1
|
Alexander AK, Rodriguez KF, Chen YY, Amato C, Estermann MA, Nicol B, Xu X, Yao HHC. Single-nucleus multiomics reveals the gene regulatory networks underlying sex determination of murine primordial germ cells. eLife 2025; 13:RP96591. [PMID: 40063068 PMCID: PMC11893106 DOI: 10.7554/elife.96591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/13/2025] Open
Abstract
Accurate specification of female and male germ cells during embryonic development is critical for sexual reproduction. Primordial germ cells (PGCs) are the bipotential precursors of mature gametes that commit to an oogenic or spermatogenic fate in response to sex-determining cues from the fetal gonad. The critical processes required for PGCs to integrate and respond to signals from the somatic environment in gonads are not well understood. In this study, we developed the first single-nucleus multiomics map of chromatin accessibility and gene expression during murine PGC development in both XX and XY embryos. Profiling of cell-type-specific transcriptomes and regions of open chromatin from the same cell captured the molecular signatures and gene networks underlying PGC sex determination. Joint RNA and ATAC data for single PGCs resolved previously unreported PGC subpopulations and cataloged a multimodal reference atlas of differentiating PGC clusters. We discovered that regulatory element accessibility precedes gene expression during PGC development, suggesting that changes in chromatin accessibility may prime PGC lineage commitment prior to differentiation. Similarly, we found that sexual dimorphism in chromatin accessibility and gene expression increased temporally in PGCs. Combining single-nucleus sequencing data, we computationally mapped the cohort of transcription factors that regulate the expression of sexually dimorphic genes in PGCs. For example, the gene regulatory networks of XX PGCs are enriched for the transcription factors, TFAP2c, TCFL5, GATA2, MGA, NR6A1, TBX4, and ZFX. Sex-specific enrichment of the forkhead-box and POU6 families of transcription factors was also observed in XY PGCs. Finally, we determined the temporal expression patterns of WNT, BMP, and RA signaling during PGC sex determination, and our discovery analyses identified potentially new cell communication pathways between supporting cells and PGCs. Our results illustrate the diversity of factors involved in programming PGCs toward a sex-specific fate.
Collapse
Affiliation(s)
- Adriana K Alexander
- Reproductive Developmental Biology Group, National Institute of Environmental Health Sciences, Research Triangle ParkDurhamUnited States
| | - Karina F Rodriguez
- Reproductive Developmental Biology Group, National Institute of Environmental Health Sciences, Research Triangle ParkDurhamUnited States
| | - Yu-Ying Chen
- Reproductive Developmental Biology Group, National Institute of Environmental Health Sciences, Research Triangle ParkDurhamUnited States
| | - Ciro Amato
- Reproductive Developmental Biology Group, National Institute of Environmental Health Sciences, Research Triangle ParkDurhamUnited States
| | - Martin A Estermann
- Reproductive Developmental Biology Group, National Institute of Environmental Health Sciences, Research Triangle ParkDurhamUnited States
| | - Barbara Nicol
- Reproductive Developmental Biology Group, National Institute of Environmental Health Sciences, Research Triangle ParkDurhamUnited States
| | - Xin Xu
- Epigenetics & Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences, Research Triangle ParkDurhamUnited States
| | - Humphrey HC Yao
- Reproductive Developmental Biology Group, National Institute of Environmental Health Sciences, Research Triangle ParkDurhamUnited States
| |
Collapse
|
2
|
Alexander AK, Rodriguez KF, Chen YY, Amato CM, Estermann MA, Nicol B, Xu X, Hung-Chang Yao H. Single-nucleus multiomics reveals the gene-regulatory networks underlying sex determination of murine primordial germ cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.19.581036. [PMID: 39386556 PMCID: PMC11463670 DOI: 10.1101/2024.02.19.581036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Accurate specification of female and male germ cells during embryonic development is critical for sexual reproduction. Primordial germ cells (PGCs) are the bipotential precursors of mature gametes that commit to an oogenic or spermatogenic fate in response to sex-determining cues from the fetal gonad. The critical processes required for PGCs to integrate and respond to signals from the somatic environment in gonads are not understood. In this study, we developed the first single-nucleus multiomics map of chromatin accessibility and gene expression during murine PGC development in both XX and XY embryos. Profiling of cell-type specific transcriptomes and regions of open chromatin from the same cell captured the molecular signatures and gene networks underlying PGC sex determination. Joint RNA and ATAC data for single PGCs resolved previously unreported PGC subpopulations and cataloged a multimodal reference atlas of differentiating PGC clusters. We discovered that regulatory element accessibility precedes gene expression during PGC development, suggesting that changes in chromatin accessibility may prime PGC lineage commitment prior to differentiation. Similarly, we found that sexual dimorphism in chromatin accessibility and gene expression increased temporally in PGCs. Combining single-nucleus sequencing data, we computationally mapped the cohort of transcription factors that regulate the expression of sexually dimorphic genes in PGCs. For example, the gene regulatory networks of XX PGCs are enriched for the transcription factors, TFAP2c, TCFL5, GATA2, MGA, NR6A1, TBX4, and ZFX. Sex-specific enrichment of the forkhead-box and POU6 families of transcription factors was also observed in XY PGCs. Finally, we determined the temporal expression patterns of WNT, BMP, and RA signaling during PGC sex determination, and our discovery analyses identified potentially new cell communication pathways between supporting cells and PGCs. Our results illustrate the diversity of factors involved in programming PGCs towards a sex-specific fate.
Collapse
Affiliation(s)
- Adriana K. Alexander
- Reproductive Developmental Biology Group, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA
| | - Karina F. Rodriguez
- Reproductive Developmental Biology Group, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA
| | - Yu-Ying Chen
- Reproductive Developmental Biology Group, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA
| | - Ciro M. Amato
- Reproductive Developmental Biology Group, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA
| | - Martin A. Estermann
- Reproductive Developmental Biology Group, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA
| | - Barbara Nicol
- Reproductive Developmental Biology Group, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA
| | - Xin Xu
- Epigenetics & Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA
| | - Humphrey Hung-Chang Yao
- Reproductive Developmental Biology Group, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA
| |
Collapse
|
3
|
Wang S, Li H, Liu Y, Pang S, Qiao S, Su J, Wang S, Zhang Y. Connectivity Network Feature Sharing in Single-Cell RNA Sequencing Data Identifies Rare Cells. J Chem Inf Model 2024; 64:6596-6609. [PMID: 39096508 DOI: 10.1021/acs.jcim.4c00796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/05/2024]
Abstract
Single-cell RNA sequencing is a valuable technique for identifying diverse cell subtypes. A key challenge in this process is that the detection of rare cells is often missed by conventional methods due to low abundance and subtle features of these cells. To overcome this, we developed SCLCNF (Local Connectivity Network Feature Sharing in Single-Cell RNA sequencing), a novel approach that identifies rare cells by analyzing features uniquely expressed in these cells. SCLCNF creates a cellular connectivity network, considering how each cell relates to its neighbors. This network helps to pinpoint coexpression patterns unique to rare cells, utilizing a rarity score to confirm their presence. Our method performs better in detecting rare cells than existing techniques, offering enhanced robustness. It has proven to be effective in human gastrula data sets for accurately pinpointing rare cells, and in sepsis data sets where it uncovers previously unidentified rare cell populations.
Collapse
Affiliation(s)
- Shudong Wang
- Qingdao Institute of Software, College of Computer Science and Technology, China University of Petroleum (East China), Qingdao 266580, China
| | - Hengxiao Li
- Qingdao Institute of Software, College of Computer Science and Technology, China University of Petroleum (East China), Qingdao 266580, China
| | - Yahui Liu
- College of Science, China University of Petroleum (East China), Qingdao 266580, China
| | - Shanchen Pang
- Qingdao Institute of Software, College of Computer Science and Technology, China University of Petroleum (East China), Qingdao 266580, China
| | - Sibo Qiao
- The College of Software, Tiangong University, Tianjin 300387, China
| | - Jionglong Su
- School of AI and Advanced Computing, XJTLU Entrepreneur College (Taicang), Xi'an Jiaotong-Liverpool University, Suzhou 215123, Jiangsu, China
| | - Shaoqiang Wang
- School of Information and Control Engineering, Qingdao University of Technology, Qingdao 266525, China
| | - Yulin Zhang
- College of Mathematics and Systems Science, Shandong University of Science and Technology, Qingdao 266590, China
| |
Collapse
|
4
|
Bush SJ, Nikola R, Han S, Suzuki S, Yoshida S, Simons BD, Goriely A. Adult Human, but Not Rodent, Spermatogonial Stem Cells Retain States with a Foetal-like Signature. Cells 2024; 13:742. [PMID: 38727278 PMCID: PMC11083513 DOI: 10.3390/cells13090742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 04/17/2024] [Accepted: 04/21/2024] [Indexed: 05/13/2024] Open
Abstract
Spermatogenesis involves a complex process of cellular differentiation maintained by spermatogonial stem cells (SSCs). Being critical to male reproduction, it is generally assumed that spermatogenesis starts and ends in equivalent transcriptional states in related species. Based on single-cell gene expression profiling, it has been proposed that undifferentiated human spermatogonia can be subclassified into four heterogenous subtypes, termed states 0, 0A, 0B, and 1. To increase the resolution of the undifferentiated compartment and trace the origin of the spermatogenic trajectory, we re-analysed the single-cell (sc) RNA-sequencing libraries of 34 post-pubescent human testes to generate an integrated atlas of germ cell differentiation. We then used this atlas to perform comparative analyses of the putative SSC transcriptome both across human development (using 28 foetal and pre-pubertal scRNA-seq libraries) and across species (including data from sheep, pig, buffalo, rhesus and cynomolgus macaque, rat, and mouse). Alongside its detailed characterisation, we show that the transcriptional heterogeneity of the undifferentiated spermatogonial cell compartment varies not only between species but across development. Our findings associate 'state 0B' with a suppressive transcriptomic programme that, in adult humans, acts to functionally oppose proliferation and maintain cells in a ready-to-react state. Consistent with this conclusion, we show that human foetal germ cells-which are mitotically arrested-can be characterised solely as state 0B. While germ cells with a state 0B signature are also present in foetal mice (and are likely conserved at this stage throughout mammals), they are not maintained into adulthood. We conjecture that in rodents, the foetal-like state 0B differentiates at birth into the renewing SSC population, whereas in humans it is maintained as a reserve population, supporting testicular homeostasis over a longer reproductive lifespan while reducing mutagenic load. Together, these results suggest that SSCs adopt differing evolutionary strategies across species to ensure fertility and genome integrity over vastly differing life histories and reproductive timeframes.
Collapse
Affiliation(s)
- Stephen J. Bush
- MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford OX3 9DS, UK
| | - Rafail Nikola
- MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford OX3 9DS, UK
| | - Seungmin Han
- Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, Cambridge CB2 1QN, UK
| | - Shinnosuke Suzuki
- Division of Germ Cell Biology, National Institute for Basic Biology, National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji, Okazaki 444-8787, Japan
- Graduate Institute for Advanced Studies, SOKENDAI, 5-1 Higashiyama, Myodaiji, Okazaki 444-8787, Japan
| | - Shosei Yoshida
- Division of Germ Cell Biology, National Institute for Basic Biology, National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji, Okazaki 444-8787, Japan
- Graduate Institute for Advanced Studies, SOKENDAI, 5-1 Higashiyama, Myodaiji, Okazaki 444-8787, Japan
| | - Benjamin D. Simons
- Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, Cambridge CB2 1QN, UK
- Wellcome—MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge CB2 0AW, UK
- Department of Applied Mathematics and Theoretical Physics, Centre for Mathematical Science, University of Cambridge, Cambridge CB3 0WA, UK
| | - Anne Goriely
- MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford OX3 9DS, UK
- NIHR Biomedical Research Centre, Oxford OX3 7JX, UK
| |
Collapse
|
5
|
Mueller ML, McNabb BR, Owen JR, Hennig SL, Ledesma AV, Angove ML, Conley AJ, Ross PJ, Van Eenennaam AL. Germline ablation achieved via CRISPR/Cas9 targeting of NANOS3 in bovine zygotes. Front Genome Ed 2023; 5:1321243. [PMID: 38089499 PMCID: PMC10711618 DOI: 10.3389/fgeed.2023.1321243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 11/09/2023] [Indexed: 02/01/2024] Open
Abstract
NANOS3 is expressed in migrating primordial germ cells (PGCs) to protect them from apoptosis, and it is known to be a critical factor for germline development of both sexes in several organisms. However, to date, live NANOS3 knockout (KO) cattle have not been reported, and the specific role of NANOS3 in male cattle, or bulls, remains unexplored. This study generated NANOS3 KO cattle via cytoplasmic microinjection of the CRISPR/Cas9 system in vitro produced bovine zygotes and evaluated the effect of NANOS3 elimination on bovine germline development, from fetal development through reproductive age. The co-injection of two selected guide RNA (gRNA)/Cas9 ribonucleoprotein complexes (i.e., dual gRNA approach) at 6 h post fertilization achieved a high NANOS3 KO rate in developing embryos. Subsequent embryo transfers resulted in a 31% (n = 8/26) pregnancy rate. A 75% (n = 6/8) total KO rate (i.e., 100% of alleles present contained complete loss-of-function mutations) was achieved with the dual gRNA editing approach. In NANOS3 KO fetal testes, PGCs were found to be completely eliminated by 41-day of fetal age. Importantly, despite the absence of germ cells, seminiferous tubule development was not impaired in NANOS3 KO bovine testes during fetal, perinatal, and adult stages. Moreover, a live, NANOS3 KO, germline-ablated bull was produced and at sexual maturity he exhibited normal libido, an anatomically normal reproductive tract, and intact somatic gonadal development and structure. Additionally, a live, NANOS3 KO, germline-ablated heifer was produced. However, it was evident that the absence of germ cells in NANOS3 KO cattle compromised the normalcy of ovarian development to a greater extent than it did testes development. The meat composition of NANOS3 KO cattle was unremarkable. Overall, this study demonstrated that the absence of NANOS3 in cattle leads to the specific deficiency of both male and female germ cells, suggesting the potential of NANOS3 KO cattle to act as hosts for donor-derived exogenous germ cell production in both sexes. These findings contribute to the understanding of NANOS3 function in cattle and have valuable implications for the development of novel breeding technologies using germline complementation in NANOS3 KO germline-ablated hosts.
Collapse
Affiliation(s)
- Maci L. Mueller
- Department of Animal Science, University of California, Davis, Davis, CA, United States
| | - Bret R. McNabb
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California, Davis, Davis, CA, United States
| | - Joseph R. Owen
- Department of Animal Science, University of California, Davis, Davis, CA, United States
| | - Sadie L. Hennig
- Department of Animal Science, University of California, Davis, Davis, CA, United States
| | - Alba V. Ledesma
- Department of Animal Science, University of California, Davis, Davis, CA, United States
| | - Mitchell L. Angove
- Department of Animal Science, University of California, Davis, Davis, CA, United States
| | - Alan J. Conley
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California, Davis, Davis, CA, United States
| | - Pablo J. Ross
- Department of Animal Science, University of California, Davis, Davis, CA, United States
| | | |
Collapse
|
6
|
Hirano T, Wright D, Suzuki A, Saga Y. A cooperative mechanism of target RNA selection via germ-cell-specific RNA-binding proteins NANOS2 and DND1. Cell Rep 2022; 39:110894. [PMID: 35705038 DOI: 10.1016/j.celrep.2022.110894] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Revised: 12/09/2021] [Accepted: 05/06/2022] [Indexed: 11/03/2022] Open
Abstract
The germ-cell-specific RNA-binding protein (RBP) NANOS2 plays a pivotal role in male gonocyte differentiation and spermatogonial stem cell maintenance. Although NANOS2 interacts with the CNOT deadenylation complex and Dead end 1 (DND1) to repress target RNAs, the molecular mechanisms underlying target mRNA selection remain unclear because of the limited cell resource in vivo. Here, we demonstrate that exogenous NANOS2-DND1 suppresses target mRNAs in somatic cells. Using this somatic cell system, we find that NANOS2 interacts with RNA-bound DND1 and recruits the CNOT complex to the mRNAs. However, a fusion construct composed of the CNOT1-binding site of NANOS2 (NIM) and DND1 fails to repress the target gene expression. Therefore, NANOS2 is required not only for recruitment of the CNOT complex but also for selecting the target mRNA with DND1. This study reveals that NANOS2 functions as a second-layer RBP for the target recognition and functional adaptation of DND1.
Collapse
Affiliation(s)
- Takamasa Hirano
- Mammalian Development Laboratory, Department of Gene Function and Phenomics, National Institute of Genetics, 1111 Mishima, Shizuoka 411-8582, Japan
| | - Danelle Wright
- Mammalian Development Laboratory, Department of Gene Function and Phenomics, National Institute of Genetics, 1111 Mishima, Shizuoka 411-8582, Japan; Department of Genetics, SOKENDAI, 1111 Mishima, Shizuoka 411-8582, Japan
| | - Atsushi Suzuki
- Division of Materials Science and Chemical Engineering, Graduate School of Engineering, Yokohama National University, Yokohama, Kanagawa 240-8501 Japan
| | - Yumiko Saga
- Mammalian Development Laboratory, Department of Gene Function and Phenomics, National Institute of Genetics, 1111 Mishima, Shizuoka 411-8582, Japan; Department of Genetics, SOKENDAI, 1111 Mishima, Shizuoka 411-8582, Japan; Division for Development of Genetic-Engineered Mouse Resource, Genetic Resource Center, National Institute of Genetics, 1111 Mishima, Shizuoka 411-8582, Japan; Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan.
| |
Collapse
|
7
|
Qiqi L, Junlin H, Xuemei C, Yi H, Fangfang L, Yanqing G, Yan Z, Lamptey J, Zhuxiu C, Fangfei L, Yingxiong W, Xinyi M. Fetal exposure of Aristolochic Acid I undermines ovarian reserve by disturbing primordial folliculogenesis. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 236:113480. [PMID: 35397442 DOI: 10.1016/j.ecoenv.2022.113480] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 03/27/2022] [Accepted: 03/29/2022] [Indexed: 06/14/2023]
Abstract
The primordial follicle pool established in early life determines the ovarian reserve in the female reproductive lifespan. Premature exhaustion of primordial follicles contributes to primary ovarian insufficiency (POI), that is dependent by the initial size of the primordial follicle pool and by the rate of its activation and depletion. AAI, a powerful nephrotoxin with carcinogenic potential, is present in the Aristolochiaceae species, which can release AAI into soil as a persistent pollutant. In order to assess the potential risk of Aristolochic Acid I (AAI) exposure on mammalian oogenesis, we uncovered its adverse effect on primordial folliculogenesis in the neonatal mouse ovary and its effect on female fertility in adulthood. Pregnant mice were orally administrated with doses of AAI without hepatic or renal toxicity during late-gestation. Ovaries from offspring of administered female displayed gross aberrations during primordial folliculogenesis. Also, unenclosed oocytes in germ-cell cysts showed increased DNA damage. Furthermore, several key factors, including NANOS3, SOX9, KLF4, that govern early gonad's differentiation were abnormally expressed in the exposed ovary, while the follicle formation was partially restored by knockdown of Nanos3 or sox9. In adulthood, these aberrations evolved into a significant reduction in offspring number and impaired ovarian reserve. Together, our results show that AAI influences primordial folliculogenesis and, importantly, affected female fertility. This study shows that administration of drugs herbs or consumption of vegetables that contain AAs during pregnancy may adversely influence the fertility of offspring.
Collapse
Affiliation(s)
- Liu Qiqi
- College of Basic Medicine, Chongqing Medical University, Chongqing 400016, PR China; Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Chongqing 400016, PR China
| | - He Junlin
- Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Chongqing 400016, PR China; Laboratory of Reproductive Biology, School of Public Health and Management, Chongqing Medical University, Chongqing 400016, PR China
| | - Chen Xuemei
- Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Chongqing 400016, PR China; Laboratory of Reproductive Biology, School of Public Health and Management, Chongqing Medical University, Chongqing 400016, PR China
| | - Hong Yi
- Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Chongqing 400016, PR China; Laboratory of Reproductive Biology, School of Public Health and Management, Chongqing Medical University, Chongqing 400016, PR China
| | - Li Fangfang
- Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Chongqing 400016, PR China; Laboratory of Reproductive Biology, School of Public Health and Management, Chongqing Medical University, Chongqing 400016, PR China
| | - Geng Yanqing
- College of Basic Medicine, Chongqing Medical University, Chongqing 400016, PR China; Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Chongqing 400016, PR China
| | - Zhang Yan
- Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Chongqing 400016, PR China; Laboratory of Reproductive Biology, School of Public Health and Management, Chongqing Medical University, Chongqing 400016, PR China
| | - Jones Lamptey
- Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Chongqing 400016, PR China
| | - Chen Zhuxiu
- Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Chongqing 400016, PR China; Laboratory of Reproductive Biology, School of Public Health and Management, Chongqing Medical University, Chongqing 400016, PR China
| | - Liu Fangfei
- College of Basic Medicine, Chongqing Medical University, Chongqing 400016, PR China; Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Chongqing 400016, PR China
| | - Wang Yingxiong
- College of Basic Medicine, Chongqing Medical University, Chongqing 400016, PR China; Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Chongqing 400016, PR China
| | - Mu Xinyi
- College of Basic Medicine, Chongqing Medical University, Chongqing 400016, PR China; Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Chongqing 400016, PR China.
| |
Collapse
|
8
|
Inoue H, Sakurai T, Hasegawa K, Suzuki A, Saga Y. NANOS3 suppresses premature spermatogonial differentiation to expand progenitors and fine-tunes spermatogenesis in mice. Biol Open 2022; 11:274984. [PMID: 35394008 PMCID: PMC9002807 DOI: 10.1242/bio.059146] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 02/25/2022] [Indexed: 12/19/2022] Open
Abstract
In the mouse testis, sperm originate from spermatogonial stem cells (SSCs). SSCs give rise to spermatogonial progenitors, which expand their population until entering the differentiation process that is precisely regulated by a fixed time-scaled program called the seminiferous cycle. Although this expansion process of progenitors is highly important, its regulatory mechanisms remain unclear. NANOS3 is an RNA-binding protein expressed in the progenitor population. We demonstrated that the conditional deletion of Nanos3 at a later embryonic stage results in the reduction of spermatogonial progenitors in the postnatal testis. This reduction was associated with the premature differentiation of progenitors. Furthermore, this premature differentiation caused seminiferous stage disagreement between adjacent spermatogenic cells, which influenced spermatogenic epithelial cycles, leading to disruption of the later differentiation pathway. Our study suggests that NANOS3 plays an important role in timing progenitor expansion to adjust to the proper differentiation timing by blocking the retinoic acid (RA) signaling pathway.
Collapse
Affiliation(s)
- Hiroki Inoue
- Department of Gene Function and Phenomics, Mammalian Development Laboratory, National Institute of Genetics, Mishima, 411-8540Japan
| | - Takayuki Sakurai
- Department of Genetics, School of Life Science, The Graduate University for Advised Studies (SOKENDAI), Mishima, 411-8540Japan
| | - Kazuteru Hasegawa
- Department of Genetics, School of Life Science, The Graduate University for Advised Studies (SOKENDAI), Mishima, 411-8540Japan
| | - Atsushi Suzuki
- Division of Materials Science and Chemical Engineering, Faculty of Engineering, Yokohama National University, Yokohama, Kanagawa, 240-8501Japan
| | - Yumiko Saga
- Department of Gene Function and Phenomics, Mammalian Development Laboratory, National Institute of Genetics, Mishima, 411-8540Japan.,Department of Genetics, School of Life Science, The Graduate University for Advised Studies (SOKENDAI), Mishima, 411-8540Japan.,Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, 113-0033, Japan
| |
Collapse
|
9
|
Wright D, Kiso M, Saga Y. Genetic and structural analysis of the in vivo functional redundancy between murine NANOS2 and NANOS3. Development 2021; 148:dev191916. [PMID: 33199444 DOI: 10.1242/dev.191916] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 11/04/2020] [Indexed: 01/26/2023]
Abstract
NANOS2 and NANOS3 are evolutionarily conserved RNA-binding proteins involved in murine germ cell development. NANOS3 is required for protection from apoptosis during migration and gonadal colonization in both sexes, whereas NANOS2 is male-specific and required for the male-type differentiation of germ cells. Ectopic NANOS2 rescues the functions of NANOS3, but NANOS3 cannot rescue NANOS2 function, even though its expression is upregulated in Nanos2-null conditions. It is unknown why NANOS3 cannot rescue NANOS2 function and it is unclear whether NANOS3 plays any role in male germ cell differentiation. To address these questions, we made conditional Nanos3/Nanos2 knockout mice and chimeric mice expressing chimeric NANOS proteins. Conditional double knockout of Nanos2 and Nanos3 led to the rapid loss of germ cells, and in vivo and in vitro experiments revealed that DND1 and NANOS2 binding is dependent on the specific NANOS2 zinc-finger structure. Moreover, murine NANOS3 failed to bind CNOT1, an interactor of NANOS2 at its N-terminal. Collectively, our study suggests that the inability of NANOS3 to rescue NANOS2 function is due to poor DND1 recruitment and CNOT1 binding.
Collapse
Affiliation(s)
- Danelle Wright
- Department of Genetics, The Graduate University for Advanced Studies, SOKENDAI, Mishima 411-8540, Japan
| | - Makoto Kiso
- Department of Gene Function and Phenomics, Mammalian Development Laboratory, National Institute of Genetics, Mishima 411-8540, Japan
| | - Yumiko Saga
- Department of Genetics, The Graduate University for Advanced Studies, SOKENDAI, Mishima 411-8540, Japan
- Department of Gene Function and Phenomics, Mammalian Development Laboratory, National Institute of Genetics, Mishima 411-8540, Japan
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo 113-0033, Japan
| |
Collapse
|
10
|
Zhao J, Yang H, Deng M, Ma J, Wang Z, Meng F, Wang F, Zhang YL. Expression pattern and potential role of Nanos3 in regulating testosterone biosynthesis in Leydig cells of sheep. Theriogenology 2020; 154:31-42. [DOI: 10.1016/j.theriogenology.2020.05.016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 05/01/2020] [Accepted: 05/11/2020] [Indexed: 10/24/2022]
|
11
|
Yan YB. Diverse functions of deadenylases in DNA damage response and genomic integrity. WILEY INTERDISCIPLINARY REVIEWS-RNA 2020; 12:e1621. [PMID: 32790161 DOI: 10.1002/wrna.1621] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 06/25/2020] [Accepted: 06/26/2020] [Indexed: 12/18/2022]
Abstract
DNA damage response (DDR) is a coordinated network of diverse cellular processes including the detection, signaling, and repair of DNA lesions, the adjustment of metabolic network and cell fate determination. To deal with the unavoidable DNA damage caused by either endogenous or exogenous stresses, the cells need to reshape the gene expression profile to allow efficient transcription and translation of DDR-responsive messenger RNAs (mRNAs) and to repress the nonessential mRNAs. A predominant method to adjust RNA fate is achieved by modulating the 3'-end oligo(A) or poly(A) length via the opposing actions of polyadenylation and deadenylation. Poly(A)-specific ribonuclease (PARN) and the carbon catabolite repressor 4 (CCR4)-Not complex, the major executors of deadenylation, are indispensable to DDR and genomic integrity in eukaryotic cells. PARN modulates cell cycle progression by regulating the stabilities of mRNAs and microRNA (miRNAs) involved in the p53 pathway and contributes to genomic stability by affecting the biogenesis of noncoding RNAs including miRNAs and telomeric RNA. The CCR4-Not complex is involved in diverse pathways of DDR including transcriptional regulation, signaling pathways, mRNA stabilities, translation regulation, and protein degradation. The RNA targets of deadenylases are tuned by the DDR signaling pathways, while in turn the deadenylases can regulate the levels of DNA damage-responsive proteins. The mutual feedback between deadenylases and the DDR signaling pathways allows the cells to precisely control DDR by dynamically adjusting the levels of sensors and effectors of the DDR signaling pathways. Here, the diverse functions of deadenylases in DDR are summarized and the underlying mechanisms are proposed according to recent findings. This article is categorized under: RNA Processing > 3' End Processing RNA in Disease and Development > RNA in Disease RNA Turnover and Surveillance > Turnover/Surveillance Mechanisms.
Collapse
Affiliation(s)
- Yong-Bin Yan
- State Key Laboratory of Membrane Biology, School of Life Sciences, Tsinghua University, Beijing, China
| |
Collapse
|
12
|
Pereira PA, Boavida LC, Santos MR, Becker JD. AtNOT1 is required for gametophyte development in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 103:1289-1303. [PMID: 32369648 DOI: 10.1111/tpj.14801] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 04/15/2020] [Accepted: 04/22/2020] [Indexed: 06/11/2023]
Abstract
In flowering plants, pollen development is under a dynamic and well-orchestrated transcriptional control, characterized by an early phase with high transcript diversity and a late post-mitotic phase skewed to a cell-type-specific transcriptome. Such transcriptional changes require a balance between synthesis and degradation of mRNA transcripts, the latter being initiated by deadenylation. The CCR4-NOT complex is the main evolutionary conserved deadenylase complex in eukaryotes, and its function is essential during germline specification in animals. We hypothesized that the CCR4-NOT complex might play a central role in mRNA turnover during microgametogenesis in Arabidopsis. Disruption of NOT1 gene, which encodes the scaffold protein of the CCR4-NOT complex, showed abnormal seed set. Genetic analysis failed to recover homozygous progeny, and reciprocal crosses confirmed reduced transmission through the male and female gametophytes. Concordantly, not1 embryo sacs showed delayed development and defects in embryogenesis. not1 pollen grains exhibited abnormal male germ unit configurations and failed to germinate. Transcriptome analysis of pollen from not1/+ mutants revealed that lack of NOT1 leads to an extensive transcriptional deregulation during microgametogenesis. Therefore, our work establishes NOT1 as an important player during gametophyte development in Arabidopsis.
Collapse
Affiliation(s)
- Patrícia A Pereira
- Instituto Gulbenkian de Ciência, Rua da Quinta Grande 6, Oeiras, 2780-156, Portugal
| | - Leonor C Boavida
- Instituto Gulbenkian de Ciência, Rua da Quinta Grande 6, Oeiras, 2780-156, Portugal
| | - Mário R Santos
- Instituto Gulbenkian de Ciência, Rua da Quinta Grande 6, Oeiras, 2780-156, Portugal
| | - Jörg D Becker
- Instituto Gulbenkian de Ciência, Rua da Quinta Grande 6, Oeiras, 2780-156, Portugal
- Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Av. da República, Oeiras, 2780-157, Portugal
| |
Collapse
|
13
|
Imai A, Hagiwara Y, Niimi Y, Tokumoto T, Saga Y, Suzuki A. Mouse dead end1 acts with Nanos2 and Nanos3 to regulate testicular teratoma incidence. PLoS One 2020; 15:e0232047. [PMID: 32339196 PMCID: PMC7185693 DOI: 10.1371/journal.pone.0232047] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 04/06/2020] [Indexed: 11/19/2022] Open
Abstract
Spontaneous testicular teratomas (STTs) derived from primordial germ cells (PGCs) in the mouse embryonic testes predominantly develop in the 129 family inbred strain. Ter (spontaneous mutation) is a single nucleotide polymorphism that generates a premature stop codon of Dead end1 (Dnd1) and increases the incidence of STTs in the 129 genetic background. We previously found that DND1 interacts with NANOS2 or NANOS3 and that these complexes play a vital role in male embryonic germ cells and adult spermatogonia. However, the following are unclear: (a) whether DND1 works with NANOS2 or NANOS3 to regulate teratoma incidence, and (b) whether Ter simply causes Dnd1 loss or produces a short mutant DND1 protein. In the current study, we newly established a conventional Dnd1-knockout mouse line and found that these mice showed phenotypes similar to those of Ter mutant mice in spermatogenesis, oogenesis, and teratoma incidence, with a slight difference in spermiogenesis. In addition, we found that the amount of DND1 in Dnd1+/Ter embryos decreased to half of that in wild-type embryos, while the expression of the short mutant DND1 was not detected. We also found that double mutants for Dnd1 and Nanos2 or Nanos3 showed synergistic increase in the incidence of STTs. These data support the idea that Ter causes Dnd1 loss, leading to an increase in STT incidence, and that DND1 acts with NANOS2 and NANOS3 to regulate the development of teratoma from PGCs in the 129 genetic background. Thus, our results clarify the role of Dnd1 in the development of STTs and provide a novel insight into its pathogenic mechanism.
Collapse
Affiliation(s)
- Atsuki Imai
- Division of Materials Science and Chemical Engineering, Graduate School of Engineering, Yokohama National University, Yokohama, Kanagawa, Japan
| | - Yoshihiko Hagiwara
- Division of Materials Science and Chemical Engineering, Graduate School of Engineering, Yokohama National University, Yokohama, Kanagawa, Japan
| | - Yuki Niimi
- Division of Materials Science and Chemical Engineering, Graduate School of Engineering, Yokohama National University, Yokohama, Kanagawa, Japan
| | - Toshinobu Tokumoto
- Biological Science Course, Graduate School of Science, National University Corporation Shizuoka University, Suruga, Shizuoka, Japan
| | - Yumiko Saga
- Division of Mammalian Development, National Institute of Genetics, Mishima, Shizuoka, Japan
| | - Atsushi Suzuki
- Division of Materials Science and Chemical Engineering, Graduate School of Engineering, Yokohama National University, Yokohama, Kanagawa, Japan
- Division of Materials Science and Chemical Engineering, Faculty of Engineering, Yokohama National University, Yokohama, Kanagawa, Japan
| |
Collapse
|
14
|
Gross-Thebing T, Raz E. Dead end and Detour: The function of the RNA-binding protein Dnd in posttranscriptional regulation in the germline. Curr Top Dev Biol 2020; 140:181-208. [DOI: 10.1016/bs.ctdb.2019.12.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
15
|
Ruthig VA, Friedersdorf MB, Garness JA, Munger SC, Bunce C, Keene JD, Capel B. The RNA-binding protein DND1 acts sequentially as a negative regulator of pluripotency and a positive regulator of epigenetic modifiers required for germ cell reprogramming. Development 2019; 146:dev175950. [PMID: 31253634 PMCID: PMC6803376 DOI: 10.1242/dev.175950] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Accepted: 06/20/2019] [Indexed: 12/18/2022]
Abstract
The adult spermatogonial stem cell population arises from pluripotent primordial germ cells (PGCs) that enter the fetal testis around embryonic day (E)10.5. PGCs undergo rapid mitotic proliferation, then enter prolonged cell cycle arrest (G1/G0), during which they transition to pro-spermatogonia. In mice homozygous for the Ter mutation in the RNA-binding protein Dnd1 (Dnd1Ter/Ter ), many male germ cells (MGCs) fail to enter G1/G0 and instead form teratomas: tumors containing many embryonic cell types. To investigate the origin of these tumors, we sequenced the MGC transcriptome in Dnd1Ter/Ter mutants at E12.5, E13.5 and E14.5, immediately prior to teratoma formation, and correlated this information with DO-RIP-Seq-identified DND1 direct targets. Consistent with previous results, we found DND1 controls downregulation of many genes associated with pluripotency and active cell cycle, including mTor, Hippo and Bmp/Nodal signaling pathway elements. However, DND1 targets also include genes associated with male differentiation, including a large group of chromatin regulators activated in wild-type but not mutant MGCs during the E13.5 and E14.5 transition. Results suggest multiple DND1 functions and link DND1 to initiation of epigenetic modifications in MGCs.
Collapse
Affiliation(s)
- Victor A Ruthig
- Department of Cell Biology, Duke University Medical Center, Durham, NC 27710, USA
| | - Matthew B Friedersdorf
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Jason A Garness
- Department of Cell Biology, Duke University Medical Center, Durham, NC 27710, USA
| | | | - Corey Bunce
- Department of Cell Biology, Duke University Medical Center, Durham, NC 27710, USA
| | - Jack D Keene
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Blanche Capel
- Department of Cell Biology, Duke University Medical Center, Durham, NC 27710, USA
| |
Collapse
|
16
|
ES-mediated chimera analysis revealed requirement of DDX6 for NANOS2 localization and function in mouse germ cells. Sci Rep 2019; 9:515. [PMID: 30679547 PMCID: PMC6345806 DOI: 10.1038/s41598-018-36502-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Accepted: 11/20/2018] [Indexed: 01/22/2023] Open
Abstract
In embryonic male germ cells, the RNA-binding protein NANOS2 recruits its target RNAs to processing bodies (P-bodies), where they are repressed. This process is necessary to promote male-type germ cell differentiation. However, it remains unclear whether all NANOS2 functions depend on P-bodies. To address this question, we established ES cell lines containing a germ cell-specific inducible Cre and reporter together with the floxed Ddx6 allele. We deleted the Ddx6 gene by administering tamoxifen to chimeric embryos containing germ cells derived from recombinant ES cells. DDX6-null germ cells exhibited both similar and distinct defects from those observed in NANOS2-null germ cells. These results demonstrate that NANOS2 function is carried out via both P-body-dependent and -independent mechanisms. RNA-seq analyses further supported the phenotypic differences between DDX6-null and NANOS2-null germ cells, and indicated distinct molecular cascades involved in NANOS2-mediated gene regulation.
Collapse
|
17
|
De Keuckelaere E, Hulpiau P, Saeys Y, Berx G, van Roy F. Nanos genes and their role in development and beyond. Cell Mol Life Sci 2018; 75:1929-1946. [PMID: 29397397 PMCID: PMC11105394 DOI: 10.1007/s00018-018-2766-3] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Revised: 01/22/2018] [Accepted: 01/29/2018] [Indexed: 12/16/2022]
Abstract
The hallmark of Nanos proteins is their typical (CCHC)2 zinc finger motif (zf-nanos). Animals have one to four nanos genes. For example, the fruit fly and demosponge have only one nanos gene, zebrafish and humans have three, and Fugu rubripes has four. Nanos genes are mainly known for their evolutionarily preserved role in germ cell survival and pluripotency. Nanos proteins have been reported to bind the C-terminal RNA-binding domain of Pumilio to form a post-transcriptional repressor complex. Several observations point to a link between the miRNA-mediated repression complex and the Nanos/Pumilio complex. Repression of the E2F3 oncogene product is, indeed, mediated by cooperation between the Nanos/Pumilio complex and miRNAs. Another important interaction partner of Nanos is the CCR4-NOT deadenylase complex. Besides the tissue-specific contribution of Nanos proteins to normal development, their ectopic expression has been observed in several cancer cell lines and various human cancers. An inverse correlation between the expression levels of human Nanos1 and Nanos3 and E-cadherin was observed in several cancer cell lines. Loss of E-cadherin, an important cell-cell adhesion protein, contributes to tumor invasion and metastasis. Overexpression of Nanos3 induces epithelial-mesenchymal transition in lung cancer cell lines partly by repressing E-cadherin. Other than some most interesting data from Nanos knockout mice, little is known about mammalian Nanos proteins, and further research is needed. In this review, we summarize the main roles of Nanos proteins and discuss the emerging concept of Nanos proteins as oncofetal antigens.
Collapse
Affiliation(s)
- Evi De Keuckelaere
- VIB-UGent Center for Inflammation Research, Technologiepark 927, 9052, Ghent, Belgium
- Molecular Cell Biology Unit, Department of Biomedical Molecular Biology, Ghent University, Technologiepark 927, 9052, Ghent, Belgium
- Molecular and Cellular Oncology Laboratory, Department of Biomedical Molecular Biology, Ghent University, Technologiepark 927, 9052, Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - Paco Hulpiau
- VIB-UGent Center for Inflammation Research, Technologiepark 927, 9052, Ghent, Belgium
- Molecular Cell Biology Unit, Department of Biomedical Molecular Biology, Ghent University, Technologiepark 927, 9052, Ghent, Belgium
| | - Yvan Saeys
- VIB-UGent Center for Inflammation Research, Technologiepark 927, 9052, Ghent, Belgium
- Department of Applied Mathematics, Computer Science and Statistics, Ghent University, Krijgslaan 281, S9, 9000, Ghent, Belgium
| | - Geert Berx
- Molecular and Cellular Oncology Laboratory, Department of Biomedical Molecular Biology, Ghent University, Technologiepark 927, 9052, Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - Frans van Roy
- VIB-UGent Center for Inflammation Research, Technologiepark 927, 9052, Ghent, Belgium.
- Molecular Cell Biology Unit, Department of Biomedical Molecular Biology, Ghent University, Technologiepark 927, 9052, Ghent, Belgium.
| |
Collapse
|
18
|
The CCR4-NOT complex contributes to repression of Major Histocompatibility Complex class II transcription. Sci Rep 2017; 7:3547. [PMID: 28615693 PMCID: PMC5471237 DOI: 10.1038/s41598-017-03708-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Accepted: 05/03/2017] [Indexed: 11/08/2022] Open
Abstract
The multi-subunit CCR4 (carbon catabolite repressor 4)-NOT (Negative on TATA) complex serves as a central coordinator of all different steps of eukaryotic gene expression. Here we performed a systematic and comparative analysis of cells where the CCR4-NOT subunits CNOT1, CNOT2 or CNOT3 were individually downregulated using doxycycline-inducible shRNAs. Microarray experiments showed that downregulation of either CNOT subunit resulted in elevated expression of major histocompatibility complex class II (MHC II) genes which are found in a gene cluster on chromosome 6. Increased expression of MHC II genes after knock-down or knock-out of either CNOT subunit was seen in a variety of cell systems and also in naïve macrophages from CNOT3 conditional knock-out mice. CNOT2-mediated repression of MHC II genes occurred also in the absence of the master regulator class II transactivator (CIITA) and did not cause detectable changes of the chromatin structure at the chromosomal MHC II locus. CNOT2 downregulation resulted in an increased de novo transcription of mRNAs whereas tethering of CNOT2 to a regulatory region governing MHC II expression resulted in diminished transcription. These results expand the known repertoire of CCR4-NOT members for immune regulation and identify CNOT proteins as a novel group of corepressors restricting class II expression.
Collapse
|
19
|
CNOT3-Dependent mRNA Deadenylation Safeguards the Pluripotent State. Stem Cell Reports 2016; 7:897-910. [PMID: 27746116 PMCID: PMC5106518 DOI: 10.1016/j.stemcr.2016.09.007] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Revised: 09/14/2016] [Accepted: 09/15/2016] [Indexed: 01/07/2023] Open
Abstract
Poly(A) tail length and mRNA deadenylation play important roles in gene regulation. However, how they regulate embryonic development and pluripotent cell fate is not fully understood. Here we present evidence that CNOT3-dependent mRNA deadenylation governs the pluripotent state. We show that CNOT3, a component of the Ccr4-Not deadenylase complex, is required for mouse epiblast maintenance. It is highly expressed in blastocysts and its deletion leads to peri-implantation lethality. The epiblast cells in Cnot3 deletion embryos are quickly lost during diapause and fail to outgrow in culture. Mechanistically, CNOT3 C terminus is required for its interaction with the complex and its function in embryonic stem cells (ESCs). Furthermore, Cnot3 deletion results in increases in the poly(A) tail lengths, half-lives, and steady-state levels of differentiation gene mRNAs. The half-lives of CNOT3 target mRNAs are shorter in ESCs and become longer during normal differentiation. Together, we propose that CNOT3 maintains the pluripotent state by promoting differentiation gene mRNA deadenylation and degradation, and we identify poly(A) tail-length regulation as a post-transcriptional mechanism that controls pluripotency. CNOT3 is required for mouse epiblast maintenance during early development CNOT3 C-terminal domain is necessary for the maintenance of the pluripotent state CNOT3 promotes differentiation gene mRNA deadenylation and degradation mRNA poly(A) tail regulation plays a critical role in pluripotency
Collapse
|
20
|
Kato Y, Katsuki T, Kokubo H, Masuda A, Saga Y. Dazl is a target RNA suppressed by mammalian NANOS2 in sexually differentiating male germ cells. Nat Commun 2016; 7:11272. [PMID: 27072294 PMCID: PMC4833867 DOI: 10.1038/ncomms11272] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2015] [Accepted: 03/08/2016] [Indexed: 12/26/2022] Open
Abstract
Evolutionally conserved Nanos RNA-binding proteins play crucial roles in germ cell development. While a mammalian Nanos family protein, NANOS2, is required for sexual differentiation of male (XY) germ cells in mice, the underlying mechanisms and the identities of its target RNAs in vivo remain elusive. Using comprehensive microarray analysis and a bacterial artificial chromosome transgenic system, here we identify Dazl, a germ cell-specific gene encoding an RNA-binding protein implicated in translation, as a crucial target of NANOS2. Importantly, removal of the Dazl 3'-untranslated region in XY germ cells stabilizes the Dazl mRNA, resulting in elevated meiotic gene expression, abnormal resumption of the cell cycle and impaired processing-body formation, reminiscent of Nanos2-knockout phenotypes. Furthermore, our data suggest that NANOS2 acts as an antagonist of the DAZL protein. We propose a dual system of NANOS2-mediated suppression of Dazl expression as a pivotal molecular mechanism promoting sexual differentiation of XY germ cells.
Collapse
Affiliation(s)
- Yuzuru Kato
- Division of Mammalian Development, Genetic Strains Research Center, National Institute of Genetics, Yata 1111, Mishima, Shizuoka 411-8540, Japan.,Department of Genetics, SOKENDAI, Yata 1111, Mishima, Shizuoka 411-8540, Japan
| | - Takeo Katsuki
- Kavli Institute for Brain and Mind, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093, USA
| | - Hiroki Kokubo
- Division of Mammalian Development, Genetic Strains Research Center, National Institute of Genetics, Yata 1111, Mishima, Shizuoka 411-8540, Japan
| | - Aki Masuda
- Division of Mammalian Development, Genetic Strains Research Center, National Institute of Genetics, Yata 1111, Mishima, Shizuoka 411-8540, Japan
| | - Yumiko Saga
- Division of Mammalian Development, Genetic Strains Research Center, National Institute of Genetics, Yata 1111, Mishima, Shizuoka 411-8540, Japan.,Department of Genetics, SOKENDAI, Yata 1111, Mishima, Shizuoka 411-8540, Japan.,Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
21
|
Qi H. RNA-binding proteins in mouse male germline stem cells: a mammalian perspective. ACTA ACUST UNITED AC 2016; 5:1. [PMID: 26839690 PMCID: PMC4736624 DOI: 10.1186/s13619-015-0022-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Accepted: 09/18/2015] [Indexed: 11/10/2022]
Abstract
Adult stem cells that reside in particular types of tissues are responsible for tissue homeostasis and regeneration. Cellular functions of adult stem cells are intricately related to the gene expression programs in those cells. Past research has demonstrated that regulation of gene expression at the transcriptional level can decisively alter cell fate of stem cells. However, cellular contents of mRNAs are sometimes not equivalent to proteins, the functional units of cells. It is increasingly realized that post-transcriptional and translational regulation of gene expression are also fundamental for stem cell functions. Compared to differentiated somatic cells, effects on cellular status manifested by varied expression of RNA-binding proteins and global protein synthesis have been demonstrated in several stem cell systems. Through the cooperation of both cis-elements of mRNAs and trans-acting RNA-binding proteins that are intimately associated with them, regulation of localization, stability, and translational status of mRNAs directly influences the self-renewal and differentiation of stem cells. Previous studies have uncovered some of the molecular mechanisms that underlie the functions of RNA-binding proteins in stem cells in invertebrate species. However, their roles in adult stem cells in mammals are just beginning to be unveiled. This review highlights some of the RNA-binding proteins that play important functions during the maintenance and differentiation of mouse male germline stem cells, the adult stem cells in the male reproductive organ.
Collapse
Affiliation(s)
- Huayu Qi
- Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530 China
| |
Collapse
|
22
|
Noble DC, Aoki ST, Ortiz MA, Kim KW, Verheyden JM, Kimble J. Genomic Analyses of Sperm Fate Regulator Targets Reveal a Common Set of Oogenic mRNAs in Caenorhabditis elegans. Genetics 2016; 202:221-34. [PMID: 26564160 PMCID: PMC4701086 DOI: 10.1534/genetics.115.182592] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Accepted: 11/03/2015] [Indexed: 12/18/2022] Open
Abstract
Germ cell specification as sperm or oocyte is an ancient cell fate decision, but its molecular regulation is poorly understood. In Caenorhabditis elegans, the FOG-1 and FOG-3 proteins behave genetically as terminal regulators of sperm fate specification. Both are homologous to well-established RNA regulators, suggesting that FOG-1 and FOG-3 specify the sperm fate post-transcriptionally. We predicted that FOG-1 and FOG-3, as terminal regulators of the sperm fate, might regulate a battery of gamete-specific differentiation genes. Here we test that prediction by exploring on a genomic scale the messenger RNAs (mRNAs) associated with FOG-1 and FOG-3. Immunoprecipitation of the proteins and their associated mRNAs from spermatogenic germlines identifies 81 FOG-1 and 722 FOG-3 putative targets. Importantly, almost all FOG-1 targets are also FOG-3 targets, and these common targets are strongly biased for oogenic mRNAs. The discovery of common target mRNAs suggested that FOG-1 and FOG-3 work together. Consistent with that idea, we find that FOG-1 and FOG-3 proteins co-immunoprecipitate from both intact nematodes and mammalian tissue culture cells and that they colocalize in germ cells. Taking our results together, we propose a model in which FOG-1 and FOG-3 work in a complex to repress oogenic transcripts and thereby promote the sperm fate.
Collapse
Affiliation(s)
- Daniel C Noble
- Department of Biochemistry, University of Wisconsin, Madison, Wisconsin 53706
| | - Scott T Aoki
- Department of Biochemistry, University of Wisconsin, Madison, Wisconsin 53706
| | - Marco A Ortiz
- Department of Biochemistry, University of Wisconsin, Madison, Wisconsin 53706
| | - Kyung Won Kim
- Department of Biochemistry, University of Wisconsin, Madison, Wisconsin 53706
| | - Jamie M Verheyden
- Department of Biochemistry, University of Wisconsin, Madison, Wisconsin 53706
| | - Judith Kimble
- Department of Biochemistry, University of Wisconsin, Madison, Wisconsin 53706 Howard Hughes Medical Institute, University of Wisconsin, Madison, Wisconsin 53706
| |
Collapse
|
23
|
Rossitto M, Philibert P, Poulat F, Boizet-Bonhoure B. Molecular events and signalling pathways of male germ cell differentiation in mouse. Semin Cell Dev Biol 2015; 45:84-93. [PMID: 26454096 DOI: 10.1016/j.semcdb.2015.09.014] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Accepted: 09/22/2015] [Indexed: 12/15/2022]
Abstract
Germ cells, the precursors of gametes, represent a unique cell lineage that is able to differentiate into spermatozoa or oocytes depending on the chromosomal sex of the organism. In the mammalian embryonic gonad, commitment to oogenesis involves pre-meiotic DNA replication and entry into the first meiotic division; whereas, commitment to spermatogenesis involves inhibition of meiotic initiation, suppression of pluripotency, mitotic arrest and expression of specific markers that will control the development of the male germ cells. The crucial decision made by the germ line to commit to either a male or a female fate has been partially explained by genetic and ex vivo studies in mice which have implicated a complex network of regulatory genes, numerous factors and pathways. Besides the reproductive failure that may follow a deregulation of this complex network, the germ cells may, in view of their proliferative and pluripotent nature, act as precursors of potential malignant transformation and as putative targets for exogenous environmental compounds. Our review summarizes and discusses recent developments that have improved our understanding on how germ cell precursors are committed to a male or a female cell fate in the mouse gonad.
Collapse
Affiliation(s)
- Moïra Rossitto
- Genetic and Development Department, Institute of Human Genetics, CNRS UPR1142, Montpellier, France.
| | - Pascal Philibert
- Genetic and Development Department, Institute of Human Genetics, CNRS UPR1142, Montpellier, France.
| | - Francis Poulat
- Genetic and Development Department, Institute of Human Genetics, CNRS UPR1142, Montpellier, France.
| | - Brigitte Boizet-Bonhoure
- Genetic and Development Department, Institute of Human Genetics, CNRS UPR1142, Montpellier, France.
| |
Collapse
|
24
|
Bustamante-Marin XM, Cook MS, Gooding J, Newgard C, Capel B. Left-Biased Spermatogenic Failure in 129/SvJ Dnd1Ter/+ Mice Correlates with Differences in Vascular Architecture, Oxygen Availability, and Metabolites. Biol Reprod 2015; 93:78. [PMID: 26224005 PMCID: PMC6322448 DOI: 10.1095/biolreprod.115.128850] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2015] [Revised: 03/06/2015] [Accepted: 07/06/2015] [Indexed: 01/19/2023] Open
Abstract
Homozygosity for the Ter mutation in the RNA-binding protein Dead end 1 (Dnd1(Ter/Ter)) sensitizes germ cells to degeneration in all mouse strains. In 129/SvJ mice, approximately 10% of Dnd1(Ter/+) heterozygotes develop spermatogenic failure, and 95% of unilateral cases occur in the left testis. The first differences between right and left testes were detected at Postnatal Day 15 when many more spermatogonial stem cells (SSCs) were undergoing apoptosis in the left testis compared to the right. As we detected no significant left/right differences in the molecular pathway associated with body axis asymmetry or in the expression of signals known to promote proliferation, differentiation, and survival of germ cells, we investigated whether physiological differences might account for asymmetry of the degeneration phenotype. We show that left/right differences in vascular architecture are associated with a decrease in hemoglobin saturation and increased levels of HIF-1alpha in the left testis compared to the right. In Dnd1 heterozygotes, lower oxygen availability was associated with metabolic differences, including lower levels of ATP and NADH in the left testis. These experiments suggest a dependence on oxygen availability and metabolic substrates for SSC survival and suggest that Dnd1(Ter/+) SSCs may act as efficient sensors to detect subtle environmental changes that alter SSC fate.
Collapse
Affiliation(s)
- Ximena M Bustamante-Marin
- Department of Cell Biology, Duke University, Durham, North Carolina Departmento Biomédico, Facultad de Ciencias de la Salud, Universidad de Antofagasta, Antofagasta, Chile
| | - Matthew S Cook
- Department of Cell Biology, Duke University, Durham, North Carolina Department of Anatomy, University of California, San Francisco, California
| | - Jessica Gooding
- Sarah W. Stedman Nutrition and Metabolism Center & Duke Molecular Physiology Institute, Departments of Pharmacology and Cancer Biology & Medicine, Duke University Medical Center, Durham, North Carolina
| | - Christopher Newgard
- Sarah W. Stedman Nutrition and Metabolism Center & Duke Molecular Physiology Institute, Departments of Pharmacology and Cancer Biology & Medicine, Duke University Medical Center, Durham, North Carolina
| | - Blanche Capel
- Department of Cell Biology, Duke University, Durham, North Carolina
| |
Collapse
|
25
|
Waghray S, Williams C, Coon JJ, Wickens M. Xenopus CAF1 requires NOT1-mediated interaction with 4E-T to repress translation in vivo. RNA (NEW YORK, N.Y.) 2015; 21:1335-45. [PMID: 26015597 PMCID: PMC4478352 DOI: 10.1261/rna.051565.115] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Accepted: 04/22/2015] [Indexed: 05/25/2023]
Abstract
RNA-regulatory factors bound to 3' UTRs control translation and stability. Repression often is associated with poly(A) removal. The deadenylase CAF1 is a core component of the CCR4-NOT complex. Our prior studies established that CAF1 represses translation independent of deadenylation. We sought the mechanism of its deadenylation-independent repression in Xenopus oocytes. Our data reveal a chain of interacting proteins that links CAF1 to CCR4-NOT and to Xp54 and 4E-T. Association of CAF1 with NOT1, the major subunit of CCR4-NOT, is required for repression by CAF1 tethered to a reporter mRNA. Affinity purification-mass spectrometry and coimmunoprecipitation revealed that at least five members of the CCR4-NOT complex were recruited by CAF1. The recruitment of these proteins required NOT1, as did the ability of tethered CAF1 to repress translation. In turn, NOT1 was needed to recruit Xp54 and 4E-T. We examined the role of 4E-T in repression using mutations that disrupted either eIF4E-dependent or -independent mechanisms. Expression of a 4E-T truncation that still bound eIF4E alleviated repression by tethered CAF1, NOT1, and Xp54. In contrast, a mutant 4E-T that failed to bind eIF4E did not. Repression of global translation was affected only by the eIF4E-dependent mechanism. Reporters bearing IRES elements revealed that repression via tethered CAF1 and Xp54 is cap- and eIF4E-independent, but requires one or more of eIF4A, eIF4B, and eIF4G. We propose that RNA-binding proteins, and perhaps miRNAs, repress translation through an analogous chain of interactions that begin with the 3' UTR-bound repressor and end with the noncanonical activity of 4E-T.
Collapse
Affiliation(s)
- Shruti Waghray
- Department of Biochemistry, University of Wisconsin, Madison, Wisconsin 53706, USA
| | - Clay Williams
- Department of Biomolecular Chemistry, University of Wisconsin, Madison, Wisconsin 53706, USA Department of Chemistry, University of Wisconsin, Madison, Wisconsin 53706, USA
| | - Joshua J Coon
- Department of Biomolecular Chemistry, University of Wisconsin, Madison, Wisconsin 53706, USA Department of Chemistry, University of Wisconsin, Madison, Wisconsin 53706, USA
| | - Marvin Wickens
- Department of Biochemistry, University of Wisconsin, Madison, Wisconsin 53706, USA
| |
Collapse
|
26
|
Lin YT, Capel B. Cell fate commitment during mammalian sex determination. Curr Opin Genet Dev 2015; 32:144-52. [PMID: 25841206 DOI: 10.1016/j.gde.2015.03.003] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Revised: 02/24/2015] [Accepted: 03/05/2015] [Indexed: 01/10/2023]
Abstract
The gonads form bilaterally as bipotential organs that can develop as testes or ovaries. All secondary sex characteristics that we associate with 'maleness' or 'femaleness' depend on whether testes or ovaries form. The fate of the gonads depends on a cell fate decision that occurs in a somatic cell referred to as the 'supporting cell lineage'. Once supporting cell progenitors commit to Sertoli (male) or granulosa (female) fate, they propagate this decision to the other cells within the organ. In this review, we will describe what is known about the bipotential state of somatic and germ cell lineages in the gonad and the transcriptional and antagonistic signaling networks that lead to commitment, propagation, and maintenance of testis or ovary fate.
Collapse
Affiliation(s)
- Yi-Tzu Lin
- Department of Cell Biology, Duke University, Durham, NC 27710, USA
| | - Blanche Capel
- Department of Cell Biology, Duke University, Durham, NC 27710, USA.
| |
Collapse
|