1
|
Xu X, Ha H, Brzostowski J, Jin T. Quantitative Monitoring of GPCR-Mediated Spatiotemporal IP 3 Dynamics Using Confocal Fluorescence Microscopy. Methods Mol Biol 2024; 2814:195-207. [PMID: 38954207 DOI: 10.1007/978-1-0716-3894-1_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/04/2024]
Abstract
Activation of G protein-coupled receptors upon chemoattractant stimulation induces activation of multiple signaling pathways. To fully understand how these signaling pathway coordinates to achieve directional migration of neutrophils, it is essential to determine the dynamics of the spatiotemporal activation profile of signaling components at the level of single living cells. Here, we describe a detailed methodology for monitoring and quantitatively analyzing the spatiotemporal dynamics of 1,4,5-inositol trisphosphate (IP3) in neutrophil-like HL60 cells in response to various chemoattractant fields by applying Förster resonance energy transfer (FRET) fluorescence microscopy.
Collapse
Affiliation(s)
- Xuehua Xu
- Chemotaxis Signaling Section, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Rockville, MD, USA.
| | - HyunGee Ha
- Chemotaxis Signaling Section, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Rockville, MD, USA
| | - Joseph Brzostowski
- Imaging Core Facility, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Rockville, MD, USA
| | - Tian Jin
- Chemotaxis Signaling Section, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Rockville, MD, USA
| |
Collapse
|
2
|
Hashimura H, Morimoto YV, Hirayama Y, Ueda M. Calcium responses to external mechanical stimuli in the multicellular stage of Dictyostelium discoideum. Sci Rep 2022; 12:12428. [PMID: 35859163 PMCID: PMC9300675 DOI: 10.1038/s41598-022-16774-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Accepted: 07/15/2022] [Indexed: 11/09/2022] Open
Abstract
Calcium acts as a second messenger to regulate many cellular functions, including cell motility. In Dictyostelium discoideum, the cytosolic calcium level oscillates synchronously, and calcium waves propagate through the cell population during the early stages of development, including aggregation. In the unicellular phase, the calcium response through Piezo channels also functions in mechanosensing. However, calcium dynamics during multicellular morphogenesis are still unclear. Here, live imaging of cytosolic calcium revealed that calcium wave propagation, depending on cAMP relay, disappeared at the onset of multicellular body (slug) formation. Later, other forms of occasional calcium bursts and their propagation were observed in both anterior and posterior regions of migrating slugs. This calcium signaling also occurred in response to mechanical stimuli. Two pathways—calcium release from the endoplasmic reticulum via IP3 receptor and calcium influx from outside the cell—were involved in calcium signals induced by mechanical stimuli. These data suggest that calcium signaling is involved in mechanosensing in both the unicellular and multicellular phases of Dictyostelium development using different molecular mechanisms.
Collapse
Affiliation(s)
- Hidenori Hashimura
- Department of Biological Sciences, Graduate School of Science, Osaka University, 1-3 Yamadaoka, Suita, Osaka, 565-0871, Japan.,RIKEN Center for Biosystems Dynamics Research (BDR), 6-2-3 Furuedai, Suita, Osaka, 565-0874, Japan.,Graduate School of Arts and Sciences, University of Tokyo, 3-8-1 Komaba, Meguro, Tokyo, 153-8902, Japan
| | - Yusuke V Morimoto
- RIKEN Center for Biosystems Dynamics Research (BDR), 6-2-3 Furuedai, Suita, Osaka, 565-0874, Japan. .,Faculty of Computer Science and Systems Engineering, Kyushu Institute of Technology, 680-4 Kawazu, Iizuka, Fukuoka, 820-8502, Japan. .,Japan Science and Technology Agency, PRESTO, 4-1-8 Honcho, Kawaguchi, Saitama, 332-0012, Japan.
| | - Yusei Hirayama
- Faculty of Computer Science and Systems Engineering, Kyushu Institute of Technology, 680-4 Kawazu, Iizuka, Fukuoka, 820-8502, Japan
| | - Masahiro Ueda
- Department of Biological Sciences, Graduate School of Science, Osaka University, 1-3 Yamadaoka, Suita, Osaka, 565-0871, Japan.,RIKEN Center for Biosystems Dynamics Research (BDR), 6-2-3 Furuedai, Suita, Osaka, 565-0874, Japan.,Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadaoka, Suita, Osaka, 565-0871, Japan
| |
Collapse
|
3
|
Allan CY, Fisher PR. The Dictyostelium Model for Mucolipidosis Type IV. Front Cell Dev Biol 2022; 10:741967. [PMID: 35493081 PMCID: PMC9043695 DOI: 10.3389/fcell.2022.741967] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 03/21/2022] [Indexed: 12/02/2022] Open
Abstract
Mucolipidosis type IV, a devastating neurological lysosomal disease linked to mutations in the transient receptor potential channel mucolipin 1, TRPML1, a calcium permeable channel in the membranes of vesicles in endolysosomal system. TRPML1 function is still being elucidated and a better understanding of the molecular pathogenesis of Mucolipidosis type IV, may facilitate development of potential treatments. We have created a model to study mucolipin function in the eukaryotic slime mould Dictyostelium discoideum by altering expression of its single mucolipin homologue, mcln. We show that in Dictyostelium mucolipin overexpression contributes significantly to global chemotactic calcium responses in vegetative and differentiated cells. Knockdown of mucolipin also enhances calcium responses in vegetative cells but does not affect responses in 6–7 h developed cells, suggesting that in developed cells mucolipin may help regulate local calcium signals rather than global calcium waves. We found that both knocking down and overexpressing mucolipin often, but not always, presented the same phenotypes. Altering mucolipin expression levels caused an accumulation or increased acidification of Lysosensor Blue stained vesicles in vegetative cells. Nutrient uptake by phagocytosis and macropinocytosis were increased but growth rates were not, suggesting defects in catabolism. Both increasing and decreasing mucolipin expression caused the formation of smaller slugs and larger numbers of fruiting bodies during multicellular development, suggesting that mucolipin is involved in initiation of aggregation centers. The fruiting bodies that formed from these smaller aggregates had proportionately larger basal discs and thickened stalks, consistent with a regulatory role for mucolipin-dependent Ca2+ signalling in the autophagic cell death pathways involved in stalk and basal disk differentiation in Dictyostelium. Thus, we have provided evidence that mucolipin contributes to chemotactic calcium signalling and that Dictyostelium is a useful model to study the molecular mechanisms involved in the cytopathogenesis of Mucolipidosis type IV.
Collapse
|
4
|
Gross JD, Pears CJ. Possible Involvement of the Nutrient and Energy Sensors mTORC1 and AMPK in Cell Fate Diversification in a Non-Metazoan Organism. Front Cell Dev Biol 2021; 9:758317. [PMID: 34820379 PMCID: PMC8606421 DOI: 10.3389/fcell.2021.758317] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 10/19/2021] [Indexed: 11/13/2022] Open
Abstract
mTORC1 and AMPK are mutually antagonistic sensors of nutrient and energy status that have been implicated in many human diseases including cancer, Alzheimer’s disease, obesity and type 2 diabetes. Starved cells of the social amoeba Dictyostelium discoideum aggregate and eventually form fruiting bodies consisting of stalk cells and spores. We focus on how this bifurcation of cell fate is achieved. During growth mTORC1 is highly active and AMPK relatively inactive. Upon starvation, AMPK is activated and mTORC1 inhibited; cell division is arrested and autophagy induced. After aggregation, a minority of the cells (prestalk cells) continue to express much the same set of developmental genes as during aggregation, but the majority (prespore cells) switch to the prespore program. We describe evidence suggesting that overexpressing AMPK increases the proportion of prestalk cells, as does inhibiting mTORC1. Furthermore, stimulating the acidification of intracellular acidic compartments likewise increases the proportion of prestalk cells, while inhibiting acidification favors the spore pathway. We conclude that the choice between the prestalk and the prespore pathways of cell differentiation may depend on the relative strength of the activities of AMPK and mTORC1, and that these may be controlled by the acidity of intracellular acidic compartments/lysosomes (pHv), cells with low pHv compartments having high AMPK activity/low mTORC1 activity, and those with high pHv compartments having high mTORC1/low AMPK activity. Increased insight into the regulation and downstream consequences of this switch should increase our understanding of its potential role in human diseases, and indicate possible therapeutic interventions.
Collapse
Affiliation(s)
- Julian D Gross
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | - Catherine J Pears
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
5
|
Verkhratsky A. Early evolutionary history (from bacteria to hemichordata) of the omnipresent purinergic signalling: A tribute to Geoff Burnstock inquisitive mind. Biochem Pharmacol 2020; 187:114261. [PMID: 33011161 DOI: 10.1016/j.bcp.2020.114261] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 09/25/2020] [Accepted: 09/29/2020] [Indexed: 12/11/2022]
Abstract
Purines and pyrimidines are indispensable molecules of life; they are fundamental for genetic code and bioenergetics. From the very early evolution of life purines have acquired the meaning of damage-associated extracellular signaller and purinergic receptors emerged in unicellular organisms. Ancestral purinoceptors are P2X-like ionotropic ligand-gated cationic channels showing 20-40% of homology with vertebrate P2X receptors; genes encoding ancestral P2X receptors have been detected in Protozoa, Algae, Fungi and Sponges; they are also present in some invertebrates, but are absent from the genome of insects, nematodes, and higher plants. Plants nevertheless evolved a sophisticated and widespread purinergic signalling system relying on the idiosyncratic purinoceptor P2K1/DORN1 linked to intracellular Ca2+ signalling. The advance of metabotropic purinoceptors starts later in evolution with adenosine receptors preceding the emergence of P2Y nucleotide and P0 adenine receptors. In vertebrates and mammals the purinergic signalling system reaches the summit and operates throughout all tissues and systems without anatomical or functional segregation.
Collapse
Affiliation(s)
- Alexei Verkhratsky
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester M13 9PT, United Kingdom; Achucarro Center for Neuroscience, IKERBASQUE, 48011 Bilbao, Spain.
| |
Collapse
|
6
|
Consalvo KM, Rijal R, Tang Y, Kirolos SA, Smith MR, Gomer RH. Extracellular signaling in Dictyostelium. THE INTERNATIONAL JOURNAL OF DEVELOPMENTAL BIOLOGY 2020; 63:395-405. [PMID: 31840778 DOI: 10.1387/ijdb.190259rg] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
In the last few decades, we have learned a considerable amount about how eukaryotic cells communicate with each other, and what it is the cells are telling each other. The simplicity of Dictyostelium discoideum, and the wide variety of available tools to study this organism, makes it the equivalent of a hydrogen atom for cell and developmental biology. Studies using Dictyostelium have pioneered a good deal of our understanding of eukaryotic cell communication. In this review, we will present a brief overview of how Dictyostelium cells use extracellular signals to attract each other, repel each other, sense their local cell density, sense whether the nearby cells are starving or stressed, count themselves to organize the formation of structures containing a regulated number of cells, sense the volume they are in, and organize their multicellular development. Although we are probably just beginning to learn what the cells are telling each other, the elucidation of Dictyostelium extracellular signals has already led to the development of possible therapeutics for human diseases.
Collapse
Affiliation(s)
- Kristen M Consalvo
- Department of Biology, Texas A∧M University, College Station, Texas, USA
| | | | | | | | | | | |
Collapse
|
7
|
Chang FS, Wang Y, Dmitriev P, Gross J, Galione A, Pears C. A two-pore channel protein required for regulating mTORC1 activity on starvation. BMC Biol 2020; 18:8. [PMID: 31969153 PMCID: PMC6977259 DOI: 10.1186/s12915-019-0735-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 12/20/2019] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Two-pore channels (TPCs) release Ca2+ from acidic intracellular stores and are implicated in a number of diseases, but their role in development is unclear. The social amoeba Dictyostelium discoideum proliferates as single cells that aggregate to form a multicellular organism on starvation. Starvation is sensed by the mTORC1 complex which, like TPC proteins, is found on acidic vesicles. Here, we address the role of TPCs in development and under starvation. RESULTS We report that disruption of the gene encoding the single Dictyostelium TPC protein, TPC2, leads to a delay in early development and prolonged growth in culture with delayed expression of early developmental genes, although a rapid starvation-induced increase in autophagy is still apparent. Ca2+ signals induced by extracellular cAMP are delayed in developing tpc2- cells, and aggregation shows increased sensitivity to weak bases, consistent with reduced acidity of the vesicles. In mammalian cells, the mTORC1 protein kinase has been proposed to suppress TPC channel opening. Here, we show a reciprocal effect as tpc2- cells show an increased level of phosphorylation of an mTORC1 substrate, 4E-BP1. mTORC1 inhibition reverses the prolonged growth and increases the efficiency of aggregation of tpc2- cells. CONCLUSION TPC2 is required for efficient growth development transition in Dictyostelium and acts through modulation of mTORC1 activity revealing a novel mode of regulation.
Collapse
Affiliation(s)
- Fu-Sheng Chang
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK
| | - Yuntao Wang
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK
| | - Phillip Dmitriev
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK
| | - Julian Gross
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford, OX1 3QT, UK
| | - Antony Galione
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford, OX1 3QT, UK
| | - Catherine Pears
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK.
| |
Collapse
|
8
|
Pressure sensing through Piezo channels controls whether cells migrate with blebs or pseudopods. Proc Natl Acad Sci U S A 2020; 117:2506-2512. [PMID: 31964823 PMCID: PMC7007555 DOI: 10.1073/pnas.1905730117] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Cells migrating within the body perform vital functions in development and for defense and repair of tissues. In this dense environment, cells encounter mechanical forces and constraints not experienced when moving under buffer, and, accordingly, many change how they move. We find that gentle squashing, which mimics mechanical resistance, causes cells to move using blebs—a form of projection driven by fluid pressure—rather than pseudopods. This behavior depends on the Piezo stretch-operated ion channel in the cell membrane and calcium fluxes into the cell. Piezo is highly conserved and is required for light touch sensation; this work extends its functions into migrating cells. Blebs and pseudopods can both power cell migration, with blebs often favored in tissues, where cells encounter increased mechanical resistance. To investigate how migrating cells detect and respond to mechanical forces, we used a “cell squasher” to apply uniaxial pressure to Dictyostelium cells chemotaxing under soft agarose. As little as 100 Pa causes a rapid (<10 s), sustained shift to movement with blebs rather than pseudopods. Cells are flattened under load and lose volume; the actin cytoskeleton is reorganized, with myosin II recruited to the cortex, which may pressurize the cytoplasm for blebbing. The transition to bleb-driven motility requires extracellular calcium and is accompanied by increased cytosolic calcium. It is largely abrogated in cells lacking the Piezo stretch-operated channel; under load, these cells persist in using pseudopods and chemotax poorly. We propose that migrating cells sense pressure through Piezo, which mediates calcium influx, directing movement with blebs instead of pseudopods.
Collapse
|
9
|
Williams TD, Kay RR. The physiological regulation of macropinocytosis during Dictyostelium growth and development. J Cell Sci 2018; 131:jcs213736. [PMID: 29440238 PMCID: PMC5897714 DOI: 10.1242/jcs.213736] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Accepted: 02/05/2018] [Indexed: 01/02/2023] Open
Abstract
Macropinocytosis is a conserved endocytic process used by Dictyostelium amoebae for feeding on liquid medium. To further Dictyostelium as a model for macropinocytosis, we developed a high-throughput flow cytometry assay to measure macropinocytosis, and used it to identify inhibitors and investigate the physiological regulation of macropinocytosis. Dictyostelium has two feeding states: phagocytic and macropinocytic. When cells are switched from phagocytic growth on bacteria to liquid media, the rate of macropinocytosis slowly increases, due to increased size and frequency of macropinosomes. Upregulation is triggered by a minimal medium containing three amino acids plus glucose and likely depends on macropinocytosis itself. The presence of bacteria suppresses macropinocytosis while their product, folate, partially suppresses upregulation of macropinocytosis. Starvation, which initiates development, does not of itself suppress macropinocytosis: this can continue in isolated cells, but is shut down by a conditioned-medium factor or activation of PKA signalling. Thus macropinocytosis is a facultative ability of Dictyostelium cells, regulated by environmental conditions that are identified here.This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Thomas D Williams
- MRC-Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Robert R Kay
- MRC-Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| |
Collapse
|
10
|
Mathavarajah S, Flores A, Huber RJ. Dictyostelium discoideum
: A Model System for Cell and Developmental Biology. ACTA ACUST UNITED AC 2017. [DOI: 10.1002/cpet.15] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
| | - Ana Flores
- Department of Biology, Trent University Peterborough Ontario Canada
| | - Robert J. Huber
- Department of Biology, Trent University Peterborough Ontario Canada
| |
Collapse
|