1
|
Ma W, Yan H, Ma H, Xu Z, Dai W, Wu Y, Zhang H, Li Y. Roles of leukemia inhibitory factor receptor in cancer. Int J Cancer 2025; 156:262-273. [PMID: 39279155 DOI: 10.1002/ijc.35157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 06/19/2024] [Accepted: 07/29/2024] [Indexed: 09/18/2024]
Abstract
Leukemia inhibitory factor receptor (LIFR), in complex with glycoprotein 130 (gp130) as the receptor for leukemia inhibitory factor (LIF), can bind to a variety of cytokines and subsequently activate a variety of signaling pathways, including Janus kinase/signal transducer and activator of transcription 3. LIF, the most multifunctional cytokines of the interleukin-6 family acts as both a growth factor and a growth inhibitor in different types of tumors. LIF/LIFR signaling regulates a broad array of tumor-related processes including proliferation, apoptosis, migration, invasion. However, due to the activation of different signaling pathways, opposite regulatory effects are observed in certain tumor cells. Therefore, the role of LIFR in human cancers varies across different tumor and tissue, despite their recognized value in tumor treatment and prognosis observation is affirmed. Given its aberrant expression in numerous tumor cells and crucial regulatory function in tumorigenesis and progression, LIFR is considered as a promising targeted therapeutic agent. This review provides an overview of LIFR's initiating signaling pathway function as a cytokine receptor and summarize the current literature on the role of LIFR in cancer and its possible use in therapy.
Collapse
Affiliation(s)
- Wei Ma
- School of Stomatology, China Medical University, Shenyang, China
| | - Haixu Yan
- Department of Clinical Medicine, China Medical University, Shenyang, China
| | - Haoyuan Ma
- Department of Clinical Medicine, China Medical University, Shenyang, China
| | - Zengyan Xu
- Department of Cell Biology, Key Laboratory of Cell Biology, Ministry of Public Health, and Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang, China
| | - Wei Dai
- Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, China
| | - Yudan Wu
- School of Nursing, China Medical University, Shenyang, China
| | - Hongyan Zhang
- Department of Cell Biology, Key Laboratory of Cell Biology, Ministry of Public Health, and Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang, China
| | - Yanshu Li
- Department of Cell Biology, Key Laboratory of Cell Biology, Ministry of Public Health, and Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang, China
| |
Collapse
|
2
|
Shan-Ni L, Liang H, Yasui Y, Ninomiya K, Uehara T, Nishimura T, Kobayashi K. Leptin on the apical surface inhibits casein production and STAT5 phosphorylation in mammary epithelial cells. Exp Cell Res 2024; 443:114330. [PMID: 39536931 DOI: 10.1016/j.yexcr.2024.114330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 11/07/2024] [Accepted: 11/11/2024] [Indexed: 11/16/2024]
Abstract
Leptin is a peptide hormone present in both the blood and milk. A close relationship between leptin and milk production in lactating mammary glands has been previously reported. However, how leptin influences milk production in lactating mammary glands remains unclear. Also, whether leptin in milk or blood influences mammary epithelial cells (MECs) during lactation needs further investigation. This study investigated the effects of leptin on mouse MECs using a culture model in which MECs produced milk components and formed less permeable tight junctions. Our results showed that β-casein production in MEC was inhibited by leptin in a concentration-dependent manner. Leptin also inactivated the signal transducer and activator of transcription 5 (STAT5), a transcription factor that facilitates milk production in MECs. Leptin treatment induced the activation of p38 and c-Jun N-terminal kinase (JNK) in MEC before STAT5 inactivation, and anisomycin, an activator of p38 and JNK, induced the inactivation of STAT5. Furthermore, leptin exposure on the apical surface of MECs inhibited β-casein production and inactivated STAT5. However, leptin exposure on the basolateral surface hardly caused these effects. These findings suggested that milk leptin, but not plasma leptin, inhibited milk production in MECs.
Collapse
Affiliation(s)
- Lu Shan-Ni
- Laboratory of Cell and Tissue Biology, Research Faculty of Agriculture, Hokkaido University, North 9, West 9, 060-8589, Sapporo, Japan.
| | - Han Liang
- Laboratory of Cell and Tissue Biology, Research Faculty of Agriculture, Hokkaido University, North 9, West 9, 060-8589, Sapporo, Japan.
| | - Yuki Yasui
- Laboratory of Cell and Tissue Biology, Research Faculty of Agriculture, Hokkaido University, North 9, West 9, 060-8589, Sapporo, Japan.
| | - Kazuki Ninomiya
- Laboratory of Cell and Tissue Biology, Research Faculty of Agriculture, Hokkaido University, North 9, West 9, 060-8589, Sapporo, Japan.
| | - Tamaki Uehara
- Laboratory of Cell and Tissue Biology, Research Faculty of Agriculture, Hokkaido University, North 9, West 9, 060-8589, Sapporo, Japan.
| | - Takanori Nishimura
- Laboratory of Cell and Tissue Biology, Research Faculty of Agriculture, Hokkaido University, North 9, West 9, 060-8589, Sapporo, Japan.
| | - Ken Kobayashi
- Laboratory of Cell and Tissue Biology, Research Faculty of Agriculture, Hokkaido University, North 9, West 9, 060-8589, Sapporo, Japan.
| |
Collapse
|
3
|
Vickers R, Porter W. Immune Cell Contribution to Mammary Gland Development. J Mammary Gland Biol Neoplasia 2024; 29:16. [PMID: 39177859 PMCID: PMC11343902 DOI: 10.1007/s10911-024-09568-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 06/27/2024] [Indexed: 08/24/2024] Open
Abstract
Postpartum breast cancer (PPBC) is a unique subset of breast cancer, accounting for nearly half of the women diagnosed during their postpartum years. Mammary gland involution is widely regarded as being a key orchestrator in the initiation and progression of PPBC due to its unique wound-healing inflammatory signature. Here, we provide dialogue suggestive that lactation may also facilitate neoplastic development as a result of sterile inflammation. Immune cells are involved in all stages of postnatal mammary development. It has been proposed that the functions of these immune cells are partially directed by mammary epithelial cells (MECs) and the cytokines they produce. This suggests that a more niche area of exploration aimed at assessing activation of innate immune pathways within MECs could provide insight into immune cell contributions to the developing mammary gland. Immune cell contribution to pubertal development and mammary gland involution has been extensively studied; however, investigations into pregnancy and lactation remain limited. During pregnancy, the mammary gland undergoes dramatic expansion to prepare for lactation. As a result, MECs are susceptible to replicative stress. During lactation, mitochondria are pushed to capacity to fulfill the high energetic demands of producing milk. This replicative and metabolic stress, if unresolved, can elicit activation of innate immune pathways within differentiating MECs. In this review, we broadly discuss postnatal mammary development and current knowledge of immune cell contribution to each developmental stage, while also emphasizing a more unique area of study that will be beneficial in the discovery of novel therapeutic biomarkers of PPBC.
Collapse
Affiliation(s)
- Ramiah Vickers
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine, Texas A&M University, College Station, TX, 77843, USA
| | - Weston Porter
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine, Texas A&M University, College Station, TX, 77843, USA.
| |
Collapse
|
4
|
Hardwick LJA, Davies BP, Pensa S, Burge-Rogers M, Davies C, Baptista AF, Knott R, S McCrone I, Po E, Strugnell BW, Waine K, Wood P, Khaled WT, Summers HD, Rees P, Wills JW, Hughes K. In the Murine and Bovine Maternal Mammary Gland Signal Transducer and Activator of Transcription 3 is Activated in Clusters of Epithelial Cells around the Day of Birth. J Mammary Gland Biol Neoplasia 2024; 29:10. [PMID: 38722417 PMCID: PMC11081984 DOI: 10.1007/s10911-024-09561-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 03/28/2024] [Indexed: 05/12/2024] Open
Abstract
Signal transducers and activators of transcription (STAT) proteins regulate mammary development. Here we investigate the expression of phosphorylated STAT3 (pSTAT3) in the mouse and cow around the day of birth. We present localised colocation analysis, applicable to other mammary studies requiring identification of spatially congregated events. We demonstrate that pSTAT3-positive events are multifocally clustered in a non-random and statistically significant fashion. Arginase-1 expressing cells, consistent with macrophages, exhibit distinct clustering within the periparturient mammary gland. These findings represent a new facet of mammary STAT3 biology, and point to the presence of mammary sub-microenvironments.
Collapse
Affiliation(s)
- Laura J A Hardwick
- Department of Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge, CB3 0ES, UK
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Benjamin P Davies
- Department of Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge, CB3 0ES, UK
| | - Sara Pensa
- Department of Pharmacology, University of Cambridge, Cambridge, UK
- Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
| | - Maedee Burge-Rogers
- Department of Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge, CB3 0ES, UK
| | - Claire Davies
- The Fold Farm Vets Ltd, Tyne Green, Hexham, Northumberland, UK
| | | | - Robert Knott
- Department of Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge, CB3 0ES, UK
- Bristol Veterinary School, University of Bristol, Langford, UK
| | - Ian S McCrone
- Department of Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge, CB3 0ES, UK
| | - Eleonora Po
- Department of Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge, CB3 0ES, UK
| | | | - Katie Waine
- Farm Post Mortems Ltd, Durham, UK
- Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, T3R 1J3, Canada
| | - Paul Wood
- Department of Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge, CB3 0ES, UK
- SRUC Aberdeen, Craibstone Estate, Bucksburn, Aberdeen, UK
| | - Walid T Khaled
- Department of Pharmacology, University of Cambridge, Cambridge, UK
- Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
| | - Huw D Summers
- Department of Biomedical Engineering, Swansea University, Swansea, UK
| | - Paul Rees
- Department of Biomedical Engineering, Swansea University, Swansea, UK
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - John W Wills
- Department of Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge, CB3 0ES, UK.
| | - Katherine Hughes
- Department of Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge, CB3 0ES, UK.
| |
Collapse
|
5
|
Wang W, Wang S, Wang H, Zheng E, Wu Z, Li Z. Protein Dynamic Landscape during Mouse Mammary Gland Development from Virgin to Pregnant, Lactating, and Involuting Stages. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:7546-7557. [PMID: 38513219 DOI: 10.1021/acs.jafc.3c09647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/23/2024]
Abstract
The mammary gland undergoes significant physiological changes as it undergoes a transition from virgin to pregnancy, lactation, and involution. However, the dynamic role of proteins in regulating these processes during mouse mammary gland development has not been thoroughly explored. In this study, we collected mouse mammary gland tissues from mature virgins aged 8-10 weeks (V), day 16 of pregnancy (P16d), day 12 of lactation (L12d), day 1 of forced weaning (FW 1d), and day 3 of forced weaning (FW 3d) stages for analysis using DIA-based quantitative proteomics technology. A total of 3,312 proteins were identified, of which 843 were DAPs that were categorized into nine clusters based on their abundance changes across developmental stages. Notably, DAPs in cluster 2, which peaked at the L12d stage, were primarily associated with mammary gland development and lactation. The protein-protein interaction network revealed that the epidermal growth factor (EGF) was central to this cluster. Our study provides a comprehensive overview of the mouse mammary gland development proteome and identifies some important proteins, such as EGF, Janus kinase 1 (JAK1), and signal transducer and activator of transcription 6 (STAT6) that may serve as potential targets for future research to provide guidelines for a deeper understanding of the developmental biology of mammary glands.
Collapse
Affiliation(s)
- Wenjing Wang
- National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou 510642, China
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou 510642, China
- State Key Laboratory Swine and Poultry Breeding Industry, South China Agricultural University, Guangzhou 510642, China
- National and local joint Engineering Research Center for Livestock and Poultry Breeding Industry, South China Agricultural University, Guangzhou 510642, China
| | - Shunbo Wang
- National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou 510642, China
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou 510642, China
- State Key Laboratory Swine and Poultry Breeding Industry, South China Agricultural University, Guangzhou 510642, China
- National and local joint Engineering Research Center for Livestock and Poultry Breeding Industry, South China Agricultural University, Guangzhou 510642, China
| | - Hao Wang
- National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou 510642, China
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou 510642, China
- State Key Laboratory Swine and Poultry Breeding Industry, South China Agricultural University, Guangzhou 510642, China
- National and local joint Engineering Research Center for Livestock and Poultry Breeding Industry, South China Agricultural University, Guangzhou 510642, China
| | - Enqin Zheng
- National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou 510642, China
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou 510642, China
- State Key Laboratory Swine and Poultry Breeding Industry, South China Agricultural University, Guangzhou 510642, China
- National and local joint Engineering Research Center for Livestock and Poultry Breeding Industry, South China Agricultural University, Guangzhou 510642, China
| | - Zhenfang Wu
- National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou 510642, China
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou 510642, China
- State Key Laboratory Swine and Poultry Breeding Industry, South China Agricultural University, Guangzhou 510642, China
- National and local joint Engineering Research Center for Livestock and Poultry Breeding Industry, South China Agricultural University, Guangzhou 510642, China
- Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology, Guangzhou 510642, China
| | - Zicong Li
- National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou 510642, China
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou 510642, China
- State Key Laboratory Swine and Poultry Breeding Industry, South China Agricultural University, Guangzhou 510642, China
- National and local joint Engineering Research Center for Livestock and Poultry Breeding Industry, South China Agricultural University, Guangzhou 510642, China
- Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology, Guangzhou 510642, China
| |
Collapse
|
6
|
Jeong J, Lee J, Talaia G, Kim W, Song J, Hong J, Yoo K, Gonzalez DG, Athonvarangkul D, Shin J, Dann P, Haberman AM, Kim LK, Ferguson SM, Choi J, Wysolmerski J. Intracellular calcium links milk stasis to lysosome-dependent cell death during early mammary gland involution. Cell Mol Life Sci 2024; 81:29. [PMID: 38212474 PMCID: PMC10784359 DOI: 10.1007/s00018-023-05044-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 10/17/2023] [Accepted: 11/07/2023] [Indexed: 01/13/2024]
Abstract
Involution of the mammary gland after lactation is a dramatic example of coordinated cell death. Weaning causes distension of the alveolar structures due to the accumulation of milk, which, in turn, activates STAT3 and initiates a caspase-independent but lysosome-dependent cell death (LDCD) pathway. Although the importance of STAT3 and LDCD in early mammary involution is well established, it has not been entirely clear how milk stasis activates STAT3. In this report, we demonstrate that protein levels of the PMCA2 calcium pump are significantly downregulated within 2-4 h of experimental milk stasis. Reductions in PMCA2 expression correlate with an increase in cytoplasmic calcium in vivo as measured by multiphoton intravital imaging of GCaMP6f fluorescence. These events occur concomitant with the appearance of nuclear pSTAT3 expression but prior to significant activation of LDCD or its previously implicated mediators such as LIF, IL6, and TGFβ3, all of which appear to be upregulated by increased intracellular calcium. We further demonstrate that increased intracellular calcium activates STAT3 by inducing degradation of its negative regulator, SOCS3. We also observed that milk stasis, loss of PMCA2 expression and increased intracellular calcium levels activate TFEB, an important regulator of lysosome biogenesis through a process involving inhibition of CDK4/6 and cell cycle progression. In summary, these data suggest that intracellular calcium serves as an important proximal biochemical signal linking milk stasis to STAT3 activation, increased lysosomal biogenesis, and lysosome-mediated cell death.
Collapse
Affiliation(s)
- Jaekwang Jeong
- Section of Endocrinology and Metabolism, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, USA.
| | - Jongwon Lee
- Department of Biomedical Sciences, Korea University College of Medicine, Seoul, Republic of Korea
| | - Gabriel Talaia
- Departments of Cell Biology and of Neuroscience, Wu Tsai Institute, Yale University School of Medicine, New Haven, CT, 06510, USA
| | - Wonnam Kim
- Division of Phamacology, School of Korean Medicine, Pusan National University, Yangsan, Gyeongnam, 50612, Republic of Korea
| | - Junho Song
- Department of Biomedical Sciences, Korea University College of Medicine, Seoul, Republic of Korea
| | - Juhyeon Hong
- Department of Biomedical Sciences, Korea University College of Medicine, Seoul, Republic of Korea
| | - Kwangmin Yoo
- Department of Biomedical Sciences, Korea University College of Medicine, Seoul, Republic of Korea
| | - David G Gonzalez
- Department of Genetics, Yale School of Medicine, New Haven, CT, 06510, USA
| | - Diana Athonvarangkul
- Section of Endocrinology and Metabolism, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, USA
| | - Jaehun Shin
- Integrated Science Engineering Division, Underwood International College, Yonsei University, Seoul, Republic of Korea
| | - Pamela Dann
- Section of Endocrinology and Metabolism, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, USA
| | - Ann M Haberman
- Departments of Immunobiology and Laboratory Medicine, Yale School of Medicine, New Haven, CT, 06510, USA
| | - Lark Kyun Kim
- Department of Biomedical Sciences, Graduate School of Medical Science, Brain Korea 21 Project, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, 06230, Republic of Korea
| | - Shawn M Ferguson
- Departments of Cell Biology and of Neuroscience, Wu Tsai Institute, Yale University School of Medicine, New Haven, CT, 06510, USA
| | - Jungmin Choi
- Department of Biomedical Sciences, Korea University College of Medicine, Seoul, Republic of Korea
| | - John Wysolmerski
- Section of Endocrinology and Metabolism, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, USA.
| |
Collapse
|
7
|
Wicker MN, Wagner KU. Cellular Plasticity in Mammary Gland Development and Breast Cancer. Cancers (Basel) 2023; 15:5605. [PMID: 38067308 PMCID: PMC10705338 DOI: 10.3390/cancers15235605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 11/17/2023] [Accepted: 11/23/2023] [Indexed: 02/12/2024] Open
Abstract
Cellular plasticity is a phenomenon where cells adopt different identities during development and tissue homeostasis as a response to physiological and pathological conditions. This review provides a general introduction to processes by which cells change their identity as well as the current definition of cellular plasticity in the field of mammary gland biology. Following a synopsis of the evolving model of the hierarchical development of mammary epithelial cell lineages, we discuss changes in cell identity during normal mammary gland development with particular emphasis on the effect of the gestation cycle on the emergence of new cellular states. Next, we summarize known mechanisms that promote the plasticity of epithelial lineages in the normal mammary gland and highlight the importance of the microenvironment and extracellular matrix. A discourse of cellular reprogramming during the early stages of mammary tumorigenesis that follows focuses on the origin of basal-like breast cancers from luminal progenitors and oncogenic signaling networks that orchestrate diverse developmental trajectories of transforming epithelial cells. In addition to the epithelial-to-mesenchymal transition, we highlight events of cellular reprogramming during breast cancer progression in the context of intrinsic molecular subtype switching and the genesis of the claudin-low breast cancer subtype, which represents the far end of the spectrum of epithelial cell plasticity. In the final section, we will discuss recent advances in the design of genetically engineered models to gain insight into the dynamic processes that promote cellular plasticity during mammary gland development and tumorigenesis in vivo.
Collapse
Affiliation(s)
| | - Kay-Uwe Wagner
- Department of Oncology, Wayne State University School of Medicine and Tumor Biology Program, Barbara Ann Karmanos Cancer Institute, 4100 John R, EL01TM, Detroit, MI 48201, USA
| |
Collapse
|
8
|
Jeong J, Lee J, Talaia G, Kim W, Song J, Hong J, Yoo K, Gonzalez D, Athonvarangkul D, Shin J, Dann P, Haberman A, Kim LK, Ferguson S, Choi J, Wysolmerski J. Intracellular Calcium links Milk Stasis to Lysosome Dependent Cell Death by Activating a TGFβ3/TFEB/STAT3 Pathway Early during Mammary Gland Involution. RESEARCH SQUARE 2023:rs.3.rs-3030763. [PMID: 37398309 PMCID: PMC10312953 DOI: 10.21203/rs.3.rs-3030763/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Involution of the mammary gland after lactation is a dramatic example of coordinated cell death. Weaning causes distension of the alveolar structures due to the accumulation of milk, which, in turn, activates STAT3 and initiates a caspase-independent but lysosome-dependent cell death (LDCD) pathway. Although the importance of STAT3 and LDCD in early mammary involution is well established, it has not been entirely clear how milk stasis activates STAT3. In this report, we demonstrate that protein levels of the PMCA2 calcium pump are significantly downregulated within 2-4 hours of experimental milk stasis. Reductions in PMCA2 expression correlate with an increase in cytoplasmic calcium in vivo as measured by multiphoton intravital imaging of GCaMP6f fluorescence. These events occur concomitant with the appearance of nuclear pSTAT3 expression but prior to significant activation of LDCD or its previously implicated mediators such as LIF, IL6 and TGFβ3, all of which appear to be upregulated by increased intracellular calcium. We also observed that milk stasis, loss of PMCA2 expression and increased intracellular calcium levels activate TFEB, an important regulator of lysosome biogenesis. This is the result of increased TGFβ signaling and inhibition of cell cycle progression. Finally, we demonstrate that increased intracellular calcium activates STAT3 by inducing degradation of its negative regulator, SOCS3, a process which also appears to be mediated by TGFβ signaling. In summary, these data suggest that intracellular calcium serves as an important proximal biochemical signal linking milk stasis to STAT3 activation, increased lysosomal biogenesis, and lysosome-mediated cell death.
Collapse
Affiliation(s)
- Jaekwang Jeong
- Yale School of Medicine: Yale University School of Medicine
| | | | - Gabriel Talaia
- Yale School of Medicine: Yale University School of Medicine
| | | | | | | | | | - David Gonzalez
- Yale School of Medicine: Yale University School of Medicine
| | | | | | - Pamela Dann
- Yale School of Medicine: Yale University School of Medicine
| | - Ann Haberman
- Yale School of Medicine: Yale University School of Medicine
| | | | - Shawn Ferguson
- Yale School of Medicine: Yale University School of Medicine
| | | | | |
Collapse
|
9
|
Zhang T, Zhang L, Huang G, Hao X, Liu Z, Huo S. MEL regulates miR-21 and let-7b through the STAT3 cascade in the follicular granulosa cells of Tibetan sheep. Theriogenology 2023; 205:114-129. [PMID: 37120893 DOI: 10.1016/j.theriogenology.2023.04.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 03/21/2023] [Accepted: 04/10/2023] [Indexed: 05/02/2023]
Abstract
Under physiological and pathological conditions, melatonin (MEL) can regulate microRNA (miRNA) expression. However, the mechanisms underlying the regulatory effects of MEL on miRNAs in ovaries are not understood. Firstly, by using fluorescence in situ hybridisation, we found that in ovaries and follicular granulosa cells (FGCs), MT1 co-located with miR-21 and let-7b. Additionally, immunofluorescence revealed that MT1, STAT3, c-MYC and LIN28 proteins co-located. The mRNA and protein levels of STAT3, c-MYC and LIN28 increased under treatment with 10-7 M MEL. MEL induced an increase in miR-21 and a decrease in let-7b. The LIN28/let-7b and STAT3/miR-21 axes are related to cell differentiation, apoptosis and proliferation. We explored whether the STAT3/c-MYC/LIN28 pathway was involved in miRNA regulation by MEL to explore the putative mechanism of the above relationship. AG490, an inhibitor of the STAT3 pathway, was added before MEL treatment. AG490 inhibited the MEL-induced increases in STAT3, c-MYC, LIN28 and MT1 and changes in miRNA. Through live-cell detection, we discovered that MEL enhanced the proliferation of FGCs. However, the ki67 protein levels decreased when AG490 was added in advance. Furthermore, the dual-luciferase reporter assay verified that STAT3, LIN28 and MT1 were target genes of let-7b. Furthermore, STAT3 and SMAD7 were target genes of miR-21. In addition, the protein levels of the STAT3, c-MYC, LIN28 and MEL receptors decreased when let-7b was overexpressed in FGCs. Overall, MEL might regulate miRNA expression through the STAT3 pathway. In addition, a negative feedback loop between the STAT3 and miR-21 formed; MEL and let-7b antagonized each other in FGCs. These findings may provide a theoretical basis for improving the reproductive performance of Tibetan sheep through MEL and miRNAs.
Collapse
Affiliation(s)
- Taojie Zhang
- Northwest Minzu University, Life Science and Engineering College, Lanzhou, Gansu, China.
| | - Lijuan Zhang
- Northwest Minzu University, Life Science and Engineering College, Lanzhou, Gansu, China
| | - Guoliang Huang
- Northwest Minzu University, Life Science and Engineering College, Lanzhou, Gansu, China
| | - Xiaomeng Hao
- Northwest Minzu University, Life Science and Engineering College, Lanzhou, Gansu, China
| | - Zezheng Liu
- Northwest Minzu University, Life Science and Engineering College, Lanzhou, Gansu, China
| | - Shengdong Huo
- Northwest Minzu University, Life Science and Engineering College, Lanzhou, Gansu, China.
| |
Collapse
|
10
|
Lopdell TJ. Using QTL to Identify Genes and Pathways Underlying the Regulation and Production of Milk Components in Cattle. Animals (Basel) 2023; 13:ani13050911. [PMID: 36899768 PMCID: PMC10000085 DOI: 10.3390/ani13050911] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 02/23/2023] [Accepted: 02/28/2023] [Indexed: 03/06/2023] Open
Abstract
Milk is a complex liquid, and the concentrations of many of its components are under genetic control. Many genes and pathways are known to regulate milk composition, and the purpose of this review is to highlight how the discoveries of quantitative trait loci (QTL) for milk phenotypes can elucidate these pathways. The main body of this review focuses primarily on QTL discovered in cattle (Bos taurus) as a model species for the biology of lactation, and there are occasional references to sheep genetics. The following section describes a range of techniques that can be used to help identify the causative genes underlying QTL when the underlying mechanism involves the regulation of gene expression. As genotype and phenotype databases continue to grow and diversify, new QTL will continue to be discovered, and although proving the causality of underlying genes and variants remains difficult, these new data sets will further enhance our understanding of the biology of lactation.
Collapse
|
11
|
Hannan FM, Elajnaf T, Vandenberg LN, Kennedy SH, Thakker RV. Hormonal regulation of mammary gland development and lactation. Nat Rev Endocrinol 2023; 19:46-61. [PMID: 36192506 DOI: 10.1038/s41574-022-00742-y] [Citation(s) in RCA: 84] [Impact Index Per Article: 42.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/17/2022] [Indexed: 12/14/2022]
Abstract
Lactation is critical to infant short-term and long-term health and protects mothers from breast cancer, ovarian cancer and type 2 diabetes mellitus. The mammary gland is a dynamic organ, regulated by the coordinated actions of reproductive and metabolic hormones. These hormones promote gland development from puberty onwards and induce the formation of a branched, epithelial, milk-secreting organ by the end of pregnancy. Progesterone withdrawal following placental delivery initiates lactation, which is maintained by increased pituitary secretion of prolactin and oxytocin, and stimulated by infant suckling. After weaning, local cytokine production and decreased prolactin secretion trigger large-scale mammary cell loss, leading to gland involution. Here, we review advances in the molecular endocrinology of mammary gland development and milk synthesis. We discuss the hormonal functions of the mammary gland, including parathyroid hormone-related peptide secretion that stimulates maternal calcium mobilization for milk synthesis. We also consider the hormonal composition of human milk and its associated effects on infant health and development. Finally, we highlight endocrine and metabolic diseases that cause lactation insufficiency, for example, monogenic disorders of prolactin and prolactin receptor mutations, maternal obesity and diabetes mellitus, interventions during labour and delivery, and exposure to endocrine-disrupting chemicals such as polyfluoroalkyl substances in consumer products and other oestrogenic compounds.
Collapse
Affiliation(s)
- Fadil M Hannan
- Larsson-Rosenquist Foundation Oxford Centre for the Endocrinology of Human Lactation, Nuffield Department of Women's & Reproductive Health, University of Oxford, Oxford, UK.
| | - Taha Elajnaf
- Larsson-Rosenquist Foundation Oxford Centre for the Endocrinology of Human Lactation, Nuffield Department of Women's & Reproductive Health, University of Oxford, Oxford, UK
| | - Laura N Vandenberg
- Department of Environmental Health Sciences, University of Massachusetts Amherst, Amherst, MA, USA
| | - Stephen H Kennedy
- Larsson-Rosenquist Foundation Oxford Centre for the Endocrinology of Human Lactation, Nuffield Department of Women's & Reproductive Health, University of Oxford, Oxford, UK
| | - Rajesh V Thakker
- Academic Endocrine Unit, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| |
Collapse
|
12
|
Carr D, Zein A, Coulombe J, Jiang T, Cabrita MA, Ward G, Daneshmand M, Sau A, Pratt MAC. Multiple roles for Bcl-3 in mammary gland branching, stromal collagen invasion, involution and tumor pathology. Breast Cancer Res 2022; 24:40. [PMID: 35681213 PMCID: PMC9185916 DOI: 10.1186/s13058-022-01536-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 06/02/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The Bcl-3 protein is an atypical member of the inhibitor of -κB family that has dual roles as a transcriptional repressor and a coactivator for dimers of NF-κB p50 and p52. Bcl-3 is expressed in mammary adenocarcinomas and can promote tumorigenesis and survival signaling and has a key role in tumor metastasis. In this study, we have investigated the role of Bcl-3 in the normal mammary gland and impact on tumor pathology. METHODS We utilized bcl-3-/- mice to study mammary gland structure in virgins and during gestation, lactation and early involution. Expression of involution-associated genes and proteins and putative Bcl-3 target genes was examined by qRT-PCR and immunoblot analysis. Cell autonomous branching morphogenesis and collagen I invasion properties of bcl-3-/- organoids were tested in 3D hydrogel cultures. The role of Bcl-3 in tumorigenesis and tumor pathology was also assessed using a stochastic carcinogen-induced mammary tumor model. RESULTS Bcl-3-/- mammary glands demonstrated reduced branching complexity in virgin and pregnant mice. This defect was recapitulated in vitro where significant defects in bud formation were observed in bcl-3-/- mammary organoid cultures. Bcl-3-/- organoids showed a striking defect in protrusive collective fibrillary collagen I invasion associated with reduced expression of Fzd1 and Twist2. Virgin and pregnant bcl-3-/- glands showed increased apoptosis and rapid increases in lysosomal cell death and apoptosis after forced weaning compared to WT mice. Bcl-2 and Id3 are strongly induced in WT but not bcl-3-/- glands in early involution. Tumors in WT mice were predominately adenocarcinomas with NF-κB activation, while bcl-3-/- lesions were largely squamous lacking NF-κB and with low Bcl-2 expression. CONCLUSIONS Collectively, our results demonstrate that Bcl-3 has a key function in mammary gland branching morphogenesis, in part by regulation of genes involved in extracellular matrix invasion. Markedly reduced levels of pro-survival proteins expression in bcl-3 null compared to WT glands 24 h post-weaning indicate that Bcl-3 has a role in moderating the rate of early phase involution. Lastly, a reduced incidence of bcl-3-/- mammary adenocarcinomas versus squamous lesions indicates that Bcl-3 supports the progression of epithelial but not metaplastic cancers.
Collapse
Affiliation(s)
- David Carr
- Department of Cellular and Molecular Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON, K1H 8M5, Canada
| | - Aiman Zein
- Department of Cellular and Molecular Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON, K1H 8M5, Canada
| | - Josée Coulombe
- Department of Cellular and Molecular Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON, K1H 8M5, Canada
| | - Tianqi Jiang
- Department of Cellular and Molecular Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON, K1H 8M5, Canada
| | - Miguel A Cabrita
- Department of Cellular and Molecular Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON, K1H 8M5, Canada
| | - Gwendoline Ward
- Department of Cellular and Molecular Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON, K1H 8M5, Canada
| | - Manijeh Daneshmand
- Department of Cellular and Molecular Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON, K1H 8M5, Canada
| | - Andrea Sau
- Department of Cellular and Molecular Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON, K1H 8M5, Canada
| | - M A Christine Pratt
- Department of Cellular and Molecular Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON, K1H 8M5, Canada.
| |
Collapse
|
13
|
Hitchcock J, Hughes K, Pensa S, Lloyd-Lewis B, Watson CJ. The immune environment of the mammary gland fluctuates during post-lactational regression and correlates with tumour growth rate. Development 2022; 149:275060. [PMID: 35420674 PMCID: PMC9124574 DOI: 10.1242/dev.200162] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 04/04/2022] [Indexed: 01/02/2023]
Abstract
Post-lactational mammary gland regression encompasses extensive programmed cell death and removal of milk-producing epithelial cells, breakdown of extracellular matrix components and redifferentiation of stromal adipocytes. This highly regulated involution process is associated with a transient increased risk of breast cancer in women. Using a syngeneic tumour model, we show that tumour growth is significantly altered depending on the stage of involution at which tumour cells are implanted. Tumour cells injected at day 3 involution grew faster than those in nulliparous mice, whereas tumours initiated at day 6 involution grew significantly slower. These differences in tumour progression correlate with distinct changes in innate immune cells, in particular among F4/80-expressing macrophages and among TCRδ+ unconventional T cells. Breast cancer post-pregnancy risk is exacerbated in older first-time mothers and, in our model, initial tumour growth is moderately faster in aged mice compared with young mice. Our results have implications for breast cancer risk and the use of anti-inflammatory therapeutics for postpartum breast cancers. Summary: Mammary gland involution is associated with dynamic changes in immune cell types and numbers at different stages that correlates with the initial rate of growth of implanted tumour cells.
Collapse
Affiliation(s)
- Jessica Hitchcock
- Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QP, UK
| | - Katherine Hughes
- Department of Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge CB3 0ES, UK
| | - Sara Pensa
- Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QP, UK
- Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge CB2 1PD, UK
| | - Bethan Lloyd-Lewis
- Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QP, UK
- School of Cellular and Molecular Medicine, University of Bristol, University Walk, Bristol BS8 1TD, UK
| | - Christine J. Watson
- Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QP, UK
| |
Collapse
|
14
|
The Mammary Gland: Basic Structure and Molecular Signaling during Development. Int J Mol Sci 2022; 23:ijms23073883. [PMID: 35409243 PMCID: PMC8998991 DOI: 10.3390/ijms23073883] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 03/22/2022] [Accepted: 03/30/2022] [Indexed: 01/27/2023] Open
Abstract
The mammary gland is a compound, branched tubuloalveolar structure and a major characteristic of mammals. The mammary gland has evolved from epidermal apocrine glands, the skin glands as an accessory reproductive organ to support postnatal survival of offspring by producing milk as a source of nutrition. The mammary gland development begins during embryogenesis as a rudimentary structure that grows into an elementary branched ductal tree and is embedded in one end of a larger mammary fat pad at birth. At the onset of ovarian function at puberty, the rudimentary ductal system undergoes dramatic morphogenetic change with ductal elongation and branching. During pregnancy, the alveolar differentiation and tertiary branching are completed, and during lactation, the mature milk-producing glands eventually develop. The early stages of mammary development are hormonal independent, whereas during puberty and pregnancy, mammary gland development is hormonal dependent. We highlight the current understanding of molecular regulators involved during different stages of mammary gland development.
Collapse
|
15
|
Felcher CM, Bogni ES, Kordon EC. IL-6 Cytokine Family: A Putative Target for Breast Cancer Prevention and Treatment. Int J Mol Sci 2022; 23:ijms23031809. [PMID: 35163731 PMCID: PMC8836921 DOI: 10.3390/ijms23031809] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 01/19/2022] [Accepted: 01/20/2022] [Indexed: 12/11/2022] Open
Abstract
The IL-6 cytokine family is a group of signaling molecules with wide expression and function across vertebrates. Each member of the family signals by binding to its specific receptor and at least one molecule of gp130, which is the common transmembrane receptor subunit for the whole group. Signal transduction upon stimulation of the receptor complex results in the activation of multiple downstream cascades, among which, in mammary cells, the JAK-STAT3 pathway plays a central role. In this review, we summarize the role of the IL-6 cytokine family—specifically IL-6 itself, LIF, OSM, and IL-11—as relevant players during breast cancer progression. We have compiled evidence indicating that this group of soluble factors may be used for early and more precise breast cancer diagnosis and to design targeted therapy to treat or even prevent metastasis development, particularly to the bone. Expression profiles and possible therapeutic use of their specific receptors in the different breast cancer subtypes are also described. In addition, participation of these cytokines in pathologies of the breast linked to lactation and involution of the gland, as post-partum breast cancer and mastitis, is discussed.
Collapse
Affiliation(s)
- Carla M. Felcher
- Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE), Universidad de Buenos Aires—Consejo Nacional de Investigaciones Científicas y Técnicas (IFIBYNE-UBA-CONICET), Ciudad Autónoma de Buenos Aires (CABA) 1428, Argentina; (C.M.F.); (E.S.B.)
| | - Emilia S. Bogni
- Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE), Universidad de Buenos Aires—Consejo Nacional de Investigaciones Científicas y Técnicas (IFIBYNE-UBA-CONICET), Ciudad Autónoma de Buenos Aires (CABA) 1428, Argentina; (C.M.F.); (E.S.B.)
| | - Edith C. Kordon
- Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE), Universidad de Buenos Aires—Consejo Nacional de Investigaciones Científicas y Técnicas (IFIBYNE-UBA-CONICET), Ciudad Autónoma de Buenos Aires (CABA) 1428, Argentina; (C.M.F.); (E.S.B.)
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires (CABA) 1428, Argentina
- Correspondence:
| |
Collapse
|
16
|
Jeong J, Kadegowda AKG, Meyer TJ, Jenkins LM, Dinan JC, Wysolmerski JJ, Weigert R, Mather IH. The butyrophilin 1a1 knockout mouse revisited: Ablation of Btn1a1 leads to concurrent cell death and renewal in the mammary epithelium during lactation. FASEB Bioadv 2021; 3:971-997. [PMID: 34938960 PMCID: PMC8664049 DOI: 10.1096/fba.2021-00059] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 08/13/2021] [Accepted: 08/17/2021] [Indexed: 01/28/2023] Open
Abstract
Butyrophilin 1A1 (BTN1A1) is implicated in the secretion of lipid droplets from mammary epithelial cells as a membrane receptor, which forms a secretion complex with the redox enzyme, xanthine oxidoreductase (XDH). The first evidence that BTN1A1 functions in this process was the generation of Btn1a1 -/- mouse lines, in which lipid secretion was disrupted and large unstable droplets were released into alveolar spaces with fragmented surface membranes. We have revisited one of these mutant mouse lines using RNAseq and proteomic analysis to assess the consequences of ablating the Btn1a1 gene on the expression of other genes and proteins. Disruption of intact Btn1a1 protein expression led to a large build-up of Xdh in the cytoplasm, induction of acute phase response genes and Lif-activation of Stat3 phosphorylation. At peak lactation, approx. 10% of the cells were dying, as assessed by TUNEL-analysis of nuclear DNA. Possible cell death pathways included expression of caspase 8 and activated caspase 3, autophagy, Slc5a8-mediated inactivation of survivin (Birc5), and pStat3-mediated lysosomal lysis, the latter of which is the principal death route in involuting wild type cells. Milk secretion was prolonged by renewal of the secretory epithelium, as evidenced by the upregulation of Ki67 in approx. 10% of cell nuclei and expression of cyclins and Fos/Jun. These data highlight the plasticity of the mammary epithelium and the importance of functional BTN1A1 expression for maintenance of terminally differentiated secretory cells and optimal milk production throughout lactation.
Collapse
Affiliation(s)
- Jaekwang Jeong
- Department of Animal and Avian SciencesUniversity of MarylandCollege ParkMarylandUSA
- Present address:
Section of Endocrinology and MetabolismDepartment of Internal MedicineYale University School of MedicineNew HavenConnecticut06520USA
| | - Anil K. G. Kadegowda
- Department of Animal and Avian SciencesUniversity of MarylandCollege ParkMarylandUSA
- Present address:
Department of Animal SciencesUniversity of Agricultural Sciences DharwadHubliKarnataka580005India
| | - Thomas J. Meyer
- CCR Collaborative Bioinformatics ResourceNational Cancer InstituteNational Institutes of HealthBethesdaMarylandUSA
- Advanced Biomedical Computational ScienceFrederick National Laboratory for Cancer ResearchFrederickMarylandUSA
| | - Lisa M. Jenkins
- Laboratory of Cell BiologyNational Cancer InstituteNational Institutes of HealthBethesdaMarylandUSA
| | - Jerry C. Dinan
- Laboratory of Cell BiologyNational Cancer InstituteNational Institutes of HealthBethesdaMarylandUSA
| | - John J. Wysolmerski
- Department of Internal MedicineYale University School of MedicineNew HavenConnecticutUSA
| | - Roberto Weigert
- Laboratory of Cellular and Molecular BiologyCenter for Cancer ResearchNational Cancer InstituteNational Institutes of HealthBethesdaMarylandUSA
| | - Ian H. Mather
- Department of Animal and Avian SciencesUniversity of MarylandCollege ParkMarylandUSA
- Laboratory of Cellular and Molecular BiologyCenter for Cancer ResearchNational Cancer InstituteNational Institutes of HealthBethesdaMarylandUSA
| |
Collapse
|
17
|
Slepicka PF, Somasundara AVH, Dos Santos CO. The molecular basis of mammary gland development and epithelial differentiation. Semin Cell Dev Biol 2021; 114:93-112. [PMID: 33082117 PMCID: PMC8052380 DOI: 10.1016/j.semcdb.2020.09.014] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Revised: 09/28/2020] [Accepted: 09/30/2020] [Indexed: 02/07/2023]
Abstract
Our understanding of the molecular events underpinning the development of mammalian organ systems has been increasing rapidly in recent years. With the advent of new and improved next-generation sequencing methods, we are now able to dig deeper than ever before into the genomic and epigenomic events that play critical roles in determining the fates of stem and progenitor cells during the development of an embryo into an adult. In this review, we detail and discuss the genes and pathways that are involved in mammary gland development, from embryogenesis, through maturation into an adult gland, to the role of pregnancy signals in directing the terminal maturation of the mammary gland into a milk producing organ that can nurture the offspring. We also provide an overview of the latest research in the single-cell genomics of mammary gland development, which may help us to understand the lineage commitment of mammary stem cells (MaSCs) into luminal or basal epithelial cells that constitute the mammary gland. Finally, we summarize the use of 3D organoid cultures as a model system to study the molecular events during mammary gland development. Our increased investigation of the molecular requirements for normal mammary gland development will advance the discovery of targets to predict breast cancer risk and the development of new breast cancer therapies.
Collapse
Affiliation(s)
- Priscila Ferreira Slepicka
- Stem Cell Transplantation and Regenerative Medicine, Department of Pediatrics, Stanford University School of Medicine, Palo Alto, CA 94305, USA
| | | | - Camila O Dos Santos
- Cold Spring Harbor Laboratory, 1 Bungtown Road, Cold Spring Harbor, NY 11724, USA.
| |
Collapse
|
18
|
Tolomeo M, Cascio A. The Multifaced Role of STAT3 in Cancer and Its Implication for Anticancer Therapy. Int J Mol Sci 2021; 22:ijms22020603. [PMID: 33435349 PMCID: PMC7826746 DOI: 10.3390/ijms22020603] [Citation(s) in RCA: 190] [Impact Index Per Article: 47.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 12/24/2020] [Accepted: 01/05/2021] [Indexed: 12/12/2022] Open
Abstract
Signal transducer and activator of transcription (STAT) 3 is one of the most complex regulators of transcription. Constitutive activation of STAT3 has been reported in many types of tumors and depends on mechanisms such as hyperactivation of receptors for pro-oncogenic cytokines and growth factors, loss of negative regulation, and excessive cytokine stimulation. In contrast, somatic STAT3 mutations are less frequent in cancer. Several oncogenic targets of STAT3 have been recently identified such as c-myc, c-Jun, PLK-1, Pim1/2, Bcl-2, VEGF, bFGF, and Cten, and inhibitors of STAT3 have been developed for cancer prevention and treatment. However, despite the oncogenic role of STAT3 having been widely demonstrated, an increasing amount of data indicate that STAT3 functions are multifaced and not easy to classify. In fact, the specific cellular role of STAT3 seems to be determined by the integration of multiple signals, by the oncogenic environment, and by the alternative splicing into two distinct isoforms, STAT3α and STAT3β. On the basis of these different conditions, STAT3 can act both as a potent tumor promoter or tumor suppressor factor. This implies that the therapies based on STAT3 modulators should be performed considering the pleiotropic functions of this transcription factor and tailored to the specific tumor type.
Collapse
|
19
|
Stewart TA, Hughes K, Stevenson AJ, Marino N, Ju AL, Morehead M, Davis FM. Mammary mechanobiology - investigating roles for mechanically activated ion channels in lactation and involution. J Cell Sci 2021; 134:jcs248849. [PMID: 33262312 DOI: 10.1242/jcs.248849] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 11/06/2020] [Indexed: 01/14/2023] Open
Abstract
The ability of a mother to produce a nutritionally complete neonatal food source has provided a powerful evolutionary advantage to mammals. Milk production by mammary epithelial cells is adaptive, its release is exquisitely timed, and its own glandular stagnation with the permanent cessation of suckling triggers the cell death and tissue remodeling that enables female mammals to nurse successive progeny. Chemical and mechanical signals both play a role in this process. However, despite this duality of input, much remains unknown about the nature and function of mechanical forces in this organ. Here, we characterize the force landscape in the functionally mature gland and the capacity of luminal and basal cells to experience and exert force. We explore molecular instruments for force-sensing, in particular channel-mediated mechanotransduction, revealing increased expression of Piezo1 in mammary tissue in lactation and confirming functional expression in luminal cells. We also reveal, however, that lactation and involution proceed normally in mice with luminal-specific Piezo1 deletion. These findings support a multifaceted system of chemical and mechanical sensing in the mammary gland, and a protective redundancy that ensures continued lactational competence and offspring survival.
Collapse
Affiliation(s)
- Teneale A Stewart
- Mater Research Institute-The University of Queensland, Faculty of Medicine, Woolloongabba, Queensland, 4102, Australia
- Translational Research Institute, Woolloongabba, Queensland, 4102, Australia
| | - Katherine Hughes
- Department of Veterinary Medicine, University of Cambridge, Cambridge, CB3 0ES, UK
| | - Alexander J Stevenson
- Mater Research Institute-The University of Queensland, Faculty of Medicine, Woolloongabba, Queensland, 4102, Australia
- Translational Research Institute, Woolloongabba, Queensland, 4102, Australia
| | - Natascia Marino
- Department of Medicine, Indiana University School of Medicine, Indianapolis, 46202, USA
- Susan G. Komen Tissue Bank at Indiana University Simon Cancer Center, Indianapolis, 46202, USA
| | - Adler L Ju
- Translational Research Institute, Woolloongabba, Queensland, 4102, Australia
| | - Michael Morehead
- Lane Department of Computer Science and Electrical Engineering, West Virginia University, Morgantown, 26506, USA
| | - Felicity M Davis
- Mater Research Institute-The University of Queensland, Faculty of Medicine, Woolloongabba, Queensland, 4102, Australia
- Translational Research Institute, Woolloongabba, Queensland, 4102, Australia
| |
Collapse
|
20
|
Otto PI, Guimarães SEF, Calus MPL, Vandenplas J, Machado MA, Panetto JCC, da Silva MVGB. Single-step genome-wide association studies (GWAS) and post-GWAS analyses to identify genomic regions and candidate genes for milk yield in Brazilian Girolando cattle. J Dairy Sci 2020; 103:10347-10360. [PMID: 32896396 DOI: 10.3168/jds.2019-17890] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 06/19/2020] [Indexed: 12/15/2022]
Abstract
Milk production is economically important to the Brazilian agribusiness, and the majority of the country's milk production derives from Girolando (Gir × Holstein) cows. This study aimed to identify quantitative trait loci (QTL) and candidate genes associated with 305-d milk yield (305MY) in Girolando cattle. In addition, we investigated the SNP-specific variances for Holstein and Gir breeds of origin within the sequence of candidate genes. A single-step genomic BLUP procedure was used to identify QTL associated with 305MY, and the most likely candidate genes were identified through follow-up analyses. Genomic breeding values specific for Holstein and Gir were estimated in the Girolando animals using a model that uses breed-specific partial relationship matrices, which were converted to breed of origin SNP effects. Differences between breed of origin were evaluated by comparing estimated SNP variances between breeds. From 10 genome regions explaining most additive genetic variance for 305MY in Girolando cattle, 7 candidate genes were identified on chromosomes 1, 4, 6, and 26. Within the sequence of these 7 candidate genes, Gir breed of origin SNP alleles showed the highest genetic variance. These results indicated QTL regions that could be further explored in genomic selection panels and which may also help in understanding the gene mechanisms involved in milk production in the Girolando breed.
Collapse
Affiliation(s)
- Pamela I Otto
- Department of Animal Science, Universidade Federal de Viçosa, Viçosa, MG, 36570-900, Brazil
| | - Simone E F Guimarães
- Department of Animal Science, Universidade Federal de Viçosa, Viçosa, MG, 36570-900, Brazil
| | - Mario P L Calus
- Animal Breeding and Genomics, Wageningen University & Research, 6700 AH Wageningen, the Netherlands
| | - Jeremie Vandenplas
- Animal Breeding and Genomics, Wageningen University & Research, 6700 AH Wageningen, the Netherlands
| | - Marco A Machado
- Animal Breeding and Genomics, Wageningen University & Research, 6700 AH Wageningen, the Netherlands
| | - João Cláudio C Panetto
- Animal Breeding and Genomics, Wageningen University & Research, 6700 AH Wageningen, the Netherlands
| | | |
Collapse
|
21
|
Sumbal J, Chiche A, Charifou E, Koledova Z, Li H. Primary Mammary Organoid Model of Lactation and Involution. Front Cell Dev Biol 2020; 8:68. [PMID: 32266252 PMCID: PMC7098375 DOI: 10.3389/fcell.2020.00068] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Accepted: 01/24/2020] [Indexed: 12/17/2022] Open
Abstract
Mammary gland development occurs mainly after birth and is composed of three successive stages: puberty, pregnancy and lactation, and involution. These developmental stages are associated with major tissue remodeling, including extensive changes in mammary epithelium, as well as surrounding stroma. Three-dimensional (3D) mammary organoid culture has become an important tool in mammary gland biology and enabled invaluable discoveries on pubertal mammary branching morphogenesis and breast cancer. However, a suitable 3D organoid model recapitulating key aspects of lactation and involution has been missing. Here, we describe a robust and straightforward mouse mammary organoid system modeling lactation and involution-like process, which can be applied to study mechanisms of physiological mammary gland lactation and involution as well as pregnancy-associated breast cancer.
Collapse
Affiliation(s)
- Jakub Sumbal
- Department of Developmental and Stem Cell Biology, Cellular Plasticity and Disease Modelling, CNRS UMR 3738, Institut Pasteur, Paris, France
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University, Brno, Czechia
| | - Aurelie Chiche
- Department of Developmental and Stem Cell Biology, Cellular Plasticity and Disease Modelling, CNRS UMR 3738, Institut Pasteur, Paris, France
| | - Elsa Charifou
- Department of Developmental and Stem Cell Biology, Cellular Plasticity and Disease Modelling, CNRS UMR 3738, Institut Pasteur, Paris, France
| | - Zuzana Koledova
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University, Brno, Czechia
| | - Han Li
- Department of Developmental and Stem Cell Biology, Cellular Plasticity and Disease Modelling, CNRS UMR 3738, Institut Pasteur, Paris, France
| |
Collapse
|
22
|
Mayhew V, Omokehinde T, Johnson RW. Tumor dormancy in bone. Cancer Rep (Hoboken) 2020; 3:e1156. [PMID: 32632400 PMCID: PMC7337256 DOI: 10.1002/cnr2.1156] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 12/10/2018] [Accepted: 01/04/2019] [Indexed: 12/20/2022] Open
Abstract
Background Bone marrow is a common site of metastasis for a number of tumor types, including breast, prostate, and lung cancer, but the mechanisms controlling tumor dormancy in bone are poorly understood. In breast cancer, while advances in drug development, screening practices, and surgical techniques have dramatically improved survival rates in recent decades, metastatic recurrence in the bone remains common and can develop years or decades after elimination of the primary tumor. Recent Findings It is now understood that tumor cells disseminate to distant metastatic sites at early stages of tumor progression, leaving cancer survivors at a high risk of recurrence. This review will discuss mechanisms of bone lesion development and current theories of how dormant cancer cells behave in bone, as well as a number of processes suspected to be involved in the maintenance of and exit from dormancy in the bone microenvironment. Conclusions The bone is a complex microenvironment with a multitude of cell types and processes. Many of these factors, including angiogenesis, immune surveillance, and hypoxia, are thought to regulate tumor cell entry and exit from dormancy in different bone marrow niches.
Collapse
Affiliation(s)
- Vera Mayhew
- Graduate Program in Cancer BiologyVanderbilt UniversityNashvilleTNUSA
- Vanderbilt Center for Bone Biology
| | - Tolu Omokehinde
- Graduate Program in Cancer BiologyVanderbilt UniversityNashvilleTNUSA
- Vanderbilt Center for Bone Biology
| | - Rachelle W. Johnson
- Vanderbilt Center for Bone Biology
- Department of Medicine, Division of Clinical PharmacologyVanderbilt University Medical CenterNashvilleTNUSA
| |
Collapse
|
23
|
Toledo I, Zhao X, Lacasse P. Effects of milking frequency and domperidone injections on milk production and prolactin signaling in the mammary gland of dairy cows. J Dairy Sci 2020; 103:1969-1981. [DOI: 10.3168/jds.2019-17330] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 10/29/2019] [Indexed: 11/19/2022]
|
24
|
Omokehinde T, Johnson RW. GP130 Cytokines in Breast Cancer and Bone. Cancers (Basel) 2020; 12:cancers12020326. [PMID: 32023849 PMCID: PMC7072680 DOI: 10.3390/cancers12020326] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Revised: 01/24/2020] [Accepted: 01/29/2020] [Indexed: 12/14/2022] Open
Abstract
Breast cancer cells have a high predilection for skeletal homing, where they may either induce osteolytic bone destruction or enter a latency period in which they remain quiescent. Breast cancer cells produce and encounter autocrine and paracrine cytokine signals in the bone microenvironment, which can influence their behavior in multiple ways. For example, these signals can promote the survival and dormancy of bone-disseminated cancer cells or stimulate proliferation. The interleukin-6 (IL-6) cytokine family, defined by its use of the glycoprotein 130 (gp130) co-receptor, includes interleukin-11 (IL-11), leukemia inhibitory factor (LIF), oncostatin M (OSM), ciliary neurotrophic factor (CNTF), and cardiotrophin-1 (CT-1), among others. These cytokines are known to have overlapping pleiotropic functions in different cell types and are important for cross-talk between bone-resident cells. IL-6 cytokines have also been implicated in the progression and metastasis of breast, prostate, lung, and cervical cancer, highlighting the importance of these cytokines in the tumor–bone microenvironment. This review will describe the role of these cytokines in skeletal remodeling and cancer progression both within and outside of the bone microenvironment.
Collapse
Affiliation(s)
- Tolu Omokehinde
- Program in Cancer Biology, Vanderbilt University, Nashville, TN 37232, USA
- Vanderbilt Center for Bone Biology, Department of Medicine, Division of Clinical Pharmacology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Rachelle W. Johnson
- Program in Cancer Biology, Vanderbilt University, Nashville, TN 37232, USA
- Vanderbilt Center for Bone Biology, Department of Medicine, Division of Clinical Pharmacology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Department of Medicine, Division of Clinical Pharmacology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Correspondence: ; Tel.: +1-615-875-8965
| |
Collapse
|
25
|
Romagnoli M, Bresson L, Di-Cicco A, Pérez-Lanzón M, Legoix P, Baulande S, de la Grange P, De Arcangelis A, Georges-Labouesse E, Sonnenberg A, Deugnier MA, Glukhova MA, Faraldo MM. Laminin-binding integrins are essential for the maintenance of functional mammary secretory epithelium in lactation. Development 2020; 147:dev.181552. [DOI: 10.1242/dev.181552] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Accepted: 01/16/2020] [Indexed: 02/02/2023]
Abstract
Integrin dimers α3/β1, α6/β1 and α6/β4 are the mammary epithelial cell receptors for laminins, which are major components of the mammary basement membrane. The roles of specific basement membrane components and their integrin receptors in the regulation of functional gland development have not been analyzed in detail. To investigate the functions of laminin-binding integrins, we obtained mutant mice with mammary luminal cell-specific deficiencies of the α3 and α6 integrin chains generated by the Cre-Lox approach. During pregnancy, mutant mice displayed decreased luminal progenitor activity and retarded lobulo-alveolar development. Mammary glands appeared functional at the onset of lactation in mutant mice, however myoepithelial cell morphology was markedly altered, suggesting cellular compensation mechanisms involving cytoskeleton reorganization. Notably, lactation was not sustained in mutant females, and the glands underwent precocious involution. Inactivation of the p53 gene rescued the growth defects but did not restore lactogenesis in mutant mice. These results suggest that the p53 pathway is involved in the control of mammary cell proliferation and survival downstream of laminin-binding integrins and underline an essential role of cell interactions with laminin for lactogenic differentiation.
Collapse
Affiliation(s)
- Mathilde Romagnoli
- Institut Curie, PSL Research University, CNRS, UMR144, F-75005 Paris, France
- Sorbonne Universités, UPMC Univ Paris 06, F-75005 Paris, France
| | - Laura Bresson
- Institut Curie, PSL Research University, CNRS, UMR144, F-75005 Paris, France
- Sorbonne Universités, UPMC Univ Paris 06, F-75005 Paris, France
| | - Amandine Di-Cicco
- Institut Curie, PSL Research University, CNRS, UMR144, F-75005 Paris, France
- Sorbonne Universités, UPMC Univ Paris 06, F-75005 Paris, France
| | - María Pérez-Lanzón
- Institut Curie, PSL Research University, CNRS, UMR144, F-75005 Paris, France
- Sorbonne Universités, UPMC Univ Paris 06, F-75005 Paris, France
| | - Patricia Legoix
- Institut Curie Genomics of Excellence (ICGex) Platform, Institut Curie, Paris, France
| | - Sylvain Baulande
- Institut Curie Genomics of Excellence (ICGex) Platform, Institut Curie, Paris, France
| | | | - Adèle De Arcangelis
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS UMR7104/INSERM U964/ULP, F-67404 Illkirch, France
| | - Elisabeth Georges-Labouesse
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS UMR7104/INSERM U964/ULP, F-67404 Illkirch, France
| | - Arnoud Sonnenberg
- Division of Cell Biology, The Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands
| | - Marie-Ange Deugnier
- Institut Curie, PSL Research University, CNRS, UMR144, F-75005 Paris, France
- Sorbonne Universités, UPMC Univ Paris 06, F-75005 Paris, France
- Inserm, Paris, F-75013, Paris, France
| | - Marina A. Glukhova
- Institut Curie, PSL Research University, CNRS, UMR144, F-75005 Paris, France
- Sorbonne Universités, UPMC Univ Paris 06, F-75005 Paris, France
- Inserm, Paris, F-75013, Paris, France
| | - Marisa M. Faraldo
- Institut Curie, PSL Research University, CNRS, UMR144, F-75005 Paris, France
- Sorbonne Universités, UPMC Univ Paris 06, F-75005 Paris, France
- Inserm, Paris, F-75013, Paris, France
| |
Collapse
|
26
|
Wehde BL, Rädler PD, Shrestha H, Johnson SJ, Triplett AA, Wagner KU. Janus Kinase 1 Plays a Critical Role in Mammary Cancer Progression. Cell Rep 2019; 25:2192-2207.e5. [PMID: 30463015 DOI: 10.1016/j.celrep.2018.10.063] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Revised: 09/18/2018] [Accepted: 10/17/2018] [Indexed: 12/30/2022] Open
Abstract
Janus kinases (JAKs) and their downstream STAT proteins play key roles in cytokine signaling, tissue homeostasis, and cancer development. Using a breast cancer model that conditionally lacks Janus kinase 1, we show here that JAK1 is essential for IL-6-class inflammatory cytokine signaling and plays a critical role in metastatic cancer progression. JAK1 is indispensable for the oncogenic activation of STAT1, STAT3, and STAT6 in ERBB2-expressing cancer cells, suggesting that ERBB2 receptor tyrosine kinase complexes do not directly activate these STAT proteins in vivo. A genome-wide gene expression analysis revealed that JAK1 signaling has pleiotropic effects on several pathways associated with cancer progression. We established that FOS and MAP3K8 are targets of JAK1/STAT3 signaling, which promotes tumorsphere formation and cell migration. The results highlight the significance of JAK1 as a rational therapeutic target to block IL-6-class cytokines, which are master regulators of cancer-associated inflammation.
Collapse
Affiliation(s)
- Barbara L Wehde
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, 985950 Nebraska Medical Center, Omaha, NE 68198-5950, USA
| | - Patrick D Rädler
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, 985950 Nebraska Medical Center, Omaha, NE 68198-5950, USA; Department of Oncology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Hridaya Shrestha
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Stevi J Johnson
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Aleata A Triplett
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, 985950 Nebraska Medical Center, Omaha, NE 68198-5950, USA
| | - Kay-Uwe Wagner
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, 985950 Nebraska Medical Center, Omaha, NE 68198-5950, USA; Department of Oncology, Wayne State University School of Medicine, Detroit, MI, USA; Tumor Biology Program, Barbara Ann Karmanos Cancer Institute, 4100 John R Street, EL01TM, Detroit, MI 48201, USA.
| |
Collapse
|
27
|
Hitchcock JR, Hughes K, Harris OB, Watson CJ. Dynamic architectural interplay between leucocytes and mammary epithelial cells. FEBS J 2019; 287:250-266. [PMID: 31691481 PMCID: PMC7003847 DOI: 10.1111/febs.15126] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 08/19/2019] [Accepted: 11/04/2019] [Indexed: 12/21/2022]
Abstract
The adult mammary gland undergoes dynamic changes during puberty and the postnatal developmental cycle. The mammary epithelium is composed of a bilayer of outer basal, or myoepithelial, cells and inner luminal cells, the latter lineage giving rise to the milk-producing alveolar cells during pregnancy. These luminal alveolar cells undergo Stat3-mediated programmed cell death following the cessation of lactation. It is established that immune cells in the microenvironment of the gland have a role to play both in the ductal outgrowth during puberty and in the removal of dead cells and remodelling of the stroma during the process of postlactational regression. However, most studies have focussed on the role of the stromal immune cell compartment or have quantified immune cell populations in tissue extracts. Our recent development of protocols for deep imaging of the mammary gland in three dimensions (3D) has enabled the architectural relationship between immune cells and the epithelium to be examined in detail, and we have discovered a surprisingly dynamic relationship between the basal epithelium and leucocytes. Furthermore, we have observed morphological changes in the myoepithelial cells, as involution progresses, which were not revealed by previous work in 2D tissue sections and whole tissue. This dynamic architecture suggests a role for myoepithelial cells in the orderly progression of involution. We conclude that deep imaging of mammary gland and other tissues is essential for analysing complex interactions between cellular compartments.
Collapse
|
28
|
Shi Y, Hunter S, Hunter T. Stem Cell Factor LIFted as a Promising Clinical Target for Cancer Therapy. Mol Cancer Ther 2019; 18:1337-1340. [PMID: 31371576 DOI: 10.1158/1535-7163.mct-19-0605] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 06/20/2019] [Accepted: 06/20/2019] [Indexed: 01/14/2023]
Affiliation(s)
- Yu Shi
- Molecular and Cell Biology Laboratory, Salk Institute for Biological Studies, La Jolla, California.
| | - Sean Hunter
- Cancer Biology Program, Stanford University, Stanford, California
| | - Tony Hunter
- Molecular and Cell Biology Laboratory, Salk Institute for Biological Studies, La Jolla, California.
| |
Collapse
|
29
|
Tamburini BAJ, Elder AM, Finlon JM, Winter AB, Wessells VM, Borges VF, Lyons TR. PD-1 Blockade During Post-partum Involution Reactivates the Anti-tumor Response and Reduces Lymphatic Vessel Density. Front Immunol 2019; 10:1313. [PMID: 31244852 PMCID: PMC6579890 DOI: 10.3389/fimmu.2019.01313] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Accepted: 05/23/2019] [Indexed: 12/18/2022] Open
Abstract
Post-partum breast cancer patients, or breast cancer patients diagnosed within 10 years of last childbirth, are ~3-5 times more likely to develop metastasis in comparison to non-post-partum, or nulliparous, patients. Additionally, post-partum patients have increased tumor-associated lymphatic vessels and LN involvement, including when controlled for size of the primary tumor. In pre-clinical, immune-competent, mouse mammary tumor models of post-partum breast cancer (PPBC), tumor growth and lymphogenous tumor cell spread occur more rapidly in post-partum hosts. Here we report on PD-L1 expression by lymphatic endothelial cells and CD11b+ cells in the microenvironment of post-partum tumors, which is accompanied by an increase in PD-1 expression by T cells. Additionally, we observed increases in PD-L1 and PD-1 in whole mammary tissues during post-partum mammary gland involution; a known driver of post-partum tumor growth, invasion, and metastasis in pre-clinical models. Importantly, implantation of murine mammary tumor cells during post-partum mammary gland involution elicits a CD8+ T cell population that expresses both the co-inhibitory receptors PD-1 and Lag-3. However, upon anti-PD-1 treatment, during post-partum mammary gland involution, the involution-initiated promotional effects on tumor growth are reversed and the PD-1, Lag-3 double positive population disappears. Consequently, we observed an expansion of poly-functional CD8+ T cells that produced both IFNγ and TNFα. Finally, lymphatic vessel frequency decreased significantly following anti-PD-1 suggesting that anti-PD-1/PD-L1 targeted therapies may have efficacy in reducing tumor growth and dissemination in post-partum breast cancer patients.
Collapse
Affiliation(s)
- Beth A Jirón Tamburini
- Division of Gastroenterology and Hepatology, Department of Medicine, School of Medicine, University of Colorado Anschutz Medical Campus, Denver, CO, United States.,Department of Immunology and Microbiology, Department of Medicine, School of Medicine, University of Colorado Anschutz Medical Campus, Denver, CO, United States
| | - Alan M Elder
- Division of Medical Oncology, Department of Medicine, School of Medicine, University of Colorado Anschutz Medical Campus, Denver, CO, United States.,Young Women's' Breast Cancer Translational Program and University of Colorado Cancer Center, Aurora, CO, United States
| | - Jeffrey M Finlon
- Division of Gastroenterology and Hepatology, Department of Medicine, School of Medicine, University of Colorado Anschutz Medical Campus, Denver, CO, United States
| | - Andrew B Winter
- Division of Gastroenterology and Hepatology, Department of Medicine, School of Medicine, University of Colorado Anschutz Medical Campus, Denver, CO, United States
| | - Veronica M Wessells
- Division of Medical Oncology, Department of Medicine, School of Medicine, University of Colorado Anschutz Medical Campus, Denver, CO, United States.,Young Women's' Breast Cancer Translational Program and University of Colorado Cancer Center, Aurora, CO, United States
| | - Virginia F Borges
- Division of Medical Oncology, Department of Medicine, School of Medicine, University of Colorado Anschutz Medical Campus, Denver, CO, United States.,Young Women's' Breast Cancer Translational Program and University of Colorado Cancer Center, Aurora, CO, United States
| | - Traci R Lyons
- Division of Medical Oncology, Department of Medicine, School of Medicine, University of Colorado Anschutz Medical Campus, Denver, CO, United States.,Young Women's' Breast Cancer Translational Program and University of Colorado Cancer Center, Aurora, CO, United States
| |
Collapse
|
30
|
Jena MK, Jaswal S, Kumar S, Mohanty AK. Molecular mechanism of mammary gland involution: An update. Dev Biol 2019; 445:145-155. [DOI: 10.1016/j.ydbio.2018.11.002] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Revised: 10/01/2018] [Accepted: 11/06/2018] [Indexed: 12/11/2022]
|
31
|
Li D, Ji Y, Zhao C, Yao Y, Yang A, Jin H, Chen Y, San M, Zhang J, Zhang M, Zhang L, Feng X, Zheng Y. OXTR overexpression leads to abnormal mammary gland development in mice. J Endocrinol 2018; 239:121-136. [PMID: 30089682 DOI: 10.1530/joe-18-0356] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2018] [Revised: 07/21/2018] [Accepted: 08/07/2018] [Indexed: 01/06/2023]
Abstract
Oxytocin receptor (OXTR) is a G-protein-coupled receptor and known for regulation of maternal and social behaviors. Null mutation (Oxtr-/-) leads to defects in lactation due to impaired milk ejection and maternal nurturing. Overexpression of OXTR has never been studied. To define the functions of OXTR overexpression, a transgenic mouse model that overexpresses mouse Oxtr under β-actin promoter was developed ( ++ Oxtr). ++ Oxtr mice displayed advanced development and maturation of mammary gland, including ductal distention, enhanced secretory differentiation and early milk production at non-pregnancy and early pregnancy. However, ++ Oxtr dams failed to produce adequate amount of milk and led to lethality of newborns due to early involution of mammary gland in lactation. Mammary gland transplantation results indicated the abnormal mammary gland development was mainly from hormonal changes in ++Oxtr mice but not from OXTR overexpression in mammary gland. Elevated OXTR expression increased prolactin-induced phosphorylation and nuclear localization of STAT5 (p-STAT5), and decreased progesterone level, leading to early milk production in non-pregnant and early pregnant females, whereas low prolactin and STAT5 activation in lactation led to insufficient milk production. Progesterone treatment reversed the OXTR-induced accelerated mammary gland development by inhibition of prolactin/p-STAT5 pathway. Prolactin administration rescued lactation deficiency through STAT5 activation. Progesterone plays a negative role in OXTR-regulated prolactin/p-STAT5 pathways. The study provides evidence that OXTR overexpression induces abnormal mammary gland development through progesterone and prolactin-regulated p-STAT5 pathway.
Collapse
Affiliation(s)
- Dan Li
- Transgenic Research Center, Northeast Normal University, Changchun, Jilin, China
| | - Yan Ji
- Department of Cancer Biology, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Chunlan Zhao
- Transgenic Research Center, Northeast Normal University, Changchun, Jilin, China
| | - Yapeng Yao
- Transgenic Research Center, Northeast Normal University, Changchun, Jilin, China
| | - Anlan Yang
- Transgenic Research Center, Northeast Normal University, Changchun, Jilin, China
| | - Honghong Jin
- Transgenic Research Center, Northeast Normal University, Changchun, Jilin, China
| | - Yang Chen
- Transgenic Research Center, Northeast Normal University, Changchun, Jilin, China
| | - Mingjun San
- Transgenic Research Center, Northeast Normal University, Changchun, Jilin, China
| | - Jing Zhang
- Transgenic Research Center, Northeast Normal University, Changchun, Jilin, China
| | - Mingjiao Zhang
- Transgenic Research Center, Northeast Normal University, Changchun, Jilin, China
| | - Luqing Zhang
- Transgenic Research Center, Northeast Normal University, Changchun, Jilin, China
- Key Laboratory of Molecular Epigenetics of Ministry of Education, Northeast Normal University, Changchun, Jilin, China
| | - Xuechao Feng
- Transgenic Research Center, Northeast Normal University, Changchun, Jilin, China
- Key Laboratory of Molecular Epigenetics of Ministry of Education, Northeast Normal University, Changchun, Jilin, China
| | - Yaowu Zheng
- Transgenic Research Center, Northeast Normal University, Changchun, Jilin, China
- Key Laboratory of Molecular Epigenetics of Ministry of Education, Northeast Normal University, Changchun, Jilin, China
| |
Collapse
|
32
|
Carr D, Lau R, Hnatykiw AD, Ward GCD, Daneshmand M, Cabrita MA, Pratt MAC. cIAP2 Is an Independent Signaling and Survival Factor during Mammary Lactational Involution and Tumorigenesis. J Mammary Gland Biol Neoplasia 2018; 23:109-123. [PMID: 29876871 DOI: 10.1007/s10911-018-9398-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Accepted: 05/20/2018] [Indexed: 12/31/2022] Open
Abstract
Cellular inhibitor of apoptosis proteins-1 and -2 (cIAP1/2) are integral to regulation of apoptosis and signaling by the tumor necrosis factor (TNF) and related family of receptors. The expression of cIAP2 in tissues is typically low and considered functionally redundant with cIAP1, however cIAP2 can be activated by a variety of cellular stresses. Members of the TNFR family and their ligands have essential roles in mammary gland biology. We have found that cIAP2-/- virgin mammary glands have reduced ductal branching and delayed lobuloalveogenesis in early pregnancy. Post-lactational involution involves two phases where the first phase is reversible and is mediated, in part, by TNFR family ligands. In cIAP2-/- mice mammary glands appeared engorged at mid-lactation accompanied by enhanced autophagic flux and decreased cIAP1 protein expression. Severely stretched myoepithelium was associated with BIM-EL expression and other indicators of anoikis. Within 24 h after forced or natural weaning, cIAP2-/- glands had nearly completed involution. The TNF-related weak inducer of apoptosis (Tweak) which results in degradation of cIAP1 through its receptor, Fn14, began to increase in late lactation and was significantly increased in cIAP2-/- relative to WT mice by 12 h post weaning accompanied by decreased cIAP1 protein expression. Carcinogen/progesterone-induced mammary tumorigenesis was significantly delayed in cIAP2-/- mice and tumors contained high numbers of apoptotic cells. We conclude that cIAP2 has a critical role in the mammary gland wherein it prevents rapid involution induced by milk stasis-induced stress associated with Tweak activation and contributes to the survival of mammary tumor cells.
Collapse
Affiliation(s)
- David Carr
- Breast Cancer Research Lab, Department of Cellular and Molecular Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON, K1H 8M5, Canada
| | - Rosanna Lau
- Breast Cancer Research Lab, Department of Cellular and Molecular Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON, K1H 8M5, Canada
- Department of Pathology, The UT M.D. Anderson Cancer Center, Houston, TX, USA
| | - Alexandra D Hnatykiw
- Breast Cancer Research Lab, Department of Cellular and Molecular Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON, K1H 8M5, Canada
| | - Gwendoline C D Ward
- Breast Cancer Research Lab, Department of Cellular and Molecular Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON, K1H 8M5, Canada
| | - Manijeh Daneshmand
- Ottawa Hospital Regional Cancer Centre, Centre for Cancer Therapeutics, 3rd floor, 501 Smyth Road, Ottawa, ON, K1H 8L6, Canada
| | - Miguel A Cabrita
- Breast Cancer Research Lab, Department of Cellular and Molecular Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON, K1H 8M5, Canada
| | - M A Christine Pratt
- Breast Cancer Research Lab, Department of Cellular and Molecular Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON, K1H 8M5, Canada.
| |
Collapse
|
33
|
Dado-Senn B, Skibiel AL, Fabris TF, Zhang Y, Dahl GE, Peñagaricano F, Laporta J. RNA-Seq reveals novel genes and pathways involved in bovine mammary involution during the dry period and under environmental heat stress. Sci Rep 2018; 8:11096. [PMID: 30038226 PMCID: PMC6056563 DOI: 10.1038/s41598-018-29420-8] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Accepted: 07/11/2018] [Indexed: 12/19/2022] Open
Abstract
The bovine dry period is a dynamic non-lactating phase where the mammary gland undergoes extensive cellular turnover. Utilizing RNA sequencing, we characterized novel genes and pathways involved in this process and determined the impact of dry period heat stress. Mammary tissue was collected before and during the dry period (−3, 3, 7, 14, and 25 days relative to dry-off [day 0]) from heat-stressed (HT, n = 6) or cooled (CL, n = 6) late-gestation Holstein cows. We identified 3,315 differentially expressed genes (DEGs) between late lactation and early involution, and 880 DEGs later in the involution process. DEGs, pathways, and upstream regulators during early involution support the downregulation of functions such as anabolism and milk component synthesis, and upregulation of cell death, cytoskeleton degradation, and immune response. The impact of environmental heat stress was less significant, yet genes, pathways, and upstream regulators involved in processes such as ductal branching morphogenesis, cell death, immune function, and protection against tissue stress were identified. Our research advances understanding of the mammary gland transcriptome during the dry period, and under heat stress insult. Individual genes, pathways, and upstream regulators highlighted in this study point towards potential targets for dry period manipulation and mitigation of the negative consequences of heat stress on mammary function.
Collapse
Affiliation(s)
- Bethany Dado-Senn
- Department of Animal Sciences, University of Florida, Gainesville, FL, USA
| | - Amy L Skibiel
- Department of Animal Sciences, University of Florida, Gainesville, FL, USA
| | - Thiago F Fabris
- Department of Animal Sciences, University of Florida, Gainesville, FL, USA
| | - Y Zhang
- Interdisciplinary Center for Biotechnology Research, University of Florida, Gainesville, FL, USA
| | - Geoffrey E Dahl
- Department of Animal Sciences, University of Florida, Gainesville, FL, USA
| | - Francisco Peñagaricano
- Department of Animal Sciences, University of Florida, Gainesville, FL, USA.,University of Florida Genetics Institute, University of Florida, Gainesville, FL, USA
| | - Jimena Laporta
- Department of Animal Sciences, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
34
|
Estrada CC, Paladugu P, Guo Y, Pace J, Revelo MP, Salant DJ, Shankland SJ, D'Agati VD, Mehrotra A, Cardona S, Bialkowska AB, Yang VW, He JC, Mallipattu SK. Krüppel-like factor 4 is a negative regulator of STAT3-induced glomerular epithelial cell proliferation. JCI Insight 2018; 3:98214. [PMID: 29925693 PMCID: PMC6124441 DOI: 10.1172/jci.insight.98214] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Accepted: 05/14/2018] [Indexed: 01/11/2023] Open
Abstract
Pathologic glomerular epithelial cell (GEC) hyperplasia is characteristic of both rapidly progressive glomerulonephritis (RPGN) and subtypes of focal segmental glomerulosclerosis (FSGS). Although initial podocyte injury resulting in activation of STAT3 signals GEC proliferation in both diseases, mechanisms regulating this are unknown. Here, we show that the loss of Krüppel-like factor 4 (KLF4), a zinc-finger transcription factor, enhances GEC proliferation in both RPGN and FSGS due to dysregulated STAT3 signaling. We observed that podocyte-specific knockdown of Klf4 (C57BL/6J) increased STAT3 signaling and exacerbated crescent formation after nephrotoxic serum treatment. Interestingly, podocyte-specific knockdown of Klf4 in the FVB/N background alone was sufficient to activate STAT3 signaling, resulting in FSGS with extracapillary proliferation, as well as renal failure and reduced survival. In cultured podocytes, loss of KLF4 resulted in STAT3 activation and cell-cycle reentry, leading to mitotic catastrophe. This triggered IL-6 release into the supernatant, which activated STAT3 signaling in parietal epithelial cells. Conversely, either restoration of KLF4 expression or inhibition of STAT3 signaling improved survival in KLF4-knockdown podocytes. Finally, human kidney biopsy specimens with RPGN exhibited reduced KLF4 expression with a concomitant increase in phospho-STAT3 expression as compared with controls. Collectively, these results suggest the essential role of KLF4/STAT3 signaling in podocyte injury and its regulation of aberrant GEC proliferation.
Collapse
Affiliation(s)
- Chelsea C Estrada
- Division of Nephrology, Department of Medicine, Stony Brook University, Stony Brook, New York, USA
| | - Praharshasai Paladugu
- Division of Nephrology, Department of Medicine, Stony Brook University, Stony Brook, New York, USA
| | - Yiqing Guo
- Division of Nephrology, Department of Medicine, Stony Brook University, Stony Brook, New York, USA
| | - Jesse Pace
- Division of Nephrology, Department of Medicine, Stony Brook University, Stony Brook, New York, USA
| | - Monica P Revelo
- Department of Pathology, University of Utah, Salt Lake City, Utah, USA
| | - David J Salant
- Division of Nephrology, Department of Medicine, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Stuart J Shankland
- Division of Nephrology, Department of Medicine, University of Washington School of Medicine, Seattle, Washington, USA
| | - Vivette D D'Agati
- Department of Pathology, Columbia University, New York, New York, USA
| | - Anita Mehrotra
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA.,Renal Section, James J. Peters VA Medical Center, New York, New York, USA
| | - Stephanie Cardona
- Division of Nephrology, Department of Medicine, Stony Brook University, Stony Brook, New York, USA
| | - Agnieszka B Bialkowska
- Division of Gastroenterology, Department of Medicine, Stony Brook University, Stony Brook, New York, USA
| | - Vincent W Yang
- Division of Gastroenterology, Department of Medicine, Stony Brook University, Stony Brook, New York, USA
| | - John C He
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA.,Renal Section, James J. Peters VA Medical Center, New York, New York, USA
| | - Sandeep K Mallipattu
- Division of Nephrology, Department of Medicine, Stony Brook University, Stony Brook, New York, USA.,Renal Section, Northport VA Medical Center, Northport, New York, USA
| |
Collapse
|
35
|
Recombinant purified buffalo leukemia inhibitory factor plays an inhibitory role in cell growth. PLoS One 2018; 13:e0198523. [PMID: 29897967 PMCID: PMC5999108 DOI: 10.1371/journal.pone.0198523] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 05/21/2018] [Indexed: 01/22/2023] Open
Abstract
Leukemia Inhibitory Factor (LIF) is a polyfunctional cytokine, involved in numerous regulatory effects in vivo and in vitro, varying from cell proliferation to differentiation, and has therapeutic potential for treating various diseases. In the current study, a COS-1 cell line overexpressing recombinant Buffalo LIF (rBuLIF) was established. The rBuLIF was purified to homogeneity from the total cell lysate of COS-1 cells using a two-step affinity chromatography. The purified LIF was confirmed by western blot and mass spectrometer (MS/MS). Particularly, high-resolution MS has identified the rBuLIF with 73% of sequence coverage with highest confidence parameters and with the search engine score of 4580. We determined the molecular weight of rBuLIF protein to be 58.99 kDa and 48.9 kDa with and without glycosylation, respectively. Moreover, the purified rBuLIF was verified to be functionally active by measuring the growth inhibition of M1 myeloid leukemia cells, revealing a maximum inhibition at 72 hours and half-maximal effective concentration (EC50) of 0.0555 ng/ml, corresponding to a specific activity of >1.6×107 units/mg. Next, we evaluated the effect of rBuLIF on buffalo mammary epithelial cell lines for its role in involution and also identified the IC50 value for BuMEC migrating cells to be 77.8 ng/ml. Additionally, the treatment of MECs (BuMEC and EpH4) displayed significant (P < 0.05) reduction in growth progression, as confirmed by qRT-PCR analysis, suggesting its strong involvement in the involution of the mammary gland in vivo. Thus, we conclude that the glycosylated rBuLIF, purified from COS-1 cells was found to be functionally active as its natural counterpart.
Collapse
|
36
|
Hughes K, Watson CJ. The Multifaceted Role of STAT3 in Mammary Gland Involution and Breast Cancer. Int J Mol Sci 2018; 19:ijms19061695. [PMID: 29875329 PMCID: PMC6032292 DOI: 10.3390/ijms19061695] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Revised: 05/26/2018] [Accepted: 05/29/2018] [Indexed: 02/07/2023] Open
Abstract
Since seminal descriptions of signal transducer and activator of transcription 3 (STAT3) as a signal transducer and transcriptional regulator, which is most usually activated by phosphorylation of a specific tyrosine residue, a staggering wealth of research has delineated the key role of this transcription factor as a mediator of mammary gland postlactational regression (involution), and paradoxically, a pro-survival factor in breast cancer and some breast cancer cell lines. STAT3 is a critical regulator of lysosomal-mediated programmed cell death (LM-PCD) during mammary gland involution, where uptake of milk fat globules, and consequent high levels of free fatty acids, cause permeabilisation of lysosomal vesicle membranes, in turn leading to cathepsin protease leakage and cell death. A recent proteomic screen of STAT3-induced changes in lysosomal membrane protein components has highlighted wide-ranging effects of STAT3, which may coordinate LM-PCD via the stimulation of endocytosis, intracellular trafficking, and lysosome biogenesis. In parallel, STAT3 regulates the acute phase response during the first phase of involution, and it contributes to shaping the pro-tumourigenic 'wound healing' signature of the gland during the second phase of this process. STAT3 activation during involution is important across species, although some differences exist in the progression of involution in dairy cows. In breast cancer, a number of upstream regulators can lead to STAT3 activation and the effects of phosphorylation of STAT3 are equally wide-ranging. Recent studies have implicated microRNAs in some regulatory pathways. In this review, we will examine the multifaceted role of STAT3 in mammary gland involution and tumourigenesis, incorporating a review of these fundamental processes in tandem with a discussion of recent developments in this field.
Collapse
Affiliation(s)
- Katherine Hughes
- Department of Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge CB3 0ES, UK.
| | - Christine J Watson
- Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QP, UK.
| |
Collapse
|
37
|
Hughes K, Watson CJ. The Mammary Microenvironment in Mastitis in Humans, Dairy Ruminants, Rabbits and Rodents: A One Health Focus. J Mammary Gland Biol Neoplasia 2018; 23:27-41. [PMID: 29705830 PMCID: PMC5978844 DOI: 10.1007/s10911-018-9395-1] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Accepted: 04/12/2018] [Indexed: 12/18/2022] Open
Abstract
The One Health concept promotes integrated evaluation of human, animal, and environmental health questions to expedite advances benefiting all species. A recognition of the multi-species impact of mastitis as a painful condition with welfare implications leads us to suggest that mastitis is an ideal target for a One Health approach. In this review, we will evaluate the role of the mammary microenvironment in mastitis in humans, ruminants and rabbits, where appropriate also drawing on studies utilising laboratory animal models. We will examine subclinical mastitis, clinical lactational mastitis, and involution-associated, or dry period, mastitis, highlighting important anatomical and immunological species differences. We will synthesise knowledge gained across different species, comparing and contrasting disease presentation. Subclinical mastitis (SCM) is characterised by elevated Na/K ratio, and increased milk IL-8 concentrations. SCM affecting the breastfeeding mother may result in modulation of infant mucosal immune system development, whilst in ruminants notable milk production losses may ensue. In the case of clinical lactational mastitis, we will focus on mastitis caused by Staphylococcus aureus and Escherichia coli. Understanding of the pathogenesis of involution-associated mastitis requires characterization of the structural and molecular changes occurring during involution and we will review these changes across species. We speculate that milk accumulation may act as a nidus for infection, and that the involution 'wound healing phenotype' may render the tissue susceptible to bacterial infection. We will discuss the impact of concurrent pregnancy and a 'parallel pregnancy and involution signature' during bovine mammary involution.
Collapse
Affiliation(s)
- Katherine Hughes
- Department of Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge, CB3 0ES, UK.
| | - Christine J Watson
- Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QP, UK
| |
Collapse
|
38
|
Rivera OC, Hennigar SR, Kelleher SL. ZnT2 is critical for lysosome acidification and biogenesis during mammary gland involution. Am J Physiol Regul Integr Comp Physiol 2018; 315:R323-R335. [PMID: 29718697 DOI: 10.1152/ajpregu.00444.2017] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Mammary gland involution, a tightly regulated process of tissue remodeling by which a lactating mammary gland reverts to the prepregnant state, is characterized by the most profound example of regulated epithelial cell death in normal tissue. Defects in the execution of involution are associated with lactation failure and breast cancer. Initiation of mammary gland involution requires upregulation of lysosome biogenesis and acidification to activate lysosome-mediated cell death; however, specific mediators of this initial phase of involution are not well described. Zinc transporter 2 [ZnT2 ( SLC30A2)] has been implicated in lysosome biogenesis and lysosome-mediated cell death during involution; however, the direct role of ZnT2 in this process has not been elucidated. Here we showed that ZnT2-null mice had impaired alveolar regression and reduced activation of the involution marker phosphorylated Stat3, indicating insufficient initiation of mammary gland remodeling during involution. Moreover, we found that the loss of ZnT2 inhibited assembly of the proton transporter vacuolar ATPase on lysosomes, thereby decreasing lysosome abundance and size. Studies in cultured mammary epithelial cells revealed that while the involution signal TNFα promoted lysosome biogenesis and acidification, attenuation of ZnT2 impaired the lysosome response to this involution signal, which was not a consequence of cytoplasmic Zn accumulation. Our findings establish ZnT2 as a novel regulator of vacuolar ATPase assembly, driving lysosome biogenesis, acidification, and tissue remodeling during the initiation of mammary gland involution.
Collapse
Affiliation(s)
- Olivia C Rivera
- Department of Cellular and Molecular Physiology, Penn State Hershey College of Medicine , Hershey, Pennsylvania
| | - Stephen R Hennigar
- Department of Nutritional Sciences, Pennsylvania State University , University Park, Pennsylvania
| | - Shannon L Kelleher
- Department of Cellular and Molecular Physiology, Penn State Hershey College of Medicine , Hershey, Pennsylvania.,Department of Surgery, Penn State Hershey College of Medicine , Hershey, Pennsylvania.,Department of Pharmacology, Penn State Hershey College of Medicine , Hershey, Pennsylvania.,Department of Nutritional Sciences, Pennsylvania State University , University Park, Pennsylvania
| |
Collapse
|
39
|
Girnius N, Edwards YJK, Davis RJ. The cJUN NH 2-terminal kinase (JNK) pathway contributes to mouse mammary gland remodeling during involution. Cell Death Differ 2018; 25:1702-1715. [PMID: 29511338 PMCID: PMC6143629 DOI: 10.1038/s41418-018-0081-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Revised: 01/23/2018] [Accepted: 01/29/2018] [Indexed: 11/18/2022] Open
Abstract
Involution returns the lactating mammary gland to a quiescent state after weaning. The mechanism of involution involves collapse of the mammary epithelial cell compartment. To test whether the cJUN NH2-terminal kinase (JNK) signal transduction pathway contributes to involution, we established mice with JNK deficiency in the mammary epithelium. We found that JNK is required for efficient involution. JNK deficiency did not alter the STAT3/5 or SMAD2/3 signaling pathways that have been previously implicated in this process. Nevertheless, JNK promotes the expression of genes that drive involution, including matrix metalloproteases, cathepsins, and BH3-only proteins. These data demonstrate that JNK has a key role in mammary gland involution post lactation.
Collapse
Affiliation(s)
- Nomeda Girnius
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, 01605, USA
| | - Yvonne J K Edwards
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, 01605, USA
| | - Roger J Davis
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, 01605, USA. .,Howard Hughes Medical Institute, University of Massachusetts Medical School, Worcester, MA, 01605, USA.
| |
Collapse
|
40
|
Goddio MV, Gattelli A, Tocci JM, Cuervo LP, Stedile M, Stumpo DJ, Hynes NE, Blackshear PJ, Meiss RP, Kordon EC. Expression of the mRNA stability regulator Tristetraprolin is required for lactation maintenance in the mouse mammary gland. Oncotarget 2018; 9:8278-8289. [PMID: 29492194 PMCID: PMC5823555 DOI: 10.18632/oncotarget.23904] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Accepted: 11/14/2017] [Indexed: 11/25/2022] Open
Abstract
Tristetraprolin (TTP), an mRNA-binding protein that negatively controls levels of inflammatory factors, is highly expressed in the lactating mouse mammary gland. To determine the biological relevance of this expression profile, we developed bi-transgenic mice in which this protein is specifically down-regulated in the secretory mammary epithelium in the secretory mammary epithelium during lactation. Our data show that TTP conditional KO mice produced underweight litters, possibly due to massive mammary cell death induced during lactation without the requirement of additional stimuli. This effect was linked to overexpression of inflammatory cytokines, activation of STAT3 and down-regulation of AKT phosphorylation. Importantly, blocking TNFα activity in the lactating conditional TTP KO mice inhibited cell death and similar effects were observed when this treatment was applied to wild-type animals during 48 h after weaning. Therefore, our results demonstrate that during lactation TTP wards off early involution by preventing the increase of local inflammatory factors. In addition, our data reveal the relevance of locally secreted TNFα for triggering programmed cell death after weaning.
Collapse
Affiliation(s)
- María Victoria Goddio
- IFIBYNE-UBA-CONICET, Departamento de Química Biológica, FCEN-UBA, Buenos Aires, Argentina
| | - Albana Gattelli
- IFIBYNE-UBA-CONICET, Departamento de Química Biológica, FCEN-UBA, Buenos Aires, Argentina
| | - Johanna M Tocci
- IFIBYNE-UBA-CONICET, Departamento de Química Biológica, FCEN-UBA, Buenos Aires, Argentina
| | - Lourdes Pérez Cuervo
- IFIBYNE-UBA-CONICET, Departamento de Química Biológica, FCEN-UBA, Buenos Aires, Argentina
| | - Micaela Stedile
- IFIBYNE-UBA-CONICET, Departamento de Química Biológica, FCEN-UBA, Buenos Aires, Argentina
| | - Deborah J Stumpo
- Signal Transduction Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, Durham, North Carolina, USA
| | - Nancy E Hynes
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Perry J Blackshear
- Signal Transduction Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, Durham, North Carolina, USA
| | | | - Edith C Kordon
- IFIBYNE-UBA-CONICET, Departamento de Química Biológica, FCEN-UBA, Buenos Aires, Argentina
| |
Collapse
|
41
|
Singh K, Phyn C, Reinsch M, Dobson J, Oden K, Davis S, Stelwagen K, Henderson H, Molenaar A. Temporal and spatial heterogeneity in milk and immune-related gene expression during mammary gland involution in dairy cows. J Dairy Sci 2017; 100:7669-7685. [DOI: 10.3168/jds.2017-12572] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Accepted: 05/05/2017] [Indexed: 11/19/2022]
|
42
|
Rädler PD, Wehde BL, Wagner KU. Crosstalk between STAT5 activation and PI3K/AKT functions in normal and transformed mammary epithelial cells. Mol Cell Endocrinol 2017; 451:31-39. [PMID: 28495456 PMCID: PMC5515553 DOI: 10.1016/j.mce.2017.04.025] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Accepted: 04/29/2017] [Indexed: 01/01/2023]
Abstract
Janus kinases (JAKs) and signal transducers and activators of transcription (STATs) have been shown to function downstream of several peptide hormones and cytokines that are required for postnatal development and secretory function of the mammary gland. As part of an extended network, these signal transducers can engage in crosstalk with other pathways to facilitate synergistic, and sometimes antagonistic, actions of different growth factors. Specifically, signaling through the JAK2/STAT5 cascade has been demonstrated to be indispensable for the specification, proliferation, differentiation, and survival of secretory mammary epithelial cells. Following a concise description of major cellular programs in mammary gland development and the role of growth factors that rely on JAK/STAT signaling to orchestrate these programs, this review highlights the significance of active STAT5 and its crosstalk with the PI3 kinase and AKT1 for mediating the proliferation of alveolar progenitors and survival of their functionally differentiated descendants in the mammary gland. Based on its ability to provide self-sufficiency in growth signals that are also capable of overriding intrinsic cell death programs, persistently active STAT5 can serve as a potent oncoprotein that contributes to the genesis of breast cancer. Recent experimental evidence demonstrated that, similar to normal developmental programs, oncogenic functions of STAT5 rely on molecular crosstalk with PI3K/AKT signaling for the initiation, and in some instances the progression, of breast cancer. The multitude by which STATs can interact with individual mediators of the PI3K/AKT signaling cascade may provide novel avenues for targeting signaling nodes within molecular networks that are crucial for the survival of cancer cells.
Collapse
Affiliation(s)
- Patrick D Rädler
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, 986805 Nebraska Medical Center, Omaha, NE 68198-6805, USA
| | - Barbara L Wehde
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, 986805 Nebraska Medical Center, Omaha, NE 68198-6805, USA
| | - Kay-Uwe Wagner
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, 986805 Nebraska Medical Center, Omaha, NE 68198-6805, USA; Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, 986805 Nebraska Medical Center, Omaha, NE 68198-6805, USA.
| |
Collapse
|
43
|
Stallings-Mann ML, Heinzen EP, Vierkant RA, Winham SJ, Hoskin TL, Denison LA, Nassar A, Hartmann LC, Visscher DW, Frost MH, Sherman ME, Degnim AC, Radisky DC. Postlactational involution biomarkers plasminogen and phospho-STAT3 are linked with active age-related lobular involution. Breast Cancer Res Treat 2017; 166:133-143. [PMID: 28752190 PMCID: PMC5645446 DOI: 10.1007/s10549-017-4413-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Accepted: 07/22/2017] [Indexed: 11/30/2022]
Abstract
Purpose Breast terminal duct lobular units undergo two distinctive physiological processes of involution: age-related lobular involution (LI), which is gradual and associated with decreased breast cancer risk, and postlactational involution, which is relatively precipitous, occurs with weaning, and has been associated with potentiation of tumor aggressiveness in animal models. Here we assessed whether markers of postlactational involution are associated with ongoing LI in a retrospective tissue cohort. Methods We selected 57 women from the Mayo Clinic Benign Breast Disease Cohort who underwent multiple biopsies and who were average age 48 at initial biopsy. Women were classified as having progressive or non-progressive LI between initial and subsequent biopsy. Serial tissue sections were immunostained for plasminogen, matrix metalloproteinase 9 (MMP-9), phospho-STAT3 (pSTAT3), tenascin C, Ki67, CD44, cytokeratin 14 (CK14), cytokeratin 19 (CK19), and c-myc. All but Ki67 were digitally quantified. Associations between maximal marker expression per sample and progressive versus non-progressive LI were assessed using logistic regression and adjusted for potential confounders. Results While no biomarker showed statistically significant association with LI progression when evaluated individually, lower expression of pSTAT3 (OR 0.35, 95% CI 0.13–0.82, p = 0.01) and higher expression of plasminogen (OR 2.89, 95% CI 1.14–8.81, p = 0.02) were associated with progressive LI in models simultaneously adjusted for all biomarkers. Sensitivity analyses indicated that the strengthening in association for pSTAT3 and plasminogen with progressive LI was due to collinearity between these two markers. Conclusions This is the first study to identify biomarkers of active LI. Our findings that plasminogen and pSTAT3 are significantly associated with LI suggest that they may represent signaling nodes or biomarkers of pathways common to the processes of postlactational involution and LI. Electronic supplementary material The online version of this article (doi:10.1007/s10549-017-4413-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | - Ethan P Heinzen
- Department of Health Sciences Research, Mayo Clinic, Rochester, MN, 55905, USA
| | - Robert A Vierkant
- Department of Health Sciences Research, Mayo Clinic, Rochester, MN, 55905, USA
| | - Stacey J Winham
- Department of Health Sciences Research, Mayo Clinic, Rochester, MN, 55905, USA
| | - Tanya L Hoskin
- Department of Health Sciences Research, Mayo Clinic, Rochester, MN, 55905, USA
| | - Lori A Denison
- Department of Information Technology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Aziza Nassar
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Jacksonville, FL, 32224, USA
| | - Lynn C Hartmann
- Department of Medical Oncology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Daniel W Visscher
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Marlene H Frost
- Department of Medical Oncology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Mark E Sherman
- Department of Health Sciences Research, Mayo Clinic, Jacksonville, FL, 32224, USA
| | - Amy C Degnim
- Department of Surgery, Mayo Clinic, Rochester, MN, 55905, USA
| | - Derek C Radisky
- Department of Cancer Biology, Mayo Clinic, Jacksonville, FL, 32224, USA.
| |
Collapse
|
44
|
EGFR-mediated apoptosis via STAT3. Exp Cell Res 2017; 356:93-103. [PMID: 28433699 DOI: 10.1016/j.yexcr.2017.04.016] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2017] [Revised: 04/06/2017] [Accepted: 04/08/2017] [Indexed: 11/20/2022]
Abstract
The Epidermal Growth Factor Receptor (EGFR) is a cell surface receptor with primary implications in cell growth in both normal and malignant tissue. Paradoxically, cell lines that hyperexpress the EGFR have been documented to undergo receptor-mediated apoptosis. The underlying mechanism by which EGF-induced apoptosis occurs however remains inexplicit. In an attempt to identify this mechanism, we assessed downstream effectors of EGFR in MDA-MB-468 cells during conditions of EGF-induced apoptosis. The effector assessment revealed STAT3 as a potential mediator of EGF-induced apoptosis. Alternative strategies for activating STAT3, independent of EGFR stimulation, resulted in the induction of the apoptotic pathways. A reduction in STAT3 expression via RNAi resulted in a significant attenuation of EGF-induced PARP cleavage. Our findings support STAT3 as a positive mediator of EGF-induced apoptosis in MDA-MB-468 cells.
Collapse
|
45
|
Rodriguez-Barrueco R, Nekritz EA, Bertucci F, Yu J, Sanchez-Garcia F, Zeleke TZ, Gorbatenko A, Birnbaum D, Ezhkova E, Cordon-Cardo C, Finetti P, Llobet-Navas D, Silva JM. miR-424(322)/503 is a breast cancer tumor suppressor whose loss promotes resistance to chemotherapy. Genes Dev 2017; 31:553-566. [PMID: 28404630 PMCID: PMC5393051 DOI: 10.1101/gad.292318.116] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Accepted: 03/06/2017] [Indexed: 01/08/2023]
Abstract
In this study, Rodriguez-Barrueco et al. analyzed ∼3000 primary tumors and show that miR-424(322)/503 is commonly lost in a subset of aggressive breast cancers; they then describe the genetic aberrations that inactivate its expression. Their data show that miR-424(322)/503 is a tumor suppressor in breast cancer and provide a link between mammary epithelial involution, tumorigenesis, and the phenomenon of chemoresistance. The female mammary gland is a very dynamic organ that undergoes continuous tissue remodeling during adulthood. Although it is well established that the number of menstrual cycles and pregnancy (in this case transiently) increase the risk of breast cancer, the reasons are unclear. Growing clinical and experimental evidence indicates that improper involution plays a role in the development of this malignancy. Recently, we described the miR-424(322)/503 cluster as an important regulator of mammary epithelial involution after pregnancy. Here, through the analysis of ∼3000 primary tumors, we show that miR-424(322)/503 is commonly lost in a subset of aggressive breast cancers and describe the genetic aberrations that inactivate its expression. Furthermore, through the use of a knockout mouse model, we demonstrate for the first time that loss of miR-424(322)/503 promotes breast tumorigenesis in vivo. Remarkably, we found that loss of miR-424(322)/503 promotes chemoresistance due to the up-regulation of two of its targets: BCL-2 and insulin-like growth factor-1 receptor (IGF1R). Importantly, targeted therapies blocking the aberrant activity of these targets restore sensitivity to chemotherapy. Overall, our studies reveal miR-424(322)/503 as a tumor suppressor in breast cancer and provide a link between mammary epithelial involution, tumorigenesis, and the phenomenon of chemoresistance.
Collapse
Affiliation(s)
- Ruth Rodriguez-Barrueco
- Department of Pathology, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA.,Institute of Genetic Medicine, Newcastle University, Newcastle-Upon-Tyne NE1 3BZ, United Kingdom
| | - Erin A Nekritz
- Department of Pathology, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA
| | - François Bertucci
- Centre de Recherche en Cancérologie de Marseille, Institut Paoli-Calmettes, Aix-Marseille Université, Marseille 13009, France
| | - Jiyang Yu
- St. Jude Children's Research Hospital, Kay Research and Care Center, IA6053, Memphis, Tennessee 38105, USA
| | - Felix Sanchez-Garcia
- Department of Systems Biology, Center for Computational Biology and Bioinformatics, Herbert Irving Comprehensive Cancer Center, Columbia University, New York, New York 10032, USA
| | - Tizita Z Zeleke
- Department of Pathology, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA
| | - Andrej Gorbatenko
- Department of Pathology, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA
| | - Daniel Birnbaum
- Centre de Recherche en Cancérologie de Marseille, Institut Paoli-Calmettes, Aix-Marseille Université, Marseille 13009, France
| | - Elena Ezhkova
- Department of Cell, Developmental, and Regenerative Biology, Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA
| | - Carlos Cordon-Cardo
- Department of Pathology, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA
| | - Pascal Finetti
- Centre de Recherche en Cancérologie de Marseille, Institut Paoli-Calmettes, Aix-Marseille Université, Marseille 13009, France
| | - David Llobet-Navas
- Department of Pathology, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA.,Institute of Genetic Medicine, Newcastle University, Newcastle-Upon-Tyne NE1 3BZ, United Kingdom
| | - Jose M Silva
- Department of Pathology, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA
| |
Collapse
|
46
|
The ins and outs of calcium signalling in lactation and involution: Implications for breast cancer treatment. Pharmacol Res 2017; 116:100-104. [DOI: 10.1016/j.phrs.2016.12.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Revised: 10/31/2016] [Accepted: 12/07/2016] [Indexed: 01/19/2023]
|
47
|
Stat3 modulates chloride channel accessory protein expression in normal and neoplastic mammary tissue. Cell Death Dis 2016; 7:e2398. [PMID: 27711075 PMCID: PMC5133972 DOI: 10.1038/cddis.2016.302] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Revised: 08/14/2016] [Accepted: 08/22/2016] [Indexed: 11/08/2022]
Abstract
Mammary gland regression at the cessation of lactation (involution) is an exquisitely orchestrated process of cell death and tissue remodelling in which Stat3 signalling has an essential role. The involution microenvironment of the mammary gland is considered to be pro-tumourigenic and a proportion of cases of pregnancy-associated breast cancer are suggested to originate in tandem with involution. However, the apparent paradox that STAT3 is required for cell death in normal mammary gland, but is associated with breast cancer cell survival, has not been resolved. Herein, we investigate Stat3-mediated regulation of expression of members of the calcium-activated chloride channel regulator (CLCA) family of proteins during involution and mammary carcinogenesis. Using the conditionally immortal mammary epithelial cell line KIM-2, together with mice exhibiting mammary epithelial cell-specific deletion of Stat3 during lactation, we demonstrate that expression of mCLCA1 and mCLCA2 is elevated in concert with activation of Stat3. By contrast, murine CLCA5 (mCLCA5), the murine orthologue of human CLCA2, is significantly upregulated at 24, 72 and 96 h of involution in Stat3 knockout mice, suggesting a reciprocal regulation of these proteins by Stat3 in vivo. Interestingly, orthotopic tumours arising from transplantation of 4T1 murine mammary tumour cells exhibit both phosphorylated Stat3 and mCLCA5 expression. However, we demonstrate that expression is highly compartmentalized to distinct subpopulations of cells, and that Stat3 retains a suppressive effect on mCLCA5 expression in 4T1 tumour cells. These findings enhance our understanding of the regulation of CLCA channel expression both in vitro and in vivo, and in particular, demonstrate that expression of mCLCA1 and mCLCA2 during involution is profoundly dependent upon Stat3, whereas the relationship between mCLCA5 and Stat3 activity is reciprocal and restricted to different subpopulations of cells.
Collapse
|
48
|
Johnson RW, Finger EC, Olcina MM, Vilalta M, Aguilera T, Miao Y, Merkel AR, Johnson JR, Sterling JA, Wu JY, Giaccia AJ. Induction of LIFR confers a dormancy phenotype in breast cancer cells disseminated to the bone marrow. Nat Cell Biol 2016; 18:1078-1089. [PMID: 27642788 PMCID: PMC5357601 DOI: 10.1038/ncb3408] [Citation(s) in RCA: 189] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Accepted: 08/11/2016] [Indexed: 12/20/2022]
Abstract
Breast cancer cells frequently home to the bone marrow, where they may enter a dormant state before forming a bone metastasis. Several members of the interleukin-6 (IL-6) cytokine family are implicated in breast cancer bone colonization, but the role for the IL-6 cytokine leukaemia inhibitory factor (LIF) in this process is unknown. We tested the hypothesis that LIF provides a pro-dormancy signal to breast cancer cells in the bone. In breast cancer patients, LIF receptor (LIFR) levels are lower with bone metastases and are significantly and inversely correlated with patient outcome and hypoxia gene activity. Hypoxia also reduces the LIFR:STAT3:SOCS3 signalling pathway in breast cancer cells. Loss of the LIFR or STAT3 enables otherwise dormant breast cancer cells to downregulate dormancy-, quiescence- and cancer stem cell-associated genes, and to proliferate in and specifically colonize the bone, suggesting that LIFR:STAT3 signalling confers a dormancy phenotype in breast cancer cells disseminated to bone.
Collapse
Affiliation(s)
- Rachelle W. Johnson
- Department of Radiation Oncology, Division of Radiation and Cancer Biology, Stanford University, Stanford, CA, USA
| | - Elizabeth C. Finger
- Department of Radiation Oncology, Division of Radiation and Cancer Biology, Stanford University, Stanford, CA, USA
| | - Monica M. Olcina
- Department of Radiation Oncology, Division of Radiation and Cancer Biology, Stanford University, Stanford, CA, USA
| | - Marta Vilalta
- Department of Radiation Oncology, Division of Radiation and Cancer Biology, Stanford University, Stanford, CA, USA
| | - Todd Aguilera
- Department of Radiation Oncology, Division of Radiation and Cancer Biology, Stanford University, Stanford, CA, USA
| | - Yu Miao
- Department of Radiation Oncology, Division of Radiation and Cancer Biology, Stanford University, Stanford, CA, USA
| | - Alyssa R. Merkel
- Department of Veterans Affairs: Tennessee Valley Healthcare System (VISN 9), Nashville, TN, USA
- Department of Medicine, Division of Clinical Pharmacology, Nashville, TN, USA
- Vanderbilt Center for Bone Biology, Nashville, TN, USA
| | - Joshua R. Johnson
- Department of Medicine, Division of Endocrinology, Stanford University, Stanford CA, USA
| | - Julie A. Sterling
- Department of Veterans Affairs: Tennessee Valley Healthcare System (VISN 9), Nashville, TN, USA
- Department of Medicine, Division of Clinical Pharmacology, Nashville, TN, USA
- Vanderbilt Center for Bone Biology, Nashville, TN, USA
| | - Joy Y. Wu
- Department of Medicine, Division of Endocrinology, Stanford University, Stanford CA, USA
| | - Amato J. Giaccia
- Department of Radiation Oncology, Division of Radiation and Cancer Biology, Stanford University, Stanford, CA, USA
| |
Collapse
|
49
|
Singh K, Vetharaniam I, Dobson J, Prewitz M, Oden K, Murney R, Swanson K, McDonald R, Henderson H, Stelwagen K. Cell survival signaling in the bovine mammary gland during the transition from lactation to involution. J Dairy Sci 2016; 99:7523-7543. [DOI: 10.3168/jds.2015-10515] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Accepted: 05/01/2016] [Indexed: 12/31/2022]
|
50
|
Hwang WS, Bae JH, Yeom SC. Premature mammary gland involution with repeated corticosterone injection in interleukin 10-deficient mice. Biosci Biotechnol Biochem 2016; 80:2318-2324. [PMID: 27485250 DOI: 10.1080/09168451.2016.1214556] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Recently, we found that maternal stress could induce premature mammary gland involution in interleukin 10 knock out (IL-10-/-) mice. To elucidate correlation between stress, IL-10, and mammary gland involution, corticosterone was injected into the lactating wild type and IL-10-deficient mice and assessed mammary gland phenotype. Repetitive corticosterone injection developed premature mammary gland involution only in B6.IL-10-/- mice; moreover, it induced alopecia in nursing pups. Corticosterone injection induced several typical changes such as mammary gland epithelial cell apoptosis, macrophage infiltration, fat deposition in adipocyte, STAT3 phosphorylation, and upregulation of tyrosine hydroxylase gene in adrenal gland. Overall incidence of pup alopecia and mammary gland involution was relatively high in corticosterone than control B6.IL-10-/- group (57% vs. 20%). Our finding demonstrates that IL-10 is important for stress modulation, and B6.Il-10-/- with corticosterone has several advantage such as simple to establish, well-defined onset of mammary gland involution, high incidence, and inducing pup alopecia.
Collapse
Affiliation(s)
- Woo-Sung Hwang
- a Designed Animal and Transplantation Research Institute , Institute of Greenbio Science and Technology, Seoul National University , Pyeongchang , Korea
| | - Ji-Hyun Bae
- a Designed Animal and Transplantation Research Institute , Institute of Greenbio Science and Technology, Seoul National University , Pyeongchang , Korea
| | - Su-Cheong Yeom
- b Graduate School of International Agricultural Technology , Seoul National University , Pyeongchang , Korea
| |
Collapse
|