1
|
Gurung S, Restrepo NK, Anand SK, Sittaramane V, Sumanas S. Requirement of a novel gene, drish, in the zebrafish retinal ganglion cell and primary motor axon development. Dev Dyn 2024; 253:750-770. [PMID: 38340011 DOI: 10.1002/dvdy.694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 12/11/2023] [Accepted: 01/13/2024] [Indexed: 02/12/2024] Open
Abstract
BACKGROUND During neurogenesis, growing axons must navigate through the complex extracellular environment and make correct synaptic connections for the proper functioning of neural circuits. The mechanisms underlying the formation of functional neural networks are still only partially understood. RESULTS Here we analyzed the role of a novel gene si:ch73-364h19.1/drish in the neural and vascular development of zebrafish embryos. We show that drish mRNA is expressed broadly and dynamically in multiple cell types including neural, glial, retinal progenitor and vascular endothelial cells throughout the early stages of embryonic development. To study Drish function during embryogenesis, we generated drish genetic mutant using CRISPR/Cas9 genome editing. drish loss-of-function mutant larvae displayed defects in early retinal ganglion cell, optic nerve and the retinal inner nuclear layer formation, as well as ectopic motor axon branching. In addition, drish mutant adults exhibited deficient retinal outer nuclear layer and showed defective light response and locomotory behavior. However, vascular patterning and blood circulation were not significantly affected. CONCLUSIONS Together, these data demonstrate important roles of zebrafish drish in the retinal ganglion cell, optic nerve and interneuron development and in spinal motor axon branching.
Collapse
Affiliation(s)
- Suman Gurung
- Department of Pathology and Cell Biology, USF Health Heart Institute, University of South Florida, Tampa, Florida, USA
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Nicole K Restrepo
- Department of Pathology and Cell Biology, USF Health Heart Institute, University of South Florida, Tampa, Florida, USA
| | - Surendra Kumar Anand
- Department of Pathology and Cell Biology, USF Health Heart Institute, University of South Florida, Tampa, Florida, USA
| | - Vinoth Sittaramane
- Department of Biology, Georgia Southern University, Statesboro, Georgia, USA
- Department of Molecular and Cellular Biology, Sam Houston State University College of Osteopathic Medicine, Conroe, Texas, USA
| | - Saulius Sumanas
- Department of Pathology and Cell Biology, USF Health Heart Institute, University of South Florida, Tampa, Florida, USA
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
- University of Cincinnati College of Medicine, Department of Pediatrics, Cincinnati, Ohio, USA
| |
Collapse
|
2
|
Pavlou M, Probst M, Blasdel N, Prieve AR, Reh TA. The impact of timing and injury mode on induced neurogenesis in the adult mammalian retina. Stem Cell Reports 2024; 19:239-253. [PMID: 38278154 PMCID: PMC10874861 DOI: 10.1016/j.stemcr.2023.12.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 12/20/2023] [Accepted: 12/21/2023] [Indexed: 01/28/2024] Open
Abstract
Regeneration of neurons has important implications for human health, and the retina provides an accessible system to study the potential of replacing neurons following injury. In previous work, we generated transgenic mice in which neurogenic transcription factors were expressed in Müller glia (MG) and showed that they stimulated neurogenesis following inner retinal damage. It was unknown, however, whether the timing or mode of injury mattered in this process. Here, we explored these parameters on induced neurogenesis from MG and show that MG expressing Ascl1 will generate new bipolar neurons with similar efficiency irrespective of injury mode or timing. However, MG that express Ascl1-Atoh1 produce a new type of retinal ganglion-like cell after outer retinal damage, which is absent with inner retinal damage. Our data suggest that although cell fate is primarily dictated by neurogenic transcription factors, the inflammatory state of MG relative to injury can influence the outcome of induced neurogenesis.
Collapse
Affiliation(s)
- Marina Pavlou
- Department of Biological Structure, University of Washington, Seattle, WA, USA; Institute for Stem Cells and Regenerative Medicine, University of Washington, Seattle, WA, USA
| | - Marlene Probst
- Department of Biological Structure, University of Washington, Seattle, WA, USA
| | - Nicolai Blasdel
- Department of Biological Structure, University of Washington, Seattle, WA, USA
| | - Aric R Prieve
- Department of Biological Structure, University of Washington, Seattle, WA, USA
| | - Thomas A Reh
- Department of Biological Structure, University of Washington, Seattle, WA, USA; Institute for Stem Cells and Regenerative Medicine, University of Washington, Seattle, WA, USA.
| |
Collapse
|
3
|
Gilbert R, Peto T, Lengyel I, Emri E. Zinc Nutrition and Inflammation in the Aging Retina. Mol Nutr Food Res 2019; 63:e1801049. [PMID: 31148351 DOI: 10.1002/mnfr.201801049] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2018] [Revised: 04/18/2019] [Indexed: 12/16/2022]
Abstract
Zinc is an essential nutrient for human health. It plays key roles in maintaining protein structure and stability, serves as catalytic factor for many enzymes, and regulates diverse fundamental cellular processes. Zinc is important in affecting signal transduction and, in particular, in the development and integrity of the immune system, where it affects both innate and adaptive immune responses. The eye, especially the retina-choroid complex, has an unusually high concentration of zinc compared to other tissues. The highest amount of zinc is concentrated in the retinal pigment epithelium (RPE) (RPE-choroid, 292 ± 98.5 µg g-1 dry tissue), followed by the retina (123 ± 62.2 µg g-1 dry tissue). The interplay between zinc and inflammation has been explored in other parts of the body but, so far, has not been extensively researched in the eye. Several lines of evidence suggest that ocular zinc concentration decreases with age, especially in the context of age-related disease. Thus, a hypothesis that retinal function could be modulated by zinc nutrition is proposed, and subsequently trialled clinically. In this review, the distribution and the potential role of zinc in the retina-choroid complex is outlined, especially in relation to inflammation and immunity, and the clinical studies to date are summarized.
Collapse
Affiliation(s)
- Rosie Gilbert
- Moorfields Eye Hospital NHS Foundation Trust, City Road, London, EC1V 2PD, UK.,UCL Institute of Ophthalmology, Bath Street, London, EC1V 2EL, UK
| | - Tunde Peto
- School of Medicine, Dentistry and Biomedical Science, Queen's University Belfast, 97 Lisburn Road, Belfast, BT9 7BL, Ireland
| | - Imre Lengyel
- UCL Institute of Ophthalmology, Bath Street, London, EC1V 2EL, UK.,School of Medicine, Dentistry and Biomedical Science, Queen's University Belfast, 97 Lisburn Road, Belfast, BT9 7BL, Ireland
| | - Eszter Emri
- School of Medicine, Dentistry and Biomedical Science, Queen's University Belfast, 97 Lisburn Road, Belfast, BT9 7BL, Ireland
| |
Collapse
|
4
|
Smith EN, D'Antonio-Chronowska A, Greenwald WW, Borja V, Aguiar LR, Pogue R, Matsui H, Benaglio P, Borooah S, D'Antonio M, Ayyagari R, Frazer KA. Human iPSC-Derived Retinal Pigment Epithelium: A Model System for Prioritizing and Functionally Characterizing Causal Variants at AMD Risk Loci. Stem Cell Reports 2019; 12:1342-1353. [PMID: 31080113 PMCID: PMC6565613 DOI: 10.1016/j.stemcr.2019.04.012] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 04/08/2019] [Accepted: 04/09/2019] [Indexed: 10/29/2022] Open
Abstract
We evaluate whether human induced pluripotent stem cell-derived retinal pigment epithelium (iPSC-RPE) cells can be used to prioritize and functionally characterize causal variants at age-related macular degeneration (AMD) risk loci. We generated iPSC-RPE from six subjects and show that they have morphological and molecular characteristics similar to those of native RPE. We generated RNA-seq, ATAC-seq, and H3K27ac ChIP-seq data and observed high similarity in gene expression and enriched transcription factor motif profiles between iPSC-RPE and human fetal RPE. We performed fine mapping of AMD risk loci by integrating molecular data from the iPSC-RPE, adult retina, and adult RPE, which identified rs943080 as the probable causal variant at VEGFA. We show that rs943080 is associated with altered chromatin accessibility of a distal ATAC-seq peak, decreased overall gene expression of VEGFA, and allele-specific expression of a non-coding transcript. Our study thus provides a potential mechanism underlying the association of the VEGFA locus with AMD.
Collapse
Affiliation(s)
- Erin N Smith
- Department of Pediatrics, University of California San Diego, La Jolla, CA 92093, USA
| | | | - William W Greenwald
- Bioinformatics and Systems Biology Graduate Program, University of California, San Diego, La Jolla, CA 92093, USA
| | - Victor Borja
- Institute for Genomic Medicine, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Lana R Aguiar
- Institute for Genomic Medicine, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA; Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília, DF, Brazil
| | - Robert Pogue
- Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília, DF, Brazil
| | - Hiroko Matsui
- Institute for Genomic Medicine, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Paola Benaglio
- Department of Pediatrics, University of California San Diego, La Jolla, CA 92093, USA
| | - Shyamanga Borooah
- Centre for Clinical Brain Sciences, School of Clinical Sciences, The University of Edinburgh, Edinburgh, UK; Shiley Eye Institute, University of California San Diego, La Jolla, CA 92093, USA
| | - Matteo D'Antonio
- Institute for Genomic Medicine, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Radha Ayyagari
- Shiley Eye Institute, University of California San Diego, La Jolla, CA 92093, USA
| | - Kelly A Frazer
- Department of Pediatrics, University of California San Diego, La Jolla, CA 92093, USA; Institute for Genomic Medicine, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA; Cellular and Molecular Medicine East, 9500 Gilman Drive #0761, La Jolla, CA 92093-0761, USA.
| |
Collapse
|
5
|
Guidance of retinal axons in mammals. Semin Cell Dev Biol 2017; 85:48-59. [PMID: 29174916 DOI: 10.1016/j.semcdb.2017.11.027] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2017] [Revised: 11/17/2017] [Accepted: 11/20/2017] [Indexed: 11/21/2022]
Abstract
In order to navigate through the surrounding environment many mammals, including humans, primarily rely on vision. The eye, composed of the choroid, sclera, retinal pigmented epithelium, cornea, lens, iris and retina, is the structure that receives the light and converts it into electrical impulses. The retina contains six major types of neurons involving in receiving and modifying visual information and passing it onto higher visual processing centres in the brain. Visual information is relayed to the brain via the axons of retinal ganglion cells (RGCs), a projection known as the optic pathway. The proper formation of this pathway during development is essential for normal vision in the adult individual. Along this pathway there are several points where visual axons face 'choices' in their direction of growth. Understanding how these choices are made has advanced significantly our knowledge of axon guidance mechanisms. Thus, the development of the visual pathway has served as an extremely useful model to reveal general principles of axon pathfinding throughout the nervous system. However, due to its particularities, some cellular and molecular mechanisms are specific for the visual circuit. Here we review both general and specific mechanisms involved in the guidance of mammalian RGC axons when they are traveling from the retina to the brain to establish precise and stereotyped connections that will sustain vision.
Collapse
|
6
|
Karthikeyan B, Arun A, Harini L, Sundar K, Kathiresan T. Role of ZnS Nanoparticles on Endoplasmic Reticulum Stress-mediated Apoptosis in Retinal Pigment Epithelial Cells. Biol Trace Elem Res 2016; 170:390-400. [PMID: 26329999 DOI: 10.1007/s12011-015-0493-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Accepted: 08/24/2015] [Indexed: 01/22/2023]
Abstract
Age-related macular degeneration (AMD) is the leading cause for irreversible visual impairment affecting 30-50 million individuals every year. Oxidative stress and endoplasmic reticulum stress have been identified as crucial factors for the pathogenesis of AMD. Current treatments do not focus on underlying stimuli responsible for the disease like AMD. Zinc is an important trace metal in retina and its deficiency leads to AMD. Recent studies on zinc sulphide nanoparticles (ZnS-NPs) are gaining attention in the field of physical and biological research. In this present study, in investigating the role of ZnS-NPs on hydrogen peroxide and thapsigargin-treated primary mice retinal pigment epithelial (MRPE) cells, we synthesized ZnS-NPs and characterized using atomic force microscope (AFM) and SEM-EDX. The ZnS-NPs abrogate the primary MRPE cell death through inhibition of oxidative stress-induced reactive oxygen species production and cell permeability. Oxidant molecules hydrogen peroxide and thapsigargin alter unfolded protein response such as glucose-regulated protein 78 (GRP78) and C/EBP homology protein (CHOP) expressions, whereas ZnS-NPs-pre-treated primary MRPE cells downregulated the overexpression of such proteins. The expressions of apoptotic proteins caspase 12 and cleaved caspase 9 and caspase 3 were also significantly controlled in ZnS-NPs-treated primary MRPE cells when comparing with thapsigargin- and hydrogen peroxide-treated cells. From these results, ZnS-NPs stabilize reactive oxygen species elevation, when subjected to hydrogen peroxide- and thapsigargin-mediated oxidant injury and helps in maintaining normal homeostasis through regulating endoplasmic reticulum (ER) stress response proteins which is the lead cause for apoptosis-mediated pathogenesis of AMD.
Collapse
Affiliation(s)
- Bose Karthikeyan
- Department of Biotechnology, Kalasalingam University, Krishnankoil, Tamil Nadu, -626 126, India
| | - Arumugaperumal Arun
- Department of Biotechnology, Kalasalingam University, Krishnankoil, Tamil Nadu, -626 126, India
| | | | - Krishnan Sundar
- Department of Biotechnology, Kalasalingam University, Krishnankoil, Tamil Nadu, -626 126, India
- International Research Centre, Kalasalingam University, Krishnankoil, Tamil Nadu, -626 126, India
| | - Thandavarayan Kathiresan
- Department of Biotechnology, Kalasalingam University, Krishnankoil, Tamil Nadu, -626 126, India.
- International Research Centre, Kalasalingam University, Krishnankoil, Tamil Nadu, -626 126, India.
| |
Collapse
|
7
|
Mitchell DM, Stevens CB, Frey RA, Hunter SS, Ashino R, Kawamura S, Stenkamp DL. Retinoic Acid Signaling Regulates Differential Expression of the Tandemly-Duplicated Long Wavelength-Sensitive Cone Opsin Genes in Zebrafish. PLoS Genet 2015; 11:e1005483. [PMID: 26296154 PMCID: PMC4546582 DOI: 10.1371/journal.pgen.1005483] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Accepted: 08/05/2015] [Indexed: 12/12/2022] Open
Abstract
The signaling molecule retinoic acid (RA) regulates rod and cone photoreceptor fate, differentiation, and survival. Here we elucidate the role of RA in differential regulation of the tandemly-duplicated long wavelength-sensitive (LWS) cone opsin genes. Zebrafish embryos were treated with RA from 48 hours post-fertilization (hpf) to 75 hpf, and RNA was isolated from eyes for microarray analysis. ~170 genes showed significantly altered expression, including several transcription factors and components of cellular signaling pathways. Of interest, the LWS1 opsin gene was strongly upregulated by RA. LWS1 is the upstream member of the tandemly duplicated LWS opsin array and is normally not expressed embryonically. Embryos treated with RA 48 hpf to 100 hpf or beyond showed significant reductions in LWS2-expressing cones in favor of LWS1-expressing cones. The LWS reporter line, LWS-PAC(H) provided evidence that individual LWS cones switched from LWS2 to LWS1 expression in response to RA. The RA signaling reporter line, RARE:YFP indicated that increased RA signaling in cones was associated with this opsin switch, and experimental reduction of RA signaling in larvae at the normal time of onset of LWS1 expression significantly inhibited LWS1 expression. A role for endogenous RA signaling in regulating differential expression of the LWS genes in postmitotic cones was further supported by the presence of an RA signaling domain in ventral retina of juvenile zebrafish that coincided with a ventral zone of LWS1 expression. This is the first evidence that an extracellular signal may regulate differential expression of opsin genes in a tandemly duplicated array.
Collapse
Affiliation(s)
- Diana M. Mitchell
- Department of Biological Sciences, University of Idaho, Moscow, Idaho, United States of America
| | - Craig B. Stevens
- Department of Biological Sciences, University of Idaho, Moscow, Idaho, United States of America
| | - Ruth A. Frey
- Department of Biological Sciences, University of Idaho, Moscow, Idaho, United States of America
| | - Samuel S. Hunter
- Department of Biological Sciences, University of Idaho, Moscow, Idaho, United States of America
- Bioinformatics and Computational Biology Graduate Program, University of Idaho, Moscow, Idaho, United States of America
| | - Ryuichi Ashino
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba, Japan
| | - Shoji Kawamura
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba, Japan
| | - Deborah L. Stenkamp
- Department of Biological Sciences, University of Idaho, Moscow, Idaho, United States of America
- Bioinformatics and Computational Biology Graduate Program, University of Idaho, Moscow, Idaho, United States of America
- Neuroscience Graduate Program, University of Idaho, Moscow, Idaho, United States of America
- * E-mail:
| |
Collapse
|
8
|
Abstract
The visual system is beautifully crafted to transmit information of the external world to visual processing and cognitive centers in the brain. For visual information to be relayed to the brain, a series of axon pathfinding events must take place to ensure that the axons of retinal ganglion cells, the only neuronal cell type in the retina that sends axons out of the retina, find their way out of the eye to connect with targets in the brain. In the past few decades, the power of molecular and genetic tools, including the generation of genetically manipulated mouse lines, have multiplied our knowledge about the molecular mechanisms involved in the sculpting of the visual system. Here, we review major advances in our understanding of the mechanisms controlling the differentiation of RGCs, guidance of their axons from the retina to the primary visual centers, and the refinement processes essential for the establishment of topographic maps and eye-specific axon segregation. Human disorders, such as albinism and achiasmia, that impair RGC axon growth and guidance and, thus, the establishment of a fully functioning visual system will also be discussed.
Collapse
Affiliation(s)
- Lynda Erskine
- School of Medical Sciences, Institute of Medical Sciences, University of Aberdeen, Scotland, UK
| | - Eloisa Herrera
- Instituto de Neurosciencias de Alicante, CSIC-UMH, San Juan de Alicante, Spain
| |
Collapse
|
9
|
Ugarte M, Osborne NN. Recent advances in the understanding of the role of zinc in ocular tissues. Metallomics 2014; 6:189-200. [DOI: 10.1039/c3mt00291h] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
10
|
Ugarte M, Osborne NN, Brown LA, Bishop PN. Iron, zinc, and copper in retinal physiology and disease. Surv Ophthalmol 2013; 58:585-609. [DOI: 10.1016/j.survophthal.2012.12.002] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2012] [Revised: 12/09/2012] [Accepted: 12/11/2012] [Indexed: 12/26/2022]
|
11
|
Houtmeyers R, Souopgui J, Tejpar S, Arkell R. The ZIC gene family encodes multi-functional proteins essential for patterning and morphogenesis. Cell Mol Life Sci 2013; 70:3791-811. [PMID: 23443491 PMCID: PMC11113920 DOI: 10.1007/s00018-013-1285-5] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2012] [Revised: 01/16/2013] [Accepted: 01/28/2013] [Indexed: 12/18/2022]
Abstract
The zinc finger of the cerebellum gene (ZIC) discovered in Drosophila melanogaster (odd-paired) has five homologs in Xenopus, chicken, mice, and humans, and seven in zebrafish. This pattern of gene copy expansion is accompanied by a divergence in gene and protein structure, suggesting that Zic family members share some, but not all, functions. ZIC genes are implicated in neuroectodermal development and neural crest cell induction. All share conserved regions encoding zinc finger domains, however their heterogeneity and specification remain unexplained. In this review, the evolution, structure, and expression patterns of the ZIC homologs are described; specific functions attributable to individual family members are supported. A review of data from functional studies in Xenopus and murine models suggest that ZIC genes encode multifunctional proteins operating in a context-specific manner to drive critical events during embryogenesis. The identification of ZIC mutations in congenital syndromes highlights the relevance of these genes in human development.
Collapse
Affiliation(s)
- Rob Houtmeyers
- Department of Oncology, Katholieke Universiteit Leuven, O&N1, 3000, Leuven, Belgium,
| | | | | | | |
Collapse
|
12
|
Yamashita M. Electric axon guidance in embryonic retina: galvanotropism revisited. Biochem Biophys Res Commun 2013; 431:280-3. [PMID: 23291175 DOI: 10.1016/j.bbrc.2012.12.115] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2012] [Accepted: 12/14/2012] [Indexed: 10/27/2022]
Abstract
In addition to well-known mechanisms of chemical guidance, growing axons in the nervous system are directed by an extracellular electric field in a process known as galvanotropism. The galvanotropic behavior of nerve cells in vitro was first demonstrated as long ago as 1920. However, it remains unknown whether embryonic nerve tissues generate a similar electric field in order to guide growing axons. The present study reveals that an extracellular voltage gradient exists in the embryonic retina and that this gradient guides the axons of newborn retinal ganglion cells towards their targets. These findings indicate an important role for galvanotropism in the initial orientation of axons that extend over long distances, and provide insight into the mechanisms underlying the proper extension of developing axons in the embryonic brain.
Collapse
Affiliation(s)
- Masayuki Yamashita
- Department of Physiology I, Nara Medical University, Shijo-cho 840, Kashihara 634-8521, Japan.
| |
Collapse
|
13
|
McMahon AR, Merzdorf CS. Expression of the zic1, zic2, zic3, and zic4 genes in early chick embryos. BMC Res Notes 2010; 3:167. [PMID: 20553611 PMCID: PMC2908108 DOI: 10.1186/1756-0500-3-167] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2009] [Accepted: 06/16/2010] [Indexed: 12/29/2022] Open
Abstract
Background The zic genes encode a family of transcription factors with important roles during early development. Since little is known about zic gene expression in chick embryos, we have characterized the expression patterns of the zic1, zic2, zic3, and zic4 (zic1-4) genes during neurulation and somitogenesis. Findings We used in situ hybridization to analyze the expression patterns of the zic1-4 genes during early chick development (HH stages 7-19). The zic1-3 genes showed both overlapping and gene-specific expression patterns along the length of the dorsal neural tube and in the dorsal parts of the somites. In addition, unique expression domains of zic genes included: zic2 in the neural plate, periotic mesoderm and limb buds; zic3 in the paraxial mesoderm surrounding the neural plate, in presomitic mesoderm and in the most recently formed epithelial somites; zic2 and zic3 in developing eyes. zic4 expression was limited to dorsal fore- and midbrain regions and, unlike the expression of the zic1-3 genes, zic4 expression was not detected in the hindbrain and trunk. This was in contrast to more extensive zic4 expression in other vertebrates. Conclusions The zic1-3 genes were expressed in both overlapping and unique domains within the neural tube, somites and other ectoderm and mesoderm-derived structures in the future head and trunk. zic4 expression, however, was limited to dorso-anterior regions of the future brain. This is the first comprehensive study of zic1-4 gene expression in chick embryos during neurulation and somitogenesis.
Collapse
Affiliation(s)
- Ariel R McMahon
- Department of Cell Biology and Neuroscience, Montana State University, Bozeman, MT 59717, USA.
| | | |
Collapse
|
14
|
Sanek NA, Taylor AA, Nyholm MK, Grinblat Y. Zebrafish zic2a patterns the forebrain through modulation of Hedgehog-activated gene expression. Development 2009; 136:3791-800. [PMID: 19855021 PMCID: PMC2766342 DOI: 10.1242/dev.037820] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/01/2009] [Indexed: 11/20/2022]
Abstract
Holoprosencephaly (HPE) is the most common congenital malformation of the forebrain in human. Several genes with essential roles during forebrain development have been identified because they cause HPE when mutated. Among these are genes that encode the secreted growth factor Sonic hedgehog (Shh) and the transcription factors Six3 and Zic2. In the mouse, Six3 and Shh activate each other's transcription, but a role for Zic2 in this interaction has not been tested. We demonstrate that in zebrafish, as in mouse, Hh signaling activates transcription of six3b in the developing forebrain. zic2a is also activated by Hh signaling, and represses six3b non-cell-autonomously, i.e. outside of its own expression domain, probably through limiting Hh signaling. Zic2a repression of six3b is essential for the correct formation of the prethalamus. The diencephalon-derived optic stalk (OS) and neural retina are also patterned in response to Hh signaling. We show that zebrafish Zic2a limits transcription of the Hh targets pax2a and fgf8a in the OS and retina. The effects of Zic2a depletion in the forebrain and in the OS and retina are rescued by blocking Hh signaling or by increasing levels of the Hh antagonist Hhip, suggesting that in both tissues Zic2a acts to attenuate the effects of Hh signaling. These data uncover a novel, essential role for Zic2a as a modulator of Hh-activated gene expression in the developing forebrain and advance our understanding of a key gene regulatory network that, when disrupted, causes HPE.
Collapse
Affiliation(s)
- Nicholas A Sanek
- Department of Zoology and Anatomy, University of Wisconsin, Madison, WI 53706, USA
| | | | | | | |
Collapse
|
15
|
Robo2 is required for Slit-mediated intraretinal axon guidance. Dev Biol 2009; 335:418-26. [PMID: 19782674 PMCID: PMC2814049 DOI: 10.1016/j.ydbio.2009.09.034] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2009] [Revised: 09/21/2009] [Accepted: 09/21/2009] [Indexed: 11/21/2022]
Abstract
The developing optic pathway has proven one of the most informative model systems for studying mechanisms of axon guidance. The first step in this process is the directed extension of retinal ganglion cell (RGC) axons within the optic fibre layer (OFL) of the retina towards their exit point from the eye, the optic disc. Previously, we have shown that the inhibitory guidance molecules, Slit1 and Slit2, regulate two distinct aspects of intraretinal axon guidance in a region-specific manner. Using knockout mice, we have found that both of these guidance activities are mediated via Robo2. Of the four vertebrate Robos, only Robo1 and Robo2 are expressed by RGCs. In mice lacking robo1 intraretinal axon guidance occurs normally. However, in mice lacking robo2 RGC axons make qualitatively and quantitatively identical intraretinal pathfinding errors to those reported previously in Slit mutants. This demonstrates clearly that, as in other regions of the optic pathway, Robo2 is the major receptor required for intraretinal axon guidance. Furthermore, the results suggest strongly that redundancy with other guidance signals rather than different receptor utilisation is the most likely explanation for the regional specificity of Slit function during intraretinal axon pathfinding.
Collapse
|
16
|
Venters SJ, Dias da Silva MR, Hyer J. Murine retroviruses re-engineered for lineage tracing and expression of toxic genes in the developing chick embryo. Dev Dyn 2009; 237:3260-9. [PMID: 18942139 DOI: 10.1002/dvdy.21766] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
We describe two replication incompetent retroviral vectors that co-express green fluorescent protein (GFP) and beta-galactosidase. These vectors incorporate either the avian reticuloendotheliosis (spleen necrosis virus; SNV) promoter or the chick beta-actin promoter, into the backbone of the murine leukemia (MLV) viral vector. The additional promoters drive transgene expression in avian tissue. The remainder of the vector is MLV-like, allowing high titer viral particle production by means of transient transfection. The SNV promoter produces high and early expression of introduced genes, enabling detection of the single copy integrated GFP gene in infected cells and their progeny in vivo. Substitution of the LacZ coding DNA with a relevant gene of interest will enable its co-expression with GFP, thus allowing visualization of the effect of specific and stable changes in gene expression throughout development. As the VSV-G pseudotyped viral vector is replication incompetent, changes in gene expression can be controlled temporally, by altering the timing of introduction.
Collapse
Affiliation(s)
- Sara J Venters
- Department of Neurosurgery, University of California, San Francisco, California 94143, USA
| | | | | |
Collapse
|
17
|
Erskine L, Herrera E. The retinal ganglion cell axon's journey: insights into molecular mechanisms of axon guidance. Dev Biol 2007; 308:1-14. [PMID: 17560562 DOI: 10.1016/j.ydbio.2007.05.013] [Citation(s) in RCA: 117] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2007] [Revised: 05/02/2007] [Accepted: 05/10/2007] [Indexed: 02/02/2023]
Abstract
The developing visual system has proven to be one of the most informative models for studying axon guidance decisions. The pathway is composed of the axons of a single neuronal cell type, the retinal ganglion cell (RGC), that navigate through a series of intermediate targets on route to their final destination. The molecular basis of optic pathway development is beginning to be elucidated with cues such as netrins, Slits and ephrins playing a key role. Other factors best characterised for their role as morphogens in patterning developing tissues, such as sonic hedgehog (Shh) and Wnts, also act directly on RGC axons to influence guidance decisions. The transcriptional basis of the spatial-temporal expression of guidance cues and their cognate receptors within the developing optic pathway as well as mechanisms underlying the plasticity of guidance responses also are starting to be understood. This review will focus on our current understanding of the molecular mechanisms directing the early development of functional connections in the developing visual system and the insights these studies have provided into general mechanisms of axon guidance.
Collapse
Affiliation(s)
- Lynda Erskine
- Division of Visual Science, Institute of Ophthalmology, University College London, 11-43 Bath Street, London, EC1V 9EL, UK.
| | | |
Collapse
|
18
|
Bao ZZ. Intraretinal projection of retinal ganglion cell axons as a model system for studying axon navigation. Brain Res 2007; 1192:165-77. [PMID: 17320832 PMCID: PMC2267003 DOI: 10.1016/j.brainres.2007.01.116] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2006] [Revised: 01/24/2007] [Accepted: 01/26/2007] [Indexed: 01/19/2023]
Abstract
The initial step of retinal ganglion cell (RGC) axon pathfinding involves directed growth of RGC axons toward the center of the retina, the optic disc, a process termed "intraretinal guidance". Due to the accessibility of the system, and with various embryological, molecular and genetic approaches, significant progress has been made in recent years toward understanding the mechanisms involved in the precise guidance of the RGC axons. As axons are extending from RGCs located throughout the retina, a multitude of factors expressed along with the differentiation wave are important for the guidance of the RGC axons. To ensure that the RGC axons are oriented correctly, restricted to the optic fiber layer (OFL) of the retina, and exit the eye properly, different sets of positive and negative factors cooperate in the process. Fasciculation mediated by a number of cell adhesion molecules (CAMs) and modulation of axonal response to guidance factors provide additional mechanisms to ensure proper guidance of the RGC axons. The intraretinal axon guidance thus serves as an excellent model system for studying how different signals are regulated, modulated and integrated for guiding a large number of axons in three-dimensional space.
Collapse
Affiliation(s)
- Zheng-Zheng Bao
- Department of Medicine and Cell Biology, Program in Neuroscience, University of Massachusetts Medical School, Worcester, MA 01605, USA.
| |
Collapse
|
19
|
Hirsch MR, Glover JC, Dufour HD, Brunet JF, Goridis C. Forced expression of Phox2 homeodomain transcription factors induces a branchio-visceromotor axonal phenotype. Dev Biol 2006; 303:687-702. [PMID: 17208219 DOI: 10.1016/j.ydbio.2006.12.006] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2006] [Revised: 11/30/2006] [Accepted: 12/05/2006] [Indexed: 01/27/2023]
Abstract
What causes motor neurons to project into the periphery is not well understood. We here show that forced expression of the homeodomain protein Phox2b, shown previously to be necessary and sufficient for branchio-visceromotor neuron development, and of its paralogue Phox2a imposes a branchiomotor-like axonal phenotype in the spinal cord. Many Phox2-transfected neurons, whose axons would normally stay within the confines of the neural tube, now project into the periphery. Once outside the neural tube, a fraction of the ectopic axons join the spinal accessory nerve, a branchiomotor nerve which, as shown here, does not develop in the absence of Phox2b. Explant studies show that the axons of Phox2-transfected neurons need attractive cues to leave the neural tube and that their outgrowth is promoted by tissues, to which branchio-visceromotor fibers normally grow. Hence, Phox2 expression is a key step in determining the peripheral axonal phenotype and thus the decision to stay within the neural tube or to project out of it.
Collapse
Affiliation(s)
- Marie-Rose Hirsch
- CNRS UMR 8542 Ecole normale supérieure, 46 Rue d'Ulm, 75005 Paris, France
| | | | | | | | | |
Collapse
|
20
|
Huttner IG, Kennerson ML, Reddel SW, Radovanovic D, Nicholson GA. Proof of genetic heterogeneity in X-linked Charcot-Marie-Tooth disease. Neurology 2006; 67:2016-21. [PMID: 17159110 DOI: 10.1212/01.wnl.0000247271.40782.b7] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
OBJECTIVE To characterize a large family with X-linked Charcot-Marie-Tooth (CMT) neuropathy without mutations in the gap junction protein B1 (GJB1) gene, which has an unusual phenotype that is different in some aspects from classic CMTX1. METHODS We tested CMT families consistent with X-linked inheritance for GJB1 mutations. We compared the largest family (CMT623) without GJB1 mutation and with linkage excluding the CMTX1 locus to CMTX1 and normal individuals. RESULTS Only 51% of probable X-linked CMT families had mutations in GJB1. Family CMT623 shows linkage to Xq26.3-q27.1 (lod score z = 6.58), a region within the previously identified locus for CMTX3, Xq26-q28. Unlike CMTX1, affected males in family CMT623 report pain and paraesthesia before the onset of sensory loss, and women are usually asymptomatic. As in CMTX1, affected males have widely ranging intermediate motor conduction velocities. The coding regions of 14 positional candidate genes within the narrowed CMTX3 locus have been excluded for a pathogenic role in the disease. CONCLUSION This study is the first to confirm the CMTX3 locus and to refine the genetic interval to a 5.7-Mb region flanked by the markers DXS1041 and DXS8106. GJB1 mutation-negative forms of X-linked CMT, such as CMTX3, may account for a significant proportion of X-linked CMT.
Collapse
Affiliation(s)
- I G Huttner
- Northcott Neuroscience Laboratory, ANZAC Research Institute, Australia
| | | | | | | | | |
Collapse
|
21
|
Mühleisen TW, Agoston Z, Schulte D. Retroviral misexpression of cVax disturbs retinal ganglion cell axon fasciculation and intraretinal pathfinding in vivo and guidance of nasal ganglion cell axons in vivo. Dev Biol 2006; 297:59-73. [PMID: 16769047 DOI: 10.1016/j.ydbio.2006.04.466] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2005] [Revised: 03/31/2006] [Accepted: 04/26/2006] [Indexed: 01/20/2023]
Abstract
The transcription factor cVax (Vax2) is expressed in the ventral neural retina and restricted expression is a prerequisite for at least three prominent aspects of retinal dorsal-ventral patterning: polarized expression of EphB/B-ephrin molecules, the retinotectal projection and the distribution of rod photoreceptors across the retina. In the chick retina, the fasciculation pattern of ganglion cell axons also differs between the dorsal and ventral eye. To investigate the molecular mechanisms involved, the nerve fiber layer was analyzed after retroviral misexpression of several factors known to regulate the positional specification of retinal ganglion cells. Forced cVax expression ventralized the fasciculation pattern and caused axon pathfinding errors near the optic disc. Ectopic expression of different ephrin molecules indicated that axon fasciculation is, at least in part, mediated by the EphB system. Finally, we report that retroviral misexpression of cVax increased the pool of EphA4 receptors phosphorylated on tyrosine residues and altered the guidance preference of nasal axons in vitro. These results identify novel functions for cVax in intraretinal axon fasciculation and pathfinding as well as suggest a mechanism to explain how restricted cVax expression may influence map formation along the dorso-ventral and antero-posterior axes of the optic tectum.
Collapse
Affiliation(s)
- Thomas W Mühleisen
- Max-Planck-Institute für Hirnforschung, Deutschordenstrasse 46, D-60528 Frankfurt am Main, Germany
| | | | | |
Collapse
|
22
|
Bao ZZ, Jin Z. Sema3D and Sema7A have distinct expression patterns in chick embryonic development. Dev Dyn 2006; 235:2282-9. [PMID: 16804892 PMCID: PMC1564195 DOI: 10.1002/dvdy.20882] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
By RT-PCR, we isolated a partial cDNA clone for the chick Semaphorin7A (Sema7A) gene. We further analyzed its expression patterns and compared them with those of the Sema3D gene, in chick embryonic development. Sema3D and Sema7A appeared to be expressed in distinct cell populations. In mesoderm-derived structures, Sema7A expression was detected in the newly formed somites, whereas Sema3D expression was found in the notochord. In ectoderm-derived tissues, Sema3D is expressed broadly in the surface ectoderm, lens and nasal placodes. Sema3D is also expressed in the developing nervous system including diencephalon, dorsal neural tube, optical and otic vesicles. In the limb bud, Sema3D expression was found throughout the ectoderm excluding the apical ectoderm ridge (AER), where Sema7A is concentrated. Although both genes appeared to be expressed in the migrating neural crest cells, Sema3D expression is limited to neural crest cells migrating out of the midbrain/hindbrain regions, while Sema7A expression is widespread in both cranial and trunk neural crest cells.
Collapse
Affiliation(s)
- Zheng-Zheng Bao
- Department of Medicine and Cell Biology, University of Massachusetts Medical School, Worcester, Massachusetts 02115, USA.
| | | |
Collapse
|
23
|
Thompson H, Camand O, Barker D, Erskine L. Slit proteins regulate distinct aspects of retinal ganglion cell axon guidance within dorsal and ventral retina. J Neurosci 2006; 26:8082-91. [PMID: 16885222 PMCID: PMC6673773 DOI: 10.1523/jneurosci.1342-06.2006] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
An early step in the formation of the optic pathway is the directed extension of retinal ganglion cell (RGC) axons into the optic fiber layer (OFL) of the retina in which they project toward the optic disc. Using analysis of knock-out mice and in vitro assays, we found that, in the mammalian retina, Slit1 and Slit2, known chemorepellents for RGC axons, regulate distinct aspects of intraretinal pathfinding in different regions of the retina. In ventral and, to a much lesser extent, dorsal retina, Slits help restrict RGC axons to the OFL. Additionally, within dorsal retina exclusively, Slit2 also regulates the initial polarity of outgrowth from recently differentiated RGCs located in the retinal periphery. This regional specificity occurs despite the fact that Slits are expressed throughout the retina, and both dorsal and ventral RGCs are responsive to Slits. The gross morphology and layering of the retina of the slit-deficient retinas is normal, demonstrating that these distinct guidance defects are not the result of changes in the organization of the tissue. Although displaced or disorganized, the aberrant axons within both dorsal and ventral retina exit the eye. We also have found that the lens, which because of its peripheral location within the developing eye is ideally located to influence the initial direction of RGC axon outgrowth, secretes Slit2, suggesting this is the source of Slit regulating OFL development. These data demonstrate clearly that multiple mechanisms exist in the retina for axon guidance of which Slits are an important component.
Collapse
|
24
|
Kolpak A, Zhang J, Bao ZZ. Sonic hedgehog has a dual effect on the growth of retinal ganglion axons depending on its concentration. J Neurosci 2006; 25:3432-41. [PMID: 15800198 PMCID: PMC1564194 DOI: 10.1523/jneurosci.4938-04.2005] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The stereotypical projection of retinal ganglion cell (RGC) axons to the optic disc has served as a good model system for studying axon guidance. By both in vitro and in vivo experiments, we show that a secreted molecule, Sonic hedgehog (Shh), may play a critical role in the process. It is expressed in a dynamic pattern in the ganglion cell layer with a relatively higher expression in the center of the retina. Through gel culture and stripe assays, we show that Shh has a dual effect on RGC axonal growth, acting as a positive factor at low concentrations and a negative factor at high concentrations. Results from time-lapse video microscopic and stripe assay experiments further suggest that the effects of Shh on axons are not likely attributable to indirect transcriptional regulation by Shh. Overexpression of Shh protein or inhibition of Shh function inside the retina resulted in a complete loss of centrally directed projection of RGC axons, suggesting that precise regulation of Shh level inside the retina is critical for the projection of RGC axons to the optic disc.
Collapse
Affiliation(s)
- Adrianne Kolpak
- Department of Medicine and Cell Biology, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA
| | | | | |
Collapse
|
25
|
Jin Z, Chau MD, Bao ZZ. Sema3D, Sema3F, and Sema5A are expressed in overlapping and distinct patterns in chick embryonic heart. Dev Dyn 2006; 235:163-9. [PMID: 16261621 PMCID: PMC1768559 DOI: 10.1002/dvdy.20614] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
An increasing number of axon guidance cues have been shown recently to play important roles in the development of non-neural tissues. Semaphorins comprise one of the largest conserved families of axon guidance factors. We analyzed the expression patterns of Sema3D, Sema3F, and Sema5A genes in the chick embryonic heart by in situ hybridization. All three genes are expressed in the cardiac cushion regions, both in the mesenchymal cells, and epithelial cells in the endocardial layer, during the period of cardiac remodeling. In addition to the overlapping expression patterns in the cardiac cushion regions, these genes also exhibit distinct expression patterns in the developing heart: Sema3D is additionally expressed in the tips of the ventricular trabeculae; Sema3F is expressed in a subset of cells scattered throughout the ventricles; and Sema5A is expressed in the newly formed atrioventricular valves. The overlapping and distinct expression patterns of these genes suggest that they may play important roles in heart development.
Collapse
Affiliation(s)
- Zhe Jin
- Department of Medicine and Cell Biology, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA
| | | | | |
Collapse
|
26
|
Sánchez-Camacho C, Rodríguez J, Ruiz JM, Trousse F, Bovolenta P. Morphogens as growth cone signalling molecules. ACTA ACUST UNITED AC 2005; 49:242-52. [PMID: 16111553 DOI: 10.1016/j.brainresrev.2004.10.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2004] [Revised: 10/03/2004] [Accepted: 10/18/2004] [Indexed: 11/26/2022]
Abstract
Morphogen signalling among cells is one of the most important mechanisms underlying the progressive patterning of embryos. Members of the hedgehog (Hh), wingless (Wnt), transforming growth factor-beta (TGFbeta), and fibroblast growth factor (Fgf) families of extracellular signalling molecules act as morphogens. Recent studies have demonstrated that members of these four families of proteins, secreted by well-characterised organiser centres in the central nervous system (CNS) as floor plate or midbrain-hindbrain boundary, are reused at later developmental stages to control axon growth. Here, we have summarised the evidence for this novel idea with a particular emphasis on those related to Shh and Wnt signalling-the object of some works in our laboratory.
Collapse
|
27
|
Zelina P, Avci HX, Thelen K, Pollerberg GE. The cell adhesion molecule NrCAM is crucial for growth cone behaviour and pathfinding of retinal ganglion cell axons. Development 2005; 132:3609-18. [PMID: 16033798 DOI: 10.1242/dev.01934] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We investigated the role of the cell adhesion molecule NrCAM for axonal growth and pathfinding in the developing retina. Analysis of the distribution pattern of NrCAM in chick embryo retina sections and flat-mounts shows its presence during extension of retinal ganglion cell (RGC) axons; NrCAM is selectively present on RGC axons and is absent from the soma. Single cell cultures show an enrichment of NrCAM in the distal axon and growth cone. When offered as a substrate in addition to Laminin, NrCAM promotes RGC axon extension and the formation of growth cone protrusions. In substrate stripe assays, mimicking the NrCAM-displaying optic fibre layer and the Laminin-rich basal lamina, RGC axons preferentially grow on NrCAM lanes. The three-dimensional analysis of RGC growth cones in retina flat-mounts reveals that they are enlarged and form more protrusions extending away from the correct pathway under conditions of NrCAM-inhibition. Time-lapse analyses show that these growth cones pause longer to explore their environment, proceed for shorter time spans, and retract more often than under control conditions; in addition, they often deviate from the correct pathway towards the optic fissure. Inhibition of NrCAM in organ-cultured intact eyes causes RGC axons to misroute at the optic fissure; instead of diving into the optic nerve head, these axons cross onto the opposite side of the retina. Our results demonstrate a crucial role for NrCAM in the navigation of RGC axons in the developing retina towards the optic fissure, and also for pathfinding into the optic nerve.
Collapse
Affiliation(s)
- Pavol Zelina
- Department of Developmental Neurobiology, University of Heidelberg, 69120 Heidelberg, Im Neuenheimer Feld 232, Germany
| | | | | | | |
Collapse
|
28
|
Van den Bergh BRH, Mulder EJH, Mennes M, Glover V. Antenatal maternal anxiety and stress and the neurobehavioural development of the fetus and child: links and possible mechanisms. A review. Neurosci Biobehav Rev 2005; 29:237-58. [PMID: 15811496 DOI: 10.1016/j.neubiorev.2004.10.007] [Citation(s) in RCA: 731] [Impact Index Per Article: 36.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A direct link between antenatal maternal mood and fetal behaviour, as observed by ultrasound from 27 to 28 weeks of gestation onwards, is well established. Moreover, 14 independent prospective studies have shown a link between antenatal maternal anxiety/stress and cognitive, behavioural, and emotional problems in the child. This link generally persisted after controlling for post-natal maternal mood and other relevant confounders in the pre- and post-natal periods. Although some inconsistencies remain, the results in general support a fetal programming hypothesis. Several gestational ages have been reported to be vulnerable to the long-term effects of antenatal anxiety/stress and different mechanisms are likely to operate at different stages. Possible underlying mechanisms are just starting to be explored. Cortisol appears to cross the placenta and thus may affect the fetus and disturb ongoing developmental processes. The development of the HPA-axis, limbic system, and the prefrontal cortex are likely to be affected by antenatal maternal stress and anxiety. The magnitude of the long-term effects of antenatal maternal anxiety/stress on the child is substantial. Programs to reduce maternal stress in pregnancy are therefore warranted.
Collapse
Affiliation(s)
- Bea R H Van den Bergh
- Department of Developmental Psychology, Catholic University of Leuven (KULeuven), Tiensestraat 102, 3000 Leuven, Belgium.
| | | | | | | |
Collapse
|
29
|
Zic3 makes the gradient. Nat Rev Neurosci 2004. [DOI: 10.1038/nrn1392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|