1
|
Chipman AD. The development and evolution of arthropod tagmata. Proc Biol Sci 2025; 292:20242950. [PMID: 40237508 PMCID: PMC12001983 DOI: 10.1098/rspb.2024.2950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 03/18/2025] [Accepted: 03/25/2025] [Indexed: 04/18/2025] Open
Abstract
The segmented body is a hallmark of the arthropod body plan. Morphological segments are formed during embryogenesis, through a complex procedure involving the activation of a series of gene regulatory networks. The segments of the arthropod body are organized into functional units known as tagmata, and these tagmata are different among the arthropod classes (e.g. head, thorax and abdomen in insects). Based on embryological work on segment generation in a number of arthropod species, coupled with a survey of classical descriptions of arthropod development, I suggest a new framework for the evolution of arthropod tagmata. The ancestral condition involves three developmental tagmata: the pre-gnathal segments, a tagma that is formed within a pre-existing developmental field and a tagma that is formed through the activity of a segment-addition zone that may be embryonic or post-embryonic. These embryonic tagmata may fuse post-embryonically to generate more complex adult tagmata. This framework is consistent with the evolution of tagmosis seen in the early arthropod fossil record. It also calls for a re-thinking of the decades-old division of arthropod development into short-germ versus long-germ development, a re-thinking of questions of segment identity determination and the role of Hox genes in tagma differentiation.
Collapse
Affiliation(s)
- Ariel D. Chipman
- Department of Ecology, Evolution & Behavior, The Silberman Institute of Life Science, The Hebrew University of Jerusalem, Jerusalem, Israel
| |
Collapse
|
2
|
Jung S, Kim S, Shin S. Comparative transcriptomics suggests a potential realizator gene for carapace expansion in longtail tadpole shrimp, Triops longicaudatus (Branchiopoda: Notostraca). JOURNAL OF EXPERIMENTAL ZOOLOGY. PART B, MOLECULAR AND DEVELOPMENTAL EVOLUTION 2024; 342:529-537. [PMID: 39169693 DOI: 10.1002/jez.b.23272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 08/01/2024] [Accepted: 08/06/2024] [Indexed: 08/23/2024]
Abstract
The origin of morphological innovation has been extensively studied within evolutionary developmental biology (evo-devo). Recent studies have demonstrated that the developmental module for double-layered epithelial outgrowths is conserved between the insect wings and branchiopod crustacean carapace, thereby introducing homology among these diverse structures. However, evo-devo studies on the branchiopod crustacean carapace have been primarily limited to a single species, the water flea Daphnia magna, leaving the gene regulatory network governing carapace development not comprehensively understood. Furthermore, realizator genes downstream of the character identity mechanism (ChIM) for bilayered epithelial development remain inadequately described. In this study, we analyzed tissue-specific transcriptional profiles in the developing longtail tadpole shrimp, Triops longicaudatus. We observed significant upregulation of papilin in the carapace-bearing head, along with its expression in both the carapace and the trunk limb lobes. Based on these results, we hypothesize that differential expression of papilin is involved in the disproportional growth of Triops carapace. Our findings will contribute to elucidating the diversification of double-layered epithelial outgrowths across distant arthropod lineages.
Collapse
Affiliation(s)
- Seunghun Jung
- School of Biological Sciences and Institute of Biodiversity, Seoul National University, Seoul, Republic of Korea
| | - Seojun Kim
- College of Agriculture and Life Sciences, Department of Food and Animal Biotechnology, Seoul National University, Seoul, Republic of Korea
- Department of Medicine, College of Medicine, Chungbuk National University, Cheongju, Chungbuk, Republic of Korea
| | - Seunggwan Shin
- School of Biological Sciences and Institute of Biodiversity, Seoul National University, Seoul, Republic of Korea
- Comparative Medicine Disease Research Center, Seoul National University, Seoul, Republic of Korea
| |
Collapse
|
3
|
Jo E, Cho M, Choi S, Lee SJ, Choi E, Kim J, Kim JY, Kwon S, Lee JH, Park H. High-quality chromosome-level genome assembly of female Artemia franciscana reveals sex chromosome and Hox gene organization. Heliyon 2024; 10:e38687. [PMID: 39435060 PMCID: PMC11492255 DOI: 10.1016/j.heliyon.2024.e38687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 09/22/2024] [Accepted: 09/27/2024] [Indexed: 10/23/2024] Open
Abstract
Artemia is a crustacean genus belonging to the order Anostraca in the class Branchiopoda and lives in inland hypersaline lakes. Among the genus, A. franciscana is a valuable species as a fish food in the aquaculture industry or as an aquatic model organism for toxicity tests. However, genomic data for A. franciscana remains incomplete. In this study, high-quality genome assembly at the chromosome level of female A. franciscana was conducted by combining various sequencing and assembly technologies. The final A. franciscana assembled genome was 1.27 Gb in length, containing 21 chromosomal scaffolds (>10 Mb). The scaffold N50 was 45.3 Mb, with a complete BUSCO value of 91.0 %, thereby confirming that a high-quality genome was assembled. Gene annotation shows that the A. franciscana genome contained 67.26 % of repetitive sequences, and a total of 26,923 protein-coding genes were predicted. Among the 21 chromosome-scale scaffolds, chromosome 1 was identified as a sex chromosome Z. Additionally, five contigs of putative W chromosome fragments and the candidate sex-determining genes were suggested. Ten homeobox (Hox) genes were identified in A. franciscana on the chromosome 14, which were in two subclusters with a large gap. Hox gene organizations within 13 arthropods showed that four anostracans had conserved synteny. This study provides a new female Artemia genome with sex chromosome and the first complete genomic arrangement of the Hox cluster in Anostraca. This study will be a useful genomic and genetic reference for understanding the evolution and development of A. franciscana.
Collapse
Affiliation(s)
- Euna Jo
- Division of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, 02841, South Korea
- Division of Life Sciences, Korea Polar Research Institute, Incheon, 21990, South Korea
| | - Minjoo Cho
- Division of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, 02841, South Korea
| | - Soyun Choi
- Division of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, 02841, South Korea
| | - Seung Jae Lee
- Division of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, 02841, South Korea
| | - Eunkyung Choi
- Division of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, 02841, South Korea
| | - Jinmu Kim
- Division of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, 02841, South Korea
| | - Jang Yeon Kim
- Division of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, 02841, South Korea
| | - Sooyeon Kwon
- Division of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, 02841, South Korea
| | - Jun Hyuck Lee
- Division of Life Sciences, Korea Polar Research Institute, Incheon, 21990, South Korea
| | - Hyun Park
- Division of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, 02841, South Korea
| |
Collapse
|
4
|
Fogliano C, Carotenuto R, Agnisola C, Motta CM, Avallone B. Impact of Benzodiazepine Delorazepam on Growth and Behaviour of Artemia salina Nauplii. BIOLOGY 2024; 13:808. [PMID: 39452117 PMCID: PMC11505015 DOI: 10.3390/biology13100808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 09/21/2024] [Accepted: 10/09/2024] [Indexed: 10/26/2024]
Abstract
Benzodiazepines, a significant group of newly recognised water contaminants, are psychotropic medications prescribed for common anxiety symptoms and sleep disorders. They resist efficient degradation during sewage treatment and endure in aquatic environments. Their presence in aquatic matrices is increasing, particularly after the recent pandemic period, which has led many people to systematically use benzodiazepines to manage anxiety. In previous studies, an important interference of this class of drugs on both the larval and adult stages of some aquatic species has been demonstrated, with effects on behaviour and embryonic development. This study examined the influence of delorazepam, a diazepam metabolite, on Artemia salina development to gain insight into responses in naupliar larvae. Results demonstrated that treatments (1, 5, and 10 µg/L) increase the hatching percentage and induce a desynchronisation in growth. Mortality was only slightly increased (close to 10% at six days post-hatching), but lipid reserve consumption was modified, with the persistence of lipid globules at the advanced naupliar stages. Locomotory activity significantly decreased only at 10 µg/L treatment. No teratogenic effects were observed, though modest damages were noticed in the posterior trunk and eyes, two targets of environmental toxicity. The negative impact of delorazepam on Artemia salina adds to those already reported in other species of invertebrates and vertebrates, which are not yet considered targets of these drugs. This study underscores the need for further research and immediate attention to this class of contaminants and the importance of monitoring their presence during environmental risk assessments.
Collapse
Affiliation(s)
| | | | | | - Chiara Maria Motta
- Department of Biology, University of Naples “Federico II”, 80126 Naples, Italy; (C.F.); (R.C.); (C.A.); (B.A.)
| | | |
Collapse
|
5
|
Janssen R, Pechmann M. Expression of posterior Hox genes and opisthosomal appendage development in a mygalomorph spider. Dev Genes Evol 2023; 233:107-121. [PMID: 37495828 PMCID: PMC10746769 DOI: 10.1007/s00427-023-00707-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 07/11/2023] [Indexed: 07/28/2023]
Abstract
Spiders represent an evolutionary successful group of chelicerate arthropods. The body of spiders is subdivided into two regions (tagmata). The anterior tagma, the prosoma, bears the head appendages and four pairs of walking legs. The segments of the posterior tagma, the opisthosoma, either lost their appendages during the course of evolution or their appendages were substantially modified to fulfill new tasks such as reproduction, gas exchange, and silk production. Previous work has shown that the homeotic Hox genes are involved in shaping the posterior appendages of spiders. In this paper, we investigate the expression of the posterior Hox genes in a tarantula that possesses some key differences of posterior appendages compared to true spiders, such as the lack of the anterior pair of spinnerets and a second set of book lungs instead of trachea. Based on the observed differences in posterior Hox gene expression in true spiders and tarantulas, we argue that subtle changes in the Hox gene expression of the Hox genes abdA and AbdB are possibly responsible for at least some of the morphological differences seen in true spiders versus tarantulas.
Collapse
Affiliation(s)
- Ralf Janssen
- Department of Earth Sciences, Palaeobiology, Uppsala University, Villavägen 16, 75236, Uppsala, Sweden.
| | - Matthias Pechmann
- Institute for Zoology, Biocenter, University of Cologne, Zuelpicher Str. 47b, 50674, Cologne, Germany
| |
Collapse
|
6
|
Fritsch M, Richter S. How body patterning might have worked in the evolution of arthropods-A case study of the mystacocarid Derocheilocaris remanei (Crustacea, Oligostraca). JOURNAL OF EXPERIMENTAL ZOOLOGY. PART B, MOLECULAR AND DEVELOPMENTAL EVOLUTION 2022; 338:342-359. [PMID: 35486026 DOI: 10.1002/jez.b.23140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 02/28/2022] [Accepted: 03/11/2022] [Indexed: 06/14/2023]
Abstract
Body organization within arthropods is enormously diverse, but a fusion of segments into "functional groups" (tagmatization) is found in all species. Within Tetraconata/Pancrustacea, an anterior head, a locomotory thorax region, and a posterior, mostly limbless tagma known as the abdomen is present. The posterior-most tagma in crustaceans is frequently confused with the malacostracan, for example, decapod pleon often misleadingly termed abdomen, however, its evolutionary and developmental origin continues to pose a riddle, especially the completely limbless abdomen of the "entomostracan morphotype" (e.g., fairy shrimps). Since the discovery of Hox genes and their involvement in specifying the morphology or identity of segments, tagmata, or regions along the anteroposterior axis of an organism, only a few studies have focused on model organisms representing the "entomostracan morphotype" and used a variety of dedicated Hox genes and their transcription products to shine light on abdomen formation. The homeotic genes or the molecular processes that determine the identity of the entomostracan abdomen remain unknown to date. This study focuses on the "entomostracan morphotype" representative Derocheilocaris remanei (Mystacocarida). We present a complete overview of development throughout larval stages and investigate homeotic gene expression data using the antibody FP6.87 that binds specifically to epitopes of Ultrabithorax/Abdominal-A proteins. Our results suggest that the abdomen in Mystacocarida is bipartite (abdomen I + abdomen II). We suggest that the limbless abdomen is an evolutionary novelty that evolved several times independently within crustaceans and which might be the result of a progressive reduction of former thoracic segments into abdominal segments.
Collapse
Affiliation(s)
- Martin Fritsch
- Museum für Naturkunde, Leibniz-Institut für Evolutions-und Biodiversitätsforschung, Berlin, Germany
| | - Stefan Richter
- Allgemeine und Spezielle Zoologie, Institut für Biowissenschaften, Universität Rostock, Rostock, Germany
| |
Collapse
|
7
|
Comparative Toxicity of Vegan Red, E124, and E120 Food Dyes on Three Rapidly Proliferating Model Systems. ENVIRONMENTS 2022. [DOI: 10.3390/environments9070089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The abuse of artificial food dyes and the evidence that they harm human health recently prompted a significant effort to introduce vegan substitutes prepared from fruits and vegetables. Not much information, however, has been collected on their possible effects on aquatic and terrestrial ecosystems once released as waste in surface waters. For this purpose, we analyzed the effects of a vegan red (VEG) preparation (concentration 1.2 g/L) on three rapidly proliferating models for terrestrial and aquatic ecosystem contamination. In particular, in vitro cells cultures (exposure for 24 h), Artemia salina nauplii and Cucumis sativus seedlings (exposure 5 days). A comparison was made with the effects exerted by the two dyes that vegan red is intended to replace: an animal dye, cochineal E120 and an artificial dye E124. The analyses of conventional endpoints, indicative of cell proliferation, differentiation, and growth rate, demonstrate that the three dyes affect development and that the vegan substitute is as unsafe as the E124 and E120. Vegan red in fact impairs cell growth in in vitro cells, delays naupliar hatching and early growth in Artemia, and reduces shoot/root biomass in Cucumis. Marked hyperplasia and hypertrophy of mesophyll are also observed in Cucumis leaves. Substitution in food and beverages, therefore, should be carefully reconsidered to avoid unnecessary environmental contamination.
Collapse
|
8
|
Schulreich SM, Salamanca-Díaz DA, Zieger E, Calcino AD, Wanninger A. A mosaic of conserved and novel modes of gene expression and morphogenesis in mesoderm and muscle formation of a larval bivalve. ORG DIVERS EVOL 2022; 22:893-913. [PMID: 36398106 PMCID: PMC9649484 DOI: 10.1007/s13127-022-00569-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 05/26/2022] [Indexed: 10/17/2022]
Abstract
The mesoderm gives rise to several key morphological features of bilaterian animals including endoskeletal elements and the musculature. A number of regulatory genes involved in mesoderm and/or muscle formation (e.g., Brachyury (Bra), even-skipped (eve), Mox, myosin II heavy chain (mhc)) have been identified chiefly from chordates and the ecdysozoans Drosophila and Caenorhabditis elegans, but data for non-model protostomes, especially those belonging to the ecdysozoan sister clade, Lophotrochozoa (e.g., flatworms, annelids, mollusks), are only beginning to emerge. Within the lophotrochozoans, Mollusca constitutes the most speciose and diverse phylum. Interestingly, however, information on the morphological and molecular underpinnings of key ontogenetic processes such as mesoderm formation and myogenesis remains scarce even for prominent molluscan sublineages such as the bivalves. Here, we investigated myogenesis and developmental expression of Bra, eve, Mox, and mhc in the quagga mussel Dreissena rostriformis, an invasive freshwater bivalve and an emerging model in invertebrate evodevo. We found that all four genes are expressed during mesoderm formation, but some show additional, individual sites of expression during ontogeny. While Mox and mhc are involved in early myogenesis, eve is also expressed in the embryonic shell field and Bra is additionally present in the foregut. Comparative analysis suggests that Mox has an ancestral role in mesoderm and possibly muscle formation in bilaterians, while Bra and eve are conserved regulators of mesoderm development of nephrozoans (protostomes and deuterostomes). The fully developed Dreissena veliger larva shows a highly complex muscular architecture, supporting a muscular ground pattern of autobranch bivalve larvae that includes at least a velum muscle ring, three or four pairs of velum retractors, one or two pairs of larval retractors, two pairs of foot retractors, a pedal plexus, possibly two pairs of mantle retractors, and the muscles of the pallial line, as well as an anterior and a posterior adductor. As is typical for their molluscan kin, remodelling and loss of prominent larval features such as the velum musculature and various retractor systems appear to be also common in bivalves. Supplementary information The online version contains supplementary material available at 10.1007/s13127-022-00569-5.
Collapse
Affiliation(s)
- Stephan M. Schulreich
- Unit for Integrative Zoology, Department of Evolutionary Biology, University of Vienna, Djerassiplatz 1, 1030 Vienna, Austria
| | - David A. Salamanca-Díaz
- Unit for Integrative Zoology, Department of Evolutionary Biology, University of Vienna, Djerassiplatz 1, 1030 Vienna, Austria
| | - Elisabeth Zieger
- Unit for Integrative Zoology, Department of Evolutionary Biology, University of Vienna, Djerassiplatz 1, 1030 Vienna, Austria
| | - Andrew D. Calcino
- Unit for Integrative Zoology, Department of Evolutionary Biology, University of Vienna, Djerassiplatz 1, 1030 Vienna, Austria
| | - Andreas Wanninger
- Unit for Integrative Zoology, Department of Evolutionary Biology, University of Vienna, Djerassiplatz 1, 1030 Vienna, Austria
| |
Collapse
|
9
|
Expression of Abdominal-B in the brine shrimp, Artemia franciscana, expands our evolutionary understanding of the crustacean abdomen. Dev Biol 2022; 489:178-184. [PMID: 35732224 DOI: 10.1016/j.ydbio.2022.06.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 04/19/2022] [Accepted: 06/16/2022] [Indexed: 11/03/2022]
Abstract
The brine shrimp, Artemia franciscana, has a body plan composed of 11 thoracic segments, followed by 2 genital segments, and then 6 additional abdominal segments. Previous studies of Artemia reported that expression of the posterior-most Hox gene, Abdominal-B (Abd-B), is restricted to the genital segments and is not observed posteriorly in the abdomen at any developmental stage. This report was remarkable because it suggested that the Artemia abdomen posterior to the genital segments was a novel body region of 6 segments that bore no homology to any region in other crustaceans and was unique amongst arthropods in being a Hox-free segmented domain outside of the head. In this study, we used RT-PCR, antibody staining, and in situ hybridization on various stages of Artemia nauplii to show that Abd-B mRNA and protein are in fact expressed throughout the abdominal segments during Artemia development, but this expression later retracts to the two genital segments (G1, G2) and the T11 appendages. This suggests that Abd-B does play a role in specifying abdominal segment identity in all crustaceans that have been examined and suggests a common evolutionary origin for the crustacean abdomen.
Collapse
|
10
|
Lechable M, Jan A, Duchene A, Uveira J, Weissbourd B, Gissat L, Collet S, Gilletta L, Chevalier S, Leclère L, Peron S, Barreau C, Lasbleiz R, Houliston E, Momose T. An improved whole life cycle culture protocol for the hydrozoan genetic model Clytia hemisphaerica. Biol Open 2020; 9:bio051268. [PMID: 32994186 PMCID: PMC7657476 DOI: 10.1242/bio.051268] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 09/07/2020] [Indexed: 12/17/2022] Open
Abstract
The jellyfish species Clytia hemisphaerica (Cnidaria, Hydrozoa) has emerged as a new experimental model animal in the last decade. Favorable characteristics include a fully transparent body suitable for microscopy, daily gamete production and a relatively short life cycle. Furthermore, whole genome sequence assembly and efficient gene editing techniques using CRISPR/Cas9 have opened new possibilities for genetic studies. The quasi-immortal vegetatively-growing polyp colony stage provides a practical means to maintain mutant strains. In the context of developing Clytia as a genetic model, we report here an improved whole life cycle culture method including an aquarium tank system designed for culture of the tiny jellyfish form. We have compared different feeding regimes using Artemia larvae as food and demonstrate that the stage-dependent feeding control is the key for rapid and reliable medusa and polyp rearing. Metamorphosis of the planula larvae into a polyp colony can be induced efficiently using a new synthetic peptide. The optimized procedures detailed here make it practical to generate genetically modified Clytia strains and to maintain their whole life cycle in the laboratory.This article has an associated First Person interview with the two first authors of the paper.
Collapse
Affiliation(s)
- Marion Lechable
- Sorbonne Université, CNRS, Institut de la Mer de Villefranche, UMR7009 Laboratoire de Biologie du Développement de Villefranche-sur-Mer (LBDV), 06230 Villefranche-sur-Mer, France
| | - Alexandre Jan
- Sorbonne Université, CNRS, Institut de la Mer de Villefranche, UMR7009 Laboratoire de Biologie du Développement de Villefranche-sur-Mer (LBDV), 06230 Villefranche-sur-Mer, France
- Sorbonne Université, Institut de la mer de Villefranche, FR3761, Centre de Ressources Biologiques Marines (CRBM), Service Aquariologie, 06230 Villefranche-sur-Mer, France
| | - Axel Duchene
- Sorbonne Université, Institut de la mer de Villefranche, FR3761, Centre de Ressources Biologiques Marines (CRBM), Service Aquariologie, 06230 Villefranche-sur-Mer, France
| | - Julie Uveira
- Sorbonne Université, CNRS, Institut de la Mer de Villefranche, UMR7009 Laboratoire de Biologie du Développement de Villefranche-sur-Mer (LBDV), 06230 Villefranche-sur-Mer, France
| | - Brandon Weissbourd
- California Institute of Technology, Division of Biology and Biological Engineering, and the Howard Hughes Medical Institute, 1200 E California Blvd, Pasadena CA 91125, USA
| | - Loann Gissat
- Sorbonne Université, Institut de la mer de Villefranche, FR3761, Centre de Ressources Biologiques Marines (CRBM), Service Aquariologie, 06230 Villefranche-sur-Mer, France
| | - Sophie Collet
- Sorbonne Université, Institut de la mer de Villefranche, FR3761, Centre de Ressources Biologiques Marines (CRBM), Service Aquariologie, 06230 Villefranche-sur-Mer, France
| | - Laurent Gilletta
- Sorbonne Université, CNRS, Institut de la Mer de Villefranche, UMR7009 Laboratoire de Biologie du Développement de Villefranche-sur-Mer (LBDV), 06230 Villefranche-sur-Mer, France
| | - Sandra Chevalier
- Sorbonne Université, CNRS, Institut de la Mer de Villefranche, UMR7009 Laboratoire de Biologie du Développement de Villefranche-sur-Mer (LBDV), 06230 Villefranche-sur-Mer, France
| | - Lucas Leclère
- Sorbonne Université, CNRS, Institut de la Mer de Villefranche, UMR7009 Laboratoire de Biologie du Développement de Villefranche-sur-Mer (LBDV), 06230 Villefranche-sur-Mer, France
| | - Sophie Peron
- Sorbonne Université, CNRS, Institut de la Mer de Villefranche, UMR7009 Laboratoire de Biologie du Développement de Villefranche-sur-Mer (LBDV), 06230 Villefranche-sur-Mer, France
| | - Carine Barreau
- Sorbonne Université, CNRS, Institut de la Mer de Villefranche, UMR7009 Laboratoire de Biologie du Développement de Villefranche-sur-Mer (LBDV), 06230 Villefranche-sur-Mer, France
| | - Régis Lasbleiz
- Sorbonne Université, Institut de la mer de Villefranche, FR3761, Centre de Ressources Biologiques Marines (CRBM), Service Aquariologie, 06230 Villefranche-sur-Mer, France
| | - Evelyn Houliston
- Sorbonne Université, CNRS, Institut de la Mer de Villefranche, UMR7009 Laboratoire de Biologie du Développement de Villefranche-sur-Mer (LBDV), 06230 Villefranche-sur-Mer, France
| | - Tsuyoshi Momose
- Sorbonne Université, CNRS, Institut de la Mer de Villefranche, UMR7009 Laboratoire de Biologie du Développement de Villefranche-sur-Mer (LBDV), 06230 Villefranche-sur-Mer, France
| |
Collapse
|
11
|
Sun DA, Patel NH. The amphipod crustacean Parhyale hawaiensis: An emerging comparative model of arthropod development, evolution, and regeneration. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2019; 8:e355. [PMID: 31183976 PMCID: PMC6772994 DOI: 10.1002/wdev.355] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 05/11/2019] [Indexed: 12/26/2022]
Abstract
Recent advances in genetic manipulation and genome sequencing have paved the way for a new generation of research organisms. The amphipod crustacean Parhyale hawaiensis is one such system. Parhyale are easy to rear and offer large broods of embryos amenable to injection, dissection, and live imaging. Foundational work has described Parhyale embryonic development, while advancements in genetic manipulation using CRISPR-Cas9 and other techniques, combined with genome and transcriptome sequencing, have enabled its use in studies of arthropod development, evolution, and regeneration. This study introduces Parhyale development and life history, a catalog of techniques and resources for Parhyale research, and two case studies illustrating its power as a comparative research system. This article is categorized under: Comparative Development and Evolution > Evolutionary Novelties Adult Stem Cells, Tissue Renewal, and Regeneration > Regeneration Comparative Development and Evolution > Model Systems Comparative Development and Evolution > Body Plan Evolution.
Collapse
Affiliation(s)
- Dennis A Sun
- Department of Molecular and Cell Biology, University of California, Berkeley, California
| | - Nipam H Patel
- Marine Biological Laboratory, University of Chicago, Chicago, Illinois
| |
Collapse
|
12
|
Evolution of the bilaterian mouth and anus. Nat Ecol Evol 2018; 2:1358-1376. [PMID: 30135501 DOI: 10.1038/s41559-018-0641-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Revised: 06/26/2018] [Accepted: 07/11/2018] [Indexed: 12/17/2022]
Abstract
It is widely held that the bilaterian tubular gut with mouth and anus evolved from a simple gut with one major gastric opening. However, there is no consensus on how this happened. Did the single gastric opening evolve into a mouth, with the anus forming elsewhere in the body (protostomy), or did it evolve into an anus, with the mouth forming elsewhere (deuterostomy), or did it evolve into both mouth and anus (amphistomy)? These questions are addressed by the comparison of developmental fates of the blastopore, the opening of the embryonic gut, in diverse animals that live today. Here we review comparative data on the identity and fate of blastoporal tissue, investigate how the formation of the through-gut relates to the major body axes, and discuss to what extent evolutionary scenarios are consistent with these data. Available evidence indicates that stem bilaterians had a slit-like gastric opening that was partially closed in subsequent evolution, leaving open the anus and most likely also the mouth, which would favour amphistomy. We discuss remaining difficulties, and outline directions for future research.
Collapse
|
13
|
Auman T, Chipman AD. The Evolution of Gene Regulatory Networks that Define Arthropod Body Plans. Integr Comp Biol 2018; 57:523-532. [PMID: 28957519 DOI: 10.1093/icb/icx035] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Our understanding of the genetics of arthropod body plan development originally stems from work on Drosophila melanogaster from the late 1970s and onward. In Drosophila, there is a relatively detailed model for the network of gene interactions that proceeds in a sequential-hierarchical fashion to define the main features of the body plan. Over the years, we have a growing understanding of the networks involved in defining the body plan in an increasing number of arthropod species. It is now becoming possible to tease out the conserved aspects of these networks and to try to reconstruct their evolution. In this contribution, we focus on several key nodes of these networks, starting from early patterning in which the main axes are determined and the broad morphological domains of the embryo are defined, and on to later stage wherein the growth zone network is active in sequential addition of posterior segments. The pattern of conservation of networks is very patchy, with some key aspects being highly conserved in all arthropods and others being very labile. Many aspects of early axis patterning are highly conserved, as are some aspects of sequential segment generation. In contrast, regional patterning varies among different taxa, and some networks, such as the terminal patterning network, are only found in a limited range of taxa. The growth zone segmentation network is ancient and is probably plesiomorphic to all arthropods. In some insects, it has undergone significant modification to give rise to a more hardwired network that generates individual segments separately. In other insects and in most arthropods, the sequential segmentation network has undergone a significant amount of systems drift, wherein many of the genes have changed. However, it maintains a conserved underlying logic and function.
Collapse
Affiliation(s)
- Tzach Auman
- The Department of Ecology, Evolution & Behavior, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, 91904, Jerusalem, Israel
| | - Ariel D Chipman
- The Department of Ecology, Evolution & Behavior, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, 91904, Jerusalem, Israel
| |
Collapse
|
14
|
Williams TA, Nagy LM. Linking gene regulation to cell behaviors in the posterior growth zone of sequentially segmenting arthropods. ARTHROPOD STRUCTURE & DEVELOPMENT 2017; 46:380-394. [PMID: 27720841 DOI: 10.1016/j.asd.2016.10.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2016] [Accepted: 10/03/2016] [Indexed: 06/06/2023]
Abstract
Virtually all arthropods all arthropods add their body segments sequentially, one by one in an anterior to posterior progression. That process requires not only segment specification but typically growth and elongation. Here we review the functions of some of the key genes that regulate segmentation: Wnt, caudal, Notch pathway, and pair-rule genes, and discuss what can be inferred about their evolution. We focus on how these regulatory factors are integrated with growth and elongation and discuss the importance and challenges of baseline measures of growth and elongation. We emphasize a perspective that integrates the genetic regulation of segment patterning with the cellular mechanisms of growth and elongation.
Collapse
Affiliation(s)
| | - Lisa M Nagy
- Department of Molecular and Cellular Biology, The University of Arizona, Tucson, AZ 85721, USA.
| |
Collapse
|
15
|
Auman T, Vreede BMI, Weiss A, Hester SD, Williams TA, Nagy LM, Chipman AD. Dynamics of growth zone patterning in the milkweed bug Oncopeltus fasciatus. Development 2017; 144:1896-1905. [PMID: 28432218 PMCID: PMC5450833 DOI: 10.1242/dev.142091] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Accepted: 04/10/2017] [Indexed: 01/19/2023]
Abstract
We describe the dynamic process of abdominal segment generation in the milkweed bug Oncopeltus fasciatus. We present detailed morphological measurements of the growing germband throughout segmentation. Our data are complemented by cell division profiles and expression patterns of key genes, including invected and even-skipped as markers for different stages of segment formation. We describe morphological and mechanistic changes in the growth zone and in nascent segments during the generation of individual segments and throughout segmentation, and examine the relative contribution of newly formed versus existing tissue to segment formation. Although abdominal segment addition is primarily generated through the rearrangement of a pool of undifferentiated cells, there is nonetheless proliferation in the posterior. By correlating proliferation with gene expression in the growth zone, we propose a model for growth zone dynamics during segmentation in which the growth zone is functionally subdivided into two distinct regions: a posterior region devoted to a slow rate of growth among undifferentiated cells, and an anterior region in which segmental differentiation is initiated and proliferation inhibited. Summary: A detailed analysis of posterior segment addition in an insect reveals that the growth zone is divided into two functional domains responsible for growth and differentiation.
Collapse
Affiliation(s)
- Tzach Auman
- Department of Ecology, Evolution and Behavior, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram 91904, Jerusalem, Israel
| | - Barbara M I Vreede
- Department of Ecology, Evolution and Behavior, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram 91904, Jerusalem, Israel
| | - Aryeh Weiss
- Faculty of Engineering and The Bar-Ilan Institute of Nanotechnology & Advanced Materials, Bar Ilan University, Ramat Gan 52900, Israel.,Bio-Imaging Unit, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram 91904, Jerusalem, Israel
| | - Susan D Hester
- Molecular and Cellular Biology Department, University of Arizona, Tucson, AZ 85721, USA
| | | | - Lisa M Nagy
- Molecular and Cellular Biology Department, University of Arizona, Tucson, AZ 85721, USA
| | - Ariel D Chipman
- Department of Ecology, Evolution and Behavior, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram 91904, Jerusalem, Israel
| |
Collapse
|
16
|
Manning L, Doe CQ. Immunofluorescent antibody staining of intact Drosophila larvae. Nat Protoc 2016; 12:1-14. [DOI: 10.1038/nprot.2016.162] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
17
|
Janssen R, Budd GE. Gene expression analysis reveals that Delta/Notch signalling is not involved in onychophoran segmentation. Dev Genes Evol 2016; 226:69-77. [PMID: 26935716 PMCID: PMC4819559 DOI: 10.1007/s00427-016-0529-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2015] [Accepted: 02/09/2016] [Indexed: 11/24/2022]
Abstract
Delta/Notch (Dl/N) signalling is involved in the gene regulatory network underlying the segmentation process in vertebrates and possibly also in annelids and arthropods, leading to the hypothesis that segmentation may have evolved in the last common ancestor of bilaterian animals. Because of seemingly contradicting results within the well-studied arthropods, however, the role and origin of Dl/N signalling in segmentation generally is still unclear. In this study, we investigate core components of Dl/N signalling by means of gene expression analysis in the onychophoran Euperipatoides kanangrensis, a close relative to the arthropods. We find that neither Delta or Notch nor any other investigated components of its signalling pathway are likely to be involved in segment addition in onychophorans. We instead suggest that Dl/N signalling may be involved in posterior elongation, another conserved function of these genes. We suggest further that the posterior elongation network, rather than classic Dl/N signalling, may be in the control of the highly conserved segment polarity gene network and the lower-level pair-rule gene network in onychophorans. Consequently, we believe that the pair-rule gene network and its interaction with Dl/N signalling may have evolved within the arthropod lineage and that Dl/N signalling has thus likely been recruited independently for segment addition in different phyla.
Collapse
Affiliation(s)
- Ralf Janssen
- Department of Earth Sciences, Palaeobiology, Uppsala University, Villavägen 16, 75236, Uppsala, Sweden.
| | - Graham E Budd
- Department of Earth Sciences, Palaeobiology, Uppsala University, Villavägen 16, 75236, Uppsala, Sweden
| |
Collapse
|
18
|
Janssen R, Jörgensen M, Lagebro L, Budd GE. Fate and nature of the onychophoran mouth-anus furrow and its contribution to the blastopore. Proc Biol Sci 2015; 282:rspb.2014.2628. [PMID: 25788603 DOI: 10.1098/rspb.2014.2628] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The ancestral states of bilaterian development, and which living groups have conserved them the most, has been a controversial topic in biology for well over a hundred years. In recent years, the idea that gastrulation primitively proceeded via the formation of a slit-like blastopore that then evolved into either protostomy or deuterostomy has gained renewed attention and some molecular developmental support. One of the key pieces of evidence for this 'amphistomy' theory comes from the onychophorans, which form a clear ventral groove during gastrulation. The interpretation of this structure has, however, proved problematic. Based on expression patterns of forkhead (fkh), caudal (cad), brachyury (bra) and wingless (wg/Wnt1), we show that this groove does not correspond to the blastopore, even though both the mouth and anus later develop from it. Rather, the posterior pit appears to be the blastopore; the posterior of the groove later fuses with it to form the definitive anus. Onychophoran development therefore represents a case of 'concealed' deuterostomy. The new data from the onychophorans thus remove one of the key pieces of evidence for the amphistomy theory. Rather, in line with other recent results, it suggests that ancestral bilaterian development was deuterostomic.
Collapse
Affiliation(s)
- Ralf Janssen
- Department of Earth Sciences, Palaeobiology, Uppsala University, Villavägen 16, 75236 Uppsala, Sweden
| | - Mette Jörgensen
- Department of Earth Sciences, Palaeobiology, Uppsala University, Villavägen 16, 75236 Uppsala, Sweden
| | - Linda Lagebro
- Department of Earth Sciences, Palaeobiology, Uppsala University, Villavägen 16, 75236 Uppsala, Sweden
| | - Graham E Budd
- Department of Earth Sciences, Palaeobiology, Uppsala University, Villavägen 16, 75236 Uppsala, Sweden
| |
Collapse
|
19
|
Serano JM, Martin A, Liubicich DM, Jarvis E, Bruce HS, La K, Browne WE, Grimwood J, Patel NH. Comprehensive analysis of Hox gene expression in the amphipod crustacean Parhyale hawaiensis. Dev Biol 2015; 409:297-309. [PMID: 26569556 DOI: 10.1016/j.ydbio.2015.10.029] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2015] [Revised: 10/25/2015] [Accepted: 10/25/2015] [Indexed: 12/23/2022]
Abstract
Hox genes play crucial roles in establishing regional identity along the anterior-posterior axis in bilaterian animals, and have been implicated in generating morphological diversity throughout evolution. Here we report the identification, expression, and initial genomic characterization of the complete set of Hox genes from the amphipod crustacean Parhyale hawaiensis. Parhyale is an emerging model system that is amenable to experimental manipulations and evolutionary comparisons among the arthropods. Our analyses indicate that the Parhyale genome contains a single copy of each canonical Hox gene with the exception of fushi tarazu, and preliminary mapping suggests that at least some of these genes are clustered together in the genome. With few exceptions, Parhyale Hox genes exhibit both temporal and spatial colinearity, and expression boundaries correlate with morphological differences between segments and their associated appendages. This work represents the most comprehensive analysis of Hox gene expression in a crustacean to date, and provides a foundation for functional studies aimed at elucidating the role of Hox genes in arthropod development and evolution.
Collapse
Affiliation(s)
- Julia M Serano
- Department of Molecular Cell Biology, University of California, Berkeley, CA 94720-3200, USA
| | - Arnaud Martin
- Department of Molecular Cell Biology, University of California, Berkeley, CA 94720-3200, USA
| | - Danielle M Liubicich
- Department of Integrative Biology, University of California, Berkeley, CA 94720-3140, USA; Los Medanos College, 2700 East Leland Rd., Pittsburg, CA 94565, USA
| | - Erin Jarvis
- Department of Integrative Biology, University of California, Berkeley, CA 94720-3140, USA
| | - Heather S Bruce
- Department of Molecular Cell Biology, University of California, Berkeley, CA 94720-3200, USA
| | - Konnor La
- Department of Integrative Biology, University of California, Berkeley, CA 94720-3140, USA
| | - William E Browne
- Department of Biology, University of Miami, 1301 Memorial Drive, Coral Gables, FL 33146, USA
| | - Jane Grimwood
- HudsonAlpha Genome Sequencing Center, 601 Genome Way, Huntsville, AL 35806, USA
| | - Nipam H Patel
- Department of Molecular Cell Biology, University of California, Berkeley, CA 94720-3200, USA; Department of Integrative Biology, University of California, Berkeley, CA 94720-3140, USA.
| |
Collapse
|
20
|
Heckscher ES, Zarin AA, Faumont S, Clark MQ, Manning L, Fushiki A, Schneider-Mizell CM, Fetter RD, Truman JW, Zwart MF, Landgraf M, Cardona A, Lockery SR, Doe CQ. Even-Skipped(+) Interneurons Are Core Components of a Sensorimotor Circuit that Maintains Left-Right Symmetric Muscle Contraction Amplitude. Neuron 2015; 88:314-29. [PMID: 26439528 PMCID: PMC4619170 DOI: 10.1016/j.neuron.2015.09.009] [Citation(s) in RCA: 83] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Revised: 07/30/2015] [Accepted: 09/02/2015] [Indexed: 11/16/2022]
Abstract
Bilaterally symmetric motor patterns--those in which left-right pairs of muscles contract synchronously and with equal amplitude (such as breathing, smiling, whisking, and locomotion)--are widespread throughout the animal kingdom. Yet, surprisingly little is known about the underlying neural circuits. We performed a thermogenetic screen to identify neurons required for bilaterally symmetric locomotion in Drosophila larvae and identified the evolutionarily conserved Even-skipped(+) interneurons (Eve/Evx). Activation or ablation of Eve(+) interneurons disrupted bilaterally symmetric muscle contraction amplitude, without affecting the timing of motor output. Eve(+) interneurons are not rhythmically active and thus function independently of the locomotor CPG. GCaMP6 calcium imaging of Eve(+) interneurons in freely moving larvae showed left-right asymmetric activation that correlated with larval behavior. TEM reconstruction of Eve(+) interneuron inputs and outputs showed that the Eve(+) interneurons are at the core of a sensorimotor circuit capable of detecting and modifying body wall muscle contraction.
Collapse
Affiliation(s)
- Ellie S Heckscher
- Institute of Neuroscience, University of Oregon, Eugene, OR 97403, USA; Institute of Molecular Biology, University of Oregon, Eugene, OR 97403, USA; Howard Hughes Medical Institute, University of Oregon, Eugene, OR 97403, USA.
| | - Aref Arzan Zarin
- Institute of Neuroscience, University of Oregon, Eugene, OR 97403, USA; Institute of Molecular Biology, University of Oregon, Eugene, OR 97403, USA; Howard Hughes Medical Institute, University of Oregon, Eugene, OR 97403, USA
| | - Serge Faumont
- Institute of Neuroscience, University of Oregon, Eugene, OR 97403, USA
| | - Matthew Q Clark
- Institute of Neuroscience, University of Oregon, Eugene, OR 97403, USA; Institute of Molecular Biology, University of Oregon, Eugene, OR 97403, USA; Howard Hughes Medical Institute, University of Oregon, Eugene, OR 97403, USA
| | - Laurina Manning
- Institute of Neuroscience, University of Oregon, Eugene, OR 97403, USA; Institute of Molecular Biology, University of Oregon, Eugene, OR 97403, USA; Howard Hughes Medical Institute, University of Oregon, Eugene, OR 97403, USA
| | - Akira Fushiki
- Janelia Research Campus, HHMI, Ashburn, VA 20147, USA
| | | | | | | | - Maarten F Zwart
- Janelia Research Campus, HHMI, Ashburn, VA 20147, USA; Department of Zoology, University of Cambridge, Cambridge CB2 3EJ, UK
| | - Matthias Landgraf
- Department of Zoology, University of Cambridge, Cambridge CB2 3EJ, UK
| | | | - Shawn R Lockery
- Institute of Neuroscience, University of Oregon, Eugene, OR 97403, USA
| | - Chris Q Doe
- Institute of Neuroscience, University of Oregon, Eugene, OR 97403, USA; Institute of Molecular Biology, University of Oregon, Eugene, OR 97403, USA; Howard Hughes Medical Institute, University of Oregon, Eugene, OR 97403, USA.
| |
Collapse
|
21
|
Starunov VV, Dray N, Belikova EV, Kerner P, Vervoort M, Balavoine G. A metameric origin for the annelid pygidium? BMC Evol Biol 2015; 15:25. [PMID: 25880037 PMCID: PMC4357181 DOI: 10.1186/s12862-015-0299-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2014] [Accepted: 01/29/2015] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Segmented body organizations are widely represented in the animal kingdom. Whether the last common bilaterian ancestor was already segmented is intensely debated. Annelids display broad morphological diversity but many species are among the most homonomous metameric animals. The front end (prostomium) and tail piece (pygidium) of annelids are classically described as non-segmental. However, the pygidium structure and development remain poorly studied. RESULTS Using different methods of microscopy, immunolabelling and a number of molecular markers, we describe the neural and mesodermal structures of the pygidium of Platynereis dumerilii. We establish that the pygidium possesses a complicated nervous system with a nerve ring and a pair of sensory ganglia, a complex intrinsic musculature, a large terminal circular blood sinus and an unusual unpaired torus-shaped coelomic cavity. We also describe some earlier steps of pygidial development and pygidial structure of mature animals after epitokous transformation. CONCLUSIONS We describe a much more complex organization of the pygidium of P. dumerilii than previously suggested. Many of the characteristics are strikingly similar to those found in the trunk segments, opening the debate on whether the pygidium and trunk segments derive from the same ancestral metameric unit. We analyze these scenarios in the context of two classical theories on the origin of segmentation: the cyclomeric/archicoelomate concept and the colonial theory. Both theories provide possible explanations for the partial or complete homology of trunk segments and pygidium.
Collapse
Affiliation(s)
- Viktor V Starunov
- Department of Invertebrate Zoology, Saint-Petersburg State University/ Universitetskaya nab. 7/9, 199034, Saint-Petersburg, Russia.
- Zoological Institute RAS/ Universitetskaya nab. 1, 199034, Saint-Petersburg, Russia.
| | - Nicolas Dray
- Institut Jacques Monod, CNRS/Université Paris Diderot, 15 rue Hélène Brion, 75013, Paris, France.
| | - Elena V Belikova
- Department of Invertebrate Zoology, Saint-Petersburg State University/ Universitetskaya nab. 7/9, 199034, Saint-Petersburg, Russia.
| | - Pierre Kerner
- Institut Jacques Monod, CNRS/Université Paris Diderot, 15 rue Hélène Brion, 75013, Paris, France.
| | - Michel Vervoort
- Institut Jacques Monod, CNRS/Université Paris Diderot, 15 rue Hélène Brion, 75013, Paris, France.
- Institut Universitaire de France, Paris, France.
| | - Guillaume Balavoine
- Institut Jacques Monod, CNRS/Université Paris Diderot, 15 rue Hélène Brion, 75013, Paris, France.
| |
Collapse
|
22
|
Fischer AHL, Mozzherin D, Eren AM, Lans KD, Wilson N, Cosentino C, Smith J. SeaBase: a multispecies transcriptomic resource and platform for gene network inference. Integr Comp Biol 2014; 54:250-63. [PMID: 24907201 DOI: 10.1093/icb/icu065] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Marine and aquatic animals are extraordinarily useful as models for identifying mechanisms of development and evolution, regeneration, resistance to cancer, longevity and symbiosis, among many other areas of research. This is due to the great diversity of these organisms and their wide-ranging capabilities. Genomics tools are essential for taking advantage of these "free lessons" of nature. However, genomics and transcriptomics are challenging in emerging model systems. Here, we present SeaBase, a tool for helping to meet these needs. Specifically, SeaBase provides a platform for sharing and searching transcriptome data. More importantly, SeaBase will support a growing number of tools for inferring gene network mechanisms. The first dataset available on SeaBase is a developmental transcriptomic profile of the sea anemone Nematostella vectensis (Anthozoa, Cnidaria). Additional datasets are currently being prepared and we are aiming to expand SeaBase to include user-supplied data for any number of marine and aquatic organisms, thereby supporting many potentially new models for gene network studies. SeaBase can be accessed online at: http://seabase.core.cli.mbl.edu.
Collapse
Affiliation(s)
- Antje H L Fischer
- *Marine Biological Laboratory, Woods Hole, MA 02543, USA; Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA; Systems & Control Engineering, University of Magna Graecia, 88100 Catanzaro, Italy*Marine Biological Laboratory, Woods Hole, MA 02543, USA; Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA; Systems & Control Engineering, University of Magna Graecia, 88100 Catanzaro, Italy
| | - Dmitry Mozzherin
- *Marine Biological Laboratory, Woods Hole, MA 02543, USA; Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA; Systems & Control Engineering, University of Magna Graecia, 88100 Catanzaro, Italy
| | - A Murat Eren
- *Marine Biological Laboratory, Woods Hole, MA 02543, USA; Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA; Systems & Control Engineering, University of Magna Graecia, 88100 Catanzaro, Italy
| | - Kristen D Lans
- *Marine Biological Laboratory, Woods Hole, MA 02543, USA; Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA; Systems & Control Engineering, University of Magna Graecia, 88100 Catanzaro, Italy
| | - Nathan Wilson
- *Marine Biological Laboratory, Woods Hole, MA 02543, USA; Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA; Systems & Control Engineering, University of Magna Graecia, 88100 Catanzaro, Italy
| | - Carlo Cosentino
- *Marine Biological Laboratory, Woods Hole, MA 02543, USA; Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA; Systems & Control Engineering, University of Magna Graecia, 88100 Catanzaro, Italy
| | - Joel Smith
- *Marine Biological Laboratory, Woods Hole, MA 02543, USA; Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA; Systems & Control Engineering, University of Magna Graecia, 88100 Catanzaro, Italy
| |
Collapse
|
23
|
Rosenberg MI, Brent AE, Payre F, Desplan C. Dual mode of embryonic development is highlighted by expression and function of Nasonia pair-rule genes. eLife 2014; 3:e01440. [PMID: 24599282 PMCID: PMC3941026 DOI: 10.7554/elife.01440] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Embryonic anterior-posterior patterning is well understood in Drosophila, which uses 'long germ' embryogenesis, in which all segments are patterned before cellularization. In contrast, most insects use 'short germ' embryogenesis, wherein only head and thorax are patterned in a syncytial environment while the remainder of the embryo is generated after cellularization. We use the wasp Nasonia (Nv) to address how the transition from short to long germ embryogenesis occurred. Maternal and gap gene expression in Nasonia suggest long germ embryogenesis. However, the Nasonia pair-rule genes even-skipped, odd-skipped, runt and hairy are all expressed as early blastoderm pair-rule stripes and late-forming posterior stripes. Knockdown of Nv eve, odd or h causes loss of alternate segments at the anterior and complete loss of abdominal segments. We propose that Nasonia uses a mixed mode of segmentation wherein pair-rule genes pattern the embryo in a manner resembling Drosophila at the anterior and ancestral Tribolium at the posterior. DOI: http://dx.doi.org/10.7554/eLife.01440.001.
Collapse
Affiliation(s)
- Miriam I Rosenberg
- Center for Developmental Genetics, Department of Biology, New York University, New York, United States
| | | | | | | |
Collapse
|
24
|
Brena C, Akam M. An analysis of segmentation dynamics throughout embryogenesis in the centipede Strigamia maritima. BMC Biol 2013; 11:112. [PMID: 24289308 PMCID: PMC3879059 DOI: 10.1186/1741-7007-11-112] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2013] [Accepted: 10/22/2013] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND Most segmented animals add segments sequentially as the animal grows. In vertebrates, segment patterning depends on oscillations of gene expression coordinated as travelling waves in the posterior, unsegmented mesoderm. Recently, waves of segmentation gene expression have been clearly documented in insects. However, it remains unclear whether cyclic gene activity is widespread across arthropods, and possibly ancestral among segmented animals. Previous studies have suggested that a segmentation oscillator may exist in Strigamia, an arthropod only distantly related to insects, but further evidence is needed to document this. RESULTS Using the genes even skipped and Delta as representative of genes involved in segment patterning in insects and in vertebrates, respectively, we have carried out a detailed analysis of the spatio-temporal dynamics of gene expression throughout the process of segment patterning in Strigamia. We show that a segmentation clock is involved in segment formation: most segments are generated by cycles of dynamic gene activity that generate a pattern of double segment periodicity, which is only later resolved to the definitive single segment pattern. However, not all segments are generated by this process. The most posterior segments are added individually from a localized sub-terminal area of the embryo, without prior pair-rule patterning. CONCLUSIONS Our data suggest that dynamic patterning of gene expression may be widespread among the arthropods, but that a single network of segmentation genes can generate either oscillatory behavior at pair-rule periodicity or direct single segment patterning, at different stages of embryogenesis.
Collapse
Affiliation(s)
- Carlo Brena
- Laboratory for Development and Evolution, Department of Zoology, University of Cambridge, Downing Street, Cambridge CB2 3EJ, UK.
| | | |
Collapse
|
25
|
Posterior elongation in the annelid Platynereis dumerilii involves stem cells molecularly related to primordial germ cells. Dev Biol 2013; 382:246-67. [DOI: 10.1016/j.ydbio.2013.07.013] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2012] [Revised: 06/28/2013] [Accepted: 07/15/2013] [Indexed: 12/22/2022]
|
26
|
Deciphering the onychophoran 'segmentation gene cascade': Gene expression reveals limited involvement of pair rule gene orthologs in segmentation, but a highly conserved segment polarity gene network. Dev Biol 2013; 382:224-34. [PMID: 23880430 DOI: 10.1016/j.ydbio.2013.07.010] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2013] [Revised: 06/12/2013] [Accepted: 07/14/2013] [Indexed: 11/23/2022]
Abstract
The hallmark of the arthropods is their segmented body, although origin of segmentation, however, is unresolved. In order to shed light on the origin of segmentation we investigated orthologs of pair rule genes (PRGs) and segment polarity genes (SPGs) in a member of the closest related sister-group to the arthropods, the onychophorans. Our gene expression data analysis suggests that most of the onychophoran PRGs do not play a role in segmentation. One possible exception is the even-skipped (eve) gene that is expressed in the posterior end of the onychophoran where new segments are likely patterned, and is also expressed in segmentation-gene typical transverse stripes in at least a number of newly formed segments. Other onychophoran PRGs such as runt (run), hairy/Hes (h/Hes) and odd-skipped (odd) do not appear to have a function in segmentation at all. Onychophoran PRGs that act low in the segmentation gene cascade in insects, however, are potentially involved in segment-patterning. Most obvious is that from the expression of the pairberry (pby) gene ortholog that is expressed in a typical SPG-pattern. Since this result suggested possible conservation of the SPG-network we further investigated SPGs (and associated factors) such as Notum in the onychophoran. We find that the expression patterns of SPGs in arthropods and the onychophoran are highly conserved, suggesting a conserved SPG-network in these two clades, and indeed also in an annelid. This may suggest that the common ancestor of lophotrochozoans and ecdysozoans was already segmented utilising the same SPG-network, or that the SPG-network was recruited independently in annelids and onychophorans/arthropods.
Collapse
|
27
|
Annunziata R, Martinez P, Arnone MI. Intact cluster and chordate-like expression of ParaHox genes in a sea star. BMC Biol 2013; 11:68. [PMID: 23803323 PMCID: PMC3710244 DOI: 10.1186/1741-7007-11-68] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2013] [Accepted: 04/29/2013] [Indexed: 11/19/2022] Open
Abstract
Background The ParaHox genes are thought to be major players in patterning the gut of several bilaterian taxa. Though this is a fundamental role that these transcription factors play, their activities are not limited to the endoderm and extend to both ectodermal and mesodermal tissues. Three genes compose the ParaHox group: Gsx, Xlox and Cdx. In some taxa (mostly chordates but to some degree also in protostomes) the three genes are arranged into a genomic cluster, in a similar fashion to what has been shown for the better-known Hox genes. Sea urchins possess the full complement of ParaHox genes but they are all dispersed throughout the genome, an arrangement that, perhaps, represented the primitive condition for all echinoderms. In order to understand the evolutionary history of this group of genes we cloned and characterized all ParaHox genes, studied their expression patterns and identified their genomic loci in a member of an earlier branching group of echinoderms, the asteroid Patiria miniata. Results We identified the three ParaHox orthologs in the genome of P. miniata. While one of them, PmGsx is provided as maternal message, with no zygotic activation afterwards, the other two, PmLox and PmCdx are expressed during embryogenesis, within restricted domains of both endoderm and ectoderm. Screening of a Patiria bacterial artificial chromosome (BAC) library led to the identification of a clone containing the three genes. The transcriptional directions of PmGsx and PmLox are opposed to that of the PmCdx gene within the cluster. Conclusions The identification of P. miniata ParaHox genes has revealed the fact that these genes are clustered in the genome, in contrast to what has been reported for echinoids. Since the presence of an intact cluster, or at least a partial cluster, has been reported in chordates and polychaetes respectively, it becomes clear that within echinoderms, sea urchins have modified the original bilaterian arrangement. Moreover, the sea star ParaHox domains of expression show chordate-like features not found in the sea urchin, confirming that the dynamics of gene expression for the respective genes and their putative regulatory interactions have clearly changed over evolutionary time within the echinoid lineage.
Collapse
Affiliation(s)
- Rossella Annunziata
- Stazione Zoologica Anton Dohrn di Napoli, Cellular and Developmental Biology, Villa Comunale, 80121 Napoli, Italy
| | | | | |
Collapse
|
28
|
Duncan EJ, Leask MP, Dearden PK. The pea aphid (Acyrthosiphon pisum) genome encodes two divergent early developmental programs. Dev Biol 2013; 377:262-74. [PMID: 23416037 DOI: 10.1016/j.ydbio.2013.01.036] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2012] [Revised: 01/18/2013] [Accepted: 01/29/2013] [Indexed: 12/28/2022]
Abstract
The pea aphid (Acyrthosiphon pisum) can reproduce either sexually or asexually (parthenogenetically), giving rise, in each case, to almost identical adults. These two modes of reproduction are accompanied by differences in ovarian morphology and the developmental environment of the offspring, with sexual forms producing eggs that are laid, whereas asexual development occurs within the mother. Here we examine the effect each mode of reproduction has on the expression of key maternal and axis patterning genes; orthodenticle (otd), hunchback (hb), caudal (cad) and nanos (nos). We show that three of these genes (Ap-hb, Ap-otd and Ap-cad) are expressed differently between the sexually and asexually produced oocytes and embryos of the pea aphid. We also show, using immunohistochemistry and cytoskeletal inhibitors, that Ap-hb RNA is localized differently between sexually and asexually produced oocytes, and that this is likely due to differences in the 3' untranslated regions of the RNA. Furthermore, Ap-hb and Ap-otd have extensive expression domains in early sexually produced embryos, but are not expressed at equivalent stages in asexually produced embryos. These differences in expression likely correspond with substantial changes in the gene regulatory networks controlling early development in the pea aphid. These data imply that in the evolution of parthenogenesis a new program has evolved to control the development of asexually produced embryos, whilst retaining the existing, sexual, developmental program. The patterns of modification of these developmental processes mirror the changes that we see in developmental processes between species, in that early acting pathways in development are less constrained, and evolve faster, than later ones. We suggest that the evolution of the novel asexual development pathway in aphids is not a simple modification of an ancestral system, but the evolution of two very different developmental mechanisms occurring within a single species.
Collapse
Affiliation(s)
- Elizabeth J Duncan
- Laboratory for Evolution and Development, Genetics Otago & Gravida, National Centre for Growth and Development, Department of Biochemistry, University of Otago, 56, Dunedin 9054, Aotearoa, New Zealand.
| | | | | |
Collapse
|
29
|
Williams T, Blachuta B, Hegna TA, Nagy LM. Decoupling elongation and segmentation: notch involvement in anostracan crustacean segmentation. Evol Dev 2012; 14:372-82. [PMID: 22765208 DOI: 10.1111/j.1525-142x.2012.00555.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Repeated body segments are a key feature of arthropods. The formation of body segments occurs via distinct developmental pathways within different arthropod clades. Although some species form their segments simultaneously without any accompanying measurable growth, most arthropods add segments sequentially from the posterior of the growing embryo or larva. The use of Notch signaling is increasingly emerging as a common feature of sequential segmentation throughout the Bilateria, as inferred from both the expression of proteins required for Notch signaling and the genetic or pharmacological disruption of Notch signaling. In this study, we demonstrate that blocking Notch signaling by blocking γ-secretase activity causes a specific, repeatable effect on segmentation in two different anostracan crustaceans, Artemia franciscana and Thamnocephalus platyurus. We observe that segmentation posterior to the third or fourth trunk segment is arrested. Despite this marked effect on segment addition, other aspects of segmentation are unaffected. In the segments that develop, segment size and boundaries between segments appear normal, engrailed stripes are normal in size and alignment, and overall growth is unaffected. By demonstrating Notch involvement in crustacean segmentation, our findings expand the evidence that Notch plays a crucial role in sequential segmentation in arthropods. At the same time, our observations contribute to an emerging picture that loss-of-function Notch phenotypes differ significantly between arthropods suggesting variability in the role of Notch in the regulation of sequential segmentation. This variability in the function of Notch in arthropod segmentation confounds inferences of homology with vertebrates and lophotrochozoans.
Collapse
Affiliation(s)
- Terri Williams
- Department of Biology, Trinity College, Hartford, CT 06106, USA.
| | | | | | | |
Collapse
|
30
|
Seaver EC, Yamaguchi E, Richards GS, Meyer NP. Expression of the pair-rule gene homologs runt, Pax3/7, even-skipped-1 and even-skipped-2 during larval and juvenile development of the polychaete annelid Capitella teleta does not support a role in segmentation. EvoDevo 2012; 3:8. [PMID: 22510249 PMCID: PMC3359188 DOI: 10.1186/2041-9139-3-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2011] [Accepted: 04/18/2012] [Indexed: 02/07/2023] Open
Abstract
Background Annelids and arthropods each possess a segmented body. Whether this similarity represents an evolutionary convergence or inheritance from a common segmented ancestor is the subject of ongoing investigation. Methods To investigate whether annelids and arthropods share molecular components that control segmentation, we isolated orthologs of the Drosophila melanogaster pair-rule genes, runt, paired (Pax3/7) and eve, from the polychaete annelid Capitella teleta and used whole mount in situ hybridization to characterize their expression patterns. Results When segments first appear, expression of the single C. teleta runt ortholog is only detected in the brain. Later, Ct-runt is expressed in the ventral nerve cord, foregut and hindgut. Analysis of Pax genes in the C. teleta genome reveals the presence of a single Pax3/7 ortholog. Ct-Pax3/7 is initially detected in the mid-body prior to segmentation, but is restricted to two longitudinal bands in the ventral ectoderm. Each of the two C. teleta eve orthologs has a unique and complex expression pattern, although there is partial overlap in several tissues. Prior to and during segment formation, Ct-eve1 and Ct-eve2 are both expressed in the bilaterial pair of mesoteloblasts, while Ct-eve1 is expressed in the descendant mesodermal band cells. At later stages, Ct-eve2 is expressed in the central and peripheral nervous system, and in mesoderm along the dorsal midline. In late stage larvae and adults, Ct-eve1 and Ct-eve2 are expressed in the posterior growth zone. Conclusions C. teleta eve, Pax3/7 and runt homologs all have distinct expression patterns and share expression domains with homologs from other bilaterians. None of the pair-rule orthologs examined in C. teleta exhibit segmental or pair-rule stripes of expression in the ectoderm or mesoderm, consistent with an independent origin of segmentation between annelids and arthropods.
Collapse
Affiliation(s)
- Elaine C Seaver
- Kewalo Marine Laboratory, Pacific Biosciences Research Center, University of Hawaii, 41 Ahui Street, Honolulu, HI, USA.
| | | | | | | |
Collapse
|
31
|
Altenburger A, Martinez P, Wanninger A. Homeobox gene expression in Brachiopoda: the role of Not and Cdx in bodyplan patterning, neurogenesis, and germ layer specification. Gene Expr Patterns 2011; 11:427-36. [PMID: 21782038 DOI: 10.1016/j.gep.2011.07.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2011] [Revised: 07/01/2011] [Accepted: 07/03/2011] [Indexed: 10/18/2022]
Abstract
The molecular control that underlies brachiopod ontogeny is largely unknown. In order to contribute to this issue we analyzed the expression pattern of two homeobox containing genes, Not and Cdx, during development of the rhynchonelliform (i.e., articulate) brachiopod Terebratalia transversa. Not is a homeobox containing gene that regulates the formation of the notochord in chordates, while Cdx (caudal) is a ParaHox gene involved in the formation of posterior tissues of various animal phyla. The T. transversa homolog, TtrNot, is expressed in the ectoderm from the beginning of gastrulation until completion of larval development, which is marked by a three-lobed body with larval setae. Expression starts at gastrulation in two areas lateral to the blastopore and subsequently extends over the animal pole of the gastrula. With elongation of the gastrula, expression at the animal pole narrows to a small band, whereas the areas lateral to the blastopore shift slightly towards the future anterior region of the larva. Upon formation of the three larval body lobes, TtrNot expressing cells are present only in the posterior part of the apical lobe. Expression ceases entirely at the onset of larval setae formation. TtrNot expression is absent in unfertilized eggs, in embryos prior to gastrulation, and in settled individuals during and after metamorphosis. Comparison with the expression patterns of Not genes in other metazoan phyla suggests an ancestral role for this gene in gastrulation and germ layer (ectoderm) specification with co-opted functions in notochord formation in chordates and left/right determination in ambulacrarians and vertebrates. The caudal ortholog, TtrCdx, is first expressed in the ectoderm of the gastrulating embryo in the posterior region of the blastopore. Its expression stays stable in that domain until the blastopore is closed. Thereafter, the expression is confined to the ventral portion of the mantle lobe in the fully developed larva. No TtrCdx expression is detectable in the juvenile after metamorphosis. This expression of TtrCdx is congruent with findings in other metazoans, where genes belonging to the Cdx/caudal family are predominantly localized in posterior domains during gastrulation. Later in development this gene will play a fundamental role in the formation of posterior tissues.
Collapse
Affiliation(s)
- Andreas Altenburger
- University of Copenhagen, Natural History Museum of Denmark, Zoological Museum, Universitetsparken, Copenhagen Ø, Denmark.
| | | | | |
Collapse
|
32
|
Janssen R, Budd GE, Prpic NM, Damen WG. Expression of myriapod pair rule gene orthologs. EvoDevo 2011; 2:5. [PMID: 21352542 PMCID: PMC3058060 DOI: 10.1186/2041-9139-2-5] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2010] [Accepted: 02/25/2011] [Indexed: 11/18/2022] Open
Abstract
Background Segmentation is a hallmark of the arthropods; most knowledge about the molecular basis of arthropod segmentation comes from work on the fly Drosophila melanogaster. In this species a hierarchic cascade of segmentation genes subdivides the blastoderm stepwise into single segment wide regions. However, segmentation in the fly is a derived feature since all segments form virtually simultaneously. Conversely, in the vast majority of arthropods the posterior segments form one at a time from a posterior pre-segmental zone. The pair rule genes (PRGs) comprise an important level of the Drosophila segmentation gene cascade and are indeed the first genes that are expressed in typical transverse stripes in the early embryo. Information on expression and function of PRGs outside the insects, however, is scarce. Results Here we present the expression of the pair rule gene orthologs in the pill millipede Glomeris marginata (Myriapoda: Diplopoda). We find evidence that these genes are involved in segmentation and that components of the hierarchic interaction of the gene network as found in insects may be conserved. We further provide evidence that segments are formed in a single-segment periodicity rather than in pairs of two like in another myriapod, the centipede Strigamia maritima. Finally we show that decoupling of dorsal and ventral segmentation in Glomeris appears already at the level of the PRGs. Conclusions Although the pair rule gene network is partially conserved among insects and myriapods, some aspects of PRG interaction are, as suggested by expression pattern analysis, convergent, even within the Myriapoda. Conserved expression patterns of PRGs in insects and myriapods, however, may represent ancestral features involved in segmenting the arthropod ancestor.
Collapse
Affiliation(s)
- Ralf Janssen
- Uppsala University, Department of Earth Sciences, Palaeobiology, Villavägen 16, SE-752 36 Uppsala, Sweden.
| | | | | | | |
Collapse
|
33
|
Samadi L, Steiner G. Conservation of ParaHox genes' function in patterning of the digestive tract of the marine gastropod Gibbula varia. BMC DEVELOPMENTAL BIOLOGY 2010; 10:74. [PMID: 20624311 PMCID: PMC2913954 DOI: 10.1186/1471-213x-10-74] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/17/2010] [Accepted: 07/12/2010] [Indexed: 11/10/2022]
Abstract
BACKGROUND Presence of all three ParaHox genes has been described in deuterostomes and lophotrochozoans, but to date one of these three genes, Xlox has not been reported from any ecdysozoan taxa and both Xlox and Gsx are absent in nematodes. There is evidence that the ParaHox genes were ancestrally a single chromosomal cluster. Colinear expression of the ParaHox genes in anterior, middle, and posterior tissues of several species studied so far suggest that these genes may be responsible for axial patterning of the digestive tract. So far, there are no data on expression of these genes in molluscs. RESULTS We isolated the complete coding sequences of the three Gibbula varia ParaHox genes, and then tested their expression in larval and postlarval development. In Gibbula varia, the ParaHox genes participate in patterning of the digestive tract and are expressed in some cells of the neuroectoderm. The expression of these genes coincides with the gradual formation of the gut in the larva. Gva-Gsx patterns potential neural precursors of cerebral ganglia as well as of the apical sensory organ. During larval development this gene is involved in the formation of the mouth and during postlarval development it is expressed in the precursor cells involved in secretion of the radula, the odontoblasts. Gva-Xolx and Gva-Cdx are involved in gut patterning in the middle and posterior parts of digestive tract, respectively. Both genes are expressed in some ventral neuroectodermal cells; however the expression of Gva-Cdx fades in later larval stages while the expression of Gva-Xolx in these cells persists. CONCLUSIONS In Gibbula varia the ParaHox genes are expressed during anterior-posterior patterning of the digestive system. This colinearity is not easy to spot during early larval stages because the differentiated endothelial cells within the yolk permanently migrate to their destinations in the gut. After torsion, Gsx patterns the mouth and foregut, Xlox the midgut gland or digestive gland, and Cdx the hindgut. ParaHox genes of Gibbula are also expressed during specification of cerebral and ventral neuroectodermal cells. Our results provide additional support for the ancestral complexity of Gsx expression and its ancestral role in mouth patterning in protostomes, which was secondarily lost or simplified in some species.
Collapse
Affiliation(s)
- Leyli Samadi
- Department of Evolutionary Biology, Faculty of Life Sciences, University of Vienna, Vienna, Austria.
| | | |
Collapse
|
34
|
Kotkamp K, Klingler M, Schoppmeier M. Apparent role of Tribolium orthodenticle in anteroposterior blastoderm patterning largely reflects novel functions in dorsoventral axis formation and cell survival. Development 2010; 137:1853-62. [PMID: 20431120 DOI: 10.1242/dev.047043] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In the short-germ beetle Tribolium castaneum, the head gap gene orthodenticle (Tc-otd) has been proposed to functionally substitute for bicoid, the anterior morphogen unique to higher dipterans. In this study we reanalyzed the function of Tc-otd. We obtained a similar range of cuticle phenotypes as in previously described RNAi experiments; however, we noticed unexpected effects on blastodermal cell fates. First, we found that Tc-otd is essential for dorsoventral patterning. RNAi depletion results in lateralized embryos, a fate map change that by itself can explain the observed loss of the anterior head, which is a ventral anlage in Tribolium. We find that this effect is due to diminished expression of short gastrulation (sog), a gene essential for establishment of the Decapentaplegic (Dpp) gradient in this species. Second, we found that gnathal segment primordia in Tc-otd RNAi embryos are shifted anteriorly but otherwise appear patterned normally. This anteroposterior (AP) fate map shift might largely be due to diminished zen-1 expression and is not responsible for the severe segmentation defects observed in some Tc-otd RNAi embryos. As neither Tc-sog nor Tc-zen-1 probably requires Otd gradient-mediated positional information, we posit that the blastoderm function of Tc-Otd depends on its initial homogeneous maternal expression and that this maternal factor does not provide significant positional information for Tribolium blastoderm embryos.
Collapse
Affiliation(s)
- Kay Kotkamp
- Department of Biology, Developmental Biology Unit, Erlangen University, 90158 Erlangen, Germany.
| | | | | |
Collapse
|
35
|
Chipman AD. Parallel evolution of segmentation by co-option of ancestral gene regulatory networks. Bioessays 2010; 32:60-70. [PMID: 20020480 DOI: 10.1002/bies.200900130] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Different sources of data on the evolution of segmentation lead to very different conclusions. Molecular similarities in the developmental pathways generating a segmented body plan tend to suggest a segmented common ancestor for all bilaterally symmetrical animals. Data from paleontology and comparative morphology suggest that this is unlikely. A possible solution to this conundrum is that throughout evolution there was a parallel co-option of gene regulatory networks that had conserved ancestral roles in determining body axes and in elongating the anterior-posterior axis. Inherent properties in some of these networks made them easily recruitable for generating repeated patterns and for determining segmental boundaries. Phyla where this process happened are among the most successful in the animal kingdom, as the modular nature of the segmental body organization allowed them to diverge and radiate into a bewildering array of variations on a common theme.
Collapse
Affiliation(s)
- Ariel D Chipman
- The Department of Evolution, Systematics and Ecology, The Hebrew University of Jerusalem, Givat Ram, Israel.
| |
Collapse
|
36
|
Hui JHL, Raible F, Korchagina N, Dray N, Samain S, Magdelenat G, Jubin C, Segurens B, Balavoine G, Arendt D, Ferrier DEK. Features of the ancestral bilaterian inferred from Platynereis dumerilii ParaHox genes. BMC Biol 2009; 7:43. [PMID: 19627570 PMCID: PMC2723086 DOI: 10.1186/1741-7007-7-43] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2009] [Accepted: 07/23/2009] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The ParaHox gene cluster is the evolutionary sister to the Hox cluster. Whilst the role of the Hox cluster in patterning the anterior-posterior axis of bilaterian animals is well established, and the organisation of vertebrate Hox clusters is intimately linked to gene regulation, much less is known about the more recently discovered ParaHox cluster. ParaHox gene clustering, and its relationship to expression, has only been described in deuterostomes. Conventional protostome models (Drosophila melanogaster and Caenorhabditis elegans) are secondarily derived with respect to ParaHox genes, suffering gene loss and cluster break-up. RESULTS We provide the first evidence for ParaHox gene clustering from a less-derived protostome animal, the annelid Platynereis dumerilii. Clustering of these genes is thus not a sole preserve of the deuterostome lineage within Bilateria. This protostome ParaHox cluster is not entirely intact however, with Pdu-Cdx being on the opposite end of the same chromosome arm from Pdu-Gsx and Pdu-Xlox. From the genomic sequence around the P. dumerilii ParaHox genes the neighbouring genes are identified, compared with other taxa, and the ancestral arrangement deduced. CONCLUSION We relate the organisation of the ParaHox genes to their expression, and from comparisons with other taxa hypothesise that a relatively complex pattern of ParaHox gene expression existed in the protostome-deuterostome ancestor, which was secondarily simplified along several invertebrate lineages. Detailed comparisons of the gene content around the ParaHox genes enables the reconstruction of the genome surrounding the ParaHox cluster of the protostome-deuterostome ancestor, which existed over 550 million years ago.
Collapse
Affiliation(s)
- Jerome HL Hui
- Department of Zoology, University of Oxford, Oxford, UK
- Faculty of Life Sciences, Michael Smith Building, University of Manchester, Manchester, UK
| | | | | | - Nicolas Dray
- CNRS-CGM, Gif-sur-Yvette, France
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, USA
| | - Sylvie Samain
- Génoscope, Centre National de Séquençage, Evry, France
| | | | - Claire Jubin
- Génoscope, Centre National de Séquençage, Evry, France
| | | | - Guillaume Balavoine
- CNRS-CGM, Gif-sur-Yvette, France
- Institut Jacques Monod, UMR 7592 CNRS/Université Denis Diderot – Paris VII, Paris, France
| | | | - David EK Ferrier
- Department of Zoology, University of Oxford, Oxford, UK
- The Scottish Oceans Institute, University of St Andrews, St Andrews, UK
| |
Collapse
|
37
|
Choe CP, Brown SJ. Genetic regulation of engrailed and wingless in Tribolium segmentation and the evolution of pair-rule segmentation. Dev Biol 2009; 325:482-91. [PMID: 19028487 DOI: 10.1016/j.ydbio.2008.10.037] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2008] [Revised: 10/18/2008] [Accepted: 10/28/2008] [Indexed: 12/17/2022]
Abstract
In Drosophila, primary pair-rule genes establish the parasegmental boundaries and indirectly control the periodic expression of the segment polarity genes engrailed (en) and wingless (wg) via regulation of secondary pair-rule genes. Although orthologs of some Drosophila pair-rule genes are not required for proper segmentation in Tribolium, segmental expression of Tc-en and Tc-wg is conserved. To understand how these segment polarity genes are regulated, we examined the results of expressing one or two pair-rule genes in the absence of the other known pair-rule genes. Expression of one or both of the secondary pair-rule genes, Tc-sloppy-paired (Tc-slp) and Tc-paired (Tc-prd), activated Tc-wg in the absence of the primary pair-rule genes, Tc-even-skipped (Tc-eve), Tc-runt (Tc-run) and Tc-odd-skipped (Tc-odd). Tc-eve alone failed to activate Tc-wg or Tc-en, but in combination with Tc-run or Tc-prd activated Tc-en. These results, interpreted within the pair-rule gene expression patterns, suggest separate models for the genetic regulation of the juxtaposed expression of Tc-wg and Tc-en at odd- and even-numbered parasegmental boundaries, respectively. Conserved interactions between eve and prd at the anterior boundary of odd-numbered parasegments may reflect an ancestral segmentation mechanism that functioned in every segment prior to the evolution of pair-rule segmentation.
Collapse
Affiliation(s)
- Chong Pyo Choe
- Division of Biology, Kansas State University, Manhattan, KS 66506, USA
| | | |
Collapse
|
38
|
Abstract
One of the major goals in evolutionary developmental biology is to understand the relationship between gene regulatory networks and the diverse morphologies and their functionalities. Are the diversities solely triggered by random events, or are they inevitable outcomes of an interplay between evolving gene networks and natural selection? Segmentation in arthropod embryogenesis represents a well-known example of body plan diversity. Striped patterns of gene expression that lead to the future body segments appear simultaneously or sequentially in long and short germ-band development, respectively. Moreover, a combination of both is found in intermediate germ-band development. Regulatory genes relevant for stripe formation are evolutionarily conserved among arthropods, therefore the differences in the observed traits are thought to have originated from how the genes are wired. To reveal the basic differences in the network structure, we have numerically evolved hundreds of gene regulatory networks that produce striped patterns of gene expression. By analyzing the topologies of the generated networks, we show that the characteristics of stripe formation in long and short germ-band development are determined by Feed-Forward Loops (FFLs) and negative Feed-Back Loops (FBLs) respectively, and those of intermediate germ-band development are determined by the interconnections between FFL and negative FBL. Network architectures, gene expression patterns and knockout responses exhibited by the artificially evolved networks agree with those reported in the fly Drosophila melanogaster and the beetle Tribolium castaneum. For other arthropod species, principal network architectures that remain largely unknown are predicted. Our results suggest that the emergence of the three modes of body segmentation in arthropods is an inherent property of the evolving networks.
Collapse
Affiliation(s)
- Koichi Fujimoto
- ERATO Complex Systems Biology Project, Japan Science and Technology Agency, Tokyo, Japan.
| | | | | |
Collapse
|
39
|
Damen WGM. Evolutionary conservation and divergence of the segmentation process in arthropods. Dev Dyn 2007; 236:1379-91. [PMID: 17440988 DOI: 10.1002/dvdy.21157] [Citation(s) in RCA: 101] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
A fundamental characteristic of the arthropod body plan is its organization in metameric units along the anterior-posterior axis. The segmental organization is laid down during early embryogenesis. Our view on arthropod segmentation is still strongly influenced by the huge amount of data available from the fruit fly Drosophila melanogaster (the Drosophila paradigm). However, the simultaneous formation of the segments in Drosophila is a derived mode of segmentation. Successive terminal addition of segments from a posteriorly localized presegmental zone is the ancestral mode of arthropod segmentation. This review focuses on the evolutionary conservation and divergence of the genetic mechanisms of segmentation within arthropods. The more downstream levels of the segmentation gene network (e.g., segment polarity genes) appear to be more conserved than the more upstream levels (gap genes, Notch/Delta signaling). Surprisingly, the basally branched arthropod groups also show similarities to mechanisms used in vertebrate somitogenesis. Furthermore, it has become clear that the activation of pair rule gene orthologs is a key step in the segmentation of all arthropods. Important findings of conserved and diverged aspects of segmentation from the last few years now allow us to draw an evolutionary scenario on how the mechanisms of segmentation could have evolved and led to the present mechanisms seen in various insect groups including dipterans like Drosophila.
Collapse
Affiliation(s)
- Wim G M Damen
- Institut für Genetik der Universität zu Köln, Zülpicher Str. 47, 50674 Köln, Germany.
| |
Collapse
|
40
|
Duman-Scheel M, Clark SM, Grunow ET, Hasley AO, Hill BL, Simanton WL. Delayed onset of midline netrin expression in Artemia franciscana coincides with commissural axon growth and provides evidence for homology of midline cells in distantly related arthropods. Evol Dev 2007; 9:131-40. [PMID: 17371396 PMCID: PMC2743915 DOI: 10.1111/j.1525-142x.2007.00144.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Although many similarities in arthropod central nervous systems (CNS) development exist, differences in midline cell formation and ventral nerve cord axonogenesis have been noted in arthropods. It is possible that changes in the expression of axon guidance molecules such as Netrin, which functions during commissural axon guidance in Drosophila and many other organisms, may parallel these differences. In this investigation, we analyze this hypothesis by examining Netrin accumulation during development of the brine shrimp Artemia franciscana, a branchiopod crustacean. An Artemia franciscana netrin (afrnet) orthologue was cloned. An antibody to the afrNet protein was generated and used to examine the pattern of afrNet accumulation during Artemia development. Despite differences between Drosophila and Artemia nerve cord development, examination of afrNet accumulation suggests that this protein functions to regulate commissure formation during Artemia CNS development. However, detection of afrNet at the midline and on commissural axons occurs at a relatively later time point in Artemia as compared with Drosophila. Detection of afrNet in a subset of midline cells that closely resemble Netrin-expressing cells at the Drosophila midline provides evidence for homology of midline cells in arthropods. Expression of Netrins in many other tissues is comparable, suggesting that Netrin proteins may play many conserved roles during arthropod development.
Collapse
Affiliation(s)
- Molly Duman-Scheel
- Deptartment of Biology, Albion College, 611 E. Porter, Albion, MI 49224, USA.
| | | | | | | | | | | |
Collapse
|
41
|
Mito T, Kobayashi C, Sarashina I, Zhang H, Shinahara W, Miyawaki K, Shinmyo Y, Ohuchi H, Noji S. even-skipped has gap-like, pair-rule-like, and segmental functions in the cricket Gryllus bimaculatus, a basal, intermediate germ insect (Orthoptera). Dev Biol 2007; 303:202-13. [PMID: 17174947 DOI: 10.1016/j.ydbio.2006.11.003] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2006] [Revised: 09/13/2006] [Accepted: 11/03/2006] [Indexed: 11/15/2022]
Abstract
Developmental mechanisms of segmentation appear to be varied among insects in spite of their conserved body plan. Although the expression patterns of the segment polarity genes in all insects examined imply well conserved function of this class of genes, expression patterns and function of the pair-rule genes tend to exhibit diversity. To gain further insights into the evolution of the segmentation process and the role of pair-rule genes, we have examined expression and function of an ortholog of the Drosophila pair-rule gene even-skipped (eve) in a phylogenetically basal insect, Gryllus bimaculatus (Orthoptera, intermediate germ cricket). We find that Gryllus eve (Gb'eve) is expressed as stripes in each of the prospective gnathal, thoracic, and abdominal segments and as a broad domain in the posterior growth zone. Dynamics of stripe formation vary among Gb'eve stripes, representing one of the three modes, the segmental, incomplete pair-rule, and complete pair-rule mode. Furthermore, we find that RNAi suppression of Gb'eve results in segmentation defects in both anterior and posterior regions of the embryo. Mild depletion of Gb'eve shows a pair-rule-like defect in anterior segments, while stronger depletion causes a gap-like defect showing deletion of anterior and posterior segments. These results suggest that Gb'eve acts as a pair-rule gene at least during anterior segmentation and also has segmental and gap-like functions. Additionally, Gb'eve may be involved in the regulation of hunchback and Krüppel expression. Comparisons with eve functions in other species suggest that the Gb'eve function may represent an intermediate state of the evolution of pair-rule patterning by eve in insects.
Collapse
Affiliation(s)
- Taro Mito
- Department of Biological Science and Technology, Faculty of Engineering, The University of Tokushima, 2-1 Minami-Jyosanjima-cho, Tokushima City 770-8506, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Shinmyo Y, Mito T, Uda T, Nakamura T, Miyawaki K, Ohuchi H, Noji S. brachyenteron is necessary for morphogenesis of the posterior gut but not for anteroposterior axial elongation from the posterior growth zone in the intermediate-germband cricket Gryllus bimaculatus. Development 2006; 133:4539-47. [PMID: 17050622 DOI: 10.1242/dev.02646] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In the long-germband insect Drosophila, all body segments and posterior terminal structures, including the posterior gut and anal pads, are specified at the blastoderm stage. In short- and intermediate-germband insects, however, posterior segments are sequentially produced from the posterior growth zone, a process resembling somitogenesis in vertebrates, and invagination of the posterior gut starts after anteroposterior (AP) axial elongation from the growth zone. The mechanisms underlying posterior segmentation and terminal patterning in these insects are poorly understood. In order to elucidate these mechanisms, we have investigated the roles of the Brachyury/brachyenteron (Bra/byn) homolog in the intermediate-germband cricket Gryllus bimaculatus. Loss-of-function analysis by RNA interference (RNAi) revealed that Gryllus byn (Gb'byn) is not required for AP axial elongation or normal segment formation, but is required for specification of the posterior gut. We also analyzed Gryllus caudal (Gb'cad) RNAi embryos using in situ hybridization with a Gb'byn probe, and found that Gb'cad is required for internalization of the posterior gut primordium, in addition to AP axial elongation. These results suggest that the functions of byn and cad in posterior terminal patterning are highly conserved in Gryllus and Drosophila despite their divergent posterior patterning. Moreover, because it is thought that the progressive growth of the AP axis from the growth zone, controlled by a genetic program involving Cdx/cad and Bra/byn, might be ancestral to bilaterians, our data suggest that the function of Bra/byn in this process might have been lost in insects.
Collapse
Affiliation(s)
- Yohei Shinmyo
- Department of Biological Science and Technology, Faculty of Engineering, The University of Tokushima, 2-1 Minami-Josanjima-cho, Tokushima City 770-8506, Japan
| | | | | | | | | | | | | |
Collapse
|
43
|
Olesnicky EC, Brent AE, Tonnes L, Walker M, Pultz MA, Leaf D, Desplan C. AcaudalmRNA gradient controls posterior development in the waspNasonia. Development 2006; 133:3973-82. [PMID: 16971471 DOI: 10.1242/dev.02576] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
One of the earliest steps of embryonic development is the establishment of polarity along the anteroposterior axis. Extensive studies of Drosophila embryonic development have elucidated mechanisms for establishing polarity, while studies with other model systems have found that many of these molecular components are conserved through evolution. One exception is Bicoid, the master organizer of anterior development in Drosophila and higher dipterans, which is not conserved. Thus, the study of anteroposterior patterning in insects that lack Bicoid can provide insight into the evolution of the diversity of body plan patterning networks. To this end, we have established the long germ parasitic wasp Nasonia vitripennis as a model for comparative studies with Drosophila.Here we report that, in Nasonia, a gradient of localized caudal mRNA directs posterior patterning, whereas, in Drosophila, the gradient of maternal Caudal protein is established through translational repression by Bicoid of homogeneous caudalmRNA. Loss of caudal function in Nasonia results in severe segmentation defects. We show that Nasonia caudal is an activator of gap gene expression that acts far towards the anterior of the embryo, placing it atop a cascade of early patterning. By contrast, activation of gap genes in flies relies on redundant functions of Bicoid and Caudal, leading to a lack of dramatic action on gap gene expression: caudal instead plays a limited role as an activator of pair-rule gene expression. These studies,together with studies in short germ insects, suggest that caudal is an ancestral master organizer of patterning, and that its role has been reduced in higher dipterans such as Drosophila.
Collapse
|
44
|
Copf T, Rabet N, Averof M. Knockdown of spalt function by RNAi causes de-repression of Hox genes and homeotic transformations in the crustacean Artemia franciscana. Dev Biol 2006; 298:87-94. [PMID: 16934794 DOI: 10.1016/j.ydbio.2006.07.024] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2006] [Revised: 07/21/2006] [Accepted: 07/22/2006] [Indexed: 02/04/2023]
Abstract
Hox genes play a central role in the specification of distinct segmental identities in the body of arthropods. The specificity of Hox genes depends on their restricted expression domains, their interaction with specific cofactors and selectivity for particular target genes. spalt genes are associated with the function of Hox genes in diverse species, but the nature of this association varies: in some cases, spalt collaborates with Hox genes to specify segmental identities, in others, it regulates Hox gene expression or acts as their target. Here we study the role of spalt in the branchiopod crustacean Artemia franciscana. We find that Artemia spalt is expressed in the pre-segmental 'growth zone' and in stripes in each of the trunk (thoracic, genital and post-genital) segments that emerge from this zone. Using RNA interference (RNAi), we show that knocking down the expression of spalt has pleiotropic effects, which include thoracic to genital (T-->G), genital to thoracic (G-->T) and post-genital to thoracic (PG-->T) homeotic transformations. These transformations are associated with a stochastic de-repression of Hox genes in the corresponding segments of RNAi-treated animals (AbdB for T-->G and Ubx/AbdA for G-->T and PG-->T transformations). We discuss a possible role of spalt in the maintenance of Hox gene repression in Artemia and in other animals.
Collapse
Affiliation(s)
- Tijana Copf
- Institute of Molecular Biology and Biotechnology, 711 10 Iraklio Crete, Greece
| | | | | |
Collapse
|
45
|
Abstract
In order to establish the portrait of Urbilateria, the common ancestor of triblastic metazoan, this paper focuses on the antero-posterior segmentation frequently considered as characterising the bilaterian bauplan. The synthesis presented here describes the morphological, anatomical and functional aspects of this organisation. Furthermore it analyses the conditions of its emergence during the ontogenesis of Annelids, Arthropods and Chordates and identifies its genetic bases. The provided data exhibit the unitary character of the segmentation modalities among protostomian and deuterostomian organisms. This process occurs in two phases, involving a posterior proliferative zone after the gastrulation. It shows the similarity of the expression patterns of orthologous genes, the implication of comparable signalisation and regulation pathways. The congruence of the results obtained at both structural and molecular levels reinforce the segmental organisation conception of the common ancestor of Bilaterians.
Collapse
Affiliation(s)
- Jean-Pierre Cornec
- EA 3781 EGEE (Evolution, Génome, Environnement). Université de Provence, Aix-Marseille I, Centre St-Charles, case 36, 3, place Victor-Hugo, 13331 Marseille, France.
| | | |
Collapse
|
46
|
Liu PZ, Kaufman TC. Short and long germ segmentation: unanswered questions in the evolution of a developmental mode. Evol Dev 2006; 7:629-46. [PMID: 16336416 DOI: 10.1111/j.1525-142x.2005.05066.x] [Citation(s) in RCA: 90] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The insect body plan is very well conserved, yet the developmental mechanisms of segmentation are surprisingly varied. Less evolutionarily derived insects undergo short germ segmentation where only the anterior segments are specified before gastrulation whereas the remaining posterior segments are formed during a later secondary growth phase. In contrast, derived long germ insects such as Drosophila specify their entire bodies essentially simultaneously. These fundamental embryological differences imply potentially divergent molecular patterning events. Numerous studies have focused on comparing the expression and function of the homologs of Drosophila segmentation genes between Drosophila and different short and long germ insects. Here we review these comparative data with special emphasis on understanding how short germ insects generate segments and how this ancestral mechanism may have been modified in derived long germ insects such as Drosophila. We break down the larger issue of short versus long germ segmentation into its component developmental problems and structure our discussion in order to highlight the unanswered questions in the evolution of insect segmentation.
Collapse
Affiliation(s)
- Paul Z Liu
- Department of Biology, Indiana University, Bloomington, IN 47405, USA.
| | | |
Collapse
|
47
|
Davis GK, D'Alessio JA, Patel NH. Pax3/7 genes reveal conservation and divergence in the arthropod segmentation hierarchy. Dev Biol 2005; 285:169-84. [PMID: 16083872 DOI: 10.1016/j.ydbio.2005.06.014] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2005] [Revised: 06/06/2005] [Accepted: 06/13/2005] [Indexed: 11/15/2022]
Abstract
Several features of Pax3/7 gene expression are shared among distantly related insects, including pair-rule, segment polarity, and neural patterns. Recent data from arachnids imply that roles in segmentation and neurogenesis are likely to be played by Pax3/7 genes in all arthropods. To further investigate Pax3/7 genes in non-insect arthropods, we isolated two monoclonal antibodies that recognize the products of Pax3/7 genes in a wide range of taxa, allowing us to quickly survey Pax3/7 expression in all four major arthropod groups. Epitope analysis reveals that these antibodies react to a small subset of Paired-class homeodomains, which includes the products of all known Pax3/7 genes. Using these antibodies, we find that Pax3/7 genes in crustaceans are expressed in an early broad and, in one case, dynamic domain followed by segmental stripes, while myriapods and chelicerates exhibit segmental stripes that form early in the posterior-most part of the germ band. This suggests that Pax3/7 genes acquired their role in segmentation deep within, or perhaps prior to, the arthropod lineage. However, we do not detect evidence of pair-rule patterning in either myriapods or chelicerates, suggesting that the early pair-rule expression pattern of Pax3/7 genes in insects may have been acquired within the crustacean-hexapod lineage.
Collapse
Affiliation(s)
- Gregory K Davis
- Committee on Developmental Biology, University of Chicago, Chicago, IL 60637, USA
| | | | | |
Collapse
|
48
|
Stollewerk A, Simpson P. Evolution of early development of the nervous system: a comparison between arthropods. Bioessays 2005; 27:874-83. [PMID: 16108062 DOI: 10.1002/bies.20276] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Large numbers of cells with unique neuronal specificity are generated during development of the central nervous system of animals. Here we discuss the events that generate cell diversity during early development of the ventral nerve cord of different arthropod groups. Neural precursors are generated in a spatial array in the epithelium of each hemisegment over a period of time. Spatial cues within the epithelium are thought to evolve as embryogenesis proceeds. This spatiotemporal information might generate diversity among the neural precursors in all arthropod groups, although the mechanisms regulating the positioning of individual precursors have diverged. However, distinct strategies for the generation of neuronal diversity have evolved in the different arthropod lineages that appear to correlate with specific modes of ontogenesis. We hypothesize that an evolutionary trend towards reduced cell numbers and possibly rapid embryogenesis in insects has culminated in the appearance of stereotyped neuroblast lineages.
Collapse
|
49
|
de Rosa R, Prud'homme B, Balavoine G. caudal and even-skipped in the annelid Platynereis dumerilii and the ancestry of posterior growth. Evol Dev 2005; 7:574-87. [PMID: 16336411 DOI: 10.1111/j.1525-142x.2005.05061.x] [Citation(s) in RCA: 98] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In order to address the question of the conservation of posterior growth mechanisms in bilaterians, we have studied the expression patterns of the orthologues of the genes caudal, even-skipped, and brachyury in the annelid Platynereis dumerilii. Annelids belong to the still poorly studied third large branch of the bilaterians, the lophotrochozoans, and have anatomic and developmental characteristics, such as a segmented body plan, indirect development through a microscopic ciliated larva, and building of the trunk through posterior addition, which are all hypothesized by some authors (including us) to be present already in Urbilateria, the last common ancestor of bilaterians. All three genes are shown to be likely involved in the building of the anteroposterior axis around the slit-like amphistomous blastopore as well as in the patterning of the terminal anus-bearing piece of the body (the pygidium). In addition, caudal and even-skipped are likely involved in the posterior addition of segments. Together with the emerging results on the conservation of segmentation genes, these results reinforce the hypothesis that Urbilateria had a segmented trunk developing through posterior addition.
Collapse
Affiliation(s)
- Renaud de Rosa
- Centre de Génétique Moléculaire du CNRS, Avenue de la Terrasse, 91198 Gif-sur-Yvette, France
| | | | | |
Collapse
|
50
|
Kontarakis Z, Copf T, Averof M. Expression of hunchback during trunk segmentation in the branchiopod crustacean Artemia franciscana. Dev Genes Evol 2005; 216:89-93. [PMID: 16244886 DOI: 10.1007/s00427-005-0030-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2005] [Accepted: 09/11/2005] [Indexed: 12/01/2022]
Abstract
Comparative studies have shown that some aspects of segmentation are widely conserved among arthropods. Yet, it is still unclear whether the molecular prepatterns that are required for segmentation in Drosophila are likely to be similarly conserved in other arthropod groups. Homologues of the Drosophila gap genes, like hunchback, show regionally restricted expression patterns during the early phases of segmentation in diverse insects, but their expression patterns in other arthropod groups are not yet known. Here, we report the cloning of a hunchback orthologue from the crustacean Artemia franciscana and its expression during the formation of trunk segments. Artemia hunchback is expressed in a series of segmental stripes that correspond to individual thoracic/trunk, genital, and postgenital segments. However, this expression is not associated with the segmenting ectoderm but is restricted to mesodermal cells that associate with the ectoderm in a regular metameric pattern. All cells in the early segmental mesoderm appear to express hunchback. Later, mesodermal expression fades, and a complex expression pattern appears in the central nervous system (CNS), which is comparable to hunchback expression in the CNS of insects. No regionally restricted expression, reminiscent of gap gene expression, is observed during trunk segmentation. These patterns suggest that the expression patterns of hunchback in the mesoderm and in the CNS are likely to be ancient and conserved among crustaceans and insects. In contrast, we find no evidence for a conserved role of hunchback in axial patterning in the trunk ectoderm.
Collapse
|