1
|
You L, Huang Z, He W, Zhang L, Yu H, Zeng Y, Huang Y, Zeng S, Zheng L. Dietary alpha-lipoic acid alleviates heat stress by modulating insulin-like signaling to maintain homeostasis in C. elegans. Food Funct 2025; 16:2824-2839. [PMID: 40095598 DOI: 10.1039/d4fo05301j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2025]
Abstract
Prolonged exposure to high temperatures can cause oxidative stress in the body, negatively impacting human health. Alpha-lipoic acid (ALA) is a naturally occurring antioxidant prevalent in both plant and animal foods, exhibiting bioactivity comparable to that of vitamins. Although its roles in antioxidant defense and metabolic regulation have been extensively studied, its potential to mitigate heat stress in organisms is less explored and deserves further study. Our research demonstrates that ALA significantly improves the survival rates of Caenorhabditis elegans under heat stress. ALA achieves this by activating heat shock factor 1 (HSF-1) and promoting mitochondrial fission and mitophagy through the transcription factor HLH-30. These processes help alleviate oxidative damage from heat stress, maintain mitochondrial function, and stabilize cellular energy metabolism. Furthermore, the activation of HSF-1 and enhanced mitophagy by dietary ALA depend on the insulin-like signaling peptide 19 (INS-19), suggesting that ALA may target the insulin-like signaling pathway to combat heat stress and maintain homeostasis. These findings indicate that ALA could serve as a valuable dietary supplement for enhancing heat stress resistance in organisms and may inspire the development of novel food ingredients with protective properties against thermal challenges.
Collapse
Affiliation(s)
- Longnong You
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Zirui Huang
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Wenyuan He
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Lizhu Zhang
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Haiyang Yu
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Yaoyong Zeng
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Yan Huang
- College of Tea and Food Science, Wuyi University, Wuyishan 354300, China
| | - Shaoxiao Zeng
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Lingjun Zheng
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China.
| |
Collapse
|
2
|
Karpova EK, Bobrovskikh MA, Burdina EV, Adonyeva NV, Deryuzhenko MA, Zakharenko LP, Petrovskii DV, Gruntenko NE. Larval stress affects adult Drosophila behavior and metabolism. JOURNAL OF INSECT PHYSIOLOGY 2024; 159:104709. [PMID: 39299381 DOI: 10.1016/j.jinsphys.2024.104709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 09/11/2024] [Accepted: 09/12/2024] [Indexed: 09/22/2024]
Abstract
In this study, we raised the following question: "Does metamorphosis, being a "reboot" of all systems of the organism, erase the changes that occurred at earlier stages of insect development?" To answer this question, we investigated several behavioral, metabolic and neuroendocrine parameters in Drosophila melanogaster imago that had undergone heat stress at the 3rd larval instar (32 °C, 48 h). We discovered that larval stress negatively affected feeding and locomotor behavior, as well as total lipid content in adult flies. At the same time, these flies demonstrated a considerable increase in carbohydrate content and expression level of insulin/insulin-like growth factor signaling (IIS) pathway genes, dfoxo, dilp6 and dInR. The data obtained allow us to conclude that metamorphosis does not erase the effect of stress exposure at early developmental stages and causes dramatic changes in carbohydrate and lipid metabolism as well as locomotor activity of adult insects, which is at least in part due to changes in IIS activity.
Collapse
Affiliation(s)
- Evgenia K Karpova
- Institute of Cytology and Genetics SB RAS, Novosibirsk 630090, Russia
| | | | - Elena V Burdina
- Institute of Cytology and Genetics SB RAS, Novosibirsk 630090, Russia
| | | | | | | | | | | |
Collapse
|
3
|
Lu L, Yang Y, Shi G, He X, Xu X, Feng Y, Wang W, Li Z, Yang J, Li B, Sun G. Alterations in mitochondrial structure and function in response to environmental temperature changes in Apostichopus japonicus. MARINE ENVIRONMENTAL RESEARCH 2024; 194:106330. [PMID: 38171258 DOI: 10.1016/j.marenvres.2023.106330] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 12/07/2023] [Accepted: 12/27/2023] [Indexed: 01/05/2024]
Abstract
Global temperatures have risen as a result of climate change, and the resulting warmer seawater will exert physiological stresses on many aquatic animals, including Apostichopus japonicus. It has been suggested that the sensitivity of aquatic poikilothermal animals to climate change is closely related to mitochondrial function. Therefore, understanding the interaction between elevated temperature and mitochondrial functioning is key to characterizing organisms' responses to heat stress. However, little is known about the mitochondrial response to heat stress in A. japonicus. In this work, we investigated the morphological and functional changes of A. japonicus mitochondria under three representative temperatures, control temperature (18 °C), aestivation temperature (25 °C) and heat stress temperature (32 °C) temperatures using transmission electron microscopy (TEM) observation of mitochondrial morphology combined with proteomics and metabolomics techniques. The results showed that the mitochondrial morphology of A. japonicus was altered, with decreases in the number of mitochondrial cristae at 25 °C and mitochondrial lysis, fracture, and vacuolization at 32 °C. Proteomic and metabolomic analyses revealed 103 differentially expressed proteins and 161 differential metabolites at 25 °C. At 32 °C, the levels of 214 proteins and 172 metabolites were significantly altered. These proteins and metabolites were involved in the tricarboxylic acid (TCA) cycle, substance transport, membrane potential homeostasis, anti-stress processes, mitochondrial autophagy, and apoptosis. Furthermore, a hypothetical network of proteins and metabolites in A. japonicus mitochondria in response to temperature changes was constructed based on proteomic and metabolomic data. These results suggest that the dynamic regulation of mitochondrial energy metabolism, resistance to oxidative stress, autophagy, apoptosis, and mitochondrial morphology in A. japonicus may play important roles in the response to elevated temperatures. In summary, this study describes the response of A. japonicus mitochondria to temperature changes from the perspectives of morphology, proteins, and metabolites, which provided a better understanding the mechanisms of mitochondrial regulation under environment stress in marine echinoderms.
Collapse
Affiliation(s)
- Lixin Lu
- School of Agriculture, Ludong University, Yantai, Shandong, 264025, China
| | - Yu Yang
- School of Agriculture, Ludong University, Yantai, Shandong, 264025, China
| | - Guojun Shi
- Hekou District Science and Technology Bureau, China
| | - Xiaohua He
- School of Agriculture, Ludong University, Yantai, Shandong, 264025, China
| | - Xiaohui Xu
- School of Agriculture, Ludong University, Yantai, Shandong, 264025, China
| | - Yanwei Feng
- School of Agriculture, Ludong University, Yantai, Shandong, 264025, China
| | - Weijun Wang
- School of Agriculture, Ludong University, Yantai, Shandong, 264025, China
| | - Zan Li
- School of Agriculture, Ludong University, Yantai, Shandong, 264025, China
| | - Jianmin Yang
- School of Agriculture, Ludong University, Yantai, Shandong, 264025, China
| | - Bin Li
- Yantai Haiyu Marine Science and Technology Co. Ltd, Yantai, 264002, China
| | - Guohua Sun
- School of Agriculture, Ludong University, Yantai, Shandong, 264025, China.
| |
Collapse
|
4
|
Ren L, Zhang X, Yang F, Jocelin NF, Shang Y, Wang Q, Liu Z, Guo Y. Effects of heat tolerance on the gut microbiota of Sarcophaga peregrina (Diptera: Sarcophagidae) and impacts on the life history traits. Parasit Vectors 2023; 16:364. [PMID: 37848940 PMCID: PMC10580603 DOI: 10.1186/s13071-023-05973-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Accepted: 09/20/2023] [Indexed: 10/19/2023] Open
Abstract
BACKGROUND Heat tolerance is a distinct abiotic factor affecting the distribution and abundance of insects. Gut microbiota can contribute to host fitness, thereby increasing resistance to abiotic stress conditions. In this study, Sarcophaga peregrina is closely associated with human life in ecological habits and shows remarkable adaptability to daily and seasonal temperature fluctuations. To date, the role of gut microbiota in S. peregrina response to heat stress and its influence on the host phenotypic variability remain poorly studied. METHODS We exposed S. peregrina to heat stress at 40 °C for 3 h every day throughout the developmental stages from newly hatched larva to adult, after which gut DNA was extracted from third-instar larvae, early pupal stage, late pupal stage, and newly emerged adults, respectively. Then, 16S rRNA microbial community analyses were performed. RESULTS Firstly, we analyzed whether heat stress could have an impact on the life history traits of S. peregrina and showed that the growth rate of larvae was higher and the developmental time was significantly shorter after heat stress. We then proposed the role of the gut microbiota in the heat tolerance of S. peregrina, which indicated that the bacterial abundance and community structure changed significantly after heat tolerance. In particular, the relative abundance of Wohlfahrtiimonas and Ignatzschineria was higher in the third-instar larval larvae; the former increased and the latter decreased significantly after heat stress. To further explore the effect of disturbing the microbial community on thermotolerant phenotype, newly hatched larvae were fed with amikacin under heat stress, which indicated that the larval length and the whole developmental cycle was significantly shorter. CONCLUSION This study indicated that Wohlfahrtiimonas and Ignatzschineria should play an important role in the post-feeding stage under heat stress, but further study is still needed. In general, heat tolerance can affect the gut microbial community structure, which in turn affects the fitness of the host.
Collapse
Affiliation(s)
- Lipin Ren
- Department of Forensic Science, School of Basic Medical Sciences, Central South University, Changsha, Hunan, China
| | - Xiangyan Zhang
- Department of Forensic Science, School of Basic Medical Sciences, Central South University, Changsha, Hunan, China
| | - Fengqin Yang
- Department of Forensic Science, School of Basic Medical Sciences, Central South University, Changsha, Hunan, China
| | - Ngando Fernand Jocelin
- Department of Forensic Science, School of Basic Medical Sciences, Central South University, Changsha, Hunan, China
| | - Yanjie Shang
- Department of Forensic Science, School of Basic Medical Sciences, Central South University, Changsha, Hunan, China
| | | | - Zhuoying Liu
- Health Law Research Center, School of Law, Central South University, Changsha, Hunan, China.
| | - Yadong Guo
- Department of Forensic Science, School of Basic Medical Sciences, Central South University, Changsha, Hunan, China.
| |
Collapse
|
5
|
Zhang JL, Liu KL, Cai XY, Liu XY, Xu HJ. FoxO is required for optimal fitness of the migratory brown planthopper, Nilaparvata lugens (Hemiptera: Delphacidae). INSECT SCIENCE 2023; 30:1352-1362. [PMID: 36528849 DOI: 10.1111/1744-7917.13163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 12/03/2022] [Accepted: 12/12/2022] [Indexed: 06/17/2023]
Abstract
The forkhead box O (FoxO) protein is the main transcriptional effector downstream of the insulin/insulin-like signaling pathway and regulates many developmental and physiological processes. Holometabolous insects with loss-of-function mutations in FoxO exhibit phenotypes distinct from those of hemimetabolous insects in which RNA interference was used. Despite the functional importance of FoxO, whether hemimetabolous insects share an evolutionally conserved function of FoxO with holometabolous insects remains to be clarified. We used the clustered regularly interspaced short palindromic repeats/CRISPR-associated 9 (CRISPR/Cas9) genome editing-system to establish a homozygous FoxO-null mutant (NlFoxO4E ) of the wing-dimorphic brown planthopper (BPH) Nilaparvata lugens, an economically important insect pest of rice fields. The phenotypes of NlFoxO4E mutants included extended nymphal duration, shortened lifespan, reduced reproduction, and decreased stress resistance. In addition, depletion of NlFoxO promoted cell proliferation in wing buds and led to 100% long-winged morphs, in stark contrast to short-winged wild-type BPHs. These findings indicate that NlFoxO is highly functionally conserved with its counterpart in holometabolous insects, and is required for optimal fitness of N. lugens. The insights from FoxO studies may facilitate the identification of potential target genes for BPH control applications.
Collapse
Affiliation(s)
- Jin-Li Zhang
- State Key Laboratory of Rice Biology, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Ke-Liang Liu
- State Key Laboratory of Rice Biology, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Xin-Yu Cai
- State Key Laboratory of Rice Biology, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Xin-Yang Liu
- State Key Laboratory of Rice Biology, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Hai-Jun Xu
- State Key Laboratory of Rice Biology, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Insect Sciences, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| |
Collapse
|
6
|
Bobrovskikh MA, Gruntenko NE. Mechanisms of Neuroendocrine Stress Response in Drosophila and Its Effect on Carbohydrate and Lipid Metabolism. INSECTS 2023; 14:474. [PMID: 37233102 PMCID: PMC10231120 DOI: 10.3390/insects14050474] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 05/12/2023] [Accepted: 05/15/2023] [Indexed: 05/27/2023]
Abstract
Response to short-term stress is a fundamental survival mechanism ensuring protection and adaptation in adverse environments. Key components of the neuroendocrine stress reaction in insects are stress-related hormones, including biogenic amines (dopamine and octopamine), juvenile hormone, 20-hydroxyecdysone, adipokinetic hormone and insulin-like peptides. In this review we focus on different aspects of the mechanism of the neuroendocrine stress reaction in insects on the D. melanogaster model, discuss the interaction of components of the insulin/insulin-like growth factors signaling pathway and other stress-related hormones, and suggest a detailed scheme of their possible interaction and effect on carbohydrate and lipid metabolism under short-term heat stress. The effect of short-term heat stress on metabolic behavior and possible regulation of its mechanisms are also discussed here.
Collapse
|
7
|
Ferguson LV, Adamo SA. From perplexing to predictive: are we ready to forecast insect disease susceptibility in a warming world? J Exp Biol 2023; 226:288412. [PMID: 36825944 DOI: 10.1242/jeb.244911] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
Abstract
Insects are critical to our ecosystems, but we do not fully understand their future in our warming world. Rising temperatures are affecting insect physiology in myriad ways, including changes to their immune systems and the ability to fight infection. Whether predicted changes in temperature will contribute to insect mortality or success, and the role of disease in their future survival, remains unclear. Although heat can enhance immunity by activating the integrated defense system (e.g. via the production of protective molecules such as heat-shock proteins) and accelerating enzyme activity, heat can also compromise the immune system through energetic-resource trade-offs and damage. The responses to heat are highly variable among species. The reasons for this variability are poorly known, and we are lagging in our understanding of how and why the immune system responds to changes in temperature. In this Commentary, we highlight the variation in insect immune responses to heat and the likely underlying mechanisms. We suggest that we are currently limited in our ability to predict the effects of rising temperatures on insect immunity and disease susceptibility, largely owing to incomplete information, coupled with a lack of tools for data integration. Moreover, existing data are concentrated on a relatively small number of insect Orders. We provide suggestions for a path towards making more accurate predictions, which will require studies with realistic temperature exposures and housing design, and a greater understanding of both the thermal biology of the immune system and connections between immunity and the physiological responses to heat.
Collapse
Affiliation(s)
- Laura V Ferguson
- Department of Biology, Acadia University, Wolfville, NS B4P 2R6, Canada
| | - Shelley A Adamo
- Department of Psychology and Neuroscience, Dalhousie University, Halifax, NS B3H 4R2, Canada
| |
Collapse
|
8
|
Li Y, Ren L, Fu H, Yang B, Tian J, Li Q, Liu Z, Liu S. Crosstalk between dopamine and insulin signaling in growth control of the oyster. Gen Comp Endocrinol 2021; 313:113895. [PMID: 34480943 DOI: 10.1016/j.ygcen.2021.113895] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 07/20/2021] [Accepted: 08/29/2021] [Indexed: 12/26/2022]
Abstract
Neuroendocrine hormones such as dopamine and insulin/insulin-like peptides play indispensable roles in growth regulation of animals, while the interplay between dopamine and insulin signaling pathways remains largely unknown in invertebrates. In the present study, we showed that tyrosine hydroxylase (TH), the rate-limiting enzyme of dopamine synthesis, was highly expressed in all tissues of the fast-growing oysters, and gradually increased with the development, which indicated the potential role of dopamine in growth regulation. Incubated with dopamine hydrochloride and insulin-like peptide recombinant proteins in vitro induced the expression of TH, suggesting a mutual regulatory relationship between insulin and dopamine signaling. Fasting and re-feeding experiments confirmed the role of TH in food intake regulation, also provide a clue about the potential regulatory relationship between the FoxO and TH. Further luciferase assay experiment confirmed that FoxO was involved in transcriptional regulation of TH gene through binding to its specific promoter region. This work provided insights into the crosstalk between dopamine and insulin signaling in growth control of mollusks.
Collapse
Affiliation(s)
- Yongjing Li
- Key Laboratory of Mariculture (Ocean University of China), Ministry of Education, and College of Fisheries, Ocean University of China, Qingdao 266003, China
| | - Liting Ren
- Key Laboratory of Mariculture (Ocean University of China), Ministry of Education, and College of Fisheries, Ocean University of China, Qingdao 266003, China
| | - Huiru Fu
- Key Laboratory of Mariculture (Ocean University of China), Ministry of Education, and College of Fisheries, Ocean University of China, Qingdao 266003, China
| | - Ben Yang
- Key Laboratory of Mariculture (Ocean University of China), Ministry of Education, and College of Fisheries, Ocean University of China, Qingdao 266003, China
| | - Jing Tian
- Key Laboratory of Mariculture (Ocean University of China), Ministry of Education, and College of Fisheries, Ocean University of China, Qingdao 266003, China
| | - Qi Li
- Key Laboratory of Mariculture (Ocean University of China), Ministry of Education, and College of Fisheries, Ocean University of China, Qingdao 266003, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Zhanjiang Liu
- Department of Biology, College of Art and Sciences, Syracuse University, Syracuse, NY 13244, USA
| | - Shikai Liu
- Key Laboratory of Mariculture (Ocean University of China), Ministry of Education, and College of Fisheries, Ocean University of China, Qingdao 266003, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China.
| |
Collapse
|
9
|
Eremina MA, Menshanov PN, Shishkina OD, Gruntenko NE. The transcription factor dFOXO controls the expression of insulin pathway genes and lipids content under heat stress in <i>Drosophila melanogaster</i>. Vavilovskii Zhurnal Genet Selektsii 2021. [DOI: 10.18699/vj21.053] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
The insulin/insulin-like growth factor signaling (IIS) pathway is one of the key elements in an organism’s response to unfavourable conditions. The deep homology of this pathway and its evolutionary conservative role in controlling the carbohydrate and lipid metabolism make it possible to use Drosophila melanogaster for studying its functioning. To identify the properties of interaction of two key IIS pathway components under heat stress in D. melanogaster (the forkhead box O transcription factor (dFOXO) and insulin-like peptide 6 (DILP6), which intermediates the dFOXO signal sent from the fat body to the insulin-producing cells of the brain where DILPs1–5 are synthesized), we analysed the expression of the genes dilp6, dfoxo and insulin-like receptor gene (dInR) in females of strains carrying the hypomorphic mutation dilp641 and hypofunctional mutation foxoBG01018. We found that neither mutation influenced dfoxo expression and its uprise under short-term heat stress, but both of them disrupted the stress response of the dilp6 and dInR genes. To reveal the role of identified disruptions in metabolism control and feeding behaviour, we analysed the effect of the dilp641 and foxoBG01018 mutations on total lipids content and capillary feeding intensity in imago under normal conditions and under short-term heat stress. Both mutations caused an increase in these parameters under normal conditions and prevented decrease in total lipids content following heat stress observed in the control strain. In mutants, feeding intensity was increased under normal conditions; and decreased following short-term heat stress in all studied strains for the first 24 h of observation, and in dilp641 strain, for 48 h. Thus, we may conclude that dFOXO takes part in regulating the IIS pathway response to heat stress as well as the changes in lipids content caused by heat stress, and this regulation is mediated by DILP6. At the same time, the feeding behaviour of imago might be controlled by dFOXO and DILP6 under normal conditions, but not under heat stress.
Collapse
Affiliation(s)
- M. A. Eremina
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences
| | - P. N. Menshanov
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences; Novosibirsk State Technical University
| | - O. D. Shishkina
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences
| | - N. E. Gruntenko
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences
| |
Collapse
|
10
|
Zhou T, Liu J, Chan S, Wang W. Molecular characterization and expression dynamics of three key genes in the PI3K-AKT pathway reveal its involvement in the immunotoxicological responses of the giant river prawn Macrobrachium rosenbergii to acute ammonia and nitrite stress. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 208:111767. [PMID: 33396085 DOI: 10.1016/j.ecoenv.2020.111767] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 12/01/2020] [Accepted: 12/04/2020] [Indexed: 06/12/2023]
Abstract
Ammonia nitrogen and nitrite are two common forms of environmental toxicants for aquatic organisms including crustaceans. The PI3K-AKT pathway is an important intracellular signaling pathway related to cellular stress response, but involvement of this pathway in the immunotoxicological response of decapod crustaceans to aquatic toxicants such as ammonia nitrogen and nitrite still remains enigmatic. In this study, based on transcriptome mining and molecular cloning techniques, three key genes (named as MrPI3K, MrAKT and MrFoxO) in the PI3K-AKT signaling pathway were identified from the giant river prawn Macrobrachium rosenbergii. Sequence homology and phylogenetic analysis revealed that all the three genes harbored signature sequences of corresponding protein families, and shared high levels of similarities with their respective homologs from other species. MrPI3K, MrAKT and MrFoxO all displayed ubiquitous tissue distribution profiles, but their expression levels varied to a great extend among different tissues and between sexes. Following exposure to nitrite (20 mg/L nitrite-N) or ammonia (25 mg/L total ammonia-N) stresses for 24 h and 48 h, the three genes all responded by altering their expression levels at different time points, but they didn't show uniform expression patterns following these stresses, indicating the diversified roles of these genes in different tissues and the complexity of this signaling pathway. Remarkably, MrPI3K and MrAKT were induced only in the hemocytes and intestine, respectively, indicating their specific roles in these organs. Our study demonstrated the potential utility of these genes as biomarkers of acute ammonia or nitrite toxicity in prawns, and also provided evidence that the PI3K-AKT pathway is involved in the immunotoxicological responses to nitrite and ammonia stress in M. rosenbergii.
Collapse
Affiliation(s)
- Tingting Zhou
- College of Fisheries, Guangdong Ocean University, Zhanjiang, Guangdong Province, PR China
| | - Jiahui Liu
- College of Fisheries, Guangdong Ocean University, Zhanjiang, Guangdong Province, PR China
| | - Siuming Chan
- College of Fisheries, Guangdong Ocean University, Zhanjiang, Guangdong Province, PR China; Guangdong Provincial Engineering Laboratory for Mariculture Organism Breeding, Guangdong Ocean University, Zhanjiang, Guangdong Province, PR China
| | - Wei Wang
- College of Fisheries, Guangdong Ocean University, Zhanjiang, Guangdong Province, PR China; Guangdong Provincial Engineering Laboratory for Mariculture Organism Breeding, Guangdong Ocean University, Zhanjiang, Guangdong Province, PR China; Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals, Guangdong Province, PR China.
| |
Collapse
|
11
|
Nässel DR, Zandawala M. Hormonal axes in Drosophila: regulation of hormone release and multiplicity of actions. Cell Tissue Res 2020; 382:233-266. [PMID: 32827072 PMCID: PMC7584566 DOI: 10.1007/s00441-020-03264-z] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 07/20/2020] [Indexed: 12/16/2022]
Abstract
Hormones regulate development, as well as many vital processes in the daily life of an animal. Many of these hormones are peptides that act at a higher hierarchical level in the animal with roles as organizers that globally orchestrate metabolism, physiology and behavior. Peptide hormones can act on multiple peripheral targets and simultaneously convey basal states, such as metabolic status and sleep-awake or arousal across many central neuronal circuits. Thereby, they coordinate responses to changing internal and external environments. The activity of neurosecretory cells is controlled either by (1) cell autonomous sensors, or (2) by other neurons that relay signals from sensors in peripheral tissues and (3) by feedback from target cells. Thus, a hormonal signaling axis commonly comprises several components. In mammals and other vertebrates, several hormonal axes are known, such as the hypothalamic-pituitary-gonad axis or the hypothalamic-pituitary-thyroid axis that regulate reproduction and metabolism, respectively. It has been proposed that the basic organization of such hormonal axes is evolutionarily old and that cellular homologs of the hypothalamic-pituitary system can be found for instance in insects. To obtain an appreciation of the similarities between insect and vertebrate neurosecretory axes, we review the organization of neurosecretory cell systems in Drosophila. Our review outlines the major peptidergic hormonal pathways known in Drosophila and presents a set of schemes of hormonal axes and orchestrating peptidergic systems. The detailed organization of the larval and adult Drosophila neurosecretory systems displays only very basic similarities to those in other arthropods and vertebrates.
Collapse
Affiliation(s)
- Dick R. Nässel
- Department of Zoology, Stockholm University, Stockholm, Sweden
| | - Meet Zandawala
- Department of Neuroscience, Brown University, Providence, RI USA
| |
Collapse
|
12
|
Eremina MA, Gruntenko NE. Adaptation of the sulfophosphovanillin method of analysis of total lipids for various biological objects as exemplified by <i>Drosophila melanogaster</i>. Vavilovskii Zhurnal Genet Selektsii 2020. [DOI: 10.18699/vj20.636] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Affiliation(s)
- M. A. Eremina
- Institute of Cytology and Genetics of Siberian Branch of the Russian Academy of Sciences
| | - N. E. Gruntenko
- Institute of Cytology and Genetics of Siberian Branch of the Russian Academy of Sciences
| |
Collapse
|
13
|
Lubawy J, Urbański A, Colinet H, Pflüger HJ, Marciniak P. Role of the Insect Neuroendocrine System in the Response to Cold Stress. Front Physiol 2020; 11:376. [PMID: 32390871 PMCID: PMC7190868 DOI: 10.3389/fphys.2020.00376] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 03/30/2020] [Indexed: 12/25/2022] Open
Abstract
Insects are the largest group of animals. They are capable of surviving in virtually all environments from arid deserts to the freezing permafrost of polar regions. This success is due to their great capacity to tolerate a range of environmental stresses, such as low temperature. Cold/freezing stress affects many physiological processes in insects, causing changes in main metabolic pathways, cellular dehydration, loss of neuromuscular function, and imbalance in water and ion homeostasis. The neuroendocrine system and its related signaling mediators, such as neuropeptides and biogenic amines, play central roles in the regulation of the various physiological and behavioral processes of insects and hence can also potentially impact thermal tolerance. In response to cold stress, various chemical signals are released either via direct intercellular contact or systemically. These are signals which regulate osmoregulation - capability peptides (CAPA), inotocin (ITC)-like peptides, ion transport peptide (ITP), diuretic hormones and calcitonin (CAL), substances related to the general response to various stress factors - tachykinin-related peptides (TRPs) or peptides responsible for the mobilization of body reserves. All these processes are potentially important in cold tolerance mechanisms. This review summarizes the current knowledge on the involvement of the neuroendocrine system in the cold stress response and the possible contributions of various signaling molecules in this process.
Collapse
Affiliation(s)
- Jan Lubawy
- Department of Animal Physiology and Development, Faculty of Biology, Institute of Experimental Biology, Adam Mickiewicz University Poznań, Poznań, Poland
| | - Arkadiusz Urbański
- Department of Animal Physiology and Development, Faculty of Biology, Institute of Experimental Biology, Adam Mickiewicz University Poznań, Poznań, Poland
- HiProMine S.A., Robakowo, Poland
| | - Hervé Colinet
- ECOBIO – UMR 6553, Université de Rennes 1, CNRS, Rennes, France
| | | | - Paweł Marciniak
- Department of Animal Physiology and Development, Faculty of Biology, Institute of Experimental Biology, Adam Mickiewicz University Poznań, Poznań, Poland
| |
Collapse
|
14
|
Petruccelli E, Lark A, Mrkvicka JA, Kitamoto T. Significance of DopEcR, a G-protein coupled dopamine/ecdysteroid receptor, in physiological and behavioral response to stressors. J Neurogenet 2020; 34:55-68. [PMID: 31955616 PMCID: PMC7717672 DOI: 10.1080/01677063.2019.1710144] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Accepted: 12/25/2019] [Indexed: 12/18/2022]
Abstract
Organisms respond to various environmental stressors by modulating physiology and behavior to maintain homeostasis. Steroids and catecholamines are involved in the highly conserved signaling pathways crucial for mounting molecular and cellular events that ensure immediate or long-term survival under stress conditions. The insect dopamine/ecdysteroid receptor (DopEcR) is a dual G-protein coupled receptor for the catecholamine dopamine and the steroid hormone ecdysone. DopEcR acts in a ligand-dependent manner, mediating dopaminergic signaling and unconventional "nongenomic" ecdysteroid actions through various intracellular signaling pathways. This unique feature of DopEcR raises the interesting possibility that DopEcR may serve as an integrative hub for complex molecular cascades activated under stress conditions. Here, we review previously published studies of Drosophila DopEcR in the context of stress response and also present newly discovered DopEcR loss-of-function phenotypes under different stress conditions. These findings provide corroborating evidence that DopEcR plays vital roles in responses to various stressors, including heat, starvation, alcohol, courtship rejection, and repeated neuronal stimulation in Drosophila. We further discuss what is known about DopEcR in other insects and DopEcR orthologs in mammals, implicating their roles in stress responses. Overall, this review highlights the importance of dual GPCRs for catecholamines and steroids in modulating physiology and behavior under stress conditions. Further multidisciplinary studies of Drosophila DopEcR will contribute to our basic understanding of the functional roles and underlying mechanisms of this class of GPCRs.
Collapse
Affiliation(s)
- Emily Petruccelli
- Department of Biological Sciences, Southern Illinois University Edwardsville, Edwardsville, IL, USA
| | - Arianna Lark
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA, USA
| | - James A Mrkvicka
- Interdisciplinary Graduate Program in Genetics, University of Iowa, Iowa City, IA, USA
| | - Toshihiro Kitamoto
- Interdisciplinary Graduate Program in Genetics, University of Iowa, Iowa City, IA, USA
- Department of Anesthesia, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| |
Collapse
|
15
|
Ahmad M, He L, Perrimon N. Regulation of insulin and adipokinetic hormone/glucagon production in flies. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2019; 9:e360. [PMID: 31379062 DOI: 10.1002/wdev.360] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 06/28/2019] [Accepted: 07/09/2019] [Indexed: 12/25/2022]
Abstract
Metabolic homeostasis is under strict regulation of humoral factors across various taxa. In particular, insulin and glucagon, referred to in Drosophila as Drosophila insulin-like peptides (DILPs) and adipokinetic hormone (AKH), respectively, are key hormones that regulate metabolism in most metazoa. While much is known about the regulation of DILPs, the mechanisms regulating AKH/glucagon production is still poorly understood. In this review, we describe the various factors that regulate the production of DILPs and AKH and emphasize the need for future studies to decipher how energy homeostasis is governed in Drosophila. This article is categorized under: Invertebrate Organogenesis > Flies Signaling Pathways > Global Signaling Mechanisms.
Collapse
Affiliation(s)
- Muhammad Ahmad
- Department of Genetics, Harvard Medical School, Boston, Massachusetts
| | - Li He
- Department of Genetics, Harvard Medical School, Boston, Massachusetts
| | - Norbert Perrimon
- Department of Genetics, Harvard Medical School, Boston, Massachusetts.,Howard Hughes Medical Institute, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
16
|
Eremina MA, Karpova EK, Rauschenbach IY, Pirozhkova DS, Andreenkova OV, Gruntenko NE. Mutations in the Insulin Signaling Pathway Genes Affect Carbohydrate Level under Heat Stress in Drosophila melanogaster Females. RUSS J GENET+ 2019. [DOI: 10.1134/s1022795419030050] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
17
|
Dinges N, Morin V, Kreim N, Southall TD, Roignant JY. Comprehensive Characterization of the Complex lola Locus Reveals a Novel Role in the Octopaminergic Pathway via Tyramine Beta-Hydroxylase Regulation. Cell Rep 2018; 21:2911-2925. [PMID: 29212035 DOI: 10.1016/j.celrep.2017.11.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Revised: 09/12/2017] [Accepted: 11/02/2017] [Indexed: 10/18/2022] Open
Abstract
Longitudinals lacking (lola) is one of the most complex genes in Drosophila melanogaster, encoding up to 20 protein isoforms that include key transcription factors involved in axonal pathfinding and neural reprogramming. Most previous studies have employed loss-of-function alleles that disrupt lola common exons, making it difficult to delineate isoform-specific functions. To overcome this issue, we have generated isoform-specific mutants for all isoforms using CRISPR/Cas9. This enabled us to study specific isoforms with respect to previously characterized roles for Lola and to demonstrate a specific function for one variant in axon guidance via activation of the microtubule-associated factor Futsch. Importantly, we also reveal a role for a second variant in preventing neurodegeneration via the positive regulation of a key enzyme of the octopaminergic pathway. Thus, our comprehensive study expands the functional repertoire of Lola functions, and it adds insights into the regulatory control of neurotransmitter expression in vivo.
Collapse
Affiliation(s)
- Nadja Dinges
- Laboratory of RNA Epigenetics, Institute of Molecular Biology (IMB), 55128 Mainz, Germany
| | - Violeta Morin
- Laboratory of RNA Epigenetics, Institute of Molecular Biology (IMB), 55128 Mainz, Germany
| | - Nastasja Kreim
- Bioinformatics Core Facility, Institute of Molecular Biology (IMB), 55128 Mainz, Germany
| | - Tony D Southall
- Department of Life Sciences, Imperial College London, Sir Ernst Chain Building, London SW7 2AZ, UK
| | - Jean-Yves Roignant
- Laboratory of RNA Epigenetics, Institute of Molecular Biology (IMB), 55128 Mainz, Germany.
| |
Collapse
|
18
|
Gruntenko NE, Rauschenbach IY. The role of insulin signalling in the endocrine stress response in Drosophila melanogaster: A mini-review. Gen Comp Endocrinol 2018; 258:134-139. [PMID: 28554733 DOI: 10.1016/j.ygcen.2017.05.019] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Revised: 05/15/2017] [Accepted: 05/24/2017] [Indexed: 12/22/2022]
Abstract
The endocrine stress response in Drosophila includes catecholamines, juvenile hormone (JH), 20-hydroxyecdysone (20E) and the insulin/insulin-like growth factor signalling pathway (IIS). Several changes in the IIS and hormonal status that occur under unfavourable conditions are universal and do not depend on the nature of stress exposure. The reviewed studies on the impact of different element of the Drosophila IIS, such as insulin-like receptor, the homologue of its substrate, CHICO, the transcription factor dFOXO and insulin like peptide 6, on the hormonal status suggest that the IIS controls catecholamine metabolism indirectly via JH, and there is a feedback loop in the interaction of JH and IIS. Moreover, at least one of the ways in which the IIS is involved in the control of stress resistance is mediated through JH/dopamine signalling.
Collapse
Affiliation(s)
- N E Gruntenko
- Institute of Cytology and Genetics SB RAS, Novosibirsk 630090, Russia.
| | - I Yu Rauschenbach
- Institute of Cytology and Genetics SB RAS, Novosibirsk 630090, Russia
| |
Collapse
|
19
|
Abstract
In response to adverse environmental conditions many organisms from nematodes to mammals deploy a dormancy strategy, causing states of developmental or reproductive arrest that enhance somatic maintenance and survival ability at the expense of growth or reproduction. Dormancy regulation has been studied in C. elegans and in several insects, but how neurosensory mechanisms act to relay environmental cues to the endocrine system in order to induce dormancy remains unclear. Here we examine this fundamental question by genetically manipulating aminergic neurotransmitter signaling in Drosophila melanogaster. We find that both serotonin and dopamine enhance adult ovarian dormancy, while the downregulation of their respective signaling pathways in endocrine cells or tissues (insulin producing cells, fat body, corpus allatum) reduces dormancy. In contrast, octopamine signaling antagonizes dormancy. Our findings enhance our understanding of the ability of organisms to cope with unfavorable environments and illuminate some of the relevant signaling pathways.
Collapse
|