | - Nikol Mladkova-Suchy
- Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London , UK
| | - David Cory Adamson
- Department of Neurosurgery, Emory University , Atlanta , GA , USA.,Neurosurgery section, Atlanta VA Medical Center , Decatur , GA , USA
| |
Collapse
|
29
|
Morris SAL, Zhu P, Rao M, Martir M, Zhu JJ, Hsu S, Ballester LY, Day AL, Tandon N, Kim DH, Shepard S, Blanco A, Esquenazi Y. Gamma Knife Stereotactic Radiosurgery in Combination with Bevacizumab for Recurrent Glioblastoma. World Neurosurg 2019; 127:e523-e533. [DOI: 10.1016/j.wneu.2019.03.193] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 03/18/2019] [Accepted: 03/19/2019] [Indexed: 01/17/2023]
|
30
|
Ho A, Jena R. Re-irradiation in the Brain: Primary Gliomas. Clin Oncol (R Coll Radiol) 2018; 30:124-136. [DOI: 10.1016/j.clon.2017.11.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Revised: 11/02/2017] [Accepted: 11/06/2017] [Indexed: 02/07/2023]
|
31
|
Korbecki J, Gutowska I, Kojder I, Jeżewski D, Goschorska M, Łukomska A, Lubkowska A, Chlubek D, Baranowska-Bosiacka I. New extracellular factors in glioblastoma multiforme development: neurotensin, growth differentiation factor-15, sphingosine-1-phosphate and cytomegalovirus infection. Oncotarget 2018; 9:7219-7270. [PMID: 29467963 PMCID: PMC5805549 DOI: 10.18632/oncotarget.24102] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Accepted: 01/02/2018] [Indexed: 11/25/2022] Open
Abstract
Recent years have seen considerable progress in understanding the biochemistry of cancer. For example, more significance is now assigned to the tumor microenvironment, especially with regard to intercellular signaling in the tumor niche which depends on many factors secreted by tumor cells. In addition, great progress has been made in understanding the influence of factors such as neurotensin, growth differentiation factor-15 (GDF-15), sphingosine-1-phosphate (S1P), and infection with cytomegalovirus (CMV) on the 'hallmarks of cancer' in glioblastoma multiforme. Therefore, in the present work we describe the influence of these factors on the proliferation and apoptosis of neoplastic cells, cancer stem cells, angiogenesis, migration and invasion, and cancer immune evasion in a glioblastoma multiforme tumor. In particular, we discuss the effect of neurotensin, GDF-15, S1P (including the drug FTY720), and infection with CMV on tumor-associated macrophages (TAM), microglial cells, neutrophil and regulatory T cells (Treg), on the tumor microenvironment. In order to better understand the role of the aforementioned factors in tumoral processes, we outline the latest models of intratumoral heterogeneity in glioblastoma multiforme. Based on the most recent reports, we discuss the problems of multi-drug therapy in treating glioblastoma multiforme.
Collapse
Affiliation(s)
- Jan Korbecki
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, 70-111 Szczecin, Poland.,Department of Biochemistry and Molecular Biology, Faculty of Health Sciences, University of Bielsko-Biała, 43-309 Bielsko-Biała, Poland
| | - Izabela Gutowska
- Department of Biochemistry and Human Nutrition, Pomeranian Medical University in Szczecin, 71-460 Szczecin, Poland
| | - Ireneusz Kojder
- Department of Applied Neurocognitivistics, Pomeranian Medical University in Szczecin, 71-252 Szczecin, Poland.,Department of Neurosurgery, Pomeranian Medical University in Szczecin, 71-252 Szczecin, Poland
| | - Dariusz Jeżewski
- Department of Applied Neurocognitivistics, Pomeranian Medical University in Szczecin, 71-252 Szczecin, Poland.,Department of Neurosurgery, Pomeranian Medical University in Szczecin, 71-252 Szczecin, Poland
| | - Marta Goschorska
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, 70-111 Szczecin, Poland
| | - Agnieszka Łukomska
- Department of Biochemistry and Human Nutrition, Pomeranian Medical University in Szczecin, 71-460 Szczecin, Poland
| | - Anna Lubkowska
- Department of Functional Diagnostics and Physical Medicine, Pomeranian Medical University in Szczecin, 71-210 Szczecin, Poland
| | - Dariusz Chlubek
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, 70-111 Szczecin, Poland
| | - Irena Baranowska-Bosiacka
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, 70-111 Szczecin, Poland
| |
Collapse
|
32
|
Feli A, Jazayeri S, Bitaraf MA, Solaymani Dodaran M, Parastouei K, Hosseinzadeh-Attar MJ. Combination Therapy with Low Copper Diet, Penicillamine and Gamma Knife Radiosurgery Reduces VEGF and IL-8 In Patients with Recurrent Glioblastoma. Asian Pac J Cancer Prev 2017; 18:1999-2003. [PMID: 28749642 PMCID: PMC5648411 DOI: 10.22034/apjcp.2017.18.7.1999] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Purpose: Vascular Endothelial Growth Factor (VEGF) and interleukin-8 (IL-8) appear important in tumor growth. In this study, we have investigated the effect of copper reduction along with gamma knife radiosurgery on IL-8 and VEGF in patients with recurrent glioblastoma multiforme (GBM). Materials and Methods: In a 3-month randomized clinical trial, patients with recurrent GBM were allocated randomly between intervention and placebo groups. Radiosurgery was performed for both groups (Reference dose: 16-18 Gray, in one fraction). The intervention group received low copper diet and penicillamine while the patients in the placebo group continued with their usual diet. VEGF and IL-8 were measured at baseline and the end of intervention. Results: VEGF in intervention group significantly reduced compared to placebo group (Mean ± SD, 4.5±1.91 vs. 7.8±3.21; P<0.001). IL-8 in intervention group decreased compared to placebo group but not significant (2.7±1.91 vs. 3.2±3.20; P=0.49). We also detected a significant positive correlation between serum copper and VEGF (r=0.57; P<0.05) and a negative correlation between KPS and serum copper. Discussion: Our results could reflect that low copper diet and penicillamine may decrease serum VEGF in patients who underwent gamma knife radiosurgery for recurrent glioblastoma multiforme.
Collapse
Affiliation(s)
- Alireza Feli
- Department of Clinical Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran.
| | | | | | | | | | | |
Collapse
|
33
|
Re-irradiation after gross total resection of recurrent glioblastoma : Spatial pattern of recurrence and a review of the literature as a basis for target volume definition. Strahlenther Onkol 2017; 193:897-909. [PMID: 28616821 DOI: 10.1007/s00066-017-1161-6] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Accepted: 05/23/2017] [Indexed: 12/20/2022]
Abstract
BACKGROUND Currently, patients with gross total resection (GTR) of recurrent glioblastoma (rGBM) undergo adjuvant chemotherapy or are followed up until progression. Re-irradiation, as one of the most effective treatments in macroscopic rGBM, is withheld in this situation, as uncertainties about the pattern of re-recurrence, the target volume, and also the efficacy of early re-irradiation after GTR exist. METHODS Imaging and clinical data from 26 consecutive patients with GTR of rGBM were analyzed. The spatial pattern of recurrences was analyzed according to the RANO-HGG criteria ("response assessment in neuro-oncology criteria for high-grade gliomas"). Progression-free (PFS) and overall survival (OS) were analyzed by the Kaplan-Meier method. Furthermore, a systematic review was performed in PubMed. RESULTS All but 4 patients underwent adjuvant chemotherapy after GTR. Progression was diagnosed in 20 of 26 patients and 70% of recurrent tumors occurred adjacent to the resection cavity. The median extension beyond the edge of the resection cavity was 20 mm. Median PFS was 6 months; OS was 12.8 months. We propose a target volume containing the resection cavity and every contrast enhancing lesion as the gross tumor volume (GTV), a spherical margin of 5-10 mm to generate the clinical target volume (CTV), and a margin of 1-3 mm to generate the planning target volume (PTV). Re-irradiation of this volume is deemed to be safe and likely to prolong PFS. CONCLUSION Re-irradiation is worth considering also after GTR, as the volumes that need to be treated are limited and re-irradiation has already proven to be a safe treatment option in general. The strategy of early re-irradiation is currently being tested within the GlioCave/NOA 17/Aro 2016/03 trial.
Collapse
|
34
|
MGMT promoter methylation status as a prognostic factor for the outcome of gamma knife radiosurgery for recurrent glioblastoma. J Neurooncol 2017; 133:615-622. [DOI: 10.1007/s11060-017-2478-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Accepted: 05/14/2017] [Indexed: 01/17/2023]
|