1
|
Goswami K, Venkatachalam K, Singh SP, Rao CV, Madka V. Chromatin Remodulator CHD4: A Potential Target for Cancer Interception. Genes (Basel) 2025; 16:225. [PMID: 40004553 PMCID: PMC11855282 DOI: 10.3390/genes16020225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Revised: 02/10/2025] [Accepted: 02/11/2025] [Indexed: 02/27/2025] Open
Abstract
Cancer initiation and progression are associated with numerous somatic mutations, genomic rearrangements, and structure variants. The transformation of a normal cell into a cancer cell involves spatio-temporal changes in the regulation of different gene networks. The accessibility of these genes within the cell nucleus is manipulated via nucleosome remodeling ATPases, comprising one of the important mechanisms. Here, we reviewed studies of an ATP-dependent chromatin remodulator, chromodomain helicase DNA-binding 4 (CHD4), in cancer. Multiple domains of CHD4 are known to take part in nucleosome mobilization and histone binding. By binding with other proteins, CHD4 plays a vital role in transcriptional reprogramming and functions as a key component of Nucleosome Remodeling and Deacetylase, or NuRD, complexes. Here, we revisit data that demonstrate the role of CHD4 in cancer progression, tumor cell proliferation, DNA damage responses, and immune modulation. Conclusively, CHD4-mediated chromatin accessibility is essential for transcriptional reprogramming, which in turn is associated with tumor cell proliferation and cancer development.
Collapse
Affiliation(s)
- Krishnendu Goswami
- Center for Cancer Prevention and Drug Development, Stephenson Cancer Center, Hem-Onc Section, Department of Medicine, University of Oklahoma HSC, Oklahoma City, OK 73104, USA; (K.G.); (K.V.); (S.P.S.)
| | - Karthikkumar Venkatachalam
- Center for Cancer Prevention and Drug Development, Stephenson Cancer Center, Hem-Onc Section, Department of Medicine, University of Oklahoma HSC, Oklahoma City, OK 73104, USA; (K.G.); (K.V.); (S.P.S.)
| | - Surya P. Singh
- Center for Cancer Prevention and Drug Development, Stephenson Cancer Center, Hem-Onc Section, Department of Medicine, University of Oklahoma HSC, Oklahoma City, OK 73104, USA; (K.G.); (K.V.); (S.P.S.)
| | - Chinthalapally V. Rao
- Center for Cancer Prevention and Drug Development, Stephenson Cancer Center, Hem-Onc Section, Department of Medicine, University of Oklahoma HSC, Oklahoma City, OK 73104, USA; (K.G.); (K.V.); (S.P.S.)
- VA Medical Center, Oklahoma City, OK 73104, USA
| | - Venkateshwar Madka
- Center for Cancer Prevention and Drug Development, Stephenson Cancer Center, Hem-Onc Section, Department of Medicine, University of Oklahoma HSC, Oklahoma City, OK 73104, USA; (K.G.); (K.V.); (S.P.S.)
| |
Collapse
|
2
|
Capatina AL, Malcolm JR, Stenning J, Moore RL, Bridge KS, Brackenbury WJ, Holding AN. Hypoxia-induced epigenetic regulation of breast cancer progression and the tumour microenvironment. Front Cell Dev Biol 2024; 12:1421629. [PMID: 39282472 PMCID: PMC11392762 DOI: 10.3389/fcell.2024.1421629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 08/19/2024] [Indexed: 09/19/2024] Open
Abstract
The events that control breast cancer progression and metastasis are complex and intertwined. Hypoxia plays a key role both in oncogenic transformation and in fueling the metastatic potential of breast cancer cells. Here we review the impact of hypoxia on epigenetic regulation of breast cancer, by interfering with multiple aspects of the tumour microenvironment. The co-dependent relationship between oxygen depletion and metabolic shift to aerobic glycolysis impacts on a range of enzymes and metabolites available in the cell, promoting posttranslational modifications of histones and chromatin, and changing the gene expression landscape to facilitate tumour development. Hormone signalling, particularly through ERα, is also tightly regulated by hypoxic exposure, with HIF-1α expression being a prognostic marker for therapeutic resistance in ER+ breast cancers. This highlights the strong need to understand the hypoxia-endocrine signalling axis and exploit it as a therapeutic target. Furthermore, hypoxia has been shown to enhance metastasis in TNBC cells, as well as promoting resistance to taxanes, radiotherapy and even immunotherapy through microRNA regulation and changes in histone packaging. Finally, several other mediators of the hypoxic response are discussed. We highlight a link between ionic dysregulation and hypoxia signalling, indicating a potential connection between HIF-1α and tumoural Na+ accumulation which would be worth further exploration; we present the role of Ca2+ in mediating hypoxic adaptation via chromatin remodelling, transcription factor recruitment and changes in signalling pathways; and we briefly summarise some of the findings regarding vesicle secretion and paracrine induced epigenetic reprogramming upon hypoxic exposure in breast cancer. By summarising these observations, this article highlights the heterogeneity of breast cancers, presenting a series of pathways with potential for therapeutic applications.
Collapse
Affiliation(s)
| | - Jodie R Malcolm
- Department of Biology, University of York, York, United Kingdom
| | - Jack Stenning
- Department of Biology, University of York, York, United Kingdom
| | - Rachael L Moore
- York Biomedical Research Institute, University of York, York, United Kingdom
| | - Katherine S Bridge
- Department of Biology, University of York, York, United Kingdom
- York Biomedical Research Institute, University of York, York, United Kingdom
| | - William J Brackenbury
- Department of Biology, University of York, York, United Kingdom
- York Biomedical Research Institute, University of York, York, United Kingdom
| | - Andrew N Holding
- Department of Biology, University of York, York, United Kingdom
- York Biomedical Research Institute, University of York, York, United Kingdom
| |
Collapse
|
3
|
Hasanlu M, Amiri-Dashatan N, Farahani M, Koushki M, Ahmadi H, Parsamanesh N, Ahmadi NA. Comprehensive Analysis of the Expression, Prognosis, and Immune Infiltrates for Chromodomain-Helicase-DNA-Binding Proteins in Breast Tumor. Asian Pac J Cancer Prev 2024; 25:1547-1558. [PMID: 38809626 PMCID: PMC11318824 DOI: 10.31557/apjcp.2024.25.5.1547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 05/04/2024] [Indexed: 05/31/2024] Open
Abstract
BACKGROUND Several recent studies suggest that chromodomain-helicase -DNA-binding domains (CHDs) are linked with cancers. We explored the association between chromodomain-Helicase-DNA-binding domain proteins and breast cancer (BrCa) and introduced potential prognostic markers using various databases. MATERIALS AND METHODS We analyzed the expression of the CHD family and their prognostic value in BrCa by mining UALCAN, TIMER, and Kaplan-Meier plotter databases. The association of CHD expression and immune infiltrating abundance was studied via the TIMER database. In addition, microRNAs related to the CHD family were identified by using the MirTarBase online database. RESULTS The present study indicated that compared to normal tissues, BrCa tissues showed increased mRNA levels of CHD3/4/7 but decreased CHD2/5/9 expression. Interestingly, We also found a positive correlation between CHD gene expression and the infiltration of macrophage, neutrophil, and dendritic cells in BrCa, except CHD3/5. The Kaplan-Meier Plotter analysis suggested that high expression levels of CHD1/2/3/4/6/8/9 were significantly related to shorter relapse-free survival (RFS), while higher mRNA expression of CHD1, CHD2, CHD8, and CHD9 was significantly associated with longer overall survival of BrCa patients. The miRNAs of hsa-miR-615-3p and hsa-let-7b-5p were identified as being more correlated with the CHD family. CONCLUSION The altered expression of some CHD members was significantly related to clinical cancer outcomes, and CHD1/2/8/9 could serve as potential prognostic biomarkers to improve the survival of BrCa patients. However, to evaluate the studied CHD members in detail are needed further investigations including experimental validation.
Collapse
Affiliation(s)
- Masoumeh Hasanlu
- Department of Internal Medicine, Vali-e-Asr Hospital, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Nasrin Amiri-Dashatan
- Zanjan Metabolic Diseases Research Center, Zanjan University of Medical Sciences, Zanjan, Iran.
| | - Masoumeh Farahani
- Skin Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Mehdi Koushki
- Department of Clinical Biochemistry, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran.
| | - Hesameddin Ahmadi
- Laser Application in Medical Sciences Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
- Micro Nano System Laboratory (MNSL), Department of Mechanical Engineering, Sharif University of Technology, Tehran, Iran.
| | - Negin Parsamanesh
- Zanjan Metabolic Diseases Research Center, Zanjan University of Medical Sciences, Zanjan, Iran.
- Department of Genetics and Molecular Medicine, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran.
| | - Nayeb Ali Ahmadi
- Proteomics Research Center, Department of Medical Laboratory Sciences, Faculty of Paramedical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
4
|
Geyer F, Geyer M, Reuning U, Klapproth S, Wolff KD, Nieberler M. CHD4 acts as a prognostic factor and drives radioresistance in HPV negative HNSCC. Sci Rep 2024; 14:8286. [PMID: 38594331 PMCID: PMC11003975 DOI: 10.1038/s41598-024-58958-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 04/04/2024] [Indexed: 04/11/2024] Open
Abstract
Despite great efforts in improving existing therapies, the outcome of patients with advanced radioresistant HPV-negative head and neck squamous cell carcinoma (HNSCC) remains poor. The chromatin remodeler Chromodomain helicase DNA binding protein 4 (CHD4) is involved in different DNA-repair mechanisms, but the role and potential in HNSCC has not been explored yet. In the present study, we evaluated the prognostic significance of CHD4 expression using in silico analysis of the pan-cancer dataset. Furthermore, we established a monoclonal HNSCC CHD4 knockdown cell clone utilizing the CRISPR/Cas9 system. Effects of lower CHD4 expression on radiosensitivity after increasing doses of ionizing radiation were characterized using clonogenic assays and cell numbers. The in silico analysis revealed that high CHD4 expression is associated with significant poorer overall survival of HPV-negative HNSCC patients. Additionally, the knockdown of CHD4 significantly increased the radiosensitivity of HNSCC cells. Therefore, CHD4 might be involved in promoting radioresistance in hard-to-treat HPV-negative HNSCC entities. We conclude that CHD4 could serve as a prognostic factor in HPV-negative HNSCC tumors and is a potential target protein overcoming radioresistance in HNSCC. Our results and the newly established cell clone laid the foundation to further characterize the underlying mechanisms and ultimately use CHD4 in HNSCC therapies.
Collapse
Affiliation(s)
- Fabian Geyer
- Department of Oral and Maxillofacial Surgery, Klinikum Rechts der Isar der Technischen Universität München, 81675, Munich, Germany.
| | - Maximilian Geyer
- Department of Oral and Maxillofacial Surgery, Klinikum Rechts der Isar der Technischen Universität München, 81675, Munich, Germany
| | - Ute Reuning
- Clinical Research Unit, Department of Obstetrics and Gynecology, Technical University of Munich, 81675, Munich, Germany
| | - Sarah Klapproth
- Institute of Experimental Hematology, School of Medicine, Technische Universität München, 81675, Munich, Germany
| | - Klaus-Dietrich Wolff
- Department of Oral and Maxillofacial Surgery, Klinikum Rechts der Isar der Technischen Universität München, 81675, Munich, Germany
| | - Markus Nieberler
- Department of Oral and Maxillofacial Surgery, Klinikum Rechts der Isar der Technischen Universität München, 81675, Munich, Germany
| |
Collapse
|
5
|
Bredel M, Kim H, Bonner JA. An ErbB Lineage Co-Regulon Harbors Potentially Co-Druggable Targets for Multimodal Precision Therapy in Head and Neck Squamous Cell Carcinoma. Int J Mol Sci 2022; 23:ijms232113497. [PMID: 36362284 PMCID: PMC9658814 DOI: 10.3390/ijms232113497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 10/26/2022] [Accepted: 10/26/2022] [Indexed: 11/06/2022] Open
Abstract
The ErbB lineage of oncogenic receptor tyrosine kinases is frequently overexpressed in head and neck squamous cell carcinomas. A common co-regulon triggered by the ErbB proteins; involving shared signaling circuitries; may harbor co-druggable targets or response biomarkers for potential future multimodal precision therapy in ErbB-driven head and neck squamous cell carcinoma. We here present a cohort-based; genome-wide analysis of 488 head and neck squamous cell carcinomas curated as part of The Cancer Genome Atlas Project to characterize genes that are significantly positively co-regulated with the four ErbB proteins and those that are shared among all ErbBs denoting a common ErbB co-regulon. Significant positive gene correlations involved hundreds of genes that were co-expressed with the four ErbB family members (q < 0.05). A common; overlapping co-regulon consisted of a core set of 268 genes that were uniformly co-regulated with all four ErbB genes and highly enriched for functions in chromatin organization and histone modifications. This high-priority set of genes contained ten putative antineoplastic drug-gene interactions. The nature and directionality of these ten drug-gene associations was an inhibiting interaction for seven (PIK3CB; PIK3C2B; HDAC4; FRK; PRKCE; EPHA4; and DYRK1A) of them in which the drug decreases the biological activity or expression of the gene target. For three (CHD4; ARID1A; and PBRM1) of the associations; the directionality of the interaction was such that the gene predicted sensitivit y to the drug suggesting utility as potential response biomarkers. Drug-gene interactions that predicted the gene product to be reduced by the drug included a variety of potential targeted molecular agent classes. This unbiased genome-wide analysis identified a target-rich environment for multimodal therapeutic approaches in tumors that are putatively ErbB-driven. The results of this study require preclinical validation before ultimately devising lines of combinatorial treatment strategies for ErbB-dependent head and neck squamous cell carcinomas that incorporate these findings.
Collapse
Affiliation(s)
- Markus Bredel
- Department of Radiation Oncology, O’Neal Comprehensive Cancer Center, Heersink School of Medicine, The University of Alabama at Birmingham, Birmingham, AL 35294, USA
- Correspondence: (M.B.); (J.A.B.)
| | - Hyunsoo Kim
- Lineberger Comprehensive Cancer Center, University of Northern Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - James A. Bonner
- Department of Radiation Oncology, O’Neal Comprehensive Cancer Center, Heersink School of Medicine, The University of Alabama at Birmingham, Birmingham, AL 35294, USA
- Correspondence: (M.B.); (J.A.B.)
| |
Collapse
|
6
|
Demori I, El Rashed Z, De Negri Atanasio G, Parodi A, Millo E, Salis A, Costa A, Rosa G, Zanotti Russo M, Salvidio S, Cortese K, Grasselli E. First Evidence of Anti-Steatotic Action of Macrotympanain A1, an Amphibian Skin Peptide from Odorrana macrotympana. Molecules 2022; 27:7417. [PMID: 36364243 PMCID: PMC9656375 DOI: 10.3390/molecules27217417] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 10/10/2022] [Accepted: 10/27/2022] [Indexed: 11/26/2023] Open
Abstract
Many different amphibian skin peptides have been characterized and proven to exert various biological actions, such as wound-healing, immunomodulatory, anti-oxidant, anti-inflammatory and anti-diabetic effects. In this work, the possible anti-steatotic effect of macrotympanain A1 (MA1) (FLPGLECVW), a skin peptide isolated from the Chinese odorous frog Odorrana macrotympana, was investigated. We used a well-established in vitro model of hepatic steatosis, consisting of lipid-loaded rat hepatoma FaO cells. In this model, a 24 h treatment with 10 µg/mL MA1 exerted a significant anti-steatotic action, being able to reduce intracellular triglyceride content. Accordingly, the number and diameter of cytosolic lipid droplets (LDs) were reduced by peptide treatment. The expression of key genes of hepatic lipid metabolism, such as PPARs and PLINs, was measured by real-time qPCR. MA1 counteracted the fatty acid-induced upregulation of PPARγ expression and increased PLIN3 expression, suggesting a role in promoting lipophagy. The present data demonstrate for the first time a direct anti-steatotic effect of a peptide from amphibian skin secretion and pave the way to further studies on the use of amphibian peptides for beneficial actions against metabolic diseases.
Collapse
Affiliation(s)
- Ilaria Demori
- Department of Earth, Environmental, and Life Sciences (DISTAV), University of Genoa, Corso Europa 26, 16132 Genoa, Italy
- Inter-University Center for the Promotion of the 3Rs Principles in Teaching & Research (Centro 3R), 56122 Pisa, Italy
| | - Zeinab El Rashed
- Department of Earth, Environmental, and Life Sciences (DISTAV), University of Genoa, Corso Europa 26, 16132 Genoa, Italy
| | - Giulia De Negri Atanasio
- Department of Earth, Environmental, and Life Sciences (DISTAV), University of Genoa, Corso Europa 26, 16132 Genoa, Italy
| | - Alice Parodi
- Department of Experimental Medicine (DIMES), Section of Biochemistry, University of Genoa, Viale Benedetto XV 1, 16132 Genoa, Italy
| | - Enrico Millo
- Department of Experimental Medicine (DIMES), Section of Biochemistry, University of Genoa, Viale Benedetto XV 1, 16132 Genoa, Italy
| | - Annalisa Salis
- Department of Experimental Medicine (DIMES), Section of Biochemistry, University of Genoa, Viale Benedetto XV 1, 16132 Genoa, Italy
| | - Andrea Costa
- Department of Earth, Environmental, and Life Sciences (DISTAV), University of Genoa, Corso Europa 26, 16132 Genoa, Italy
| | - Giacomo Rosa
- Department of Earth, Environmental, and Life Sciences (DISTAV), University of Genoa, Corso Europa 26, 16132 Genoa, Italy
| | | | - Sebastiano Salvidio
- Department of Earth, Environmental, and Life Sciences (DISTAV), University of Genoa, Corso Europa 26, 16132 Genoa, Italy
| | - Katia Cortese
- Department of Experimental Medicine (DIMES), Cellular Electron Microscopy Laboratory, University of Genoa, Via Antonio de Toni 14, 16132 Genoa, Italy
| | - Elena Grasselli
- Department of Earth, Environmental, and Life Sciences (DISTAV), University of Genoa, Corso Europa 26, 16132 Genoa, Italy
- Inter-University Center for the Promotion of the 3Rs Principles in Teaching & Research (Centro 3R), 56122 Pisa, Italy
| |
Collapse
|
7
|
Abstract
Chromatin is highly dynamic, undergoing continuous global changes in its structure and type of histone and DNA modifications governed by processes such as transcription, repair, replication, and recombination. Members of the chromodomain helicase DNA-binding (CHD) family of enzymes are ATP-dependent chromatin remodelers that are intimately involved in the regulation of chromatin dynamics, altering nucleosomal structure and DNA accessibility. Genetic studies in yeast, fruit flies, zebrafish, and mice underscore essential roles of CHD enzymes in regulating cellular fate and identity, as well as proper embryonic development. With the advent of next-generation sequencing, evidence is emerging that these enzymes are subjected to frequent DNA copy number alterations or mutations and show aberrant expression in malignancies and other human diseases. As such, they might prove to be valuable biomarkers or targets for therapeutic intervention.
Collapse
Affiliation(s)
- Andrej Alendar
- Division of Molecular Genetics, The Netherlands Cancer Institute, Amsterdam 1066CX, The Netherlands
| | - Anton Berns
- Division of Molecular Genetics, The Netherlands Cancer Institute, Amsterdam 1066CX, The Netherlands
| |
Collapse
|
8
|
Sun Z, Lu Z, Li R, Shao W, Zheng Y, Shi X, Li Y, Song J. Construction of a Prognostic Model for Hepatocellular Carcinoma Based on Immunoautophagy-Related Genes and Tumor Microenvironment. Int J Gen Med 2021; 14:5461-5473. [PMID: 34526813 PMCID: PMC8436260 DOI: 10.2147/ijgm.s325884] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Accepted: 08/24/2021] [Indexed: 12/14/2022] Open
Abstract
Background The aim of this study was to screen and identify immunoautophagy-related genes (IARGs) in HCC patients and clarify their potential prognostic value in HCC patients. Methods Immune-related genes and autophagy-related gene were downloaded from public databases. Cox regression analysis was used to selected several immunoautophagy-related genes to establish a prognostic model, and patients were divided into high- and low-risk groups based on median risk score. We analyzed the overall survival and clinicopathological characteristics between two groups. Meanwhile, internal validation dataset and external ICGC dataset were used to verify robustness of the model. Associations between six immune cells infiltrates and risk score were analyzed. Results A prognostic model was established based on CANX and HDAC1. The prognoses of the high-risk group were worse than low-risk group in both TCGA and ICGC datasets. Multivariate Cox regression analysis showed that risk score was an independent prognostic factor for HCC patients. Results showed that the risk score in young group was higher than elderly group. Patients with poorly differentiated tumor may have high risk score and poor survival. The score was positively correlated with immune cells. Conclusion Our study shows that immunoautophagy-related genes have potential prognostic value for patients with HCC and may provide new information and direction for targeted therapy.
Collapse
Affiliation(s)
- Zhen Sun
- Department of General Surgery, Department of Hepato-Bilio-Pancreatic Surgery, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, 100730, People's Republic of China.,Graduate School of Peking Union Medical College, Beijing, 100730, People's Republic of China
| | - Zhenhua Lu
- Department of General Surgery, Department of Hepato-Bilio-Pancreatic Surgery, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, 100730, People's Republic of China
| | - Rui Li
- Department of General Surgery, Department of Hepato-Bilio-Pancreatic Surgery, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, 100730, People's Republic of China.,Graduate School of Peking Union Medical College, Beijing, 100730, People's Republic of China
| | - Weiwei Shao
- Department of General Surgery, Department of Hepato-Bilio-Pancreatic Surgery, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, 100730, People's Republic of China.,Graduate School of Peking Union Medical College, Beijing, 100730, People's Republic of China
| | - Yangyang Zheng
- Department of General Surgery, Department of Hepato-Bilio-Pancreatic Surgery, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, 100730, People's Republic of China.,Graduate School of Peking Union Medical College, Beijing, 100730, People's Republic of China
| | - Xiaolei Shi
- Department of General Surgery, Department of Hepato-Bilio-Pancreatic Surgery, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, 100730, People's Republic of China
| | - Yao Li
- Department of General Surgery, Department of Hepato-Bilio-Pancreatic Surgery, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, 100730, People's Republic of China
| | - Jinghai Song
- Department of General Surgery, Department of Hepato-Bilio-Pancreatic Surgery, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, 100730, People's Republic of China.,Graduate School of Peking Union Medical College, Beijing, 100730, People's Republic of China
| |
Collapse
|
9
|
Oyama Y, Shigeta S, Tokunaga H, Tsuji K, Ishibashi M, Shibuya Y, Shimada M, Yasuda J, Yaegashi N. CHD4 regulates platinum sensitivity through MDR1 expression in ovarian cancer: A potential role of CHD4 inhibition as a combination therapy with platinum agents. PLoS One 2021; 16:e0251079. [PMID: 34161330 PMCID: PMC8221472 DOI: 10.1371/journal.pone.0251079] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Accepted: 04/19/2021] [Indexed: 12/20/2022] Open
Abstract
Platinum sensitivity is an important prognostic factor in patients with ovarian cancer. Chromodomain-helicase-DNA-binding protein 4 (CHD4) is a core member of the nucleosome remodeling and deacetylase complex, which functions as a chromatin remodeler. Emerging evidence indicates that CHD4 could be a potential therapeutic target for cancer therapy. The purpose of this study was to clarify the role of CHD4 in ovarian cancer and investigate its therapeutic potential focusing on platinum sensitivity. In an analysis of the Cancer Genome Atlas ovarian cancer dataset, CHD4 gene amplification was associated with worse overall survival. CHD4 mRNA expression was significantly higher in platinum-resistant samples in a subsequent clinical sample analysis, suggesting that CHD4 overexpression conferred platinum resistance to ovarian cancer cells, resulting in poor patient survival. In concordance with these findings, CHD4 knockdown enhanced the induction of apoptosis mediated by cisplatin in ovarian cancer cells TOV21G and increased cisplatin sensitivity in multiple ovarian cancer cells derived from different subtypes. However, CHD4 knockdown did not affect the expression of RAD51 or p21, the known targets of CHD4 in other cancer types that can modulate platinum sensitivity. Knockdown and overexpression assays revealed that CHD4 positively regulated the expression of multi-drug transporter MDR1 and its coding protein p-glycoprotein. In addition, a first-in-class CHD4/SMARCA5 inhibitor ED2-AD101 showed synergistic interactions with cisplatin. Our findings suggest that CHD4 mediates platinum sensitivity by modulating MDR1 expression in ovarian cancer. Further, CHD4 suppression has a potential to be a novel therapeutic strategy in combination with platinum agents.
Collapse
Affiliation(s)
- Yoshiko Oyama
- Department of Obstetrics and Gynecology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Shogo Shigeta
- Department of Obstetrics and Gynecology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Hideki Tokunaga
- Department of Obstetrics and Gynecology, Tohoku University Graduate School of Medicine, Sendai, Japan
- * E-mail:
| | - Keita Tsuji
- Department of Obstetrics and Gynecology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Masumi Ishibashi
- Department of Obstetrics and Gynecology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yusuke Shibuya
- Department of Obstetrics and Gynecology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Muneaki Shimada
- Department of Obstetrics and Gynecology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Jun Yasuda
- Division of Molecular and Cellular Oncology, Miyagi Cancer Center Research Institute, Natori, Miyagi, Japan
| | - Nobuo Yaegashi
- Department of Obstetrics and Gynecology, Tohoku University Graduate School of Medicine, Sendai, Japan
| |
Collapse
|
10
|
Novillo A, Fernández-Santander A, Gaibar M, Galán M, Romero-Lorca A, El Abdellaoui-Soussi F, Gómez-Del Arco P. Role of Chromodomain-Helicase-DNA-Binding Protein 4 (CHD4) in Breast Cancer. Front Oncol 2021; 11:633233. [PMID: 33981601 PMCID: PMC8107472 DOI: 10.3389/fonc.2021.633233] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 03/23/2021] [Indexed: 12/15/2022] Open
Abstract
Chromodomain-helicase-DNA-binding protein 4 (CHD4) is an epigenetic regulator identified as an oncogenic element that may provide a novel therapeutic target for the treatment of breast cancer (BC). CHD4—the core component of the nucleosome remodeling and deacetylase (NuRD) complex—may be mutated in patients with this disease. However, information on CHD4 mutants that might allow their use as biomarkers of therapeutic success and prognosis is lacking. The present work examines mutations in CHD4 reported in patients with breast cancer and included in public databases and attempts to identify their roles in its development. The databases revealed 81 point mutations across different types of breast cancer (19 of which also appeared in endometrial, intestinal, nervous system, kidney, and lymphoid organ cancers). 71.6% of the detected mutations were missense mutations, 13.6% were silent, and 6.2% nonsense. Over 50% affected conserved residues of the ATPase motor (ATPase and helicase domains), and domains of unknown function in the C-terminal region. Thirty one mutations were classified in the databases as either ‘deleterious’, ‘probably/possibly damaging’ or as ‘high/medium pathogenic’; another five nonsense and one splice-site variant were predicted to produce potentially harmful truncated proteins. Eight of the 81 mutations were categorized as putative driver mutations and have been found in other cancer types. Some mutations seem to influence ATPase and DNA translocation activities (R1162W), while others may alter protein stability (R877Q/H, R975H) or disrupt DNA binding and protein activity (R572*, X34_splice) suggesting CHD4 function may be affected. In vivo tumorigenecity studies in endometrial cancer have revealed R975H and R1162W as mutations that lead to CHD4 loss-of-function. Our study provides insight into the molecular mechanism whereby CHD4, and some of its mutants could play a role in breast cancer and suggest important implications for the biological comprehension and prognosis of breast cancer, identifying CHD4 as a novel therapeutic target for BC patients.
Collapse
Affiliation(s)
- Apolonia Novillo
- Department of Pre-clinical Dentistry, Faculty of Biomedical and Health Sciences, Universidad Europea de Madrid, Villaviciosa de Odón, Madrid, Spain
| | - Ana Fernández-Santander
- Department of Medicine, Faculty of Biomedical and Health Sciences, Universidad Europea de Madrid, Villaviciosa de Odón, Madrid, Spain
| | - Maria Gaibar
- Department of Health Sciences, Faculty of Biomedical and Health Sciences, Universidad Europea de Madrid, Villaviciosa de Odón, Madrid, Spain
| | - Miguel Galán
- Department of Health Sciences, Faculty of Biomedical and Health Sciences, Universidad Europea de Madrid, Villaviciosa de Odón, Madrid, Spain
| | - Alicia Romero-Lorca
- Department of Medicine, Faculty of Biomedical and Health Sciences, Universidad Europea de Madrid, Villaviciosa de Odón, Madrid, Spain
| | | | - Pablo Gómez-Del Arco
- Institute of Rare Diseases Research, Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| |
Collapse
|
11
|
Chang CL, Huang CR, Chang SJ, Wu CC, Chen HH, Luo CW, Yip HK. CHD4 as an important mediator in regulating the malignant behaviors of colorectal cancer. Int J Biol Sci 2021; 17:1660-1670. [PMID: 33994851 PMCID: PMC8120460 DOI: 10.7150/ijbs.56976] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 03/28/2021] [Indexed: 12/12/2022] Open
Abstract
Colorectal cancer (CRC) has ranked first in terms of incidence in Taiwan. Surgical resection combined with chemo-, radio-, or targeted-therapies are the main treatments for CRC patients in current clinical practice. However, many CRC patients still respond poorly to these treatments, leading to tumor recurrence and an unacceptably high incidence of metastasis and death. Therefore, appropriate diagnosis, treatment, and drug selection are pressing issues in clinical practice. The Mi-2/nucleosome remodeling and deacetylase complex is an important epigenetic regulator of chromatin structure and gene expression. An important component of this complex is chromodomain-helicase-DNA-binding protein 4 (CHD4), which is involved in DNA repair after injury. Recent studies have indicated that CHD4 has oncogenic functions that inhibit multiple tumor suppressor genes through epigenetic regulation. However, the role of CHD4 in CRC has not yet been well investigated. In this study, we compared CHD4 expression in CRC patients from The Cancer Genome Atlas database. We found higher levels of CHD4 expression in CRC patients. In a series of in vitro experiments, we found that CHD4 affected cell motility and drug sensitivity in CRC cells. In animal models, the depletion of CHD4 affected CRC tumor growth, and the combination of a histone deacetylase 1 (HDAC1) inhibitor and platinum drugs inhibited CHD4 expression and increased the cytotoxicity of platinum drugs. Moreover, CHD4 expression was also a prognostic biomarker in CRC patients. Based on the above results, we believe that CHD4 expression is a viable biomarker for predicting metastasis CRC patients, and it has the potential to become a target for drug development.
Collapse
Affiliation(s)
- Chia-Lo Chang
- Division of Colorectal Surgery, Department of Surgery, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Chi-Ruei Huang
- Center for Shockwave Medicine and Tissue Engineering, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan.,Division of Cardiology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Shu-Jyuan Chang
- Department of Pathology, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan.,Department of Pathology, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chun-Chieh Wu
- Department of Pathology, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Hong-Hwa Chen
- Division of Colorectal Surgery, Department of Surgery, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Chi-Wen Luo
- Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan.,Division of Breast Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Hon-Kan Yip
- Center for Shockwave Medicine and Tissue Engineering, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan.,Division of Cardiology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan.,Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital Kaohsiung, Taiwan.,Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan.,Department of Nursing, Asia University Taichung, Taiwan.,Division of Cardiology, Department of Internal Medicine, Xiamen Chang Gung Hospital, Xiamen, Fujian, China
| |
Collapse
|
12
|
Torres-Martinez Z, Delgado Y, Ferrer-Acosta Y, Suarez-Arroyo IJ, Joaquín-Ovalle FM, Delinois LJ, Griebenow K. Key genes and drug delivery systems to improve the efficiency of chemotherapy. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2021; 4:163-191. [PMID: 34142021 PMCID: PMC8208690 DOI: 10.20517/cdr.2020.64] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Cancer cells can develop resistance to anticancer drugs, thereby becoming tolerant to treatment through different mechanisms. The biological mechanisms leading to the generation of anticancer treatment resistance include alterations in transmembrane proteins, DNA damage and repair mechanisms, alterations in target molecules, and genetic responses, among others. The most common anti-cancer drugs reported to develop resistance to cancer cells include cisplatin, doxorubicin, paclitaxel, and fluorouracil. These anticancer drugs have different mechanisms of action, and specific cancer types can be affected by different genes. The development of drug resistance is a cellular response which uses differential gene expression, to enable adaptation and survival of the cell to diverse threatening environmental agents. In this review, we briefly look at the key regulatory genes, their expression, as well as the responses and regulation of cancer cells when exposed to anticancer drugs, along with the incorporation of alternative nanocarriers as treatments to overcome anticancer drug resistance.
Collapse
Affiliation(s)
- Zally Torres-Martinez
- Chemistry Department, University of Puerto Rico- Rio Piedras campus, San Juan, PR 00936, USA
| | - Yamixa Delgado
- Biochemistry & Pharmacology Department, San Juan Bautista School of Medicine, Caguas, PR 00726, USA
| | - Yancy Ferrer-Acosta
- Neuroscience Department, Universidad Central del Caribe, Bayamon, PR 00956, USA
| | | | - Freisa M Joaquín-Ovalle
- Chemistry Department, University of Puerto Rico- Rio Piedras campus, San Juan, PR 00936, USA
| | - Louis J Delinois
- Chemistry Department, University of Puerto Rico- Rio Piedras campus, San Juan, PR 00936, USA
| | - Kai Griebenow
- Chemistry Department, University of Puerto Rico- Rio Piedras campus, San Juan, PR 00936, USA
| |
Collapse
|
13
|
Li X, Chen J, Yu Q, Huang H, Liu Z, Wang C, He Y, Zhang X, Li W, Li C, Zhao J, Long W. A Signature of Autophagy-Related Long Non-coding RNA to Predict the Prognosis of Breast Cancer. Front Genet 2021; 12:569318. [PMID: 33796128 PMCID: PMC8007922 DOI: 10.3389/fgene.2021.569318] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 02/16/2021] [Indexed: 12/24/2022] Open
Abstract
Background: A surge in newly diagnosed breast cancer has overwhelmed the public health system worldwide. Joint effort had beed made to discover the genetic mechanism of these disease globally. Accumulated research has revealed autophagy may act as a vital part in the pathogenesis of breast cancer. Objective: Aim to construct a prognostic model based on autophagy-related lncRNAs and investigate their potential mechanisms in breast cancer. Methods: The transcriptome data and clinical information of patients with breast cancer were obtained from The Cancer Genome Atlas (TCGA) database. Autophagy-related genes were obtained from the Human Autophagy Database (HADb). Long non-coding RNAs (lncRNAs) related to autophagy were acquired through the Pearson correlation analysis. Univariate Cox regression analysis as well as the least absolute shrinkage and selection operator (LASSO) regression analysis were used to identify autophagy-related lncRNAs with prognostic value. We constructed a risk scoring model to assess the prognostic significance of the autophagy-related lncRNAs signatures. The nomogram was then established based on the risk score and clinical indicators. Through the calibration curve, the concordance index (C-index) and receiver operating characteristic (ROC) curve analysis were evaluated to obtain the model's predictive performance. Subgroup analysis was performed to evaluate the differential ability of the model. Subsequently, gene set enrichment analysis was conducted to investigate the potential functions of these lncRNAs. Results: We attained 1,164 breast cancer samples from the TCGA database and 231 autophagy-related genes from the HAD database. Through correlation analysis, 179 autophagy-related lncRNAs were finally identified. Univariate Cox regression analysis and LASSO regression analysis further screened 18 prognosis-associated lncRNAs. The risk scoring model was constructed to divide patients into high-risk and low-risk groups. It was found that the low-risk group had better overall survival (OS) than those of the high-risk group. Then, the nomogram model including age, tumor stage, TNM stage and risk score was established. The evaluation index (C-index: 0.78, 3-year OS AUC: 0.813 and 5-year OS AUC: 0.785) showed that the nomogram had excellent predictive power. Subgroup analysis showed there were difference in OS between high-risk and low-risk patients in different subgroups (stage I-II, ER positive, Her-2 negative and non-TNBC subgroups; all P < 0.05). According to the results of gene set enrichment analysis, these lncRNAs were involved in the regulation of multicellular organismal macromolecule metabolic process in multicellular organisms, nucleotide excision repair, oxidative phosphorylation, and TGF-β signaling pathway. Conclusions: We identified 18 autophagy-related lncRNAs with prognostic value in breast cancer, which may regulate tumor growth and progression in multiple ways.
Collapse
Affiliation(s)
- Xiaoping Li
- Department of Gastrointestinal Surgery, Affiliated Jiangmen Hospital of Sun Yat-sen University, Jiangmen, China
| | - Jishang Chen
- Department of Breast Surgery, Yangjiang People's Hospital, Yangjiang, China
| | - Qihe Yu
- Department of Oncology, Affiliated Jiangmen Hospital of Sun Yat-sen University, Jiangmen, China
| | - Hui Huang
- Department of Breast Surgery, Jiangmen Maternity & Chile Health Care Hospital, Jiangmen, China
| | - Zhuangsheng Liu
- Department of Radiology, Affiliated Jiangmen Hospital of Sun Yat-sen University, Jiangmen, China
| | - Chengxing Wang
- Department of Gastrointestinal Surgery, Affiliated Jiangmen Hospital of Sun Yat-sen University, Jiangmen, China
| | - Yaoming He
- Department of Gastrointestinal Surgery, Affiliated Jiangmen Hospital of Sun Yat-sen University, Jiangmen, China
| | - Xin Zhang
- Clinical Experimental Center, Jiangmen Key Laboratory of Clinical Biobanks and Translational Research, Affiliated Jiangmen Hospital of Sun Yat-sen University, Jiangmen, China
| | - Weiwen Li
- Department of Breast and Thyroid Surgery, Affiliated Jiangmen Hospital of Sun Yat-sen University, Jiangmen, China
| | - Chao Li
- Department of Gastrointestinal Surgery, Affiliated Jiangmen Hospital of Sun Yat-sen University, Jiangmen, China
| | - Jinglin Zhao
- Department of Gastrointestinal Surgery, Affiliated Jiangmen Hospital of Sun Yat-sen University, Jiangmen, China
| | - Wansheng Long
- Department of Radiology, Affiliated Jiangmen Hospital of Sun Yat-sen University, Jiangmen, China
| |
Collapse
|
14
|
Han B, Zhang H, Zhu Y, Han X, Wang Z, Gao Z, Yuan Y, Tian R, Zhang F, Niu R. Subtype-specific risk models for accurately predicting the prognosis of breast cancer using differentially expressed autophagy-related genes. Aging (Albany NY) 2020; 12:13318-13337. [PMID: 32649310 PMCID: PMC7377895 DOI: 10.18632/aging.103437] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Accepted: 05/25/2020] [Indexed: 01/08/2023]
Abstract
Emerging evidence suggests that the dysregulation of autophagy-related genes (ARGs) is coupled with the carcinogenesis and progression of breast cancer (BRCA). We constructed three subtype-specific risk models using differentially expressed ARGs. In Luminal, Her-2, and Basal-like BRCA, four- (BIRC5, PARP1, ATG9B, and TP63), three- (ITPR1, CCL2, and GAPDH), and five-gene (PRKN, FOS, BAX, IFNG, and EIF4EBP1) risk models were identified, which all have a receiver operating characteristic > 0.65 in the training and testing dataset. Multivariable Cox analysis showed that those risk models can accurately and independently predict the overall survival of BRCA patients. Comprehensive analysis showed that the 12 identified ARGs were correlated with the overall survival of BRCA patients; six of the ARGs (PARP1, TP63, CCL2, GAPDH, FOS, and EIF4EBP1) were differentially expressed between BRCA and normal breast tissue at the protein level. In addition, the 12 identified ARGs were highly interconnected and displayed high frequency of copy number variation in BRCA samples. Gene set enrichment analysis suggested that the deactivation of the immune system was the important driving force for the progression of Basal-like BRCA. This study demonstrated that the 12 ARG signatures were potential multi-dimensional biomarkers for the diagnosis, prognosis, and treatment of BRCA.
Collapse
Affiliation(s)
- Baoai Han
- Public Laboratory, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin 300060, China
- Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, China
- Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China
- Key Laboratory of Breast Cancer Prevention and Therapy, Ministry of Education, Tianjin 300060, China
| | - He Zhang
- Public Laboratory, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin 300060, China
- Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, China
- Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China
- Key Laboratory of Breast Cancer Prevention and Therapy, Ministry of Education, Tianjin 300060, China
| | - Yuying Zhu
- Public Laboratory, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin 300060, China
- Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, China
- Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China
- Key Laboratory of Breast Cancer Prevention and Therapy, Ministry of Education, Tianjin 300060, China
| | - Xingxing Han
- Public Laboratory, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin 300060, China
- Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, China
- Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China
- Key Laboratory of Breast Cancer Prevention and Therapy, Ministry of Education, Tianjin 300060, China
| | - Zhiyong Wang
- Public Laboratory, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin 300060, China
- Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, China
- Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China
- Key Laboratory of Breast Cancer Prevention and Therapy, Ministry of Education, Tianjin 300060, China
| | - Zicong Gao
- Public Laboratory, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin 300060, China
- Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, China
- Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China
- Key Laboratory of Breast Cancer Prevention and Therapy, Ministry of Education, Tianjin 300060, China
| | - Yue Yuan
- Public Laboratory, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin 300060, China
- Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, China
- Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China
- Key Laboratory of Breast Cancer Prevention and Therapy, Ministry of Education, Tianjin 300060, China
| | - Ruinan Tian
- Public Laboratory, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin 300060, China
- Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, China
- Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China
- Key Laboratory of Breast Cancer Prevention and Therapy, Ministry of Education, Tianjin 300060, China
| | - Fei Zhang
- Public Laboratory, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin 300060, China
- Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, China
- Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China
- Key Laboratory of Breast Cancer Prevention and Therapy, Ministry of Education, Tianjin 300060, China
| | - Ruifang Niu
- Public Laboratory, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin 300060, China
- Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, China
- Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China
- Key Laboratory of Breast Cancer Prevention and Therapy, Ministry of Education, Tianjin 300060, China
| |
Collapse
|
15
|
Yang ZY, Yang L, Xu CW, Wang XJ, Lei L. An insertion mutation of ERBB2 enhances breast cancer cell growth and confers resistance to lapatinib through AKT signaling pathway. Biol Open 2020; 9:bio.047662. [PMID: 31980423 PMCID: PMC6994922 DOI: 10.1242/bio.047662] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
In clinical practice, some breast cancer (BC) patients carry a rare ERBB2 in-frame insertion (p. Pro780_Tyr781insGlySerPro) and are resistant to anti-ERBB2 therapy. To explore the potential procarcinogenic role of this ERBB2 mutation, we conducted the present study using BC cells overexpressing wild-type (WT) ERBB2 or P780-Y781 ERBB2 [mutated (MT)]. MDA-MB-231 and MCF-7 cells were transfected with the following plasmids using a lentivirus system: negative control (ERBB2-NC), WT ERBB2 overexpression (ERBB2-WT), and P780-Y781 ERBB2 overexpression (ERBB2-MT). P780-Y781 ERBB2 conferred significant resistance to lapatinib, as assessed by cell viability and colony counts. Analysis of the cell cycle showed that the P780-Y781 ERBB2 group showed an elevated proportion of cells in S, G2, and M phases compared with WT ERBB2 when exposed to lapatinib. Following lapatinib treatment, phosphorylated AKT (p-AKT) was strongly upregulated in the P780-Y781 ERBB2 group. Among ERBB2+ patients, the P780-Y781 ERBB2 group showed increased levels of p-AKT. Furthermore, the AKT inhibitor perifosine effectively suppressed lapatinib resistance, as indicated by the lapatinib inhibition curve and results of the colony formation assay, and decreased AKT phosphorylation. Altogether, we discovered a procarcinogenic mutation of ERBB2 that enhances BC cell growth through AKT signaling and causes resistance to lapatinib. Patients with this in-frame insertion mutation of ERBB2 should be recommended other therapeutic strategies apart from ERBB2 tyrosine kinase inhibitors, in particular lapatinib.
Collapse
Affiliation(s)
- Zi-Yan Yang
- The Second Clinical Medical College of Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310022, China
| | - Liu Yang
- Shanghai Dunlu Biomedical Technology Co. Ltd. Shanghai 201611, China
| | - Chun-Wei Xu
- Department of Pathology, Fujian Cancer Hospital, Fujian Medical University. No. 420, Fuma Road, Fuzhou, Fujian 350014, China
| | - Xiao-Jia Wang
- Department of Chemotherapy, Zhejiang Cancer Hospital. No.1 Banshan East Street, Gongshu District, Hangzhou, Zhejiang 310022, China
| | - Lei Lei
- Department of Chemotherapy, Zhejiang Cancer Hospital. No.1 Banshan East Street, Gongshu District, Hangzhou, Zhejiang 310022, China
| |
Collapse
|
16
|
Wang HC, Chou CL, Yang CC, Huang WL, Hsu YC, Luo CW, Chen TJ, Li CF, Pan MR. Over-Expression of CHD4 Is an Independent Biomarker of Poor Prognosis in Patients with Rectal Cancers Receiving Concurrent Chemoradiotherapy. Int J Mol Sci 2019; 20:4087. [PMID: 31438571 PMCID: PMC6747537 DOI: 10.3390/ijms20174087] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 08/19/2019] [Accepted: 08/19/2019] [Indexed: 12/18/2022] Open
Abstract
Neoadjuvant concurrent chemoradiotherapy (CCRT), followed by radical proctectomy, is the standard treatment for locally advanced rectal cancer. However, a poor response and therapeutic resistance continue to occur despite this treatment. In this study, we analyzed the microarray datasets (GSE68204) of rectal cancer from the Gene Expression Omnibus database, and identified CHD4 as one of the most significantly up-regulated genes among all subunits of the nucleosome remodeling and histone deacetylation (NuRD) complex, in non-responders to CCRT, among locally advanced rectal cancer (LARC) patients. We confirmed the predictive and prognostic significance of CHD4 expression in CCRT treatment, and its correlation with other clinicopathological features, such as tumor regression grade (TRG), therapeutic response, and patient survival. This was carried out by immunohistochemical studies on endoscopic biopsy tissues from 172 rectal cancer patients, receiving neoadjuvant concurrent chemoradiotherapy (CCRT). A high expression of CHD4 was significantly associated with pre-treatment tumor status (p < 0.001) and lymph node metastasis (p < 0.001), post-treatment tumor status (p < 0.001), and lymph node metastasis (p < 0.001), vascular invasion (p = 0.042), and tumor regression grade (p = 0.001). A high expression of CHD4 could also predict poor disease-specific survival and metastasis-free survival (log-rank test, p = 0.0373 and p < 0.0001, respectively). In multivariate Cox proportional-hazards regression analysis, CHD4 overexpression was an independent factor of poor prognosis for metastasis-free survival (HR, 4.575; 95% CI, 1.717-12.192; p = 0.002). By in vitro studies, based on cell line models, we also demonstrated that, the overexpression of CHD4 induced radio-resistance in microsatellite instability-high (MSI-H) colorectal cells (CRCs). On the contrary, the knockdown of CHD4 enhanced radiosensitivity in microsatellite stable (MSS) CRCs. Altogether, we have identified CHD4 as an important regulator of radio-resistance in both MSI-H and MSS CRC cell lines.
Collapse
Affiliation(s)
- Hui-Ching Wang
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Division of Hematology and Oncology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Chia-Lin Chou
- Division of Colon & Rectal Surgery, Department of Surgery, Chi Mei Medical Center, Tainan 710, Taiwan
- Institute of Biomedical Sciences, National Sun Yat-sen University, Kaohsiung 804, Taiwan
| | - Ching-Chieh Yang
- Institute of Biomedical Sciences, National Sun Yat-sen University, Kaohsiung 804, Taiwan
- Department of Radiation Oncology, Chi-Mei Medical Center, Tainan 710, Taiwan
- Department of Pharmacy, Chia-Nan University of Pharmacy and Science, Tainan 71745, Taiwan
| | - Wei-Lun Huang
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Department of Radiation Oncology, Kaohsiung Veterans General Hospital, Kaohsiung 813, Taiwan
| | - Yin-Chou Hsu
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Department of Emergency Medicine, E-Da Hospital, I-Shou University, Kaohsiung 824, Taiwan
| | - Chi-Wen Luo
- Division of Breast Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan
| | - Tzu-Ju Chen
- Institute of Biomedical Sciences, National Sun Yat-sen University, Kaohsiung 804, Taiwan
- Department of Pathology, Chi Mei Medical Center, Tainan 710, Taiwan
- Department of Optometry, Chung Hwa University of Medical Technology, Tainan 717, Taiwan
| | - Chien-Feng Li
- Department of Pathology, Chi Mei Medical Center, Tainan 710, Taiwan
- Department of Medical Research, Chi Mei Medical Center, Tainan 710, Taiwan
- National Institute of Cancer Research, National Health Research Institute, Tainan 704, Taiwan
| | - Mei-Ren Pan
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan.
- Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung 807, Taiwan.
| |
Collapse
|
17
|
Zhang J, Shih DJ, Lin SY. The Tale of CHD4 in DNA Damage Response and Chemotherapeutic Response. JOURNAL OF CANCER RESEARCH AND CELLULAR THERAPEUTICS 2019; 3:052. [PMID: 32577620 PMCID: PMC7310990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
The chromatin remodeling factor chromodomain helicase DNA-binding protein 4 (CHD4) is a core component of the nucleosome remodeling and deacetylase (NuRD) complex. Due to its important role in DNA damage repair, CHD4 has been identified as a key determinant in cancer progression, stem cell differentiation, and T cell and B cell development. Accumulating evidence has revealed that CHD4 can function in NuRD dependent and independent manner in response to DNA damage. Mutations of CHD4 have been shown to diminish its functions, which indicates that interpretation of its mutations may provide tangible benefit for patients. The expression of CHD4 play a dual role in sensitizing cancer cells to chemotherapeutic agents, which provides new insights into the contribution of CHD4 to tumor biology and new therapeutic avenues.
Collapse
Affiliation(s)
- Jing Zhang
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - David J.H. Shih
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | - Shiaw-Yih Lin
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA.,Corresponding Author: Shiaw-Yih Lin, Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA.
| |
Collapse
|