1
|
Sahu S, Galloux M, Southon E, Caylor D, Sullivan T, Arnaudi M, Zanti M, Geh J, Chari R, Michailidou K, Papaleo E, Sharan SK. Saturation genome editing-based clinical classification of BRCA2 variants. Nature 2025; 638:538-545. [PMID: 39779848 DOI: 10.1038/s41586-024-08349-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 11/05/2024] [Indexed: 01/11/2025]
Abstract
Sequencing-based genetic tests have uncovered a vast array of BRCA2 sequence variants1. Owing to limited clinical, familial and epidemiological data, thousands of variants are considered to be variants of uncertain significance2-4 (VUS). Here we have utilized CRISPR-Cas9-based saturation genome editing in a humanized mouse embryonic stem cell line to determine the functional effect of VUS. We have categorized nearly all possible single nucleotide variants (SNVs) in the region that encodes the carboxylate-terminal DNA-binding domain of BRCA2. We have generated function scores for 6,551 SNVs, covering 96.4% of possible SNVs in exons 15-26 spanning BRCA2 residues 2479-3216. These variants include 1,282 SNVs that are categorized as missense VUS in the clinical variant database ClinVar, with 77.2% of these classified as benign and 20.4% classified as pathogenic using our functional score. Our assay provides evidence that 3,384 of the SNVs in the region are benign and 776 are pathogenic. Our classification aligns closely with pathogenicity data from ClinVar, orthogonal functional assays and computational meta predictors. We have integrated our embryonic stem cell-based BRCA2-saturation genome editing dataset with other available evidence and utilized the American College of Medical Genetics and Genomics/Association for Molecular Pathology guidelines for clinical classification of all possible SNVs. This classification is available as a sequence-function map and serves as a valuable resource for interpreting unidentified variants in the population and for physicians and genetic counsellors to assess BRCA2 VUS in patients.
Collapse
Affiliation(s)
- Sounak Sahu
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, Frederick, MD, USA
| | | | - Eileen Southon
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, Frederick, MD, USA
| | - Dylan Caylor
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, Frederick, MD, USA
| | - Teresa Sullivan
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, Frederick, MD, USA
| | - Matteo Arnaudi
- Cancer Systems Biology, Section for Bioinformatics, Department of Health and Technology, Technical University of Denmark, Lyngby, Denmark
- Cancer Structural Biology, Danish Cancer Institute, Copenhagen, Denmark
| | - Maria Zanti
- Biostatistics Unit, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | - Josephine Geh
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, Frederick, MD, USA
| | - Raj Chari
- Genome Modification Core, Laboratory Animal Sciences Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Kyriaki Michailidou
- Biostatistics Unit, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | - Elena Papaleo
- Cancer Systems Biology, Section for Bioinformatics, Department of Health and Technology, Technical University of Denmark, Lyngby, Denmark
- Cancer Structural Biology, Danish Cancer Institute, Copenhagen, Denmark
| | - Shyam K Sharan
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, Frederick, MD, USA.
| |
Collapse
|
2
|
Motooka Y, Tanaka H, Maeda Y, Katabuchi M, Mashimo T, Toyokuni S. Heterozygous mutation in BRCA2 induces accelerated age-dependent decline in sperm quality with male subfertility in rats. Sci Rep 2025; 15:447. [PMID: 39747609 PMCID: PMC11696240 DOI: 10.1038/s41598-024-84184-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Accepted: 12/20/2024] [Indexed: 01/04/2025] Open
Abstract
Tumor suppressor BRCA2 executes homologous recombination to repair DNA double-strand breaks in collaboration with RAD51, involving exon 11 and 27. Exon 11 constitutes a region where pathogenic variants (PVs) accumulate, and mutations in this region are known to contribute to carcinogenesis. However, the impact of the heterozygous PVs of BRCA2 exon 11 on the life quality beyond cancer risk, including male fertility, remains unclear. Here, we established a rat model with a frameshift on the seventh BRC repeat in Brca2 exon 11 (Brca2+/p.T1942fs), which is homologous to human BRCA2+/p.T1974fs, using CRISPR/Cas9 system. Our analyses revealed that the heterozygous rats with the PV in the BRCA2 exon 11 showed increased DNA double-strand breaks and apoptosis in spermatogonia and spermatocytes, accelerated testicular germ cell loss, and deterioration in sperm quality according with aging, ultimately resulting in early male reproductive dysfunction. Of note, these alterations in testes and sperm, including DNA fragmentation in spermatozoa, were observed from completion of sexual maturation. The present findings suggest that it is crucial to consider not only cancer risk but also potential declines in reproductive capacity in men carrying BRCA2 exon 11 PVs. Further investigation is warranted to determine whether similar traits appear in humans.
Collapse
Affiliation(s)
- Yashiro Motooka
- Department of Pathology and Biological Responses, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan.
| | - Hideaki Tanaka
- Department of Pathology and Biological Responses, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan
| | - Yuki Maeda
- Department of Pathology and Biological Responses, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan
| | - Misako Katabuchi
- Department of Pathology and Biological Responses, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan
- Department of Obstetrics and Gynecology, Faculty of Life Sciences, Kumamoto University, 1-1-1, Honjo, Chuo-ku, Kumamoto City, Kumamoto, 860-8556, Japan
| | - Tomoji Mashimo
- Laboratory Animal Research Center, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Shinya Toyokuni
- Department of Pathology and Biological Responses, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan.
- Center for Low-temperature Plasma Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8603, Japan.
| |
Collapse
|
3
|
Mota LFM, Carvajal AB, Silva Neto JB, Díaz C, Carabaño MJ, Baldi F, Munari DP. Assessment of inbreeding coefficients and inbreeding depression on complex traits from genomic and pedigree data in Nelore cattle. BMC Genomics 2024; 25:944. [PMID: 39379819 PMCID: PMC11460123 DOI: 10.1186/s12864-024-10842-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 09/26/2024] [Indexed: 10/10/2024] Open
Abstract
BACKGROUND Nelore cattle play a key role in tropical production systems due to their resilience to harsh conditions, such as heat stress and seasonally poor nutrition. Monitoring their genetic diversity is essential to manage the negative impacts of inbreeding. Traditionally, inbreeding and inbreeding depression are assessed by pedigree-based coefficients (F), but recently, genetic markers have been preferred for their precision in capturing the inbreeding level and identifying animals at risk of reduced productive and reproductive performance. Hence, we compared the inbreeding and inbreeding depression for productive and reproductive performance traits in Nelore cattle using different inbreeding coefficient estimation methods from pedigree information (FPed), the genomic relationship matrix (FGRM), runs of homozygosity (FROH) of different lengths (> 1 Mb (genome), between 1 and 2 Mb - FROH 1-2; 2-4 Mb FROH 2-4 or > 8 Mb FROH >8) and excess homozygosity (FSNP). RESULTS The correlation between FPed and FROH was lower when the latter was based on shorter segments (r = 0.15 with FROH 1-2, r = 0.20 with FROH 2-4 and r = 0.28 with FROH 4-8). Meanwhile, the FPed had a moderate correlation with FSNP (r = 0.47) and high correlation with FROH >8 (r = 0.58) and FROH-genome (r = 0.60). The FROH-genome was highly correlated with inbreeding based on FROH>8 (r = 0.93) and FSNP (r = 0.88). The FGRM exhibited a high correlation with FROH-genome (r = 0.55) and FROH >8 (r = 0.51) and a lower correlation with other inbreeding estimators varying from 0.30 for FROH 2-4 to 0.37 for FROH 1-2. Increased levels of inbreeding had a negative impact on the productive and reproductive performance of Nelore cattle. The unfavorable inbreeding effect on productive and reproductive traits ranged from 0.12 to 0.51 for FPed, 0.19-0.59 for FGRM, 0.21-0.58 for FROH-genome, and 0.19-0.54 for FSNP per 1% of inbreeding scaled on the percentage of the mean. When scaling the linear regression coefficients on the standard deviation, the unfavorable inbreeding effect varied from 0.43 to 1.56% for FPed, 0.49-1.97% for FGRM, 0.34-2.2% for FROH-genome, and 0.50-1.62% for FSNP per 1% of inbreeding. The impact of the homozygous segments on reproductive and performance traits varied based on the chromosomes. This shows that specific homozygous chromosome segments can be signs of positive selection due to their beneficial effects on the traits. CONCLUSIONS The low correlation observed between FPed and genomic-based inbreeding estimates suggests that the presence of animals with one unknown parent (sire or dam) in the pedigree does not account for ancient inbreeding. The ROH hotspots surround genes related to reproduction, growth, meat quality, and adaptation to environmental stress. Inbreeding depression has adverse effects on productive and reproductive traits in Nelore cattle, particularly on age at puberty in young bulls and heifer calving at 30 months, as well as on scrotal circumference and body weight when scaled on the standard deviation of the trait.
Collapse
Affiliation(s)
- Lucio F M Mota
- School of Agricultural and Veterinarian Sciences, São Paulo State University (UNESP), Via de Acesso Prof. Paulo Donato Castelane, Jaboticabal, 14884-900, SP, Brazil.
| | - Alejandro B Carvajal
- School of Agricultural and Veterinarian Sciences, São Paulo State University (UNESP), Via de Acesso Prof. Paulo Donato Castelane, Jaboticabal, 14884-900, SP, Brazil
| | - João B Silva Neto
- School of Agricultural and Veterinarian Sciences, São Paulo State University (UNESP), Via de Acesso Prof. Paulo Donato Castelane, Jaboticabal, 14884-900, SP, Brazil
| | - Clara Díaz
- Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA-C SIC), Madrid, 28040, Spain
| | - Maria J Carabaño
- Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA-C SIC), Madrid, 28040, Spain
| | - Fernando Baldi
- School of Agricultural and Veterinarian Sciences, São Paulo State University (UNESP), Via de Acesso Prof. Paulo Donato Castelane, Jaboticabal, 14884-900, SP, Brazil
- National Association of Breeders and Researchers, Rua João Godoy 463, Ribeirão Preto, 14020-230, SP, Brazil
| | - Danísio P Munari
- School of Agricultural and Veterinarian Sciences, São Paulo State University (UNESP), Via de Acesso Prof. Paulo Donato Castelane, Jaboticabal, 14884-900, SP, Brazil
- National Council for Science and Technological Development (CNPq), Brasilia, 71605-001, DF, Brazil
| |
Collapse
|
4
|
Dunce JM, Davies OR. BRCA2 stabilises RAD51 and DMC1 nucleoprotein filaments through a conserved interaction mode. Nat Commun 2024; 15:8292. [PMID: 39333100 PMCID: PMC11436757 DOI: 10.1038/s41467-024-52699-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 09/18/2024] [Indexed: 09/29/2024] Open
Abstract
BRCA2 is essential for DNA repair by homologous recombination in mitosis and meiosis. It interacts with recombinases RAD51 and DMC1 to facilitate the formation of nucleoprotein filaments on resected DNA ends that catalyse recombination-mediated repair. BRCA2's BRC repeats bind and disrupt RAD51 and DMC1 filaments, whereas its PhePP motifs bind recombinases and stabilise their nucleoprotein filaments. However, the mechanism of filament stabilisation has hitherto remained unknown. Here, we report the crystal structure of a BRCA2-DMC1 complex, revealing how core interaction sites of PhePP motifs bind to recombinases. The interaction mode is conserved for RAD51 and DMC1, which selectively bind to BRCA2's two distinct PhePP motifs via subtly divergent binding pockets. PhePP motif sequences surrounding their core interaction sites protect nucleoprotein filaments from BRC-mediated disruption. Hence, we report the structural basis of how BRCA2's PhePP motifs stabilise RAD51 and DMC1 nucleoprotein filaments for their essential roles in mitotic and meiotic recombination.
Collapse
Affiliation(s)
- James M Dunce
- Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - Owen R Davies
- Wellcome Centre for Cell Biology, Institute of Cell Biology, University of Edinburgh, Michael Swann Building, Max Born Crescent, Edinburgh, UK.
| |
Collapse
|
5
|
Yin H, Zhou Z, Fu C. Fance deficiency impaired DNA damage repair of prospermatogonia and altered the repair dynamics of spermatocytes. Reprod Biol Endocrinol 2024; 22:113. [PMID: 39210375 PMCID: PMC11360510 DOI: 10.1186/s12958-024-01284-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 08/19/2024] [Indexed: 09/04/2024] Open
Abstract
BACKGROUND Non-obstructive azoospermia (NOA) is the most severe form of male infertility and affects approximately 1% of men worldwide. Fanconi anemia (FA) genes were known for their essential role in DNA repair and growing evidence showed the crucial role of FA pathway in NOA. However, the underlying mechanisms for Fance deficiency lead to a serious deficit and delayed maturation of male germ cells remain unclear. METHODS We used Fance deficiency mouse model for experiments, and collected testes or epididymides from mice at 8 weeks (8W), 17.5 days post coitum (dpc), and postnatal 11 (P11) to P23. The mice referred to three genotypes: wildtype (Fance +/+), heterozygous (Fance +/-), and homozygous (Fance -/-). Hematoxylin and eosin staining, immunofluorescence staining, and surface spread of spermatocytes were performed to explore the mechanisms for NOA of Fance -/- mice. Each experiment was conducted with a minimum of three biological replicates and Kruskal-Wallis with Dunn's correction was used for statistical analysis. RESULTS In the present study, we found that the adult male Fance -/- mice exhibited massive germ cell loss in seminiferous tubules and dramatically decreased sperms in epididymides. During the embryonic period, the number of Fance -/- prospermatogonia decreased significantly, without impacts on the proliferation (Ki-67, PCNA) and apoptosis (cleaved PARP, cleaved Caspase 3) status. The DNA double-strand breaks (γH2AX) increased at the cellular level of Fance -/- prospermatogonia, potentially associated with the increased nonhomologous end joining (53BP1) and decreased homologous recombination (RAD51) activity. Besides, Fance deficiency impeded the progression of meiotic prophase I of spermatocytes. The mechanisms entailed the reduced recruitment of the DNA end resection protein RPA2 at leptotene and recombinases RAD51 and DMC1 at zygotene. It also involved impaired removal of RPA2 at zygotene and FANCD2 foci at pachytene. And the accelerated initial formation of crossover at early pachytene, which is indicated by MLH1. CONCLUSIONS Fance deficiency caused massive male germ cell loss involved in the imbalance of DNA damage repair in prospermatogonia and altered dynamics of proteins in homologous recombination, DNA end resection, and crossover, providing new insights into the etiology and molecular basis of NOA.
Collapse
Affiliation(s)
- Huan Yin
- Department of Obstetrics and Gynecology, Second Xiangya Hospital, Central South University, Changsha, China
- Clinical Research Center for Gynecological Disease in Hunan Province, Hunan Province, Changsha, China
| | - Zhixian Zhou
- Department of Obstetrics and Gynecology, Second Xiangya Hospital, Central South University, Changsha, China
- Clinical Research Center for Gynecological Disease in Hunan Province, Hunan Province, Changsha, China
| | - Chun Fu
- Department of Obstetrics and Gynecology, Second Xiangya Hospital, Central South University, Changsha, China.
- Clinical Research Center for Gynecological Disease in Hunan Province, Hunan Province, Changsha, China.
| |
Collapse
|
6
|
Liu W, Sun X, Li F, Jiang Q, An J, Wu Y, Yang J, Qin M, Zhao Y, Tang Y, Wu T, Yan Z, Jiang D, Liu R, Li W, Zhi X, Chen C. An essential role of the E3 ubiquitin ligase RNF126 in ensuring meiosis I completion during spermatogenesis. J Adv Res 2024:S2090-1232(24)00333-3. [PMID: 39142440 DOI: 10.1016/j.jare.2024.08.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 07/26/2024] [Accepted: 08/05/2024] [Indexed: 08/16/2024] Open
Abstract
INTRODUCTION Homologous recombination repair during meiosis is essential for the exchange of genetic information between sister chromosomes, underpinning spermatogenesis and, consequently, fertility. The disruption of this process can lead to infertility, highlighting the importance of identifying the molecular actors involved. OBJECTIVES This study aims to elucidate the role of the E3 ubiquitin ligase Rnf126 in spermatogenesis and its impact on fertility, particularly through its involvement in meiotic homologous recombination repair. METHODS We used heterozygous and homozygous Rnf126 deletion models in mouse testes to examine the consequences on testicular health, sperm count, and the process of spermatogenesis. Additionally, we explored the association between RNF126 gene missense variants and nonobstructive male infertility in patients, with a focus on their functional impact on the protein's ubiquitin ligase activity. RESULTS Rnf126 deletion led to testicular atrophy, disrupted seminiferous tubule structure, reduced sperm count, and spermatogenesis arrest at meiotic prophase I. Furthermore, male mice exhibited impaired homologous recombination repair and increased apoptosis within the seminiferous tubules. We identified four missense variants of the RNF126 (V68M, R241H, E261A, D253N) associated with male infertility. Specifically, the E261A and D253N variants, located in the RING domain, directly compromised the E3 ubiquitin ligase activity of RNF126. CONCLUSION Our findings demonstrate the pivotal role of RNF126 in maintaining spermatogenesis and fertility, offering insights into the molecular mechanisms underlying male infertility. The identified RNF126 variants present novel targets for diagnostic and therapeutic strategies in treating nonobstructive male infertility.
Collapse
Affiliation(s)
- Wenjing Liu
- The Third Affiliated Hospital, Kunming Medical University, Kunming 650118, China; Academy of Biomedical Engineering, Kunming Medical University, Kunming 650500, China; Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650201, China
| | - Xiya Sun
- State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, China; National Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital), Beijing 100191, China; Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing 100191, China; Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing 100191, China
| | - Fubing Li
- Academy of Biomedical Engineering, Kunming Medical University, Kunming 650500, China
| | - Qiuyun Jiang
- Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650201, China
| | - Jianting An
- State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, China; National Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital), Beijing 100191, China; Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing 100191, China; Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing 100191, China; Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China; Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Yingying Wu
- Department of the Pathology, First Affiliated Hospital of Kunming Medical University, Kunming 650032, China
| | - Jingyi Yang
- State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, China; National Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital), Beijing 100191, China; Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing 100191, China; Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing 100191, China; Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China; Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Meng Qin
- State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, China; National Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital), Beijing 100191, China; Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing 100191, China; Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing 100191, China
| | - Yuxin Zhao
- The Third Affiliated Hospital, Kunming Medical University, Kunming 650118, China
| | - Yongjia Tang
- Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650201, China; Hangzhou Institute of Medicine, Chinese Academy of Sciences, Hangzhou 310063, China
| | - Tingyue Wu
- Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650201, China
| | - Zhiqiang Yan
- State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, China; National Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital), Beijing 100191, China; Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing 100191, China; Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing 100191, China
| | - Dewei Jiang
- Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650201, China
| | - Rong Liu
- Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650201, China
| | - Wenhui Li
- The Third Affiliated Hospital, Kunming Medical University, Kunming 650118, China
| | - Xu Zhi
- State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, China; National Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital), Beijing 100191, China; Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing 100191, China; Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing 100191, China
| | - Ceshi Chen
- The Third Affiliated Hospital, Kunming Medical University, Kunming 650118, China; Academy of Biomedical Engineering, Kunming Medical University, Kunming 650500, China
| |
Collapse
|
7
|
Stallmeyer B, Dicke AK, Tüttelmann F. How exome sequencing improves the diagnostics and management of men with non-syndromic infertility. Andrology 2024. [PMID: 39120565 DOI: 10.1111/andr.13728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 07/07/2024] [Accepted: 07/24/2024] [Indexed: 08/10/2024]
Abstract
Male infertility affects approximately 17% of all men and represents a complex disorder in which not only semen parameters such as sperm motility, morphology, and number of sperm are highly variable, but also testicular phenotypes range from normal spermatogenesis to complete absence of germ cells. Genetic factors significantly contribute to the disease but chromosomal aberrations, mostly Klinefelter syndrome, and microdeletions of the Y-chromosome have remained the only diagnostically and clinically considered genetic causes. Monogenic causes remain understudied and, thus, often unidentified, leaving the majority of the male factor couple infertility pathomechanistically unexplained. This has been changing mostly because of the introduction of exome sequencing that allows the analysis of multiple genes in large patient cohorts. As a result, pathogenic variants in single genes have been associated with non-syndromic forms of all aetiologic sub-categories in the last decade. This review highlights the contribution of exome sequencing to the identification of novel disease genes for isolated (non-syndromic) male infertility by presenting the results of a comprehensive literature search. Both, reduced sperm count in azoospermic and oligozoospermic patients, and impaired sperm motility and/or morphology, in asthenozoospermic and/or teratozoospermic patients are highly heterogeneous diseases with well over 100 different candidate genes described for each entity. Applying the standardized evaluation criteria of the ClinGen gene curation working group, 70 genes with at least moderate evidence to contribute to the disease are highlighted. The implementation of these valid disease genes in clinical exome sequencing is important to increase the diagnostic yield in male infertility and, thus, improve clinical decision-making and appropriate genetic counseling. Future advances in androgenetics will continue to depend on large-scale exome and genome sequencing studies of comprehensive international patient cohorts, which are the most promising approaches to identify additional disease genes and provide reliable data on the gene-disease relationship.
Collapse
Affiliation(s)
- Birgit Stallmeyer
- Centre of Medical Genetics, Institute of Reproductive Genetics, University of Münster, Munster, Germany
| | - Ann-Kristin Dicke
- Centre of Medical Genetics, Institute of Reproductive Genetics, University of Münster, Munster, Germany
| | - Frank Tüttelmann
- Centre of Medical Genetics, Institute of Reproductive Genetics, University of Münster, Munster, Germany
| |
Collapse
|
8
|
Gurusaran M, Zhang J, Zhang K, Shibuya H, Davies OR. MEILB2-BRME1 forms a V-shaped DNA clamp upon BRCA2-binding in meiotic recombination. Nat Commun 2024; 15:6552. [PMID: 39095423 PMCID: PMC11297322 DOI: 10.1038/s41467-024-50920-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 07/24/2024] [Indexed: 08/04/2024] Open
Abstract
DNA double-strand break repair by homologous recombination has a specialised role in meiosis by generating crossovers that enable the formation of haploid germ cells. This requires meiosis-specific MEILB2-BRME1, which interacts with BRCA2 to facilitate loading of recombinases onto resected DNA ends. Here, we report the crystal structure of the MEILB2-BRME1 2:2 core complex, revealing a parallel four-helical assembly that recruits BRME1 to meiotic double-strand breaks in vivo. It forms an N-terminal β-cap that binds to DNA, and a MEILB2 coiled-coil that bridges to C-terminal ARM domains. Upon BRCA2-binding, MEILB2-BRME1 2:2 complexes dimerize into a V-shaped 2:4:4 complex, with rod-like MEILB2-BRME1 components arranged at right-angles. The β-caps located at the tips of the MEILB2-BRME1 limbs are separated by 25 nm, allowing them to bridge between DNA molecules. Thus, we propose that BRCA2 induces MEILB2-BRME1 to function as a DNA clamp, connecting resected DNA ends or homologous chromosomes to facilitate meiotic recombination.
Collapse
Affiliation(s)
- Manickam Gurusaran
- Wellcome Centre for Cell Biology, Institute of Cell Biology, University of Edinburgh, Edinburgh, UK
| | - Jingjing Zhang
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
| | - Kexin Zhang
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
| | - Hiroki Shibuya
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
- Laboratory for Gametogenesis, RIKEN Center for Biosystems Dynamics Research (BDR), Kobe, Hyogo, Japan
| | - Owen R Davies
- Wellcome Centre for Cell Biology, Institute of Cell Biology, University of Edinburgh, Edinburgh, UK.
| |
Collapse
|
9
|
Miron S, Legrand P, Dupaigne P, van Rossum-Fikkert SE, Ristic D, Majeed A, Kanaar R, Zinn-Justin S, Zelensky A. DMC1 and RAD51 bind FxxA and FxPP motifs of BRCA2 via two separate interfaces. Nucleic Acids Res 2024; 52:7337-7353. [PMID: 38828772 PMCID: PMC11229353 DOI: 10.1093/nar/gkae452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 04/29/2024] [Accepted: 05/29/2024] [Indexed: 06/05/2024] Open
Abstract
In vertebrates, the BRCA2 protein is essential for meiotic and somatic homologous recombination due to its interaction with the RAD51 and DMC1 recombinases through FxxA and FxPP motifs (here named A- and P-motifs, respectively). The A-motifs present in the eight BRC repeats of BRCA2 compete with the A-motif of RAD51, which is responsible for its self-oligomerization. BRCs thus disrupt RAD51 nucleoprotein filaments in vitro. The role of the P-motifs is less studied. We recently found that deletion of Brca2 exons 12-14 encoding one of them (the prototypical 'PhePP' motif), disrupts DMC1 but not RAD51 function in mouse meiosis. Here we provide a mechanistic explanation for this phenotype by solving the crystal structure of the complex between a BRCA2 fragment containing the PhePP motif and DMC1. Our structure reveals that, despite sharing a conserved phenylalanine, the A- and P-motifs bind to distinct sites on the ATPase domain of the recombinases. The P-motif interacts with a site that is accessible in DMC1 octamers and nucleoprotein filaments. Moreover, we show that this interaction also involves the adjacent protomer and thus increases the stability of the DMC1 nucleoprotein filaments. We extend our analysis to other P-motifs from RAD51AP1 and FIGNL1.
Collapse
Affiliation(s)
- Simona Miron
- Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, CEA, CNRS, Gif-sur-Yvette, France
| | - Pierre Legrand
- Synchrotron SOLEIL, HelioBio group, L’Orme des Merisiers, Gif sur-Yvette, France
| | - Pauline Dupaigne
- Genome Maintenance and Molecular Microscopy UMR 9019 CNRS, Université Paris-Saclay, Gustave Roussy, Villejuif, France
| | - Sari E van Rossum-Fikkert
- Department of Molecular Genetics, Erasmus MC Cancer Institute, Erasmus University Medical Center, 3000CA, Rotterdam, The Netherlands
| | - Dejan Ristic
- Department of Molecular Genetics, Erasmus MC Cancer Institute, Erasmus University Medical Center, 3000CA, Rotterdam, The Netherlands
| | - Atifa Majeed
- Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, CEA, CNRS, Gif-sur-Yvette, France
| | - Roland Kanaar
- Department of Molecular Genetics, Erasmus MC Cancer Institute, Erasmus University Medical Center, 3000CA, Rotterdam, The Netherlands
- Oncode Institute, Erasmus University Medical Center, 3000CA, Rotterdam, The Netherlands
| | - Sophie Zinn-Justin
- Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, CEA, CNRS, Gif-sur-Yvette, France
| | - Alex N Zelensky
- Department of Molecular Genetics, Erasmus MC Cancer Institute, Erasmus University Medical Center, 3000CA, Rotterdam, The Netherlands
- Oncode Institute, Erasmus University Medical Center, 3000CA, Rotterdam, The Netherlands
| |
Collapse
|
10
|
Xu H, Zhang Y, Wang C, Fu Z, Lv J, Yang Y, Zhang Z, Qi Y, Meng K, Yuan J, Wang X. Research progress on the fanconi anemia signaling pathway in non-obstructive azoospermia. Front Endocrinol (Lausanne) 2024; 15:1393111. [PMID: 38846492 PMCID: PMC11153779 DOI: 10.3389/fendo.2024.1393111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 05/13/2024] [Indexed: 06/09/2024] Open
Abstract
Non-obstructive azoospermia (NOA) is a disease characterized by spermatogenesis failure and comprises phenotypes such as hypospermatogenesis, mature arrest, and Sertoli cell-only syndrome. Studies have shown that FA cross-linked anemia (FA) pathway is closely related to the occurrence of NOA. There are FA gene mutations in male NOA patients, which cause significant damage to male germ cells. The FA pathway is activated in the presence of DNA interstrand cross-links; the key step in activating this pathway is the mono-ubiquitination of the FANCD2-FANCI complex, and the activation of the FA pathway can repair DNA damage such as DNA double-strand breaks. Therefore, we believe that the FA pathway affects germ cells during DNA damage repair, resulting in minimal or even disappearance of mature sperm in males. This review summarizes the regulatory mechanisms of FA-related genes in male azoospermia, with the aim of providing a theoretical reference for clinical research and exploration of related genes.
Collapse
Affiliation(s)
- Haohui Xu
- Lin He’s Academician Workstation of New Medicine and Clinical Translation, Jining Medical University, Jining, China
- College of Second Clinical Medical, Jining Medical University, Jining, China
| | - Yixin Zhang
- Lin He’s Academician Workstation of New Medicine and Clinical Translation, Jining Medical University, Jining, China
- College of Second Clinical Medical, Jining Medical University, Jining, China
| | - Caiqin Wang
- Lin He’s Academician Workstation of New Medicine and Clinical Translation, Jining Medical University, Jining, China
- College of Second Clinical Medical, Jining Medical University, Jining, China
| | - Zhuoyan Fu
- Lin He’s Academician Workstation of New Medicine and Clinical Translation, Jining Medical University, Jining, China
- College of Clinical Medicine, Jining Medical University, Jining, China
| | - Jing Lv
- Lin He’s Academician Workstation of New Medicine and Clinical Translation, Jining Medical University, Jining, China
- College of Clinical Medicine, Jining Medical University, Jining, China
| | - Yufang Yang
- Lin He’s Academician Workstation of New Medicine and Clinical Translation, Jining Medical University, Jining, China
- College of Mental Health, Jining Medical University, Jining, China
| | - Zihan Zhang
- Lin He’s Academician Workstation of New Medicine and Clinical Translation, Jining Medical University, Jining, China
- College of Second Clinical Medical, Jining Medical University, Jining, China
| | - Yuanmin Qi
- Lin He’s Academician Workstation of New Medicine and Clinical Translation, Jining Medical University, Jining, China
- College of Clinical Medicine, Jining Medical University, Jining, China
| | - Kai Meng
- Lin He’s Academician Workstation of New Medicine and Clinical Translation, Jining Medical University, Jining, China
| | - Jinxiang Yuan
- Lin He’s Academician Workstation of New Medicine and Clinical Translation, Jining Medical University, Jining, China
| | - Xiaomei Wang
- College of Basic Medicine, Jining Medical University, Jining, China
| |
Collapse
|
11
|
Cao L, He X, Ren J, Wen C, Guo T, Yang F, Qin Y, Chen ZJ, Zhao S, Yang Y. Novel compound heterozygous variants in FANCI cause premature ovarian insufficiency. Hum Genet 2024; 143:357-369. [PMID: 38483614 DOI: 10.1007/s00439-024-02650-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 01/25/2024] [Indexed: 04/25/2024]
Abstract
Premature ovarian insufficiency (POI) is a common reproductive aging disorder due to a dramatic decline of ovarian function before 40 years of age. Accumulating evidence reveals that genetic defects, particularly those related to DNA damage response, are a crucial contributing factor to POI. We have demonstrated that the functional Fanconi anemia (FA) pathway maintains the rapid proliferation of primordial germ cells to establish a sufficient reproductive reserve by counteracting replication stress, but the clinical implications of this function in human ovarian function remain to be established. Here, we screened the FANCI gene, which encodes a key component for FA pathway activation, in our whole-exome sequencing database of 1030 patients with idiopathic POI, and identified two pairs of novel compound heterozygous variants, c.[97C > T];[1865C > T] and c.[158-2A > G];[c.959A > G], in two POI patients, respectively. The missense variants did not alter FANCI protein expression and nuclear localization, apart from the variant c.158-2A > G causing abnormal splicing and leading to a truncated mutant p.(S54Pfs*5). Furthermore, the four variants all diminished FANCD2 ubiquitination levels and increased DNA damage under replication stress, suggesting that the FANCI variants impaired FA pathway activation and replication stress response. This study first links replication stress response defects with the pathogenesis of human POI, providing a new insight into the essential roles of the FA genes in ovarian function.
Collapse
Affiliation(s)
- Lili Cao
- Institute of Women, Children and Reproductive Health, Shandong University, #44 Wenhua Xi Road, Jinan, 250012, Shandong, China
- State Key Laboratory of Reproductive Medicine and Offspring Health, Shandong University, Jinan, 250012, Shandong, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, 250012, Shandong, China
- Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, 250012, Shandong, China
- Shandong Technology Innovation Center for Reproductive Health, Jinan, 250012, Shandong, China
- Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, 250012, Shandong, China
- Shandong Key Laboratory of Reproductive Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250012, Shandong, China
- Research Unit of Gametogenesis and Health of ART-Offspring, Chinese Academy of Medical Sciences (No.2021RU001), Jinan, 250012, Shandong, China
| | - Xinmiao He
- Institute of Women, Children and Reproductive Health, Shandong University, #44 Wenhua Xi Road, Jinan, 250012, Shandong, China
- State Key Laboratory of Reproductive Medicine and Offspring Health, Shandong University, Jinan, 250012, Shandong, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, 250012, Shandong, China
- Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, 250012, Shandong, China
- Shandong Technology Innovation Center for Reproductive Health, Jinan, 250012, Shandong, China
- Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, 250012, Shandong, China
- Shandong Key Laboratory of Reproductive Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250012, Shandong, China
- Research Unit of Gametogenesis and Health of ART-Offspring, Chinese Academy of Medical Sciences (No.2021RU001), Jinan, 250012, Shandong, China
| | - Jiayi Ren
- Institute of Women, Children and Reproductive Health, Shandong University, #44 Wenhua Xi Road, Jinan, 250012, Shandong, China
- State Key Laboratory of Reproductive Medicine and Offspring Health, Shandong University, Jinan, 250012, Shandong, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, 250012, Shandong, China
- Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, 250012, Shandong, China
- Shandong Technology Innovation Center for Reproductive Health, Jinan, 250012, Shandong, China
- Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, 250012, Shandong, China
- Shandong Key Laboratory of Reproductive Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250012, Shandong, China
- Research Unit of Gametogenesis and Health of ART-Offspring, Chinese Academy of Medical Sciences (No.2021RU001), Jinan, 250012, Shandong, China
| | - Canxin Wen
- Institute of Women, Children and Reproductive Health, Shandong University, #44 Wenhua Xi Road, Jinan, 250012, Shandong, China
- State Key Laboratory of Reproductive Medicine and Offspring Health, Shandong University, Jinan, 250012, Shandong, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, 250012, Shandong, China
- Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, 250012, Shandong, China
- Shandong Technology Innovation Center for Reproductive Health, Jinan, 250012, Shandong, China
- Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, 250012, Shandong, China
- Shandong Key Laboratory of Reproductive Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250012, Shandong, China
- Research Unit of Gametogenesis and Health of ART-Offspring, Chinese Academy of Medical Sciences (No.2021RU001), Jinan, 250012, Shandong, China
| | - Ting Guo
- Institute of Women, Children and Reproductive Health, Shandong University, #44 Wenhua Xi Road, Jinan, 250012, Shandong, China
- State Key Laboratory of Reproductive Medicine and Offspring Health, Shandong University, Jinan, 250012, Shandong, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, 250012, Shandong, China
- Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, 250012, Shandong, China
- Shandong Technology Innovation Center for Reproductive Health, Jinan, 250012, Shandong, China
- Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, 250012, Shandong, China
- Shandong Key Laboratory of Reproductive Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250012, Shandong, China
- Research Unit of Gametogenesis and Health of ART-Offspring, Chinese Academy of Medical Sciences (No.2021RU001), Jinan, 250012, Shandong, China
| | - Fan Yang
- Advanced Medical Research Institute, Meili Lake Translational Research Park, Cheeloo College of Medicine, Shandong University, Jinan, China
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Shandong University, Jinan, 250012, Shandong, China
| | - Yingying Qin
- Institute of Women, Children and Reproductive Health, Shandong University, #44 Wenhua Xi Road, Jinan, 250012, Shandong, China
- State Key Laboratory of Reproductive Medicine and Offspring Health, Shandong University, Jinan, 250012, Shandong, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, 250012, Shandong, China
- Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, 250012, Shandong, China
- Shandong Technology Innovation Center for Reproductive Health, Jinan, 250012, Shandong, China
- Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, 250012, Shandong, China
- Shandong Key Laboratory of Reproductive Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250012, Shandong, China
- Research Unit of Gametogenesis and Health of ART-Offspring, Chinese Academy of Medical Sciences (No.2021RU001), Jinan, 250012, Shandong, China
| | - Zi-Jiang Chen
- Institute of Women, Children and Reproductive Health, Shandong University, #44 Wenhua Xi Road, Jinan, 250012, Shandong, China
- State Key Laboratory of Reproductive Medicine and Offspring Health, Shandong University, Jinan, 250012, Shandong, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, 250012, Shandong, China
- Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, 250012, Shandong, China
- Shandong Technology Innovation Center for Reproductive Health, Jinan, 250012, Shandong, China
- Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, 250012, Shandong, China
- Shandong Key Laboratory of Reproductive Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250012, Shandong, China
- Research Unit of Gametogenesis and Health of ART-Offspring, Chinese Academy of Medical Sciences (No.2021RU001), Jinan, 250012, Shandong, China
- Department of Reproductive Medicine, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200135, China
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, 200135, China
| | - Shidou Zhao
- Institute of Women, Children and Reproductive Health, Shandong University, #44 Wenhua Xi Road, Jinan, 250012, Shandong, China.
- State Key Laboratory of Reproductive Medicine and Offspring Health, Shandong University, Jinan, 250012, Shandong, China.
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, 250012, Shandong, China.
- Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, 250012, Shandong, China.
- Shandong Technology Innovation Center for Reproductive Health, Jinan, 250012, Shandong, China.
- Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, 250012, Shandong, China.
- Shandong Key Laboratory of Reproductive Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250012, Shandong, China.
- Research Unit of Gametogenesis and Health of ART-Offspring, Chinese Academy of Medical Sciences (No.2021RU001), Jinan, 250012, Shandong, China.
| | - Yajuan Yang
- Institute of Women, Children and Reproductive Health, Shandong University, #44 Wenhua Xi Road, Jinan, 250012, Shandong, China.
- State Key Laboratory of Reproductive Medicine and Offspring Health, Shandong University, Jinan, 250012, Shandong, China.
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, 250012, Shandong, China.
- Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, 250012, Shandong, China.
- Shandong Technology Innovation Center for Reproductive Health, Jinan, 250012, Shandong, China.
- Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, 250012, Shandong, China.
- Shandong Key Laboratory of Reproductive Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250012, Shandong, China.
- Research Unit of Gametogenesis and Health of ART-Offspring, Chinese Academy of Medical Sciences (No.2021RU001), Jinan, 250012, Shandong, China.
| |
Collapse
|
12
|
Feng HW, Zhao Y, Gao YL, Liu DT, Huo LJ. Caseinolytic mitochondrial matrix peptidase X is essential for homologous chromosome synapsis and recombination during meiosis of male mouse germ cells. Asian J Androl 2024; 26:165-174. [PMID: 37856231 PMCID: PMC10919424 DOI: 10.4103/aja202343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 08/16/2023] [Indexed: 10/21/2023] Open
Abstract
Meiosis is the process of producing haploid gametes through a series of complex chromosomal events and the coordinated action of various proteins. The mitochondrial protease complex (ClpXP), which consists of caseinolytic mitochondrial matrix peptidase X (ClpX) and caseinolytic protease P (ClpP) and mediates the degradation of misfolded, damaged, and oxidized proteins, is essential for maintaining mitochondrial homeostasis. ClpXP has been implicated in meiosis regulation, but its precise role is currently unknown. In this study, we engineered an inducible male germ cell-specific knockout caseinolytic mitochondrial matrix peptidase X ( ClpxcKO ) mouse model to investigate the function of ClpX in meiosis. We found that disrupting Clpx in male mice induced germ cell apoptosis and led to an absence of sperm in the epididymis. Specifically, it caused asynapsis of homologous chromosomes and impaired meiotic recombination, resulting in meiotic arrest in the zygotene-to-pachytene transition phase. The loss of ClpX compromised the double-strand break (DSB) repair machinery by markedly reducing the recruitment of DNA repair protein RAD51 homolog 1 (RAD51) to DSB sites. This dysfunction may be due to an insufficient supply of energy from the aberrant mitochondria in ClpxcKO spermatocytes, as discerned by electron microscopy. Furthermore, ubiquitination signals on chromosomes and the expression of oxidative phosphorylation subunits were both significantly attenuated in ClpxcKO spermatocytes. Taken together, we propose that ClpX is essential for maintaining mitochondrial protein homeostasis and ensuring homologous chromosome pairing, synapsis, and recombination in spermatocytes during meiotic prophase I.
Collapse
Affiliation(s)
- Hai-Wei Feng
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Education Ministry of China, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
- Shenzhen Key Laboratory of Fertility Regulation, Reproductive Medicine Center, The University of Hong Kong-Shenzhen Hospital, Shenzhen 518053, China
| | - Yu Zhao
- Shenzhen Key Laboratory of Fertility Regulation, Reproductive Medicine Center, The University of Hong Kong-Shenzhen Hospital, Shenzhen 518053, China
| | - Yan-Ling Gao
- Maternal-Fetal Medicine Institute, Department of Obstetrics and Gynaecology, Shenzhen Baoan Women’s and Children’s Hospital, Jinan University, Shenzhen 518100, China
| | - Dong-Teng Liu
- Shenzhen Key Laboratory of Fertility Regulation, Reproductive Medicine Center, The University of Hong Kong-Shenzhen Hospital, Shenzhen 518053, China
- Department of Obstetrics and Gynaecology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Li-Jun Huo
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Education Ministry of China, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
13
|
Lim PX, Zaman M, Feng W, Jasin M. BRCA2 promotes genomic integrity and therapy resistance primarily through its role in homology-directed repair. Mol Cell 2024; 84:447-462.e10. [PMID: 38244544 PMCID: PMC11188060 DOI: 10.1016/j.molcel.2023.12.025] [Citation(s) in RCA: 23] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 10/10/2023] [Accepted: 12/15/2023] [Indexed: 01/22/2024]
Abstract
Tumor suppressor BRCA2 functions in homology-directed repair (HDR), the protection of stalled replication forks, and the suppression of replicative gaps, but their relative contributions to genome integrity and chemotherapy response are under scrutiny. Here, we report that mouse and human cells require a RAD51 filament stabilization motif in BRCA2 for fork protection and gap suppression but not HDR. In mice, the loss of fork protection/gap suppression does not compromise genome stability or shorten tumor latency. By contrast, HDR deficiency increases spontaneous and replication stress-induced chromosome aberrations and tumor predisposition. Unlike with HDR, fork protection/gap suppression defects are also observed in Brca2 heterozygous cells, likely due to reduced RAD51 stabilization at stalled forks/gaps. Gaps arise from PRIMPOL activity, which is associated with 5-hydroxymethyl-2'-deoxyuridine sensitivity due to the formation of SMUG1-generated abasic sites and is exacerbated by poly(ADP-ribose) polymerase (PARP) inhibition. However, HDR proficiency has the major role in mitigating sensitivity to chemotherapeutics, including PARP inhibitors.
Collapse
Affiliation(s)
- Pei Xin Lim
- Developmental Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Mahdia Zaman
- Developmental Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Weiran Feng
- Developmental Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Louis V. Gerstner Jr. Graduate School of Biomedical Sciences, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Maria Jasin
- Developmental Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Louis V. Gerstner Jr. Graduate School of Biomedical Sciences, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA.
| |
Collapse
|
14
|
Ito M, Fujita Y, Shinohara A. Positive and negative regulators of RAD51/DMC1 in homologous recombination and DNA replication. DNA Repair (Amst) 2024; 134:103613. [PMID: 38142595 DOI: 10.1016/j.dnarep.2023.103613] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 12/10/2023] [Accepted: 12/10/2023] [Indexed: 12/26/2023]
Abstract
RAD51 recombinase plays a central role in homologous recombination (HR) by forming a nucleoprotein filament on single-stranded DNA (ssDNA) to catalyze homology search and strand exchange between the ssDNA and a homologous double-stranded DNA (dsDNA). The catalytic activity of RAD51 assembled on ssDNA is critical for the DNA-homology-mediated repair of DNA double-strand breaks in somatic and meiotic cells and restarting stalled replication forks during DNA replication. The RAD51-ssDNA complex also plays a structural role in protecting the regressed/reversed replication fork. Two types of regulators control RAD51 filament formation, stability, and dynamics, namely positive regulators, including mediators, and negative regulators, so-called remodelers. The appropriate balance of action by the two regulators assures genome stability. This review describes the roles of positive and negative RAD51 regulators in HR and DNA replication and its meiosis-specific homolog DMC1 in meiotic recombination. We also provide future study directions for a comprehensive understanding of RAD51/DMC1-mediated regulation in maintaining and inheriting genome integrity.
Collapse
Affiliation(s)
- Masaru Ito
- Institute for Protein Research, Osaka University, Yamadaoka 3-2, Suita, Osaka 565-0871, Japan.
| | - Yurika Fujita
- Institute for Protein Research, Osaka University, Yamadaoka 3-2, Suita, Osaka 565-0871, Japan.
| | - Akira Shinohara
- Institute for Protein Research, Osaka University, Yamadaoka 3-2, Suita, Osaka 565-0871, Japan.
| |
Collapse
|
15
|
Ghouil R, Miron S, Sato K, Ristic D, van Rossum-Fikkert SE, Legrand P, Ouldali M, Winter JM, Ropars V, David G, Arteni AA, Wyman C, Knipscheer P, Kanaar R, Zelensky AN, Zinn-Justin S. BRCA2-HSF2BP oligomeric ring disassembly by BRME1 promotes homologous recombination. SCIENCE ADVANCES 2023; 9:eadi7352. [PMID: 37889963 PMCID: PMC10610910 DOI: 10.1126/sciadv.adi7352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 09/20/2023] [Indexed: 10/29/2023]
Abstract
In meiotic homologous recombination (HR), BRCA2 facilitates loading of the recombinases RAD51 and DMC1 at the sites of double-strand breaks (DSBs). The HSF2BP-BRME1 complex interacts with BRCA2. Its absence causes a severe reduction in recombinase loading at meiotic DSB. We previously showed that, in somatic cancer cells ectopically producing HSF2BP, DNA damage can trigger HSF2BP-dependent degradation of BRCA2, which prevents HR. Here, we report that, upon binding to BRCA2, HSF2BP forms octameric rings that are able to interlock into a large ring-shaped 24-mer. Addition of BRME1 leads to dissociation of both of these ring structures and cancels the disruptive effect of HSF2BP on cancer cell resistance to DNA damage. It also prevents BRCA2 degradation during interstrand DNA crosslink repair in Xenopus egg extracts. We propose that, during meiosis, the control of HSF2BPBRCA2 oligomerization by BRME1 ensures timely assembly of the ring complex that concentrates BRCA2 and controls its turnover, thus promoting HR.
Collapse
Affiliation(s)
- Rania Ghouil
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France
| | - Simona Miron
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France
| | - Koichi Sato
- Oncode Institute, Hubrecht Institute–KNAW and University Medical Center Utrecht, Utrecht, Netherlands
| | - Dejan Ristic
- Department of Molecular Genetics, Oncode Institute, Erasmus MC Cancer Institute, Erasmus University Medical Center, 3000 CA, Rotterdam, Netherlands
| | - Sari E. van Rossum-Fikkert
- Department of Molecular Genetics, Oncode Institute, Erasmus MC Cancer Institute, Erasmus University Medical Center, 3000 CA, Rotterdam, Netherlands
| | - Pierre Legrand
- Synchrotron SOLEIL, HelioBio group, L’Orme des Merisiers, Gif sur-Yvette, France
| | - Malika Ouldali
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France
| | | | - Virginie Ropars
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France
| | - Gabriel David
- Synchrotron SOLEIL, HelioBio group, L’Orme des Merisiers, Gif sur-Yvette, France
| | - Ana-Andreea Arteni
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France
| | - Claire Wyman
- Department of Molecular Genetics, Oncode Institute, Erasmus MC Cancer Institute, Erasmus University Medical Center, 3000 CA, Rotterdam, Netherlands
- Department of Radiation Oncology, Erasmus MC Cancer Institute, Erasmus University Medical Center, 3000 CA, Rotterdam, Netherlands
| | - Puck Knipscheer
- Oncode Institute, Hubrecht Institute–KNAW and University Medical Center Utrecht, Utrecht, Netherlands
- Department of Human Genetics, Leiden University Medical Center, Leiden, Netherlands
| | - Roland Kanaar
- Department of Molecular Genetics, Oncode Institute, Erasmus MC Cancer Institute, Erasmus University Medical Center, 3000 CA, Rotterdam, Netherlands
| | - Alex N. Zelensky
- Department of Molecular Genetics, Oncode Institute, Erasmus MC Cancer Institute, Erasmus University Medical Center, 3000 CA, Rotterdam, Netherlands
| | - Sophie Zinn-Justin
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France
| |
Collapse
|
16
|
Tsui V, Lyu R, Novakovic S, Stringer JM, Dunleavy JE, Granger E, Semple T, Leichter A, Martelotto LG, Merriner DJ, Liu R, McNeill L, Zerafa N, Hoffmann ER, O’Bryan MK, Hutt K, Deans AJ, Heierhorst J, McCarthy DJ, Crismani W. Fancm has dual roles in the limiting of meiotic crossovers and germ cell maintenance in mammals. CELL GENOMICS 2023; 3:100349. [PMID: 37601968 PMCID: PMC10435384 DOI: 10.1016/j.xgen.2023.100349] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 03/30/2023] [Accepted: 06/02/2023] [Indexed: 08/22/2023]
Abstract
Meiotic crossovers are required for accurate chromosome segregation and producing new allelic combinations. Meiotic crossover numbers are tightly regulated within a narrow range, despite an excess of initiating DNA double-strand breaks. Here, we reveal the tumor suppressor FANCM as a meiotic anti-crossover factor in mammals. We use unique large-scale crossover analyses with both single-gamete sequencing and pedigree-based bulk-sequencing datasets to identify a genome-wide increase in crossover frequencies in Fancm-deficient mice. Gametogenesis is heavily perturbed in Fancm loss-of-function mice, which is consistent with the reproductive defects reported in humans with biallelic FANCM mutations. A portion of the gametogenesis defects can be attributed to the cGAS-STING pathway after birth. Despite the gametogenesis phenotypes in Fancm mutants, both sexes are capable of producing offspring. We propose that the anti-crossover function and role in gametogenesis of Fancm are separable and will inform diagnostic pathways for human genomic instability disorders.
Collapse
Affiliation(s)
- Vanessa Tsui
- DNA Repair and Recombination Laboratory, St Vincent’s Institute of Medical Research, Fitzroy, VIC, Australia
- The Faculty of Medicine, Dentistry and Health Science, The University of Melbourne, Parkville, VIC, Australia
| | - Ruqian Lyu
- Bioinformatics and Cellular Genomics, St Vincent’s Institute of Medical Research, Fitzroy, VIC, Australia
- Melbourne Integrative Genomics, Faculty of Science, The University of Melbourne, Parkville, VIC, Australia
| | - Stevan Novakovic
- DNA Repair and Recombination Laboratory, St Vincent’s Institute of Medical Research, Fitzroy, VIC, Australia
| | - Jessica M. Stringer
- Ovarian Biology Laboratory, Biomedicine Discovery Institute, Department of Anatomy and Developmental Biology, Monash University, Melbourne, VIC, Australia
| | - Jessica E.M. Dunleavy
- Male Infertility and Germ Cell Biology Group, School of BioSciences and the Bio21 Institute, Faculty of Science, The University of Melbourne, Parkville, VIC, Australia
| | - Elissah Granger
- DNA Repair and Recombination Laboratory, St Vincent’s Institute of Medical Research, Fitzroy, VIC, Australia
| | - Tim Semple
- Single Cell Innovation Laboratory, Centre for Cancer Research, University of Melbourne, Parkville, VIC, Australia
| | - Anna Leichter
- Single Cell Innovation Laboratory, Centre for Cancer Research, University of Melbourne, Parkville, VIC, Australia
| | - Luciano G. Martelotto
- Single Cell Innovation Laboratory, Centre for Cancer Research, University of Melbourne, Parkville, VIC, Australia
| | - D. Jo Merriner
- Male Infertility and Germ Cell Biology Group, School of BioSciences and the Bio21 Institute, Faculty of Science, The University of Melbourne, Parkville, VIC, Australia
| | - Ruijie Liu
- Bioinformatics and Cellular Genomics, St Vincent’s Institute of Medical Research, Fitzroy, VIC, Australia
- Melbourne Integrative Genomics, Faculty of Science, The University of Melbourne, Parkville, VIC, Australia
| | - Lucy McNeill
- DNA Repair and Recombination Laboratory, St Vincent’s Institute of Medical Research, Fitzroy, VIC, Australia
| | - Nadeen Zerafa
- Ovarian Biology Laboratory, Biomedicine Discovery Institute, Department of Anatomy and Developmental Biology, Monash University, Melbourne, VIC, Australia
| | - Eva R. Hoffmann
- DNRF Center for Chromosome Stability, Department of Cellular and Molecular Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Moira K. O’Bryan
- Male Infertility and Germ Cell Biology Group, School of BioSciences and the Bio21 Institute, Faculty of Science, The University of Melbourne, Parkville, VIC, Australia
| | - Karla Hutt
- Ovarian Biology Laboratory, Biomedicine Discovery Institute, Department of Anatomy and Developmental Biology, Monash University, Melbourne, VIC, Australia
| | - Andrew J. Deans
- The Faculty of Medicine, Dentistry and Health Science, The University of Melbourne, Parkville, VIC, Australia
- Genome Stability Unit, St Vincent’s Institute of Medical Research, Fitzroy, VIC, Australia
| | - Jörg Heierhorst
- The Faculty of Medicine, Dentistry and Health Science, The University of Melbourne, Parkville, VIC, Australia
- Molecular Genetics Unit, St Vincent’s Institute of Medical Research, Fitzroy, VIC, Australia
| | - Davis J. McCarthy
- Bioinformatics and Cellular Genomics, St Vincent’s Institute of Medical Research, Fitzroy, VIC, Australia
- Melbourne Integrative Genomics, Faculty of Science, The University of Melbourne, Parkville, VIC, Australia
| | - Wayne Crismani
- DNA Repair and Recombination Laboratory, St Vincent’s Institute of Medical Research, Fitzroy, VIC, Australia
- The Faculty of Medicine, Dentistry and Health Science, The University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
17
|
Lim PX, Zaman M, Jasin M. BRCA2 promotes genomic integrity and therapy resistance primarily through its role in homology-directed repair. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.11.536470. [PMID: 37090587 PMCID: PMC10120702 DOI: 10.1101/2023.04.11.536470] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/25/2023]
Abstract
Highlights Gap suppression requires BRCA2 C-terminal RAD51 binding in mouse and human cells Brca2 heterozygosity in mice results in fork protection and gap suppression defects Gap suppression mitigates sensitivity to hmdU, but only when HDR is unperturbedHDR deficiency is the primary driver of chemotherapeutic sensitivity. eTOC blurb Lim et al . report that gap suppression as well as fork protection require BRCA2 stabilization of RAD51 filaments in human and mouse cells but have minimal impact on genome integrity, oncogenesis, and drug resistance. BRCA2 suppression of PRIMPOL-mediated replication gaps confers resistance to the nucleotide hmdU, incorporation of which leads to cytotoxic abasic sites.This effect is diminished when HDR is abrogated. Summary Tumor suppressor BRCA2 functions in homology-directed repair (HDR), protection of stalled replication forks, and suppression of replicative gaps. The relative contributions of these pathways to genome integrity and chemotherapy response are under scrutiny. Here, we report that mouse and human cells require a RAD51 filament stabilization motif in BRCA2 for both fork protection and gap suppression, but not HDR. Loss of fork protection and gap suppression do not compromise genome instability or shorten tumor latency in mice or cause replication stress in human mammary cells. By contrast, HDR deficiency increases spontaneous and replication stress-induced chromosome aberrations and tumor predisposition. Unlike with HDR, fork protection and gap suppression defects are also observed in Brca2 heterozygous mouse cells, likely due to reduced RAD51 stabilization at stalled forks and gaps. Gaps arise from PRIMPOL activity, which is associated with sensitivity to 5-hydroxymethyl-2’-deoxyuridine due to the formation of abasic sites by SMUG1 glycosylase and is exacerbated by poly(ADP-ribose) polymerase inhibition. However, HDR deficiency ultimately modulates sensitivity to chemotherapeutics, including PARP inhibitors.
Collapse
|
18
|
Emmenecker C, Mézard C, Kumar R. Repair of DNA double-strand breaks in plant meiosis: role of eukaryotic RecA recombinases and their modulators. PLANT REPRODUCTION 2023; 36:17-41. [PMID: 35641832 DOI: 10.1007/s00497-022-00443-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 05/09/2022] [Indexed: 06/15/2023]
Abstract
Homologous recombination during meiosis is crucial for the DNA double-strand breaks (DSBs) repair that promotes the balanced segregation of homologous chromosomes and enhances genetic variation. In most eukaryotes, two recombinases RAD51 and DMC1 form nucleoprotein filaments on single-stranded DNA generated at DSB sites and play a central role in the meiotic DSB repair and genome stability. These nucleoprotein filaments perform homology search and DNA strand exchange to initiate repair using homologous template-directed sequences located elsewhere in the genome. Multiple factors can regulate the assembly, stability, and disassembly of RAD51 and DMC1 nucleoprotein filaments. In this review, we summarize the current understanding of the meiotic functions of RAD51 and DMC1 and the role of their positive and negative modulators. We discuss the current models and regulators of homology searches and strand exchange conserved during plant meiosis. Manipulation of these repair factors during plant meiosis also holds a great potential to accelerate plant breeding for crop improvements and productivity.
Collapse
Affiliation(s)
- Côme Emmenecker
- Institut Jean-Pierre Bourgin (IJPB), Université Paris-Saclay, INRAE, AgroParisTech, 78000, Versailles, France
- University of Paris-Sud, Université Paris-Saclay, 91405, Orsay, France
| | - Christine Mézard
- Institut Jean-Pierre Bourgin (IJPB), CNRS, Université Paris-Saclay, INRAE, AgroParisTech, 78000, Versailles, France.
| | - Rajeev Kumar
- Institut Jean-Pierre Bourgin (IJPB), Université Paris-Saclay, INRAE, AgroParisTech, 78000, Versailles, France.
| |
Collapse
|
19
|
Baltacı E, Kazancı F, Şahin Fİ. BRCA, infertility, and fertility preservation: a review for counseling. J Assist Reprod Genet 2023; 40:465-472. [PMID: 36695945 PMCID: PMC10033813 DOI: 10.1007/s10815-023-02725-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 01/10/2023] [Indexed: 01/26/2023] Open
Abstract
BRCA mutations as a triggering factor in breast cancer have been reported to result in fertility problems and oocyte aging in young patients with cancer diagnosis. These patients are concerned about fertility problems and family planning before undergoing treatment modalities that may result in infertility. In this review, we conducted analysis of the literature on the association between BRCA mutations and infertility, possible fertility preservation options, and their safety and tried to gather results from different disciplines and points of view on the matter. Our aim is to provide a general summary of recent studies to provide further insight on the matter for counseling BRCA mutation carriers on fertility preservation methods and their implications.
Collapse
Affiliation(s)
- Ege Baltacı
- Department of Medical Genetics, Başkent University Hospital, Ankara, Turkey
| | - Ferah Kazancı
- Department of Gynecology and Obstetrics, Nezip Fazıl City Hospital, Kahramanmaraş, Turkey
| | - Feride İffet Şahin
- Department of Medical Genetics, Başkent University Hospital, Ankara, Turkey
| |
Collapse
|
20
|
Xu M, Wu W, Zhao M, Chung JPW, Li TC, Chan DYL. Common dysmorphic oocytes and embryos in assisted reproductive technology laboratory in association with gene alternations. Int J Biochem Cell Biol 2022; 152:106298. [PMID: 36122887 DOI: 10.1016/j.biocel.2022.106298] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 09/13/2022] [Accepted: 09/14/2022] [Indexed: 11/29/2022]
Abstract
Amorphic or defected oocytes and embryos are commonly observed in assisted reproductive technology (ART) laboratories. It is believed that a proper gene expression at each stage of embryo development contributes to the possibility of a decent-quality embryo leading to successful implantation. Many studies reported that several defects in embryo morphology are associated with gene expressions during in vitro fertilization (IVF) treatment. There is lacking literature review on summarizing common morphological defects about gene alternations. In this review, we summarized the current literature. We selected 64 genes that have been reported to be involved in embryo morphological abnormalities in animals and humans, 30 of which were identified in humans and might be the causes of embryonic changes. Five papers focusing on associations of multiple gene expressions and embryo abnormalities using RNA transcriptomes were also included during the search. We have also reviewed our time-lapse image database with over 3000 oocytes/embryos to show morphological defects possibly related to gene alternations reported previously in the literature. This holistic review can better understand the associations between gene alternations and morphological changes. It is also beneficial to select important biomarkers with strong evidence in IVF practice and reveal their potential application in embryo selection. Also, identifying genes may help patients with genetic disorders avoid unnecessary treatments by providing preimplantation genetic testing for monogenic/single gene defects (PGT-M), reduce embryo replacements by less potential, and help scientists develop new methods for oocyte/embryo research in the near future.
Collapse
Affiliation(s)
- Murong Xu
- Assisted Reproductive Technology Unit, Department of Obstetrics and Gynaecology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China; School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Waner Wu
- Assisted Reproductive Technology Unit, Department of Obstetrics and Gynaecology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Mingpeng Zhao
- Assisted Reproductive Technology Unit, Department of Obstetrics and Gynaecology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China; Department of Reproductive Medicine, Department of Obstetrics and Gynaecology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Jacqueline Pui Wah Chung
- Assisted Reproductive Technology Unit, Department of Obstetrics and Gynaecology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Tin Chiu Li
- Assisted Reproductive Technology Unit, Department of Obstetrics and Gynaecology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - David Yiu Leung Chan
- Assisted Reproductive Technology Unit, Department of Obstetrics and Gynaecology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China.
| |
Collapse
|
21
|
Yoshikawa Y, Kimura S, Soga A, Sugiyama M, Ueno A, Kondo H, Zhu Z, Ochiai K, Nakayama K, Hakozaki J, Kusakisako K, Haraguchi A, Kitano T, Orino K, Fukumoto S, Ikadai H. Plasmodium berghei Brca2 is required for normal development and differentiation in mice and mosquitoes. Parasit Vectors 2022; 15:244. [PMID: 35804459 PMCID: PMC9270840 DOI: 10.1186/s13071-022-05357-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 06/10/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Malaria is a major global parasitic disease caused by species of the genus Plasmodium. Zygotes of Plasmodium spp. undergo meiosis and develop into tetraploid ookinetes, which differentiate into oocysts that undergo sporogony. Homologous recombination (HR) occurs during meiosis and introduces genetic variation. However, the mechanisms of HR in Plasmodium are unclear. In humans, the recombinases DNA repair protein Rad51 homolog 1 (Rad51) and DNA meiotic recombinase 1 (Dmc1) are required for HR and are regulated by breast cancer susceptibility protein 2 (BRCA2). Most eukaryotes harbor BRCA2 homologs. Nevertheless, these have not been reported for Plasmodium. METHODS A Brca2 candidate was salvaged from a database to identify Brca2 homologs in Plasmodium. To confirm that the candidate protein was Brca2, interaction activity between Plasmodium berghei (Pb) Brca2 (PbBrca2) and Rad51 (PbRad51) was investigated using a mammalian two-hybrid assay. To elucidate the functions of PbBrca2, PbBrca2 was knocked out and parasite proliferation and differentiation were assessed in mice and mosquitoes. Transmission electron microscopy was used to identify sporogony. RESULTS The candidate protein was conserved among Plasmodium species, and it was indicated that it harbors critical BRCA2 domains including BRC repeats, tower, and oligonucleotide/oligosaccharide-binding-fold domains. The P. berghei BRC repeats interacted with PbRad51. Hence, the candidate was considered a Brca2 homolog. PbBrca2 knockout parasites were associated with reduced parasitemia with increased ring stage and decreased trophozoite stage counts, gametocytemia, female gametocyte ratio, oocyst number, and ookinete development in both mice and mosquitoes. Nevertheless, the morphology of the blood stages in mice and the ookinete stage was comparable to those of the wild type parasites. Transmission electron microscopy results showed that sporogony never progressed in Brca2-knockout parasites. CONCLUSIONS Brca2 is implicated in nearly all Plasmodium life cycle stages, and especially in sporogony. PbBrca2 contributes to HR during meiosis.
Collapse
Affiliation(s)
- Yasunaga Yoshikawa
- Laboratory of Veterinary Biochemistry, School of Veterinary Medicine, Kitasato University, Towada, Aomori, 034-8628, Japan.
| | - Shunta Kimura
- Laboratory of Veterinary Biochemistry, School of Veterinary Medicine, Kitasato University, Towada, Aomori, 034-8628, Japan
| | - Akira Soga
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Inada, Obihiro, 080-8555, Japan
| | - Makoto Sugiyama
- Laboratory of Veterinary Anatomy, School of Veterinary Medicine, Kitasato University, Towada, Aomori, 034-8628, Japan
| | - Aki Ueno
- Laboratory of Veterinary Biochemistry, School of Veterinary Medicine, Kitasato University, Towada, Aomori, 034-8628, Japan
| | - Hiroki Kondo
- Laboratory of Veterinary Biochemistry, School of Veterinary Medicine, Kitasato University, Towada, Aomori, 034-8628, Japan
| | - Zida Zhu
- Laboratory of Veterinary Biochemistry, School of Veterinary Medicine, Kitasato University, Towada, Aomori, 034-8628, Japan
| | - Kazuhiko Ochiai
- Laboratory of Veterinary Hygiene, School of Veterinary Medicine, Nippon Veterinary and Life Science University, Musashino, Tokyo, 180-8602, Japan
| | - Kazuhiko Nakayama
- Laboratory of Veterinary Parasitology, School of Veterinary Medicine, Kitasato University, Towada, Aomori, 034-8628, Japan
| | - Jun Hakozaki
- Laboratory of Veterinary Parasitology, School of Veterinary Medicine, Kitasato University, Towada, Aomori, 034-8628, Japan
| | - Kodai Kusakisako
- Laboratory of Veterinary Parasitology, School of Veterinary Medicine, Kitasato University, Towada, Aomori, 034-8628, Japan
| | - Asako Haraguchi
- Laboratory of Veterinary Parasitology, School of Veterinary Medicine, Kitasato University, Towada, Aomori, 034-8628, Japan
| | - Taisuke Kitano
- Laboratory of Veterinary Biochemistry, School of Veterinary Medicine, Kitasato University, Towada, Aomori, 034-8628, Japan
| | - Koichi Orino
- Laboratory of Veterinary Biochemistry, School of Veterinary Medicine, Kitasato University, Towada, Aomori, 034-8628, Japan
| | - Shinya Fukumoto
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Inada, Obihiro, 080-8555, Japan
| | - Hiromi Ikadai
- Laboratory of Veterinary Parasitology, School of Veterinary Medicine, Kitasato University, Towada, Aomori, 034-8628, Japan
| |
Collapse
|
22
|
Li ZM, Li YY, Fei CF, Zhou LQ. Insm2 deficiency results in female infertility by disturbing steroid pathway and decreasing ovarian reserve in mice. Cell Cycle 2022; 21:2255-2267. [PMID: 35786158 DOI: 10.1080/15384101.2022.2092816] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
The number and quality of oocytes in the ovarian reserve are related to fertility and reproductive lifespan in mammals. Some transcription factors have been demonstrated to determine oogenesis. The insulinoma-associated 2 (Insm2) gene is a member of the Snail transcriptional repressor superfamily. Recent studies have demonstrated Insm2 plays an essential role for insulin secretion and glucose intolerance in mice, but the functions of Insm2 in reproduction remain elusive. Here, by examination of Insm2 knockout mice, we found Insm2 was essential for female fertility. Loss of Insm2 resulted in female infertility with major defects in primordial follicle pool, ovarian folliculogenesis and ovulation. Transcriptomic profiling of ovaries suggests that loss of Insm2 caused defects in oocyte meiosis and steroid synthesis. Both oocyte- and granulosa cell-expressed genes were dysregulated, including Foxo1 and other known genes involved in primary ovarian insufficiency. Together, these studies show that Insm2 is required for oocyte development and their communication with ovarian somatic cells.
Collapse
Affiliation(s)
- Zhi-Ming Li
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuan-Yuan Li
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Cai-Feng Fei
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Li-Quan Zhou
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
23
|
Yin H, Suye S, Zhou Z, Cai H, Fu C. The reduction of oocytes and disruption of the meiotic prophase I in Fanconi Anemia E deficient mice. Reproduction 2022; 164:71-82. [PMID: 35671285 DOI: 10.1530/rep-21-0421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Accepted: 06/07/2022] [Indexed: 11/08/2022]
Abstract
Fance is an important factor participating in the repair of DNA interstrand cross-links and its defect causes severe follicle depletion in female mice. To explore the underlying mechanisms, we investigated the effects of Fance on ovarian development in embryonic and newborn mice. We found that the number of oocytes was significantly decreased in Fance-/- mice as early as 13.5 days post coitum (dpc). The continuous decrease of oocytes in Fance-/- mice compared with the Fance+/+ mice led to the primordial follicles being almost exhausted at 2 days postpartum (dpp). The mitotic-meiotic transition occurred normally, but the meiotic progression was arrested in pachytene in Fance-/- oocytes. We detected the expressions of RAD51 (homologous recombination repair factor), 53BP1 (non-homologous end-joining repair factor), and γH2AX by immunostaining analysis and chromosome spreads. The expressions of 53BP1 were increased and RAD51 decreased significantly in Fance-/- oocytes compared with Fance+/+ oocytes. Also, the meiotic crossover indicated by MLH1 foci was significantly increased in Fance-/- oocytes. Oocyte proliferation and apoptosis were comparable between Fance-/- and Fance+/+ mice (P>0.05). The aberrant high expression at 17.5dpc and low expressions at 1dpp and 2dpp indicated the expression pattern of pluripotent marker OCT4 was disordered in Fance-/- oocytes. These findings elucidate that Fance mutation leads to a progressive reduction of oocytes and disrupts the progression of meiotic prophase I but not the initiation. And our study reveals that the potential mechanisms involve DNA damage repair, meiotic crossover, and pluripotency of oocytes.
Collapse
Affiliation(s)
- Huan Yin
- H Yin, Department of Obstetrics and Gynecology, Central South University, Changsha, China
| | - Suye Suye
- S Suye, Department of Obstetrics and Gynecology, Central South University, Changsha, China
| | - Zhixian Zhou
- Z Zhou, Department of Obstetrics and Gynecology, Central South University, Changsha, China
| | - Haiyi Cai
- H Cai, Department of Clinical Medicine, Harbin Medical University, Harbin, China
| | - Chun Fu
- C Fu, Department of Obstetrics and Gynecology, Central South University, Changsha, China
| |
Collapse
|
24
|
Mishra AP, Hartford SA, Sahu S, Klarmann K, Chittela RK, Biswas K, Jeon AB, Martin BK, Burkett S, Southon E, Reid S, Albaugh ME, Karim B, Tessarollo L, Keller JR, Sharan SK. BRCA2-DSS1 interaction is dispensable for RAD51 recruitment at replication-induced and meiotic DNA double strand breaks. Nat Commun 2022; 13:1751. [PMID: 35365640 PMCID: PMC8975877 DOI: 10.1038/s41467-022-29409-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 03/14/2022] [Indexed: 12/31/2022] Open
Abstract
The interaction between tumor suppressor BRCA2 and DSS1 is essential for RAD51 recruitment and repair of DNA double stand breaks (DSBs) by homologous recombination (HR). We have generated mice with a leucine to proline substitution at position 2431 of BRCA2, which disrupts this interaction. Although a significant number of mutant mice die during embryogenesis, some homozygous and hemizygous mutant mice undergo normal postnatal development. Despite lack of radiation induced RAD51 foci formation and a severe HR defect in somatic cells, mutant mice are fertile and exhibit normal RAD51 recruitment during meiosis. We hypothesize that the presence of homologous chromosomes in close proximity during early prophase I may compensate for the defect in BRCA2-DSS1 interaction. We show the restoration of RAD51 foci in mutant cells when Topoisomerase I inhibitor-induced single strand breaks are converted into DSBs during DNA replication. We also partially rescue the HR defect by tethering the donor DNA to the site of DSBs using streptavidin-fused Cas9. Our findings demonstrate that the BRCA2-DSS1 complex is dispensable for RAD51 loading when the homologous DNA is close to the DSB. Mishra et al. have generated mice with a single amino acid substitution in BRCA2, which disrupts its interaction with DSS1 resulting in a severe HR defect. They show the interaction to be dispensable for HR at replication induced and meiotic DSBs.
Collapse
Affiliation(s)
- Arun Prakash Mishra
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, USA
| | - Suzanne A Hartford
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, USA.,Regeneron Pharmaceuticals, Inc, Tarrytown, NY, USA
| | - Sounak Sahu
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, USA
| | - Kimberly Klarmann
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, USA.,Developmental Therapeutics Program, Division of Cancer Treatment and Diagnosis, NCI, Frederick, MD, USA
| | - Rajani Kant Chittela
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, USA.,Applied Genomics Section, Bhabha Atomic Research Center, Trombay, Mumbai, India
| | - Kajal Biswas
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, USA
| | - Albert B Jeon
- Molecular Histopathology Laboratory, Leidos Biomedical Research, Inc. Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Betty K Martin
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, USA.,Laboratory Animal Sciences Program, Leidos Biomedical Research, Inc. Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Sandra Burkett
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, USA
| | - Eileen Southon
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, USA
| | - Susan Reid
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, USA
| | - Mary E Albaugh
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, USA.,Laboratory Animal Sciences Program, Leidos Biomedical Research, Inc. Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Baktiar Karim
- Molecular Histopathology Laboratory, Leidos Biomedical Research, Inc. Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Lino Tessarollo
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, USA
| | - Jonathan R Keller
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, USA.,Basic Science Program, Leidos Biomedical Research, Inc. Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Shyam K Sharan
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, USA.
| |
Collapse
|
25
|
Lingg L, Rottenberg S, Francica P. Meiotic Genes and DNA Double Strand Break Repair in Cancer. Front Genet 2022; 13:831620. [PMID: 35251135 PMCID: PMC8895043 DOI: 10.3389/fgene.2022.831620] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 02/02/2022] [Indexed: 12/16/2022] Open
Abstract
Tumor cells show widespread genetic alterations that change the expression of genes driving tumor progression, including genes that maintain genomic integrity. In recent years, it has become clear that tumors frequently reactivate genes whose expression is typically restricted to germ cells. As germ cells have specialized pathways to facilitate the exchange of genetic information between homologous chromosomes, their aberrant regulation influences how cancer cells repair DNA double strand breaks (DSB). This drives genomic instability and affects the response of tumor cells to anticancer therapies. Since meiotic genes are usually transcriptionally repressed in somatic cells of healthy tissues, targeting aberrantly expressed meiotic genes may provide a unique opportunity to specifically kill cancer cells whilst sparing the non-transformed somatic cells. In this review, we highlight meiotic genes that have been reported to affect DSB repair in cancers derived from somatic cells. A better understanding of their mechanistic role in the context of homology-directed DNA repair in somatic cancers may provide useful insights to find novel vulnerabilities that can be targeted.
Collapse
Affiliation(s)
- Lea Lingg
- Institute of Animal Pathology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
- Cancer Therapy Resistance Cluster, Department for BioMedical Research, University of Bern, Bern, Switzerland
| | - Sven Rottenberg
- Institute of Animal Pathology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
- Cancer Therapy Resistance Cluster, Department for BioMedical Research, University of Bern, Bern, Switzerland
- Bern Center for Precision Medicine, University of Bern, Bern, Switzerland
- *Correspondence: Sven Rottenberg, ; Paola Francica,
| | - Paola Francica
- Institute of Animal Pathology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
- Cancer Therapy Resistance Cluster, Department for BioMedical Research, University of Bern, Bern, Switzerland
- *Correspondence: Sven Rottenberg, ; Paola Francica,
| |
Collapse
|
26
|
Li S, Xu W, Xu B, Gao S, Zhang Q, Qin Y, Guo T. Pathogenic Variations of Homologous Recombination Gene HSF2BP Identified in Sporadic Patients With Premature Ovarian Insufficiency. Front Cell Dev Biol 2022; 9:768123. [PMID: 35174157 PMCID: PMC8841426 DOI: 10.3389/fcell.2021.768123] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 12/14/2021] [Indexed: 11/13/2022] Open
Abstract
Premature ovarian insufficiency (POI) is defined as depletion of ovarian function before 40 years of age, which affects 3.7% of women in reproductive age. The etiology of POI is heterogeneous. Recently, with the widespread use of whole-exome sequencing (WES), the DNA repair genes, especially for those involved in meiosis progress, were enriched in the causative gene spectrum of POI. In this study, through the largest in-house WES database of 1,030 patients with sporadic POI, we identified two novel homozygous variations in HSF2BP (c.382T>C, p.C128R; c.557T>C, p.L186P). An in vitro functional study revealed that both variations impaired the nuclear location of HSF2BP and affected its DNA repair capacity. Our studies highlighted the essential role of meiotic homologous recombination genes in the pathogenesis of sporadic POI.
Collapse
Affiliation(s)
- Shan Li
- Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, Jinan, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, China
- Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, China
- Shandong Provincial Clinical Medicine Research Center for Reproductive Health, Shandong University, Jinan, China
- Reproductive Hospital Affiliated to Shandong University, Jinan, China
| | - Weiwei Xu
- Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, Jinan, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, China
- Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, China
- Shandong Provincial Clinical Medicine Research Center for Reproductive Health, Shandong University, Jinan, China
- Reproductive Hospital Affiliated to Shandong University, Jinan, China
| | - Bingying Xu
- Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, Jinan, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, China
- Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, China
- Shandong Provincial Clinical Medicine Research Center for Reproductive Health, Shandong University, Jinan, China
- Reproductive Hospital Affiliated to Shandong University, Jinan, China
| | - Shuchang Gao
- Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, Jinan, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, China
- Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, China
- Shandong Provincial Clinical Medicine Research Center for Reproductive Health, Shandong University, Jinan, China
- Reproductive Hospital Affiliated to Shandong University, Jinan, China
| | - Qian Zhang
- Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, Jinan, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, China
- Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, China
- Shandong Provincial Clinical Medicine Research Center for Reproductive Health, Shandong University, Jinan, China
- Reproductive Hospital Affiliated to Shandong University, Jinan, China
| | - Yingying Qin
- Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, Jinan, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, China
- Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, China
- Shandong Provincial Clinical Medicine Research Center for Reproductive Health, Shandong University, Jinan, China
- Reproductive Hospital Affiliated to Shandong University, Jinan, China
| | - Ting Guo
- Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, Jinan, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, China
- Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, China
- Shandong Provincial Clinical Medicine Research Center for Reproductive Health, Shandong University, Jinan, China
- Reproductive Hospital Affiliated to Shandong University, Jinan, China
| |
Collapse
|
27
|
Vanni VS, Campo G, Cioffi R, Papaleo E, Salonia A, Viganò P, Lambertini M, Candiani M, Meirow D, Orvieto R. The neglected members of the family: non-BRCA mutations in the Fanconi anemia/BRCA pathway and reproduction. Hum Reprod Update 2022; 28:296-311. [PMID: 35043201 DOI: 10.1093/humupd/dmab045] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 10/27/2021] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND BReast CAncer (BRCA) genes are extensively studied in the context of fertility and reproductive aging. BRCA proteins are part of the DNA repair Fanconi anemia (FA)/BRCA pathway, in which more than 20 proteins are implicated. According to which gene is mutated and which interactions are lost owing to the mutation, carriers and patients with monoallelic or biallelic FA/BRCA mutations exhibit very different phenotypes, from overt FA to cancer predisposition or no pathological implications. The effect of the so far neglected non-BRCA FA mutations on fertility also deserves consideration. OBJECTIVE AND RATIONALE As improved treatments allow a longer life expectancy in patients with biallelic FA mutations and overt FA, infertility is emerging as a predominant feature. We thus reviewed the mechanisms for such a manifestation, as well as whether they also occur in monoallelic carriers of FA non-BRCA mutations. SEARCH METHODS Electronic databases PUBMED, EMBASE and CENTRAL were searched using the following term: 'fanconi' OR 'FANC' OR 'AND' 'fertility' OR 'pregnancy' OR 'ovarian reserve' OR 'spermatogenesis' OR 'hypogonadism'. All pertinent reports in the English-language literature were retrieved until May 2021 and the reference lists were systematically searched in order to identify any potential additional studies. OUTCOMES Biallelic FA mutations causing overt FA disease are associated with premature ovarian insufficiency (POI) occurring in the fourth decade in women and with primary non-obstructive azoospermia (NOA) in men. Hypogonadism in FA patients seems mainly associated with a defect in primordial germ cell proliferation in fetal life. In recent small, exploratory whole-exome sequencing studies, biallelic clinically occult mutations in the FA complementation group A (Fanca) and M (Fancm) genes were found in otherwise healthy patients with isolated NOA or POI, and also monoallelic carrier status for a loss-of-function mutation in Fanca has been implicated as a possible cause for POI. In those patients with known monoallelic FA mutations undergoing pre-implantation genetic testing, poor assisted reproduction outcomes are reported. However, the mechanisms underlying the repeated failures and the high miscarriage rates observed are not fully known. WIDER IMPLICATIONS The so far 'neglected' members of the FA/BRCA family will likely emerge as a relevant focus of investigation in the genetics of reproduction. Several (rather than a single) non-BRCA genes might be implicated. State-of-the-art methods, such as whole-genome/exome sequencing, and further exploratory studies are required to understand the prevalence and mechanisms for occult FA mutations in infertility and recurrent miscarriage.
Collapse
Affiliation(s)
- Valeria Stella Vanni
- Università Vita-Salute San Raffaele, Milan, Italy.,Obstetrics and Gynecology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | | | - Raffaella Cioffi
- Università Vita-Salute San Raffaele, Milan, Italy.,Obstetrics and Gynecology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Enrico Papaleo
- Obstetrics and Gynecology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Andrea Salonia
- Università Vita-Salute San Raffaele, Milan, Italy.,Division of Experimental Oncology/Unit of Urology, URI, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Paola Viganò
- Reproductive Sciences Laboratory, Obstetrics and Gynecology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Matteo Lambertini
- Department of Medical Oncology, U.O.C Clinica di Oncologia Medica, IRCCS Ospedale Policlinico San Martino, Genova, Italy.,Department of Internal Medicine and Medical Specialties (DiMI), School of Medicine, University of Genova, Genova, Italy
| | - Massimo Candiani
- Università Vita-Salute San Raffaele, Milan, Italy.,Obstetrics and Gynecology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Dror Meirow
- Department of Obstetrics and Gynecology, Chaim Sheba Medical Center, Tel-Hashomer, Ramat Gan, Israel
| | - Raoul Orvieto
- Department of Obstetrics and Gynecology, Chaim Sheba Medical Center, Tel-Hashomer, Ramat Gan, Israel.,Sackler Faculty of Medicine, Tel-Aviv University, Tel Aviv-Yafo, Israel
| |
Collapse
|
28
|
Kouprianov VA, Selmek AA, Ferguson JL, Mo X, Shive HR. brca2-mutant zebrafish exhibit context- and tissue-dependent alterations in cell phenotypes and response to injury. Sci Rep 2022; 12:883. [PMID: 35042909 PMCID: PMC8766490 DOI: 10.1038/s41598-022-04878-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 12/20/2021] [Indexed: 11/29/2022] Open
Abstract
Cancer cells frequently co-opt molecular programs that are normally activated in specific contexts, such as embryonic development and the response to injury. Determining the impact of cancer-associated mutations on cellular phenotypes within these discrete contexts can provide new insight into how such mutations lead to dysregulated cell behaviors and subsequent cancer onset. Here we assess the impact of heritable BRCA2 mutation on embryonic development and the injury response using a zebrafish model (Danio rerio). Unlike most mouse models for BRCA2 mutation, brca2-mutant zebrafish are fully viable and thus provide a unique tool for assessing both embryonic and adult phenotypes. We find that maternally provided brca2 is critical for normal oocyte development and embryonic survival in zebrafish, suggesting that embryonic lethality associated with BRCA2 mutation is likely to reflect defects in both meiotic and embryonic developmental programs. On the other hand, we find that adult brca2-mutant zebrafish exhibit aberrant proliferation of several cell types under basal conditions and in response to injury in tissues at high risk for cancer development. These divergent effects exemplify the often-paradoxical outcomes that occur in embryos (embryonic lethality) versus adult animals (cancer predisposition) with mutations in cancer susceptibility genes such as BRCA2. The altered cell behaviors identified in brca2-mutant embryonic and adult tissues, particularly in adult tissues at high risk for cancer, indicate that the effects of BRCA2 mutation on cellular phenotypes are both context- and tissue-dependent.
Collapse
Affiliation(s)
| | - Aubrie A Selmek
- Department of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, Columbus, OH, USA
| | - Jordan L Ferguson
- Department of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, USA
| | - Xiaokui Mo
- Department of Biomedical Informatics, College of Medicine, The Ohio State University, Columbus, OH, USA
| | - Heather R Shive
- Department of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, Columbus, OH, USA.
| |
Collapse
|
29
|
Ghadirkhomi E, Angaji SA, Khosravi M, Mashayekhi MR. Association of Novel Single Nucleotide Polymorphisms of Genes Involved in Cell Functions with Male Infertility: A Study of Male Cases in Northwest Iran. J Reprod Infertil 2022; 22:258-266. [PMID: 34987987 PMCID: PMC8669412 DOI: 10.18502/jri.v22i4.7651] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 06/29/2021] [Indexed: 11/24/2022] Open
Abstract
Background Infertility is a global health problem caused by various environmental and genetic factors. Male infertility accounts for 40-50% of all cases of infertility and approximately half of them are grouped as idiopathic with no definitive causes. Previous studies have suggested an association between some SNPs and infertility in men. In this study, an attempt was made to investigate the association of 7 different SNPs of 4 genes involved in common cell functions with male infertility. Methods MTHFR rs1801131 (T>G), MTHFR rs2274976 (G>A), FASLG rs80358238 (A>G), FASLG rs12079514 (A>C), GSTM1 rs1192077068 (G>A), BRCA2 rs4987117 (C>T), and BRCA2 rs11571833 (A>T) were genotyped in 120 infertile men with idiopathic azoospermia or severe oligospermia and 120 proven fertile controls using ARMS-PCR methods. Next, 30% of SNPs were regenotyped to confirm the results. Odds ratios (ORs) with 95% confidence intervals (CIs) were calculated using SPSS statistical software to evaluate the strength of association. The p<0.05 were considered statistically significant. Results Statistical analysis revealed significant association between MTHFR rs-2274976 AA variant (OR: 10.00, CI: 3.203-31.225), FASLG rs12079514 AC variant (OR: 0.412, CI: 0.212-0.800), and BRCA2 rs11571833 TT variant OR: 6.233, CI: 3.211-12.101) with male infertility, but there was no significant difference between case and control groups in MTHFR rs1801131 (p= 0.111), GSTM1 rs1192077068 (p=0.272), BRCA2 rs4987117 (p=0.221), and FASLG rs80358238 (p=0.161). Conclusion Our findings suggested that some novel polymorphisms including MTHFR rs2274976, FASLG rs12079514, and BRCA2 rs11571833 might be the possible predisposing risk factors for male infertility in cases with idiopathic azoospermia.
Collapse
Affiliation(s)
- Elham Ghadirkhomi
- Department of Genetics, Faculty of Biological Sciences, North Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Seyed Abdolhamid Angaji
- Department of Cell and Molecular Biology, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
| | - Maryam Khosravi
- Biology Department, Faculty of Bio Sciences, North Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Mohammad Reza Mashayekhi
- Department of Genetics, Faculty of Biological Sciences, Tabriz Branch, Islamic Azad University, Tabriz, Iran
| |
Collapse
|
30
|
Xie C, Wang W, Tu C, Meng L, Lu G, Lin G, Lu LY, Tan YQ. OUP accepted manuscript. Hum Reprod Update 2022; 28:763-797. [PMID: 35613017 DOI: 10.1093/humupd/dmac024] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 04/18/2022] [Indexed: 11/12/2022] Open
Affiliation(s)
- Chunbo Xie
- Institute of Reproduction and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, China
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, China
| | - Weili Wang
- Institute of Reproduction and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, China
| | - Chaofeng Tu
- Institute of Reproduction and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, China
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, China
- NHC Key Laboratory of Human Stem Cell and Reproductive Engineering, Central South University, Changsha, China
- College of Life Sciences, Hunan Normal University, Changsha, China
| | - Lanlan Meng
- Institute of Reproduction and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, China
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, China
| | - Guangxiu Lu
- Institute of Reproduction and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, China
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, China
- NHC Key Laboratory of Human Stem Cell and Reproductive Engineering, Central South University, Changsha, China
- College of Life Sciences, Hunan Normal University, Changsha, China
| | - Ge Lin
- Institute of Reproduction and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, China
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, China
- NHC Key Laboratory of Human Stem Cell and Reproductive Engineering, Central South University, Changsha, China
- College of Life Sciences, Hunan Normal University, Changsha, China
| | - Lin-Yu Lu
- Key Laboratory of Reproductive Genetics (Ministry of Education) and Women's Reproductive Health Laboratory of Zhejiang Province, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Yue-Qiu Tan
- Institute of Reproduction and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, China
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, China
- NHC Key Laboratory of Human Stem Cell and Reproductive Engineering, Central South University, Changsha, China
- College of Life Sciences, Hunan Normal University, Changsha, China
| |
Collapse
|
31
|
Li W, Zhang L, Shinohara A, Keeney S. Editorial: Meiosis: From Molecular Basis to Medicine. Front Cell Dev Biol 2021; 9:812292. [PMID: 34926477 PMCID: PMC8671932 DOI: 10.3389/fcell.2021.812292] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 11/11/2021] [Indexed: 11/25/2022] Open
Affiliation(s)
- Wei Li
- Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China.,State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences (CAS), Beijing, China
| | - Liangran Zhang
- Advanced Medical Research Institute, Shandong University, Jinan, China
| | - Akira Shinohara
- Institute for Protein Research, Osaka University, Suita, Japan
| | - Scott Keeney
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, Howard Hughes Medical Institute, New York, NY, United States
| |
Collapse
|
32
|
Zhang J, Nandakumar J, Shibuya H. BRCA2 in mammalian meiosis. Trends Cell Biol 2021; 32:281-284. [PMID: 34625364 DOI: 10.1016/j.tcb.2021.09.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 09/10/2021] [Accepted: 09/13/2021] [Indexed: 10/20/2022]
Abstract
Breast cancer type 2 susceptibility protein (BRCA2) is a central regulator of homologous recombination in somatic cells and safeguards genomic integrity against DNA double-strand breaks (DSBs). Recent evidence suggests that association with unique meiosis-specific cofactors allows BRCA2 to facilitate homologous recombination in germ cells.
Collapse
Affiliation(s)
- Jingjing Zhang
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg SE-40530, Sweden
| | - Jayakrishnan Nandakumar
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Hiroki Shibuya
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg SE-40530, Sweden.
| |
Collapse
|
33
|
Oji A, Isotani A, Fujihara Y, Castaneda JM, Oura S, Ikawa M. Tesmin, Metallothionein-Like 5, is Required for Spermatogenesis in Mice†. Biol Reprod 2021; 102:975-983. [PMID: 31916570 PMCID: PMC7124961 DOI: 10.1093/biolre/ioaa002] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 09/13/2019] [Accepted: 01/07/2020] [Indexed: 11/12/2022] Open
Abstract
In mammals, more than 2000 genes are specifically or abundantly expressed in testis, but gene knockout studies revealed several are not individually essential for male fertility. Tesmin (Metallothionein-like 5; Mtl5) was originally reported as a testis-specific transcript that encodes a member of the cysteine-rich motif containing metallothionein family. Later studies showed that Tesmin has two splicing variants and both are specifically expressed in male and female germ cells. Herein, we clarified that the long (Tesmin-L) and short (Tesmin-S) transcript forms start expressing from spermatogonia and the spermatocyte stage, respectively, in testis. Furthermore, while Tesmin-deficient female mice are fertile, male mice are infertile due to arrested spermatogenesis at the pachytene stage. We were able to rescue the infertility with a Tesmin-L transgene, where we concluded that TESMIN-L is critical for meiotic completion in spermatogenesis and indispensable for male fertility.
Collapse
Affiliation(s)
- Asami Oji
- Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan.,Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka, Japan
| | - Ayako Isotani
- Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan.,Immunology Frontier Research Center, Osaka University, Suita, Osaka, Japan
| | - Yoshitaka Fujihara
- Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
| | - Julio M Castaneda
- Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
| | - Seiya Oura
- Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan.,Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka, Japan
| | - Masahito Ikawa
- Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan.,Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka, Japan.,Immunology Frontier Research Center, Osaka University, Suita, Osaka, Japan.,The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
34
|
Le HP, Heyer WD, Liu J. Guardians of the Genome: BRCA2 and Its Partners. Genes (Basel) 2021; 12:genes12081229. [PMID: 34440403 PMCID: PMC8394001 DOI: 10.3390/genes12081229] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 08/04/2021] [Accepted: 08/06/2021] [Indexed: 12/28/2022] Open
Abstract
The tumor suppressor BRCA2 functions as a central caretaker of genome stability, and individuals who carry BRCA2 mutations are predisposed to breast, ovarian, and other cancers. Recent research advanced our mechanistic understanding of BRCA2 and its various interaction partners in DNA repair, DNA replication support, and DNA double-strand break repair pathway choice. In this review, we discuss the biochemical and structural properties of BRCA2 and examine how these fundamental properties contribute to DNA repair and replication fork stabilization in living cells. We highlight selected BRCA2 binding partners and discuss their role in BRCA2-mediated homologous recombination and fork protection. Improved mechanistic understanding of how BRCA2 functions in genome stability maintenance can enable experimental evidence-based evaluation of pathogenic BRCA2 mutations and BRCA2 pseudo-revertants to support targeted therapy.
Collapse
Affiliation(s)
- Hang Phuong Le
- Department of Microbiology and Molecular Genetics, University of California, Davis, CA 95616, USA; (H.P.L.); (W.-D.H.)
| | - Wolf-Dietrich Heyer
- Department of Microbiology and Molecular Genetics, University of California, Davis, CA 95616, USA; (H.P.L.); (W.-D.H.)
- Department of Molecular and Cellular Biology, University of California, Davis, CA 95616, USA
| | - Jie Liu
- Department of Microbiology and Molecular Genetics, University of California, Davis, CA 95616, USA; (H.P.L.); (W.-D.H.)
- Correspondence: ; Tel.: +1-530-752-3016
| |
Collapse
|
35
|
Jarysta A, Riou L, Firlej V, Lapoujade C, Kortulewski T, Barroca V, Gille AS, Dumont F, Jacques S, Letourneur F, Rosselli F, Allemand I, Fouchet P. Abnormal migration behavior linked to Rac1 signaling contributes to primordial germ cell exhaustion in Fanconi anemia pathway-deficient Fancg-/- embryos. Hum Mol Genet 2021; 31:97-110. [PMID: 34368842 PMCID: PMC8682768 DOI: 10.1093/hmg/ddab222] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 06/04/2021] [Accepted: 07/05/2021] [Indexed: 11/16/2022] Open
Abstract
Fanconi anemia (FA) is a rare human genetic disorder characterized by bone marrow failure, predisposition to cancer and developmental defects including hypogonadism. Reproductive defects leading to germ cell aplasia are the most consistent phenotypes seen in FA mouse models. We examined the role of the nuclear FA core complex gene Fancg in the development of primordial germ cells (PGCs), the embryonic precursors of adult gametes, during fetal development. PGC maintenance was severely impaired in Fancg−/− embryos. We observed a defect in the number of PGCs starting at E9.5 and a strong attrition at E11.5 and E13.5. Remarkably, we observed a mosaic pattern reflecting a portion of testicular cords devoid of PGCs in E13.5 fetal gonads. Our in vitro and in vivo data highlight a potential role of Fancg in the proliferation and in the intrinsic cell motility abilities of PGCs. The random migratory process is abnormally activated in Fancg−/− PGCs, altering the migration of cells. Increased cell death and PGC attrition observed in E11.5 Fancg−/− embryos are features consistent with delayed migration of PGCs along the migratory pathway to the genital ridges. Moreover, we show that an inhibitor of RAC1 mitigates the abnormal migratory pattern observed in Fancg−/− PGCs.
Collapse
Affiliation(s)
- Amandine Jarysta
- Université de Paris and Université Paris-Saclay, iRCM/IBFJ CEA, UMR Stabilité Génétique Cellules Souches et Radiations, Laboratoire des Cellules Souches Germinales, F-92265, Fontenay-aux-Roses, France
| | - Lydia Riou
- Université de Paris and Université Paris-Saclay, iRCM/IBFJ CEA, UMR Stabilité Génétique Cellules Souches et Radiations, Laboratoire des Cellules Souches Germinales, F-92265, Fontenay-aux-Roses, France
| | - Virginie Firlej
- Université de Paris and Université Paris-Saclay, iRCM/IBFJ CEA, UMR Stabilité Génétique Cellules Souches et Radiations, Laboratoire des Cellules Souches Germinales, F-92265, Fontenay-aux-Roses, France
| | - Clémentine Lapoujade
- Université de Paris and Université Paris-Saclay, iRCM/IBFJ CEA, UMR Stabilité Génétique Cellules Souches et Radiations, Laboratoire des Cellules Souches Germinales, F-92265, Fontenay-aux-Roses, France
| | - Thierry Kortulewski
- Université de Paris and Université Paris-Saclay, Inserm, iRCM/IBFJ CEA, UMR Stabilité Génétique Cellules Souches et Radiations, Laboratoire de RadioPathologie, F-92265, Fontenay-aux-Roses, France
| | - Vilma Barroca
- Université de Paris and Université Paris-Saclay, Inserm, iRCM/IBFJ CEA, UMR Stabilité Génétique Cellules Souches et Radiations, F-92265, Fontenay-aux-Roses, France
| | - Anne-Sophie Gille
- Université de Paris and Université Paris-Saclay, iRCM/IBFJ CEA, UMR Stabilité Génétique Cellules Souches et Radiations, Laboratoire des Cellules Souches Germinales, F-92265, Fontenay-aux-Roses, France.,Département de Génétique, Développement et Cancer. Team From Gametes to Birth, Institut Cochin, INSERM U1016, Paris, France
| | - Florent Dumont
- Université Paris Saclay, UMS IPSIT, F-92296, Châtenay-Malabry, France
| | - Sébastien Jacques
- Plate-Forme Séquençage et Génomique, Institut Cochin, Inserm U1016, Université de Paris, 22 rue Méchain, 75014 Paris, France
| | - Franck Letourneur
- Plate-Forme Séquençage et Génomique, Institut Cochin, Inserm U1016, Université de Paris, 22 rue Méchain, 75014 Paris, France
| | - Filippo Rosselli
- CNRS-UMR9019, Intégrité du Génome et Cancers, Equipe Labellisée « La Ligue Contre Le cancer », Gustave Roussy Cancer Center, Université Paris-Saclay, 94805 Villejuif, France
| | - Isabelle Allemand
- Université de Paris and Université Paris-Saclay, iRCM/IBFJ CEA, UMR Stabilité Génétique Cellules Souches et Radiations, Laboratoire des Cellules Souches Germinales, F-92265, Fontenay-aux-Roses, France
| | - Pierre Fouchet
- Université de Paris and Université Paris-Saclay, iRCM/IBFJ CEA, UMR Stabilité Génétique Cellules Souches et Radiations, Laboratoire des Cellules Souches Germinales, F-92265, Fontenay-aux-Roses, France
| |
Collapse
|
36
|
Ghouil R, Miron S, Koornneef L, Veerman J, Paul MW, Le Du MH, Sleddens-Linkels E, van Rossum-Fikkert SE, van Loon Y, Felipe-Medina N, Pendas AM, Maas A, Essers J, Legrand P, Baarends WM, Kanaar R, Zinn-Justin S, Zelensky AN. BRCA2 binding through a cryptic repeated motif to HSF2BP oligomers does not impact meiotic recombination. Nat Commun 2021; 12:4605. [PMID: 34326328 PMCID: PMC8322138 DOI: 10.1038/s41467-021-24871-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 07/12/2021] [Indexed: 11/09/2022] Open
Abstract
BRCA2 and its interactors are required for meiotic homologous recombination (HR) and fertility. Loss of HSF2BP, a BRCA2 interactor, disrupts HR during spermatogenesis. We test the model postulating that HSF2BP localizes BRCA2 to meiotic HR sites, by solving the crystal structure of the BRCA2 fragment in complex with dimeric armadillo domain (ARM) of HSF2BP and disrupting this interaction in a mouse model. This reveals a repeated 23 amino acid motif in BRCA2, each binding the same conserved surface of one ARM domain. In the complex, two BRCA2 fragments hold together two ARM dimers, through a large interface responsible for the nanomolar affinity - the strongest interaction involving BRCA2 measured so far. Deleting exon 12, encoding the first repeat, from mBrca2 disrupts BRCA2 binding to HSF2BP, but does not phenocopy HSF2BP loss. Thus, results herein suggest that the high-affinity oligomerization-inducing BRCA2-HSF2BP interaction is not required for RAD51 and DMC1 recombinase localization in meiotic HR.
Collapse
Affiliation(s)
- Rania Ghouil
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Uni Paris-Sud, Uni Paris-Saclay, Gif-sur-Yvette, France
| | - Simona Miron
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Uni Paris-Sud, Uni Paris-Saclay, Gif-sur-Yvette, France
| | - Lieke Koornneef
- Department of Developmental Biology, Oncode Institute, Erasmus University Medical Center, 3000 CA, Rotterdam, The Netherlands
| | - Jasper Veerman
- Department of Molecular Genetics, Oncode Institute, Erasmus MC Cancer Institute, Erasmus University Medical Center, 3000 CA, Rotterdam, The Netherlands
| | - Maarten W Paul
- Department of Molecular Genetics, Oncode Institute, Erasmus MC Cancer Institute, Erasmus University Medical Center, 3000 CA, Rotterdam, The Netherlands
| | - Marie-Hélène Le Du
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Uni Paris-Sud, Uni Paris-Saclay, Gif-sur-Yvette, France
| | - Esther Sleddens-Linkels
- Department of Developmental Biology, Erasmus University Medical Center, 3000 CA, Rotterdam, The Netherlands
| | - Sari E van Rossum-Fikkert
- Department of Molecular Genetics, Oncode Institute, Erasmus MC Cancer Institute, Erasmus University Medical Center, 3000 CA, Rotterdam, The Netherlands.,Department of Radiation Oncology, Erasmus University Medical Center, 3000 CA, Rotterdam, The Netherlands
| | - Yvette van Loon
- Department of Molecular Genetics, Oncode Institute, Erasmus MC Cancer Institute, Erasmus University Medical Center, 3000 CA, Rotterdam, The Netherlands
| | - Natalia Felipe-Medina
- Molecular Mechanisms Program, Centro de Investigación del Cáncer and Instituto de Biología Molecular y Celular del Cáncer (CSIC-Universidad de Salamanca), Salamanca, Spain
| | - Alberto M Pendas
- Molecular Mechanisms Program, Centro de Investigación del Cáncer and Instituto de Biología Molecular y Celular del Cáncer (CSIC-Universidad de Salamanca), Salamanca, Spain
| | - Alex Maas
- Department of Cell Biology, Erasmus University Medical Center, 3000 CA, Rotterdam, The Netherlands
| | - Jeroen Essers
- Department of Molecular Genetics, Oncode Institute, Erasmus MC Cancer Institute, Erasmus University Medical Center, 3000 CA, Rotterdam, The Netherlands.,Department of Radiation Oncology, Erasmus University Medical Center, 3000 CA, Rotterdam, The Netherlands.,Department of Vascular Surgery, Erasmus University Medical Center, 3000 CA, Rotterdam, The Netherlands
| | - Pierre Legrand
- Synchrotron SOLEIL, L'Orme des Merisiers, Gif-sur-Yvette, France
| | - Willy M Baarends
- Department of Developmental Biology, Erasmus University Medical Center, 3000 CA, Rotterdam, The Netherlands
| | - Roland Kanaar
- Department of Molecular Genetics, Oncode Institute, Erasmus MC Cancer Institute, Erasmus University Medical Center, 3000 CA, Rotterdam, The Netherlands.
| | - Sophie Zinn-Justin
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Uni Paris-Sud, Uni Paris-Saclay, Gif-sur-Yvette, France.
| | - Alex N Zelensky
- Department of Molecular Genetics, Oncode Institute, Erasmus MC Cancer Institute, Erasmus University Medical Center, 3000 CA, Rotterdam, The Netherlands.
| |
Collapse
|
37
|
Julien M, Ghouil R, Petitalot A, Caputo SM, Carreira A, Zinn-Justin S. Intrinsic Disorder and Phosphorylation in BRCA2 Facilitate Tight Regulation of Multiple Conserved Binding Events. Biomolecules 2021; 11:1060. [PMID: 34356684 PMCID: PMC8301801 DOI: 10.3390/biom11071060] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 07/09/2021] [Accepted: 07/13/2021] [Indexed: 12/26/2022] Open
Abstract
The maintenance of genome integrity in the cell is an essential process for the accurate transmission of the genetic material. BRCA2 participates in this process at several levels, including DNA repair by homologous recombination, protection of stalled replication forks, and cell division. These activities are regulated and coordinated via cell-cycle dependent modifications. Pathogenic variants in BRCA2 cause genome instability and are associated with breast and/or ovarian cancers. BRCA2 is a very large protein of 3418 amino acids. Most well-characterized variants causing a strong predisposition to cancer are mutated in the C-terminal 700 residues DNA binding domain of BRCA2. The rest of the BRCA2 protein is predicted to be disordered. Interactions involving intrinsically disordered regions (IDRs) remain difficult to identify both using bioinformatics tools and performing experimental assays. However, the lack of well-structured binding sites provides unique functional opportunities for BRCA2 to bind to a large set of partners in a tightly regulated manner. We here summarize the predictive and experimental arguments that support the presence of disorder in BRCA2. We describe how BRCA2 IDRs mediate self-assembly and binding to partners during DNA double-strand break repair, mitosis, and meiosis. We highlight how phosphorylation by DNA repair and cell-cycle kinases regulate these interactions. We finally discuss the impact of cancer-associated variants on the function of BRCA2 IDRs and more generally on genome stability and cancer risk.
Collapse
Affiliation(s)
- Manon Julien
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, 91190 Gif-sur-Yvette, France; (M.J.); (R.G.)
- L’Institut de Biologie Intégrative de la Cellule (I2BC), UMR 9198, Paris-Saclay University, 91190 Gif-sur-Yvette, France;
| | - Rania Ghouil
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, 91190 Gif-sur-Yvette, France; (M.J.); (R.G.)
- L’Institut de Biologie Intégrative de la Cellule (I2BC), UMR 9198, Paris-Saclay University, 91190 Gif-sur-Yvette, France;
| | - Ambre Petitalot
- Service de Génétique, Unité de Génétique Constitutionnelle, Institut Curie, 75005 Paris, France; (A.P.); (S.M.C.)
- Institut Curie, Paris Sciences Lettres Research University, 75005 Paris, France
| | - Sandrine M. Caputo
- Service de Génétique, Unité de Génétique Constitutionnelle, Institut Curie, 75005 Paris, France; (A.P.); (S.M.C.)
- Institut Curie, Paris Sciences Lettres Research University, 75005 Paris, France
| | - Aura Carreira
- L’Institut de Biologie Intégrative de la Cellule (I2BC), UMR 9198, Paris-Saclay University, 91190 Gif-sur-Yvette, France;
- Institut Curie, Paris Sciences Lettres Research University, 75005 Paris, France
- Unité Intégrité du Génome, ARN et Cancer, Institut Curie, CNRS UMR3348, 91405 Orsay, France
| | - Sophie Zinn-Justin
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, 91190 Gif-sur-Yvette, France; (M.J.); (R.G.)
- L’Institut de Biologie Intégrative de la Cellule (I2BC), UMR 9198, Paris-Saclay University, 91190 Gif-sur-Yvette, France;
| |
Collapse
|
38
|
Robert N, Yan C, Si-Jiu Y, Bo L, He H, Pengfei Z, Hongwei X, Jian Z, Shijie L, Qian Z. Expression of Rad51 and the histo-morphological evaluation of testis of the sterile male cattle-yak. Theriogenology 2021; 172:239-254. [PMID: 34298284 DOI: 10.1016/j.theriogenology.2021.06.018] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 06/28/2021] [Accepted: 06/29/2021] [Indexed: 11/18/2022]
Abstract
Meiotic recombination is key to the repair of DNA double-strand break damage, provide a link between homologs for proper chromosome segregation as well as ensure genetic diversity in organisms. Defects in recombination often lead to sterility. The ubiquitously expressed Rad51 and the meiosis-specific DMC1 are two closely related recombinases that catalyze the key strand invasion and exchange step of meiotic recombination. This study cloned and sequenced the coding region of cattle-yak Rad51 and determined its mRNA and protein expression levels, evaluated its molecular and evolutionary relationship as well as evaluated the histo-morphological structure of testes in the yellow cattle, yak and the sterile cattle-yak hybrid. The Rad51 gene was amplified using PCR, cloned and sequenced using testicular cDNA from yak and cattle-yak. Real-time PCR was used to examine the expression levels of Rad51/DMC1 mRNA in the cattle, yak and cattle-yak testis while western blotting, immunofluorescence and immunohistochemistry were used to assess the protein expression and localization of Rad51/DMC1 protein in the testicular tissue sections. The results revealed that the mRNA and protein expression of Rad51 and DMC1 are extremely low in the male cattle-yak testis with a corresponding higher incidence of germ cell apoptosis. There was also thinning of the germinal epithelium possibly due to the depletion of the germ cells leading to the widening of the lumen area of the cattle-yak seminiferous tubule. Our findings provide support for the hypothesis that the low expression of Rad51 and DMC1 may contribute to the male hybrid sterility in the cattle-yak.
Collapse
Affiliation(s)
- Niayale Robert
- Laboratory of Animal Anatomy & Tissue Embryology, Department of Basic Veterinary Medicine, Faculty of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| | - Cui Yan
- Laboratory of Animal Anatomy & Tissue Embryology, Department of Basic Veterinary Medicine, Faculty of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China; Gansu Province Livestock Embryo Engineering Research Center, Department of Clinical Veterinary Medicine, Faculty of Veterinary Medicine Gansu Agricultural University, Lanzhou, China.
| | - Yu Si-Jiu
- Gansu Province Livestock Embryo Engineering Research Center, Department of Clinical Veterinary Medicine, Faculty of Veterinary Medicine Gansu Agricultural University, Lanzhou, China
| | - Liao Bo
- Laboratory of Animal Anatomy & Tissue Embryology, Department of Basic Veterinary Medicine, Faculty of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| | - Honghong He
- Gansu Province Livestock Embryo Engineering Research Center, Department of Clinical Veterinary Medicine, Faculty of Veterinary Medicine Gansu Agricultural University, Lanzhou, China
| | - Zhao Pengfei
- Laboratory of Animal Anatomy & Tissue Embryology, Department of Basic Veterinary Medicine, Faculty of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| | - Xu Hongwei
- Laboratory of Animal Anatomy & Tissue Embryology, Department of Basic Veterinary Medicine, Faculty of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| | - Zhang Jian
- Laboratory of Animal Anatomy & Tissue Embryology, Department of Basic Veterinary Medicine, Faculty of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| | - Li Shijie
- Laboratory of Animal Anatomy & Tissue Embryology, Department of Basic Veterinary Medicine, Faculty of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| | - Zhang Qian
- Laboratory of Animal Anatomy & Tissue Embryology, Department of Basic Veterinary Medicine, Faculty of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| |
Collapse
|
39
|
Gòdia M, Casellas J, Ruiz-Herrera A, Rodríguez-Gil JE, Castelló A, Sánchez A, Clop A. Whole genome sequencing identifies allelic ratio distortion in sperm involving genes related to spermatogenesis in a swine model. DNA Res 2021; 27:5906030. [PMID: 32931559 PMCID: PMC7750926 DOI: 10.1093/dnares/dsaa019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 09/02/2020] [Indexed: 12/28/2022] Open
Abstract
Transmission Ratio Distortion (TRD), the uneven transmission of an allele from a parent to its offspring, can be caused by allelic differences affecting gametogenesis, fertilization or embryogenesis. However, TRD remains vaguely studied at a genomic scale. We sequenced the diploid and haploid genomes of three boars from leukocytes and spermatozoa at 50x to shed light into the genetic basis of spermatogenesis-caused Allelic Ratio Distortion (ARD). We first developed a Binomial model to identify ARD by simultaneously analysing all three males. This led to the identification of 55 ARD SNPs, most of which were animal-specific. We then evaluated ARD individually within each pig by a Fisher’s exact test and identified two shared genes (TOP3A and UNC5B) and four shared genomic regions harbouring distinct ARD SNPs in the three boars. The shared genomic regions contained candidate genes with functions related to spermatogenesis including AK7, ARID4B, BDKRB2, GSK3B, NID1, NSMCE1, PALB2, VRK1 and ZC3H13. Using the Fisher’s test, we also identified 378 genes containing variants with protein damaging potential in at least one boar, a high proportion of which, including FAM120B, TDRD15, JAM2 or AOX4 among others, are associated to spermatogenesis. Overall, our results show that sperm is subjected to ARD with variants associated to a wide variety of genes involved in different stages of spermatogenesis.
Collapse
Affiliation(s)
- Marta Gòdia
- Center for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB, Cerdanyola del Vallès, Catalonia 08193, Spain
| | - Joaquim Casellas
- Department of Animal and Food Sciences, Autonomous University of Barcelona, Cerdanyola del Vallès, Catalonia 08193, Spain
| | - Aurora Ruiz-Herrera
- Departament de Biologia Cel.lular, Fisiologia i Immunologia, Autonomous University of Barcelona, Cerdanyola del Vallès, Catalonia 08193, Spain.,Genome Integrity and Instability Group, Institut de Biotecnologia i Biomedicina (IBB), Autonomous University of Barcelona, Cerdanyola del Vallès, Catalonia 08193, Spain
| | - Joan E Rodríguez-Gil
- Unit of Animal Reproduction, Department of Animal Medicine and Surgery, Autonomous University of Barcelona, Cerdanyola del Vallès, Catalonia 08193, Spain
| | - Anna Castelló
- Center for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB, Cerdanyola del Vallès, Catalonia 08193, Spain.,Department of Animal and Food Sciences, Autonomous University of Barcelona, Cerdanyola del Vallès, Catalonia 08193, Spain
| | - Armand Sánchez
- Center for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB, Cerdanyola del Vallès, Catalonia 08193, Spain.,Department of Animal and Food Sciences, Autonomous University of Barcelona, Cerdanyola del Vallès, Catalonia 08193, Spain
| | - Alex Clop
- Center for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB, Cerdanyola del Vallès, Catalonia 08193, Spain.,Consejo Superior de Investigaciones Científicas (CSIC), Barcelona, Catalonia 08003, Spain
| |
Collapse
|
40
|
Mhaskar AN, Koornneef L, Zelensky AN, Houtsmuller AB, Baarends WM. High Resolution View on the Regulation of Recombinase Accumulation in Mammalian Meiosis. Front Cell Dev Biol 2021; 9:672191. [PMID: 34109178 PMCID: PMC8181746 DOI: 10.3389/fcell.2021.672191] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 04/19/2021] [Indexed: 11/19/2022] Open
Abstract
A distinguishing feature of meiotic DNA double-strand breaks (DSBs), compared to DSBs in somatic cells, is the fact that they are induced in a programmed and specifically orchestrated manner, which includes chromatin remodeling prior to DSB induction. In addition, the meiotic homologous recombination (HR) repair process that follows, is different from HR repair of accidental DSBs in somatic cells. For instance, meiotic HR involves preferred use of the homolog instead of the sister chromatid as a repair template and subsequent formation of crossovers and non-crossovers in a tightly regulated manner. An important outcome of this distinct repair pathway is the pairing of homologous chromosomes. Central to the initial steps in homology recognition during meiotic HR is the cooperation between the strand exchange proteins (recombinases) RAD51 and its meiosis-specific paralog DMC1. Despite our understanding of their enzymatic activity, details on the regulation of their assembly and subsequent molecular organization at meiotic DSBs in mammals have remained largely enigmatic. In this review, we summarize recent mouse data on recombinase regulation via meiosis-specific factors. Also, we reflect on bulk “omics” studies of initial meiotic DSB processing, compare these with studies using super-resolution microscopy in single cells, at single DSB sites, and explore the implications of these findings for our understanding of the molecular mechanisms underlying meiotic HR regulation.
Collapse
Affiliation(s)
- Aditya N Mhaskar
- Department of Developmental Biology, Erasmus MC, Rotterdam, Netherlands
| | - Lieke Koornneef
- Department of Developmental Biology, Erasmus MC, Rotterdam, Netherlands.,Oncode Institute, Utrecht, Netherlands
| | - Alex N Zelensky
- Department of Molecular Genetics, Erasmus MC, Rotterdam, Netherlands
| | - Adriaan B Houtsmuller
- Erasmus Optical Imaging Centre, Department of Pathology, Erasmus MC, Rotterdam, Netherlands.,Department of Pathology, Erasmus MC, Rotterdam, Netherlands
| | - Willy M Baarends
- Department of Developmental Biology, Erasmus MC, Rotterdam, Netherlands
| |
Collapse
|
41
|
Takemoto K, Tani N, Takada-Horisawa Y, Fujimura S, Tanno N, Yamane M, Okamura K, Sugimoto M, Araki K, Ishiguro KI. Meiosis-Specific C19orf57/4930432K21Rik/BRME1 Modulates Localization of RAD51 and DMC1 to DSBs in Mouse Meiotic Recombination. Cell Rep 2021; 31:107686. [PMID: 32460033 DOI: 10.1016/j.celrep.2020.107686] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 04/16/2020] [Accepted: 05/04/2020] [Indexed: 10/24/2022] Open
Abstract
Meiotic recombination is critical for genetic exchange and generation of chiasmata that ensures faithful chromosome segregation during meiosis I. Meiotic recombination is initiated by DNA double-strand break (DSB) followed by multiple processes of DNA repair. The exact mechanisms for how recombinases localize to DSB remain elusive. Here, we show that C19orf57/4930432K21Rik/BRME1 is a player for meiotic recombination in mice. C19orf57/4930432K21Rik/BRME1 associates with single-stranded DNA (ssDNA) binding proteins, BRCA2 and MEILB2/HSF2BP, which are critical recruiters of recombinases onto DSB sites. Disruption of C19orf57/4930432K21Rik/BRME1 shows severe impact on DSB repair and male fertility. Remarkably, removal of ssDNA binding proteins from DSB sites is delayed, and reciprocally, the loading of RAD51 and DMC1 onto resected ssDNA is impaired in Brme1 knockout (KO) spermatocytes. We propose that C19orf57/4930432K21Rik/BRME1 modulates localization of recombinases to meiotic DSB sites through the interaction with the BRCA2-MEILB2/HSF2BP complex during meiotic recombination.
Collapse
Affiliation(s)
- Kazumasa Takemoto
- Department of Chromosome Biology, Institute of Molecular Embryology and Genetics (IMEG), Kumamoto University, Kumamoto 860-0811, Japan; Institute of Resource Development and Analysis, Kumamoto University, Kumamoto 860-0811, Japan
| | - Naoki Tani
- Liaison Laboratory Research Promotion Center, IMEG, Kumamoto University, Kumamoto 860-0811, Japan
| | - Yuki Takada-Horisawa
- Department of Chromosome Biology, Institute of Molecular Embryology and Genetics (IMEG), Kumamoto University, Kumamoto 860-0811, Japan
| | - Sayoko Fujimura
- Liaison Laboratory Research Promotion Center, IMEG, Kumamoto University, Kumamoto 860-0811, Japan
| | - Nobuhiro Tanno
- Department of Chromosome Biology, Institute of Molecular Embryology and Genetics (IMEG), Kumamoto University, Kumamoto 860-0811, Japan
| | - Mariko Yamane
- RIKEN, Center for Biosystems Dynamics Research, Kobe 650-0047, Japan
| | - Kaho Okamura
- Department of Chromosome Biology, Institute of Molecular Embryology and Genetics (IMEG), Kumamoto University, Kumamoto 860-0811, Japan
| | - Michihiko Sugimoto
- Institute of Resource Development and Analysis, Kumamoto University, Kumamoto 860-0811, Japan
| | - Kimi Araki
- Institute of Resource Development and Analysis, Kumamoto University, Kumamoto 860-0811, Japan; Center for Metabolic Regulation of Healthy Aging, Kumamoto University, Kumamoto 860-0811, Japan
| | - Kei-Ichiro Ishiguro
- Department of Chromosome Biology, Institute of Molecular Embryology and Genetics (IMEG), Kumamoto University, Kumamoto 860-0811, Japan.
| |
Collapse
|
42
|
Li Q, Engebrecht J. BRCA1 and BRCA2 Tumor Suppressor Function in Meiosis. Front Cell Dev Biol 2021; 9:668309. [PMID: 33996823 PMCID: PMC8121103 DOI: 10.3389/fcell.2021.668309] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 03/19/2021] [Indexed: 12/12/2022] Open
Abstract
Meiosis is a specialized cell cycle that results in the production of haploid gametes for sexual reproduction. During meiosis, homologous chromosomes are connected by chiasmata, the physical manifestation of crossovers. Crossovers are formed by the repair of intentionally induced double strand breaks by homologous recombination and facilitate chromosome alignment on the meiotic spindle and proper chromosome segregation. While it is well established that the tumor suppressors BRCA1 and BRCA2 function in DNA repair and homologous recombination in somatic cells, the functions of BRCA1 and BRCA2 in meiosis have received less attention. Recent studies in both mice and the nematode Caenorhabditis elegans have provided insight into the roles of these tumor suppressors in a number of meiotic processes, revealing both conserved and organism-specific functions. BRCA1 forms an E3 ubiquitin ligase as a heterodimer with BARD1 and appears to have regulatory roles in a number of key meiotic processes. BRCA2 is a very large protein that plays an intimate role in homologous recombination. As women with no indication of cancer but carrying BRCA mutations show decreased ovarian reserve and accumulated oocyte DNA damage, studies in these systems may provide insight into why BRCA mutations impact reproductive success in addition to their established roles in cancer.
Collapse
Affiliation(s)
- Qianyan Li
- Department of Molecular and Cellular Biology, and Biochemistry, Molecular, Cellular and Developmental Biology Graduate Group, University of California, Davis, Davis, CA, United States
| | - JoAnne Engebrecht
- Department of Molecular and Cellular Biology, and Biochemistry, Molecular, Cellular and Developmental Biology Graduate Group, University of California, Davis, Davis, CA, United States
| |
Collapse
|
43
|
Ding X, Schimenti JC. Strategies to Identify Genetic Variants Causing Infertility. Trends Mol Med 2021; 27:792-806. [PMID: 33431240 DOI: 10.1016/j.molmed.2020.12.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Revised: 11/26/2020] [Accepted: 12/11/2020] [Indexed: 12/19/2022]
Abstract
Genetic causes are thought to underlie about half of infertility cases, but understanding the genetic bases has been a major challenge. Modern genomics tools allow more sophisticated exploration of genetic causes of infertility through population, family-based, and individual studies. Nevertheless, potential therapies based on genetic diagnostics will be limited until there is certainty regarding the causality of genetic variants identified in an individual. Genome modulation and editing technologies have revolutionized our ability to functionally test such variants, and also provide a potential means for clinical correction of infertility variants. This review addresses strategies being used to identify causative variants of infertility.
Collapse
Affiliation(s)
- Xinbao Ding
- Cornell University, College of Veterinary Medicine, Department of Biomedical Sciences, Ithaca, NY 14853, USA
| | - John C Schimenti
- Cornell University, College of Veterinary Medicine, Department of Biomedical Sciences, Ithaca, NY 14853, USA.
| |
Collapse
|
44
|
Yoshikawa Y, Kozuma H, Morimatsu M, Sugawara K, Orino K. Reduced translation efficiency due to novel splicing variants in 5' untranslated region and identification of novel cis-regulatory elements in canine and human BRCA2. BMC Mol Cell Biol 2021; 22:2. [PMID: 33407082 PMCID: PMC7788759 DOI: 10.1186/s12860-020-00336-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 12/08/2020] [Indexed: 12/22/2022] Open
Abstract
Background Breast cancer 2, early onset (BRCA2) is a tumor suppressor gene. The protein encoded by this gene plays an important role in homologous recombination (HR)-mediated DNA repair. Deleterious mutations in BRCA2 and downregulation of its expression have been associated with tumorigenesis in dogs and humans. Thus, regulation of BRCA2 expression level is important for maintaining homeostasis in homologous recombination. Results In this study, the mechanisms that regulate the expression of BRCA2 were proposed. Novel splicing variants were identified in the 5′ untranslated region (UTR) of canine and human BRCA2 in canine testis, canine ovary, and canine and human cultured cell lines. In cultured cells, the ratio of BRCA2 splicing variants at the 5′ UTR was altered by serum starvation. These novel splicing variants, excluding one of the canine splicing variants, were found to reduce the translational efficiency. Additionally, the DNA sequence in human BRCA2 intron 1 harbored novel cis-regulatory elements. Three silencer and two enhancer cis-regulatory elements were identified in human BRCA2 intron 1. Conclusions This study demonstrates that BRCA2 expression level is regulated via 5′ UTR splicing variants and that the BRCA2 intron 1 region harbors cis-regulatory elements.
Collapse
Affiliation(s)
- Yasunaga Yoshikawa
- Laboratory of Veterinary Biochemistry, School of Veterinary Medicine, Kitasato University, Aomori, 034-8628, Japan.
| | - Hajime Kozuma
- Laboratory of Veterinary Biochemistry, School of Veterinary Medicine, Kitasato University, Aomori, 034-8628, Japan
| | - Masami Morimatsu
- Laboratory of Laboratory Animal Science and Medicine, Department of Disease Control, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, 060-0818, Japan
| | - Kaori Sugawara
- Laboratory of Veterinary Biochemistry, School of Veterinary Medicine, Kitasato University, Aomori, 034-8628, Japan
| | - Koichi Orino
- Laboratory of Veterinary Biochemistry, School of Veterinary Medicine, Kitasato University, Aomori, 034-8628, Japan
| |
Collapse
|
45
|
Fu R, Wang C, Shen H, Zhang J, Higgins JD, Liang W. Rice OsBRCA2 Is Required for DNA Double-Strand Break Repair in Meiotic Cells. FRONTIERS IN PLANT SCIENCE 2020; 11:600820. [PMID: 33304374 PMCID: PMC7701097 DOI: 10.3389/fpls.2020.600820] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 10/27/2020] [Indexed: 06/06/2023]
Abstract
The mammalian BREAST CANCER 2 (BRCA2) gene is a tumor suppressor that plays a crucial role in DNA repair and homologous recombination (HR). Here, we report the identification and characterization of OsBRCA2, the rice orthologue of human BRCA2. Osbrca2 mutant plants exhibit normal vegetative growth but experience complete male and female sterility as a consequence of severe meiotic defects. Pairing, synapsis and recombination are impaired in osbrca2 male meiocytes, leading to chromosome entanglements and fragmentation. In the absence of OsBRCA2, localization to the meiotic chromosome axes of the strand-invasion proteins OsRAD51 and OsDMC1 is severely reduced and in vitro OsBRCA2 directly interacts with OsRAD51 and OsDMC1. These results indicate that OsBRCA2 is essential for facilitating the loading of OsRAD51 and OsDMC1 onto resected ends of programmed double-strand breaks (DSB) during meiosis to promote single-end invasions of homologous chromosomes and accurate recombination. In addition, treatment of osbrca2-1 seedlings with mitomycin C (MMC) led to hypersensitivity. As MMC is a genotoxic agent that creates DNA lesions in the somatic cells that can only be repaired by HR, these results suggest that OsBRCA2 has a conserved role in DSB repair and HR in rice.
Collapse
Affiliation(s)
- Ruifeng Fu
- Joint International Research Laboratory of Metabolic & Developmental Sciences, Shanghai Jiao Tong University–University of Adelaide Joint Centre for Agriculture and Health, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Chong Wang
- Joint International Research Laboratory of Metabolic & Developmental Sciences, Shanghai Jiao Tong University–University of Adelaide Joint Centre for Agriculture and Health, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Hongyu Shen
- Joint International Research Laboratory of Metabolic & Developmental Sciences, Shanghai Jiao Tong University–University of Adelaide Joint Centre for Agriculture and Health, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Jie Zhang
- Joint International Research Laboratory of Metabolic & Developmental Sciences, Shanghai Jiao Tong University–University of Adelaide Joint Centre for Agriculture and Health, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - James D. Higgins
- Department of Genetics and Genome Biology, University of Leicester,Leicester, United Kingdom
| | - Wanqi Liang
- Joint International Research Laboratory of Metabolic & Developmental Sciences, Shanghai Jiao Tong University–University of Adelaide Joint Centre for Agriculture and Health, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
46
|
Shang Y, Huang T, Liu H, Liu Y, Liang H, Yu X, Li M, Zhai B, Yang X, Wei Y, Wang G, Chen Z, Wang S, Zhang L. MEIOK21: a new component of meiotic recombination bridges required for spermatogenesis. Nucleic Acids Res 2020; 48:6624-6639. [PMID: 32463460 PMCID: PMC7337969 DOI: 10.1093/nar/gkaa406] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Revised: 05/02/2020] [Accepted: 05/06/2020] [Indexed: 12/11/2022] Open
Abstract
Repair of DNA double-strand breaks (DSBs) with homologous chromosomes is a hallmark of meiosis that is mediated by recombination ‘bridges’ between homolog axes. This process requires cooperation of DMC1 and RAD51 to promote homology search and strand exchange. The mechanism(s) regulating DMC1/RAD51-ssDNA nucleoprotein filament and the components of ‘bridges’ remain to be investigated. Here we show that MEIOK21 is a newly identified component of meiotic recombination bridges and is required for efficient formation of DMC1/RAD51 foci. MEIOK21 dynamically localizes on chromosomes from on-axis foci to ‘hanging foci’, then to ‘bridges’, and finally to ‘fused foci’ between homolog axes. Its chromosome localization depends on DSBs. Knockout of Meiok21 decreases the numbers of HSF2BP and DMC1/RAD51 foci, disrupting DSB repair, synapsis and crossover recombination and finally causing male infertility. Therefore, MEIOK21 is a novel recombination factor and probably mediates DMC1/RAD51 recruitment to ssDNA or their stability on chromosomes through physical interaction with HSF2BP.
Collapse
Affiliation(s)
- Yongliang Shang
- Center for Reproductive Medicine, School of Medicine, Cheeloo College of Medicine, Shandong University, National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong Provincial Clinical Medicine Research Center for Reproductive Health, Jinan, Shandong 250012, China
| | - Tao Huang
- Center for Reproductive Medicine, School of Medicine, Cheeloo College of Medicine, Shandong University, National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong Provincial Clinical Medicine Research Center for Reproductive Health, Jinan, Shandong 250012, China
| | - Hongbin Liu
- Center for Reproductive Medicine, School of Medicine, Cheeloo College of Medicine, Shandong University, National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong Provincial Clinical Medicine Research Center for Reproductive Health, Jinan, Shandong 250012, China
| | - Yanlei Liu
- Center for Reproductive Medicine, School of Medicine, Cheeloo College of Medicine, Shandong University, National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong Provincial Clinical Medicine Research Center for Reproductive Health, Jinan, Shandong 250012, China
| | - Heng Liang
- Center for Reproductive Medicine, School of Medicine, Cheeloo College of Medicine, Shandong University, National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong Provincial Clinical Medicine Research Center for Reproductive Health, Jinan, Shandong 250012, China
| | - Xiaoxia Yu
- Center for Reproductive Medicine, School of Medicine, Cheeloo College of Medicine, Shandong University, National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong Provincial Clinical Medicine Research Center for Reproductive Health, Jinan, Shandong 250012, China
| | - Mengjing Li
- Center for Reproductive Medicine, School of Medicine, Cheeloo College of Medicine, Shandong University, National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong Provincial Clinical Medicine Research Center for Reproductive Health, Jinan, Shandong 250012, China
| | - Binyuan Zhai
- Center for Reproductive Medicine, School of Medicine, Cheeloo College of Medicine, Shandong University, National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong Provincial Clinical Medicine Research Center for Reproductive Health, Jinan, Shandong 250012, China.,Advanced Medical Research Institute, Shandong University, Jinan, Shandong 250014, China
| | - Xiao Yang
- Center for Reproductive Medicine, School of Medicine, Cheeloo College of Medicine, Shandong University, National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong Provincial Clinical Medicine Research Center for Reproductive Health, Jinan, Shandong 250012, China
| | - Yudong Wei
- Center for Reproductive Medicine, School of Medicine, Cheeloo College of Medicine, Shandong University, National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong Provincial Clinical Medicine Research Center for Reproductive Health, Jinan, Shandong 250012, China
| | - Guoqiang Wang
- Center for Reproductive Medicine, School of Medicine, Cheeloo College of Medicine, Shandong University, National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong Provincial Clinical Medicine Research Center for Reproductive Health, Jinan, Shandong 250012, China
| | - Zijiang Chen
- Center for Reproductive Medicine, School of Medicine, Cheeloo College of Medicine, Shandong University, National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong Provincial Clinical Medicine Research Center for Reproductive Health, Jinan, Shandong 250012, China
| | - Shunxin Wang
- Center for Reproductive Medicine, School of Medicine, Cheeloo College of Medicine, Shandong University, National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong Provincial Clinical Medicine Research Center for Reproductive Health, Jinan, Shandong 250012, China
| | - Liangran Zhang
- Center for Reproductive Medicine, School of Medicine, Cheeloo College of Medicine, Shandong University, National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong Provincial Clinical Medicine Research Center for Reproductive Health, Jinan, Shandong 250012, China.,Advanced Medical Research Institute, Shandong University, Jinan, Shandong 250014, China.,State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| |
Collapse
|
47
|
Abstract
Primary ovarian insufficiency (POI) is an uncommon yet devastating occurrence that results from a premature depletion of the ovarian pool of primordial follicles. Our understanding of both putative and plausible mechanisms underlying POI, previously considered to be largely "idiopathic", has been furthered over the past several years, largely due to advances in the field of genetics and through expansion of translational models for experimental research. In this review, our goal is to familiarize the multidisciplinary readers of the F1000 platform with the strides made in the field of reproductive medicine that hold both preventative and therapeutic implications for those women who are at risk for or who have POI.
Collapse
Affiliation(s)
- Victoria Wesevich
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale School of Medicine, New Haven, CT, USA
| | - Amanada N Kellen
- Division of Reproductive Endocrinology and Infertility, Department of Obstetrics, Gynecology and Reproductive Sciences, Yale School of Medicine, New Haven, CT, USA
| | - Lubna Pal
- Division of Reproductive Endocrinology and Infertility, Department of Obstetrics, Gynecology and Reproductive Sciences, Yale School of Medicine, New Haven, CT, USA
| |
Collapse
|
48
|
Felipe-Medina N, Caburet S, Sánchez-Sáez F, Condezo YB, de Rooij DG, Gómez-H L, Garcia-Valiente R, Todeschini AL, Duque P, Sánchez-Martin MA, Shalev SA, Llano E, Veitia RA, Pendás AM. A missense in HSF2BP causing primary ovarian insufficiency affects meiotic recombination by its novel interactor C19ORF57/BRME1. eLife 2020; 9:e56996. [PMID: 32845237 PMCID: PMC7498267 DOI: 10.7554/elife.56996] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Accepted: 08/26/2020] [Indexed: 12/17/2022] Open
Abstract
Primary Ovarian Insufficiency (POI) is a major cause of infertility, but its etiology remains poorly understood. Using whole-exome sequencing in a family with three cases of POI, we identified the candidate missense variant S167L in HSF2BP, an essential meiotic gene. Functional analysis of the HSF2BP-S167L variant in mouse showed that it behaves as a hypomorphic allele compared to a new loss-of-function (knock-out) mouse model. Hsf2bpS167L/S167L females show reduced fertility with smaller litter sizes. To obtain mechanistic insights, we identified C19ORF57/BRME1 as a strong interactor and stabilizer of HSF2BP and showed that the BRME1/HSF2BP protein complex co-immunoprecipitates with BRCA2, RAD51, RPA and PALB2. Meiocytes bearing the HSF2BP-S167L variant showed a strongly decreased staining of both HSF2BP and BRME1 at the recombination nodules and a reduced number of the foci formed by the recombinases RAD51/DMC1, thus leading to a lower frequency of crossovers. Our results provide insights into the molecular mechanism of HSF2BP-S167L in human ovarian insufficiency and sub(in)fertility.
Collapse
Affiliation(s)
- Natalia Felipe-Medina
- Molecular Mechanisms Program, Centro de Investigación del Cáncer and Instituto de Biología Molecular y Celular del Cáncer (CSIC-Universidad de Salamanca)SalamancaSpain
| | - Sandrine Caburet
- Université de ParisParis CedexFrance
- Institut Jacques Monod, Université de ParisParisFrance
| | - Fernando Sánchez-Sáez
- Molecular Mechanisms Program, Centro de Investigación del Cáncer and Instituto de Biología Molecular y Celular del Cáncer (CSIC-Universidad de Salamanca)SalamancaSpain
| | - Yazmine B Condezo
- Molecular Mechanisms Program, Centro de Investigación del Cáncer and Instituto de Biología Molecular y Celular del Cáncer (CSIC-Universidad de Salamanca)SalamancaSpain
| | - Dirk G de Rooij
- Reproductive Biology Group, Division of Developmental Biology, Department of Biology, Faculty of Science, Utrecht UniversityUtrechtNetherlands
| | - Laura Gómez-H
- Molecular Mechanisms Program, Centro de Investigación del Cáncer and Instituto de Biología Molecular y Celular del Cáncer (CSIC-Universidad de Salamanca)SalamancaSpain
| | - Rodrigo Garcia-Valiente
- Molecular Mechanisms Program, Centro de Investigación del Cáncer and Instituto de Biología Molecular y Celular del Cáncer (CSIC-Universidad de Salamanca)SalamancaSpain
| | - Anne Laure Todeschini
- Université de ParisParis CedexFrance
- Institut Jacques Monod, Université de ParisParisFrance
| | - Paloma Duque
- Molecular Mechanisms Program, Centro de Investigación del Cáncer and Instituto de Biología Molecular y Celular del Cáncer (CSIC-Universidad de Salamanca)SalamancaSpain
| | - Manuel Adolfo Sánchez-Martin
- Transgenic Facility, Nucleus platform, Universidad de SalamancaSalamancaSpain
- Departamento de Medicina, Universidad de SalamancaSalamancaSpain
| | - Stavit A Shalev
- The Genetic Institute, "Emek" Medical CenterAfulaIsrael
- Bruce and Ruth Rappaport Faculty of Medicine, TechnionHaifaIsrael
| | - Elena Llano
- Molecular Mechanisms Program, Centro de Investigación del Cáncer and Instituto de Biología Molecular y Celular del Cáncer (CSIC-Universidad de Salamanca)SalamancaSpain
- Departamento de Fisiología y Farmacología, Universidad de SalamancaSalamancaSpain
| | - Reiner A Veitia
- Université de ParisParis CedexFrance
- Institut Jacques Monod, Université de ParisParisFrance
- Université Paris-Saclay, Institut de Biologie F. Jacob, Commissariat à l’Energie AtomiqueFontenay aux RosesFrance
| | - Alberto M Pendás
- Molecular Mechanisms Program, Centro de Investigación del Cáncer and Instituto de Biología Molecular y Celular del Cáncer (CSIC-Universidad de Salamanca)SalamancaSpain
| |
Collapse
|
49
|
Brandsma I, Sato K, van Rossum-Fikkert SE, van Vliet N, Sleddens E, Reuter M, Odijk H, van den Tempel N, Dekkers DHW, Bezstarosti K, Demmers JAA, Maas A, Lebbink J, Wyman C, Essers J, van Gent DC, Baarends WM, Knipscheer P, Kanaar R, Zelensky AN. HSF2BP Interacts with a Conserved Domain of BRCA2 and Is Required for Mouse Spermatogenesis. Cell Rep 2020; 27:3790-3798.e7. [PMID: 31242413 DOI: 10.1016/j.celrep.2019.05.096] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 05/01/2019] [Accepted: 05/23/2019] [Indexed: 12/19/2022] Open
Abstract
The tumor suppressor BRCA2 is essential for homologous recombination (HR), replication fork stability, and DNA interstrand crosslink repair in vertebrates. We identify HSF2BP, a protein previously described as testis specific and not characterized functionally, as an interactor of BRCA2 in mouse embryonic stem cells, where the 2 proteins form a constitutive complex. HSF2BP is transcribed in all cultured human cancer cell lines tested and elevated in some tumor samples. Inactivation of the mouse Hsf2bp gene results in male infertility due to a severe HR defect during spermatogenesis. The BRCA2-HSF2BP interaction is highly evolutionarily conserved and maps to armadillo repeats in HSF2BP and a 68-amino acid region between the BRC repeats and the DNA binding domain of human BRCA2 (Gly2270-Thr2337) encoded by exons 12 and 13. This region of BRCA2 does not harbor known cancer-associated missense mutations and may be involved in the reproductive rather than the tumor-suppressing function of BRCA2.
Collapse
Affiliation(s)
- Inger Brandsma
- Department of Molecular Genetics, Oncode Institute, Erasmus University Medical Center, 3000 CA Rotterdam, the Netherlands
| | - Koichi Sato
- Oncode Institute, Hubrecht Institute-KNAW and University Medical Center Utrecht, 3584 CT Utrecht, the Netherlands
| | - Sari E van Rossum-Fikkert
- Department of Molecular Genetics, Oncode Institute, Erasmus University Medical Center, 3000 CA Rotterdam, the Netherlands; Department of Radiation Oncology, Erasmus University Medical Center, 3000 CA Rotterdam, the Netherlands
| | - Nicole van Vliet
- Department of Molecular Genetics, Oncode Institute, Erasmus University Medical Center, 3000 CA Rotterdam, the Netherlands
| | - Esther Sleddens
- Department of Developmental Biology, Erasmus University Medical Center, 3000 CA Rotterdam, the Netherlands
| | - Marcel Reuter
- Department of Molecular Genetics, Oncode Institute, Erasmus University Medical Center, 3000 CA Rotterdam, the Netherlands
| | - Hanny Odijk
- Department of Molecular Genetics, Oncode Institute, Erasmus University Medical Center, 3000 CA Rotterdam, the Netherlands
| | - Nathalie van den Tempel
- Department of Molecular Genetics, Oncode Institute, Erasmus University Medical Center, 3000 CA Rotterdam, the Netherlands
| | - Dick H W Dekkers
- Proteomics Center, Erasmus University Medical Center, 3000 CA Rotterdam, the Netherlands
| | - Karel Bezstarosti
- Proteomics Center, Erasmus University Medical Center, 3000 CA Rotterdam, the Netherlands
| | - Jeroen A A Demmers
- Proteomics Center, Erasmus University Medical Center, 3000 CA Rotterdam, the Netherlands
| | - Alex Maas
- Department of Cell Biology, Erasmus University Medical Center, 3000 CA Rotterdam, the Netherlands
| | - Joyce Lebbink
- Department of Molecular Genetics, Oncode Institute, Erasmus University Medical Center, 3000 CA Rotterdam, the Netherlands; Department of Radiation Oncology, Erasmus University Medical Center, 3000 CA Rotterdam, the Netherlands
| | - Claire Wyman
- Department of Molecular Genetics, Oncode Institute, Erasmus University Medical Center, 3000 CA Rotterdam, the Netherlands; Department of Radiation Oncology, Erasmus University Medical Center, 3000 CA Rotterdam, the Netherlands
| | - Jeroen Essers
- Department of Molecular Genetics, Oncode Institute, Erasmus University Medical Center, 3000 CA Rotterdam, the Netherlands; Department of Radiation Oncology, Erasmus University Medical Center, 3000 CA Rotterdam, the Netherlands; Department of Vascular Surgery, Erasmus University Medical Center, 3000 CA Rotterdam, the Netherlands
| | - Dik C van Gent
- Department of Molecular Genetics, Oncode Institute, Erasmus University Medical Center, 3000 CA Rotterdam, the Netherlands
| | - Willy M Baarends
- Department of Developmental Biology, Erasmus University Medical Center, 3000 CA Rotterdam, the Netherlands
| | - Puck Knipscheer
- Oncode Institute, Hubrecht Institute-KNAW and University Medical Center Utrecht, 3584 CT Utrecht, the Netherlands.
| | - Roland Kanaar
- Department of Molecular Genetics, Oncode Institute, Erasmus University Medical Center, 3000 CA Rotterdam, the Netherlands.
| | - Alex N Zelensky
- Department of Molecular Genetics, Oncode Institute, Erasmus University Medical Center, 3000 CA Rotterdam, the Netherlands.
| |
Collapse
|
50
|
Holton RA, Harris AM, Mukerji B, Singh T, Dia F, Berkowitz KM. CHTF18 ensures the quantity and quality of the ovarian reserve†. Biol Reprod 2020; 103:24-35. [PMID: 32219340 DOI: 10.1093/biolre/ioaa036] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 10/29/2019] [Accepted: 03/24/2020] [Indexed: 11/13/2022] Open
Abstract
The number and quality of oocytes, as well as the decline in both of these parameters with age, determines reproductive potential in women. However, the underlying mechanisms of this diminution are incompletely understood. Previously, we identified novel roles for CHTF18 (Chromosome Transmission Fidelity Factor 18), a component of the conserved Replication Factor C-like complex, in male fertility and gametogenesis. Currently, we reveal crucial roles for CHTF18 in female meiosis and oocyte development. Chtf18-/- female mice are subfertile and have fewer offspring beginning at 6 months of age. Consistent with age-dependent subfertility, Chtf18-/- ovaries contain fewer follicles at all stages of folliculogenesis than wild type ovaries, but the decreases are more significant at 3 and 6 months of age. By 6 months of age, both primordial and growing ovarian follicle pools are markedly reduced to near depletion. Chromosomal synapsis in Chtf18-/- oocytes is complete, but meiotic recombination is impaired resulting in persistent DNA double-strand breaks, fewer crossovers, and early homolog disjunction during meiosis I. Consistent with poor oocyte quality, the majority of Chtf18-/- oocytes fail to progress to metaphase II following meiotic resumption and a significant percentage of those that do progress are aneuploid. Collectively, our findings indicate critical functions for CHTF18 in ensuring both the quantity and quality of the mammalian oocyte pool.
Collapse
Affiliation(s)
| | | | | | - Tanu Singh
- Department of Biochemistry and Molecular Biology
| | - Ferdusy Dia
- Department of Biochemistry and Molecular Biology
| | - Karen M Berkowitz
- Department of Biochemistry and Molecular Biology.,Department of Obstetrics and Gynecology, Drexel University College of Medicine, Philadelphia, PA, USA
| |
Collapse
|