1
|
Dresch JM, Nourie LL, Conrad RD, Carlson LT, Tchantouridze EI, Tesfaye B, Verhagen E, Gupta M, Borges-Rivera D, Drewell RA. Two coacting shadow enhancers regulate twin of eyeless expression during early Drosophila development. Genetics 2025; 229:1-43. [PMID: 39607769 PMCID: PMC11708921 DOI: 10.1093/genetics/iyae176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 10/21/2024] [Indexed: 11/30/2024] Open
Abstract
The Drosophila PAX6 homolog twin of eyeless (toy) sits at the pinnacle of the genetic pathway controlling eye development, the retinal determination network. Expression of toy in the embryo is first detectable at cellular blastoderm stage 5 in an anterior-dorsal band in the presumptive procephalic neuroectoderm, which gives rise to the primordia of the visual system and brain. Although several maternal and gap transcription factors that generate positional information in the embryo have been implicated in controlling toy, the regulation of toy expression in the early embryo is currently not well characterized. In this study, we adopt an integrated experimental approach utilizing bioinformatics, molecular genetic testing of putative enhancers in transgenic reporter gene assays and quantitative analysis of expression patterns in the early embryo, to identify 2 novel coacting enhancers at the toy gene. In addition, we apply mathematical modeling to dissect the regulatory landscape for toy. We demonstrate that relatively simple thermodynamic-based models, incorporating only 5 TF binding sites, can accurately predict gene expression from the 2 coacting enhancers and that the HUNCHBACK TF plays a critical regulatory role through a dual-modality function as an activator and repressor. Our analysis also reveals that the molecular architecture of the 2 enhancers is very different, indicating that the underlying regulatory logic they employ is distinct.
Collapse
Affiliation(s)
- Jacqueline M Dresch
- Biology Department, Clark University, 950 Main Street, Worcester, MA 01610, USA
| | - Luke L Nourie
- Biology Department, Clark University, 950 Main Street, Worcester, MA 01610, USA
| | - Regan D Conrad
- Biology Department, Clark University, 950 Main Street, Worcester, MA 01610, USA
| | - Lindsay T Carlson
- Biology Department, Clark University, 950 Main Street, Worcester, MA 01610, USA
| | | | - Biruck Tesfaye
- Biology Department, Clark University, 950 Main Street, Worcester, MA 01610, USA
| | - Eleanor Verhagen
- Biology Department, Clark University, 950 Main Street, Worcester, MA 01610, USA
| | - Mahima Gupta
- Biology Department, Clark University, 950 Main Street, Worcester, MA 01610, USA
| | - Diego Borges-Rivera
- Biology Department, Clark University, 950 Main Street, Worcester, MA 01610, USA
| | - Robert A Drewell
- Biology Department, Clark University, 950 Main Street, Worcester, MA 01610, USA
| |
Collapse
|
2
|
Yang JH, Hansen AS. Enhancer selectivity in space and time: from enhancer-promoter interactions to promoter activation. Nat Rev Mol Cell Biol 2024; 25:574-591. [PMID: 38413840 PMCID: PMC11574175 DOI: 10.1038/s41580-024-00710-6] [Citation(s) in RCA: 29] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/30/2024] [Indexed: 02/29/2024]
Abstract
The primary regulators of metazoan gene expression are enhancers, originally functionally defined as DNA sequences that can activate transcription at promoters in an orientation-independent and distance-independent manner. Despite being crucial for gene regulation in animals, what mechanisms underlie enhancer selectivity for promoters, and more fundamentally, how enhancers interact with promoters and activate transcription, remain poorly understood. In this Review, we first discuss current models of enhancer-promoter interactions in space and time and how enhancers affect transcription activation. Next, we discuss different mechanisms that mediate enhancer selectivity, including repression, biochemical compatibility and regulation of 3D genome structure. Through 3D polymer simulations, we illustrate how the ability of 3D genome folding mechanisms to mediate enhancer selectivity strongly varies for different enhancer-promoter interaction mechanisms. Finally, we discuss how recent technical advances may provide new insights into mechanisms of enhancer-promoter interactions and how technical biases in methods such as Hi-C and Micro-C and imaging techniques may affect their interpretation.
Collapse
Affiliation(s)
- Jin H Yang
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Gene Regulation Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Koch Institute for Integrative Cancer Research, Cambridge, MA, USA
| | - Anders S Hansen
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Gene Regulation Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Koch Institute for Integrative Cancer Research, Cambridge, MA, USA.
| |
Collapse
|
3
|
Hajirnis N, Pandey S, Mishra RK. CRISPR/Cas9 and FLP-FRT mediated regulatory dissection of the BX-C of Drosophila melanogaster. CHROMOSOME RESEARCH : AN INTERNATIONAL JOURNAL ON THE MOLECULAR, SUPRAMOLECULAR AND EVOLUTIONARY ASPECTS OF CHROMOSOME BIOLOGY 2023; 31:7. [PMID: 36719476 DOI: 10.1007/s10577-023-09716-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 11/23/2022] [Accepted: 11/28/2022] [Indexed: 02/01/2023]
Abstract
The homeotic genes or Hox define the anterior-posterior (AP) body axis formation in bilaterians and are often present on the chromosome in an order collinear to their function across the AP axis. However, there are many cases wherein the Hox are not collinear, but their expression pattern is conserved across the AP axis. The expression pattern of Hox is attributed to the cis-regulatory modules (CRMs) consisting of enhancers, initiators, or repressor elements that regulate the genes in a segment-specific manner. In the Drosophila melanogaster Hox complex, the bithorax complex (BX-C) and even the CRMs are organized in an order that is collinear to their function in the thoracic and abdominal segments. In the present study, the regulatorily inert regions were targeted using CRISPR/Cas9 to generate a series of transgenic lines with the insertion of FRT sequences. These FRT lines are repurposed to shuffle the CRMs associated with Abd-B to generate modular deletion, duplication, or inversion of multiple CRMs. The rearrangements yielded entirely novel phenotypes in the fly suggesting the requirement of such complex manipulations to address the significance of higher order arrangement of the CRMs. The functional map and the transgenic flies generated in this study are important resources to decipher the collective ability of multiple regulatory elements in the eukaryotic genome to function as complex modules.
Collapse
Affiliation(s)
- Nikhil Hajirnis
- CSIR - Centre for Cellular and Molecular Biology, Hyderabad, India.,Department of Anatomy and Neurobiology, University of Maryland, Baltimore, USA
| | | | - Rakesh K Mishra
- CSIR - Centre for Cellular and Molecular Biology, Hyderabad, India. .,AcSIR - Academy of Scientific and Innovative Research, Ghaziabad, India. .,Tata Institute for Genetics and Society (TIGS), Bangalore, India.
| |
Collapse
|
4
|
Bateman JR, Johnson JE. Altering enhancer-promoter linear distance impacts promoter competition in cis and in trans. Genetics 2022; 222:6617354. [PMID: 35748724 PMCID: PMC9434180 DOI: 10.1093/genetics/iyac098] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 06/18/2022] [Indexed: 11/14/2022] Open
Abstract
In Drosophila, pairing of maternal and paternal homologs can permit trans-interactions between enhancers on one homolog and promoters on another, an example of a phenomenon called transvection. When chromosomes are paired, promoters in cis and in trans to an enhancer can compete for the enhancer's activity, but the parameters that govern this competition are as yet poorly understood. To assess how the linear spacing between an enhancer and promoter can influence promoter competition in Drosophila, we employed transgenic constructs wherein the eye-specific enhancer GMR is placed at varying distances from a heterologous hsp70 promoter driving a fluorescent reporter. While GMR activates the reporter to a high degree when the enhancer and promoter are spaced by a few hundred base pairs, activation is strongly attenuated when the enhancer is moved 3 kilobases away. By examining transcription of endogenous genes near the point of transgene insertion, we show that linear spacing of 3 kb between GMR and the hsp70 promoter results in elevated transcription of neighboring promoters, suggesting a loss of specificity between the enhancer and its intended transgenic target promoter. Furthermore, increasing spacing between GMR and hsp70 by just 100 bp can enhance transvection, resulting in increased activation of a promoter on a paired homolog at the expense of a promoter in cis to the enhancer. Finally, cis-/trans-promoter competition assays in which one promoter carries mutations to key core promoter elements show that GMR will skew its activity toward a wild type promoter, suggesting that an enhancer is in a balanced competition between its potential target promoters in cis and in trans.
Collapse
Affiliation(s)
- Jack R Bateman
- Biology Department, Bowdoin College, Brunswick, ME 04011, USA
| | | |
Collapse
|
5
|
Abstract
Enhancers control the establishment of spatiotemporal gene expression patterns throughout development. Over the past decade, the development of new technologies has improved our capacity to link enhancers with their target genes based on their colocalization within the same topological domains. However, the mechanisms that regulate how enhancers specifically activate some genes but not others within a given domain remain unclear. In this Review, we discuss recent insights into the factors controlling enhancer specificity, including the genetic composition of enhancers and promoters, the linear and 3D distance between enhancers and their target genes, and cell-type specific chromatin landscapes. We also discuss how elucidating the molecular principles of enhancer specificity might help us to better understand and predict the pathological consequences of human genetic, epigenetic and structural variants.
Collapse
Affiliation(s)
- Tomás Pachano
- Institute of Biomedicine and Biotechnology of Cantabria (IBBTEC), CSIC/Universidad de Cantabria/SODERCAN, Albert Einstein 22, 39011 Santander, Spain
| | - Endika Haro
- Institute of Biomedicine and Biotechnology of Cantabria (IBBTEC), CSIC/Universidad de Cantabria/SODERCAN, Albert Einstein 22, 39011 Santander, Spain
| | - Alvaro Rada-Iglesias
- Institute of Biomedicine and Biotechnology of Cantabria (IBBTEC), CSIC/Universidad de Cantabria/SODERCAN, Albert Einstein 22, 39011 Santander, Spain
| |
Collapse
|
6
|
Galouzis CC, Furlong EEM. Regulating specificity in enhancer-promoter communication. Curr Opin Cell Biol 2022; 75:102065. [PMID: 35240372 DOI: 10.1016/j.ceb.2022.01.010] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 01/23/2022] [Accepted: 01/25/2022] [Indexed: 12/14/2022]
Abstract
Enhancers are cis-regulatory elements that can activate transcription remotely to regulate a specific pattern of a gene's expression. Genes typically have many enhancers that are often intermingled in the loci of other genes. To regulate expression, enhancers must therefore activate their correct promoter while ignoring others that may be in closer linear proximity. In this review, we discuss mechanisms by which enhancers engage with promoters, including recent findings on the role of cohesin and the Mediator complex, and how this specificity in enhancer-promoter communication is encoded. Genetic dissection of model loci, in addition to more recent findings using genome-wide approaches, highlight the core promoter sequence, its accessibility, cofactor-promoter preference, in addition to the surrounding genomic context, as key components.
Collapse
Affiliation(s)
| | - Eileen E M Furlong
- European Molecular Biology Laboratory (EMBL), Genome Biology Unit, D-69117, Heidelberg, Germany.
| |
Collapse
|
7
|
Cavalheiro GR, Pollex T, Furlong EE. To loop or not to loop: what is the role of TADs in enhancer function and gene regulation? Curr Opin Genet Dev 2021; 67:119-129. [PMID: 33497970 DOI: 10.1016/j.gde.2020.12.015] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 12/13/2020] [Accepted: 12/22/2020] [Indexed: 01/22/2023]
Abstract
The past decade has seen a huge jump in the resolution and scale at which we can interrogate the three-dimensional properties of the genome. This revealed different types of chromatin structures including topologically associating domains, partitioning genes and their enhancers into interacting domains. While the visualisation of these topologies and their dynamics has dramatically improved, our understanding of their underlying mechanisms and functional roles in gene expression has lagged behind. A suite of recent studies have addressed this using genetic manipulations to perturb topological features and loops at different scales. Here we assess the new biological insights gained on the functional relationship between genome topology and gene expression, with a particular focus on enhancer function.
Collapse
Affiliation(s)
- Gabriel R Cavalheiro
- European Molecular Biology Laboratory (EMBL), Genome Biology Unit, D-69117, Heidelberg, Germany; Collaboration for Joint PhD Degree Between EMBL and Heidelberg University, Faculty of Biosciences, Germany
| | - Tim Pollex
- European Molecular Biology Laboratory (EMBL), Genome Biology Unit, D-69117, Heidelberg, Germany
| | - Eileen Em Furlong
- European Molecular Biology Laboratory (EMBL), Genome Biology Unit, D-69117, Heidelberg, Germany.
| |
Collapse
|
8
|
Postika N, Metzler M, Affolter M, Müller M, Schedl P, Georgiev P, Kyrchanova O. Boundaries mediate long-distance interactions between enhancers and promoters in the Drosophila Bithorax complex. PLoS Genet 2018; 14:e1007702. [PMID: 30540750 PMCID: PMC6306242 DOI: 10.1371/journal.pgen.1007702] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 12/26/2018] [Accepted: 11/16/2018] [Indexed: 11/18/2022] Open
Abstract
Drosophila bithorax complex (BX-C) is one of the best model systems for studying the role of boundaries (insulators) in gene regulation. Expression of three homeotic genes, Ubx, abd-A, and Abd-B, is orchestrated by nine parasegment-specific regulatory domains. These domains are flanked by boundary elements, which function to block crosstalk between adjacent domains, ensuring that they can act autonomously. Paradoxically, seven of the BX-C regulatory domains are separated from their gene target by at least one boundary, and must “jump over” the intervening boundaries. To understand the jumping mechanism, the Mcp boundary was replaced with Fab-7 and Fab-8. Mcp is located between the iab-4 and iab-5 domains, and defines the border between the set of regulatory domains controlling abd-A and Abd-B. When Mcp is replaced by Fab-7 or Fab-8, they direct the iab-4 domain (which regulates abd-A) to inappropriately activate Abd-B in abdominal segment A4. For the Fab-8 replacement, ectopic induction was only observed when it was inserted in the same orientation as the endogenous Fab-8 boundary. A similar orientation dependence for bypass activity was observed when Fab-7 was replaced by Fab-8. Thus, boundaries perform two opposite functions in the context of BX-C–they block crosstalk between neighboring regulatory domains, but at the same time actively facilitate long distance communication between the regulatory domains and their respective target genes. Drosophila bithorax complex (BX-C) is one of a few examples demonstrating in vivo role of boundary/insulator elements in organization of independent chromatin domains. BX-C contains three HOX genes, whose parasegment-specific pattern is controlled by cis-regulatory domains flanked by boundary/insulator elements. Since the boundaries ensure autonomy of adjacent domains, the presence of these elements poses a paradox: how do the domains bypass the intervening boundaries and contact their proper regulatory targets? According to the textbook model, BX-C regulatory domains are able to bypass boundaries because they harbor special promoter targeting sequences. However, contrary to this model, we show here that the boundaries themselves play an active role in directing regulatory domains to their appropriate HOX gene promoter.
Collapse
Affiliation(s)
- Nikolay Postika
- Department of the Control of Genetic Processes, Institute of Gene Biology Russian Academy of Sciences, Moscow, Russia
| | | | | | | | - Paul Schedl
- Department of Gene Expression Regulation in Development, Institute of Gene Biology Russian Academy of Sciences, Moscow, Russia
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, United States of America
| | - Pavel Georgiev
- Department of the Control of Genetic Processes, Institute of Gene Biology Russian Academy of Sciences, Moscow, Russia
- * E-mail: (PG); (OK)
| | - Olga Kyrchanova
- Department of the Control of Genetic Processes, Institute of Gene Biology Russian Academy of Sciences, Moscow, Russia
- * E-mail: (PG); (OK)
| |
Collapse
|
9
|
Kostyuchenko MV, Golovnin AK, Georgiev PG, Melnikova LS. The Role of GC-Rich Sequences from the Promoter Region of the Drosophila melanogaster yellow Gene in the Enhancer- Dependent Activation of Transcription. DOKL BIOCHEM BIOPHYS 2018; 482:255-260. [PMID: 30397887 DOI: 10.1134/s1607672918050071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Indexed: 11/23/2022]
Abstract
It is shown that mutations in two GC-rich sequences (GC-boxes) from the promoter region of the yellow gene during enhancer-dependent transcription activation do not affect the basal level of the yellow gene transcription but destabilize the interaction between the enhancers and the promoter.
Collapse
Affiliation(s)
- M V Kostyuchenko
- Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia
| | - A K Golovnin
- Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia
| | - P G Georgiev
- Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia
| | - L S Melnikova
- Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia.
| |
Collapse
|
10
|
Meng H, Bartholomew B. Emerging roles of transcriptional enhancers in chromatin looping and promoter-proximal pausing of RNA polymerase II. J Biol Chem 2017; 293:13786-13794. [PMID: 29187597 DOI: 10.1074/jbc.r117.813485] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Initiation and regulation of transcription by RNA polymerase II (RNAPII) in eukaryotes rely on the transcriptional regulatory elements. Promoters and enhancers share similar architectures and functions, and the prevailing view is that they can initiate bidirectional transcription. We summarize functional roles of enhancer transcription and possible mechanisms in enhancer-promoter communication. We discuss the potential roles of enhancer RNAs (eRNAs) in early elongation and highlight that transcriptional enhancers might modulate the release of paused RNAPII via 3D chromatin looping. Emerging evidence suggests that transcriptional enhancers regulate the promoter-proximal pausing of RNAPII, a key rate-limiting step required for productive elongation.
Collapse
Affiliation(s)
- Huan Meng
- From the Department of Epigenetics and Molecular Carcinogenesis, the University of Texas MD Anderson Cancer Center, Smithville, Texas 78957
| | - Blaine Bartholomew
- From the Department of Epigenetics and Molecular Carcinogenesis, the University of Texas MD Anderson Cancer Center, Smithville, Texas 78957
| |
Collapse
|
11
|
Cubeñas-Potts C, Rowley MJ, Lyu X, Li G, Lei EP, Corces VG. Different enhancer classes in Drosophila bind distinct architectural proteins and mediate unique chromatin interactions and 3D architecture. Nucleic Acids Res 2017; 45:1714-1730. [PMID: 27899590 PMCID: PMC5389536 DOI: 10.1093/nar/gkw1114] [Citation(s) in RCA: 104] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Accepted: 10/27/2016] [Indexed: 01/17/2023] Open
Abstract
Eukaryotic gene expression is regulated by enhancer–promoter interactions but the molecular mechanisms that govern specificity have remained elusive. Genome-wide studies utilizing STARR-seq identified two enhancer classes in Drosophila that interact with different core promoters: housekeeping enhancers (hkCP) and developmental enhancers (dCP). We hypothesized that the two enhancer classes are occupied by distinct architectural proteins, affecting their enhancer–promoter contacts. By evaluating ChIP-seq occupancy of architectural proteins, typical enhancer-associated proteins, and histone modifications, we determine that both enhancer classes are enriched for RNA Polymerase II, CBP, and architectural proteins but there are also distinctions. hkCP enhancers contain H3K4me3 and exclusively bind Cap-H2, Chromator, DREF and Z4, whereas dCP enhancers contain H3K4me1 and are more enriched for Rad21 and Fs(1)h-L. Additionally, we map the interactions of each enhancer class utilizing a Hi-C dataset with <1 kb resolution. Results suggest that hkCP enhancers are more likely to form multi-TSS interaction networks and be associated with topologically associating domain (TAD) borders, while dCP enhancers are more often bound to one or two TSSs and are enriched at chromatin loop anchors. The data support a model suggesting that the unique architectural protein occupancy within enhancers is one contributor to enhancer–promoter interaction specificity.
Collapse
Affiliation(s)
- Caelin Cubeñas-Potts
- Department of Biology, Emory University, 1510 Clifton Rd NE, Atlanta, GA 30322, USA
| | - M Jordan Rowley
- Department of Biology, Emory University, 1510 Clifton Rd NE, Atlanta, GA 30322, USA
| | - Xiaowen Lyu
- Department of Biology, Emory University, 1510 Clifton Rd NE, Atlanta, GA 30322, USA
| | - Ge Li
- Department of Biology, Emory University, 1510 Clifton Rd NE, Atlanta, GA 30322, USA
| | - Elissa P Lei
- Nuclear Organization and Gene Expression Section, Laboratory of Cellular and Developmental Biology, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, MD 20892, USA
| | - Victor G Corces
- Department of Biology, Emory University, 1510 Clifton Rd NE, Atlanta, GA 30322, USA
| |
Collapse
|
12
|
Melnikova LS, Kostyuchenko MV, Golovnin AK, Georgiev PG. Mapping of the regulatory sequence within the yellow gene enhancers of D. melanogaster, required for the long-distance enhancer–promoter interaction. RUSS J GENET+ 2017. [DOI: 10.1134/s1022795417030085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
13
|
Chetverina D, Fujioka M, Erokhin M, Georgiev P, Jaynes JB, Schedl P. Boundaries of loop domains (insulators): Determinants of chromosome form and function in multicellular eukaryotes. Bioessays 2017; 39. [PMID: 28133765 DOI: 10.1002/bies.201600233] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Chromosomes in multicellular animals are subdivided into a series of looped domains. In addition to being the underlying principle for organizing the chromatin fiber, looping is critical for processes ranging from gene regulation to recombination and repair. The subdivision of chromosomes into looped domains depends upon a special class of architectural elements called boundaries or insulators. These elements are distributed throughout the genome and are ubiquitous building blocks of chromosomes. In this review, we focus on features of boundaries that are critical in determining the topology of the looped domains and their genetic properties. We highlight the properties of fly boundaries that are likely to have an important bearing on the organization of looped domains in vertebrates, and discuss the functional consequences of the observed similarities and differences.
Collapse
Affiliation(s)
- Darya Chetverina
- Department of the Control of Genetic Processes, Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia
| | - Miki Fujioka
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Maksim Erokhin
- Department of the Control of Genetic Processes, Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia
| | - Pavel Georgiev
- Department of the Control of Genetic Processes, Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia
| | - James B Jaynes
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Paul Schedl
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA.,Laboratory of Gene Expression Regulation in Development, Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
14
|
Zabidi MA, Stark A. Regulatory Enhancer-Core-Promoter Communication via Transcription Factors and Cofactors. Trends Genet 2016; 32:801-814. [PMID: 27816209 DOI: 10.1016/j.tig.2016.10.003] [Citation(s) in RCA: 149] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Revised: 10/08/2016] [Accepted: 10/10/2016] [Indexed: 01/20/2023]
Abstract
Gene expression is regulated by genomic enhancers that recruit transcription factors and cofactors to activate transcription from target core promoters. Over the past years, thousands of enhancers and core promoters in animal genomes have been annotated, and we have learned much about the domain structure in which regulatory genomes are organized in animals. Enhancer-core-promoter targeting occurs at several levels, including regulatory domains, DNA accessibility, and sequence-encoded core-promoter specificities that are likely mediated by different regulatory proteins. We review here current knowledge about enhancer-core-promoter targeting, regulatory communication between enhancers and core promoters, and the protein factors involved. We conclude with an outlook on open questions that we find particularly interesting and that will likely lead to additional insights in the upcoming years.
Collapse
Affiliation(s)
- Muhammad A Zabidi
- Research Institute of Molecular Pathology (IMP), Vienna Biocenter (VBC), Dr. Bohr-Gasse 7, 1030 Vienna, Austria
| | - Alexander Stark
- Research Institute of Molecular Pathology (IMP), Vienna Biocenter (VBC), Dr. Bohr-Gasse 7, 1030 Vienna, Austria.
| |
Collapse
|
15
|
Kyrchanova O, Mogila V, Wolle D, Deshpande G, Parshikov A, Cléard F, Karch F, Schedl P, Georgiev P. Functional Dissection of the Blocking and Bypass Activities of the Fab-8 Boundary in the Drosophila Bithorax Complex. PLoS Genet 2016; 12:e1006188. [PMID: 27428541 PMCID: PMC4948906 DOI: 10.1371/journal.pgen.1006188] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Accepted: 06/22/2016] [Indexed: 12/16/2022] Open
Abstract
Functionally autonomous regulatory domains direct the parasegment-specific expression of the Drosophila Bithorax complex (BX-C) homeotic genes. Autonomy is conferred by boundary/insulator elements that separate each regulatory domain from its neighbors. For six of the nine parasegment (PS) regulatory domains in the complex, at least one boundary is located between the domain and its target homeotic gene. Consequently, BX-C boundaries must not only block adventitious interactions between neighboring regulatory domains, but also be permissive (bypass) for regulatory interactions between the domains and their gene targets. To elucidate how the BX-C boundaries combine these two contradictory activities, we have used a boundary replacement strategy. We show that a 337 bp fragment spanning the Fab-8 boundary nuclease hypersensitive site and lacking all but 83 bp of the 625 bp Fab-8 PTS (promoter targeting sequence) fully rescues a Fab-7 deletion. It blocks crosstalk between the iab-6 and iab-7 regulatory domains, and has bypass activity that enables the two downstream domains, iab-5 and iab-6, to regulate Abdominal-B (Abd-B) transcription in spite of two intervening boundary elements. Fab-8 has two dCTCF sites and we show that they are necessary both for blocking and bypass activity. However, CTCF sites on their own are not sufficient for bypass. While multimerized dCTCF (or Su(Hw)) sites have blocking activity, they fail to support bypass. Moreover, this bypass defect is not rescued by the full length PTS. Finally, we show that orientation is critical for the proper functioning the Fab-8 replacement. Though the inverted Fab-8 boundary still blocks crosstalk, it disrupts the topology of the Abd-B regulatory domains and does not support bypass. Importantly, altering the orientation of the Fab-8 dCTCF sites is not sufficient to disrupt bypass, indicating that orientation dependence is conferred by other factors. Boundary elements in the Bithorax complex have two seemingly contradictory activities. They must block crosstalk between neighboring regulatory domains, but at the same time be permissive (insulator bypass) for regulatory interactions between the domains and the BX-C homeotic genes. We have used a replacement strategy to investigate how they carry out these two functions. We show that a 337 bp fragment spanning the Fab-8 boundary nuclease hypersensitive site is sufficient to fully rescue a Fab-7 boundary deletion. It blocks crosstalk and supports bypass. As has been observed in transgene assays, blocking activity requires the Fab-8 dCTCF sites, while full bypass activity requires the dCTCF sites plus a small part of PTS. In transgene assays, bypass activity typically depends on the orientation of the two insulators relative to each other. A similar orientation dependence is observed for the Fab-8 replacement in BX-C. When the orientation of the Fab-8 boundary is reversed, bypass activity is lost, while blocking is unaffected. Interestingly, unlike what has been observed in mammals, reversing the orientation of only the Fab-8 dCTCF sites does not affect boundary function. This finding indicates that other Fab-8 factors must play a critical role in determining orientation. Taken together, our findings argue that carrying out the paradoxical functions of the BX-C boundaries does not require any unusual or special properties; rather BX-C boundaries utilize generic blocking and insulator bypass activities that are appropriately adapted to their regulatory context. Thus making them a good model for studying the functional properties of boundaries/insulators in their native setting.
Collapse
Affiliation(s)
- Olga Kyrchanova
- Department of Genetics, Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia
- * E-mail: (OK); (PG)
| | - Vladic Mogila
- Department of Genetics, Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia
| | - Daniel Wolle
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, United States of America
| | - Girish Deshpande
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, United States of America
| | - Alexander Parshikov
- Department of Genetics, Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia
| | - Fabienne Cléard
- Department of Genetics and Evolution, University of Geneva, Geneva, Switzerland
| | - Francois Karch
- Department of Genetics and Evolution, University of Geneva, Geneva, Switzerland
| | - Paul Schedl
- Department of Genetics, Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, United States of America
| | - Pavel Georgiev
- Department of Genetics, Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia
- * E-mail: (OK); (PG)
| |
Collapse
|
16
|
Engel KL, Mackiewicz M, Hardigan AA, Myers RM, Savic D. Decoding transcriptional enhancers: Evolving from annotation to functional interpretation. Semin Cell Dev Biol 2016; 57:40-50. [PMID: 27224938 DOI: 10.1016/j.semcdb.2016.05.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Revised: 05/06/2016] [Accepted: 05/18/2016] [Indexed: 12/18/2022]
Abstract
Deciphering the intricate molecular processes that orchestrate the spatial and temporal regulation of genes has become an increasingly major focus of biological research. The differential expression of genes by diverse cell types with a common genome is a hallmark of complex cellular functions, as well as the basis for multicellular life. Importantly, a more coherent understanding of gene regulation is critical for defining developmental processes, evolutionary principles and disease etiologies. Here we present our current understanding of gene regulation by focusing on the role of enhancer elements in these complex processes. Although functional genomic methods have provided considerable advances to our understanding of gene regulation, these assays, which are usually performed on a genome-wide scale, typically provide correlative observations that lack functional interpretation. Recent innovations in genome editing technologies have placed gene regulatory studies at an exciting crossroads, as systematic, functional evaluation of enhancers and other transcriptional regulatory elements can now be performed in a coordinated, high-throughput manner across the entire genome. This review provides insights on transcriptional enhancer function, their role in development and disease, and catalogues experimental tools commonly used to study these elements. Additionally, we discuss the crucial role of novel techniques in deciphering the complex gene regulatory landscape and how these studies will shape future research.
Collapse
Affiliation(s)
- Krysta L Engel
- HudsonAlpha Institute for Biotechnology, Huntsville, AL 35806, United States
| | - Mark Mackiewicz
- HudsonAlpha Institute for Biotechnology, Huntsville, AL 35806, United States
| | - Andrew A Hardigan
- HudsonAlpha Institute for Biotechnology, Huntsville, AL 35806, United States; Department of Genetics, University of Alabama at Birmingham, Birmingham, AL 35294, United States
| | - Richard M Myers
- HudsonAlpha Institute for Biotechnology, Huntsville, AL 35806, United States
| | - Daniel Savic
- HudsonAlpha Institute for Biotechnology, Huntsville, AL 35806, United States.
| |
Collapse
|
17
|
Blick AJ, Mayer-Hirshfeld I, Malibiran BR, Cooper MA, Martino PA, Johnson JE, Bateman JR. The Capacity to Act in Trans Varies Among Drosophila Enhancers. Genetics 2016; 203:203-18. [PMID: 26984057 PMCID: PMC4858774 DOI: 10.1534/genetics.115.185645] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Accepted: 03/07/2016] [Indexed: 01/10/2023] Open
Abstract
The interphase nucleus is organized such that genomic segments interact in cis, on the same chromosome, and in trans, between different chromosomes. In Drosophila and other Dipterans, extensive interactions are observed between homologous chromosomes, which can permit enhancers and promoters to communicate in trans Enhancer action in trans has been observed for a handful of genes in Drosophila, but it is as yet unclear whether this is a general property of all enhancers or specific to a few. Here, we test a collection of well-characterized enhancers for the capacity to act in trans Specifically, we tested 18 enhancers that are active in either the eye or wing disc of third instar Drosophila larvae and, using two different assays, found evidence that each enhancer can act in trans However, the degree to which trans-action was supported varied greatly between enhancers. Quantitative analysis of enhancer activity supports a model wherein an enhancer's strength of transcriptional activation is a major determinant of its ability to act in trans, but that additional factors may also contribute to an enhancer's trans-activity. In sum, our data suggest that a capacity to activate a promoter on a paired chromosome is common among Drosophila enhancers.
Collapse
Affiliation(s)
- Amanda J Blick
- Biology Department, Bowdoin College, Brunswick, Maine 04011
| | | | | | | | | | | | - Jack R Bateman
- Biology Department, Bowdoin College, Brunswick, Maine 04011
| |
Collapse
|
18
|
Estrada J, Ruiz-Herrero T, Scholes C, Wunderlich Z, DePace AH. SiteOut: An Online Tool to Design Binding Site-Free DNA Sequences. PLoS One 2016; 11:e0151740. [PMID: 26987123 PMCID: PMC4795680 DOI: 10.1371/journal.pone.0151740] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Accepted: 03/03/2016] [Indexed: 11/18/2022] Open
Abstract
DNA-binding proteins control many fundamental biological processes such as transcription, recombination and replication. A major goal is to decipher the role that DNA sequence plays in orchestrating the binding and activity of such regulatory proteins. To address this goal, it is useful to rationally design DNA sequences with desired numbers, affinities and arrangements of protein binding sites. However, removing binding sites from DNA is computationally non-trivial since one risks creating new sites in the process of deleting or moving others. Here we present an online binding site removal tool, SiteOut, that enables users to design arbitrary DNA sequences that entirely lack binding sites for factors of interest. SiteOut can also be used to delete sites from a specific sequence, or to introduce site-free spacers between functional sequences without creating new sites at the junctions. In combination with commercial DNA synthesis services, SiteOut provides a powerful and flexible platform for synthetic projects that interrogate regulatory DNA. Here we describe the algorithm and illustrate the ways in which SiteOut can be used; it is publicly available at https://depace.med.harvard.edu/siteout/.
Collapse
Affiliation(s)
- Javier Estrada
- Department of Systems Biology, Harvard Medical School, Boston, MA, United States of America
| | - Teresa Ruiz-Herrero
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, United States of America
| | - Clarissa Scholes
- Department of Systems Biology, Harvard Medical School, Boston, MA, United States of America
| | - Zeba Wunderlich
- Department of Systems Biology, Harvard Medical School, Boston, MA, United States of America
| | - Angela H. DePace
- Department of Systems Biology, Harvard Medical School, Boston, MA, United States of America
- * E-mail:
| |
Collapse
|
19
|
Kim TK, Shiekhattar R. Architectural and Functional Commonalities between Enhancers and Promoters. Cell 2015; 162:948-59. [PMID: 26317464 DOI: 10.1016/j.cell.2015.08.008] [Citation(s) in RCA: 241] [Impact Index Per Article: 24.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Indexed: 01/23/2023]
Abstract
With the explosion of genome-wide studies of regulated transcription, it has become clear that traditional definitions of enhancers and promoters need to be revisited. These control elements can now be characterized in terms of their local and regional architecture, their regulatory components, including histone modifications and associated binding factors, and their functional contribution to transcription. This Review discusses unifying themes between promoters and enhancers in transcriptional regulatory mechanisms.
Collapse
Affiliation(s)
- Tae-Kyung Kim
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX 75390-9111, USA.
| | - Ramin Shiekhattar
- University of Miami Miller School of Medicine, Sylvester Comprehensive Cancer Center, Department of Human Genetics, Biomedical Research Building, Room 719, 1501 NW 10(th) Avenue, Miami, FL 33136, USA.
| |
Collapse
|
20
|
|
21
|
Johnson WC, Ordway AJ, Watada M, Pruitt JN, Williams TM, Rebeiz M. Genetic Changes to a Transcriptional Silencer Element Confers Phenotypic Diversity within and between Drosophila Species. PLoS Genet 2015; 11:e1005279. [PMID: 26115430 PMCID: PMC4483262 DOI: 10.1371/journal.pgen.1005279] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Accepted: 05/13/2015] [Indexed: 11/23/2022] Open
Abstract
The modification of transcriptional regulation has become increasingly appreciated as a major contributor to morphological evolution. However, the role of negative-acting control elements (e.g. silencers) in generating morphological diversity has been generally overlooked relative to positive-acting “enhancer” elements. The highly variable body coloration patterns among Drosophilid insects represents a powerful model system in which the molecular alterations that underlie phenotypic diversity can be defined. In a survey of pigment phenotypes among geographically disparate Japanese populations of Drosophila auraria, we discovered a remarkable degree of variation in male-specific abdominal coloration. In testing the expression patterns of the major pigment-producing enzymes, we found that phenotypes uniquely correlated with differences in the expression of ebony, a gene required for yellow-colored cuticle. Assays of ebony’s transcriptional control region indicated that a lightly pigmented strain harbored cis-regulatory mutations that caused correlated changes in its expression. Through a series of chimeric reporter constructs between light and dark strain alleles, we localized function-altering mutations to a conserved silencer that mediates a male-specific pattern of ebony repression. This suggests that the light allele was derived through the loss of this silencer’s activity. Furthermore, examination of the ebony gene of D. serrata, a close relative of D. auraria which secondarily lost male-specific pigmentation revealed the parallel loss of this silencer element. These results demonstrate how loss-of-function mutations in a silencer element resulted in increased gene expression. We propose that the mutational inactivation of silencer elements may represent a favored path to evolve gene expression, impacting morphological traits. One of the greatest challenges in understanding the relationship between genotype and phenotype is to discern how changes in DNA affect the normal functioning of genes. Mutations may generate a new function for a gene, yet it is frequently observed that they inactivate some aspect of a gene’s normal capacity. Investigations focused on understanding the developmental basis for the evolution of anatomical structures has found a prevalent role for mutations that alter developmental gene regulation. In animals, genes are transcriptionally activated in specific tissues during development by regulatory sequences distributed across their expansive non-protein coding regions. Regulatory elements known as silencers act to prevent genes from being expressed in certain tissues, providing a mechanism for precise control. Here, we show how a silencer that prevents expression of a pigment-producing enzyme in certain Drosophila species has repeatedly been subject to inactivating mutations that increased this gene’s expression. This example illustrates how such negative-acting regulatory sequences can represent a convenient target for increasing gene expression through the loss of a genetic element.
Collapse
Affiliation(s)
- Winslow C. Johnson
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Alison J. Ordway
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Masayoshi Watada
- Department of Biology, Faculty of Science, Ehime University, Matsuyama, Japan
| | - Jonathan N. Pruitt
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Thomas M. Williams
- Department of Biology, University of Dayton, Dayton, Ohio, United States of America
| | - Mark Rebeiz
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
22
|
Kyrchanova OV, Georgiev PG. The bithorax complex of Drosophila melanogaster as a model for studying specific long-distance interactions between enhancers and promoters. RUSS J GENET+ 2015. [DOI: 10.1134/s1022795415050038] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
23
|
Rebeiz M, Patel NH, Hinman VF. Unraveling the Tangled Skein: The Evolution of Transcriptional Regulatory Networks in Development. Annu Rev Genomics Hum Genet 2015; 16:103-31. [PMID: 26079281 DOI: 10.1146/annurev-genom-091212-153423] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The molecular and genetic basis for the evolution of anatomical diversity is a major question that has inspired evolutionary and developmental biologists for decades. Because morphology takes form during development, a true comprehension of how anatomical structures evolve requires an understanding of the evolutionary events that alter developmental genetic programs. Vast gene regulatory networks (GRNs) that connect transcription factors to their target regulatory sequences control gene expression in time and space and therefore determine the tissue-specific genetic programs that shape morphological structures. In recent years, many new examples have greatly advanced our understanding of the genetic alterations that modify GRNs to generate newly evolved morphologies. Here, we review several aspects of GRN evolution, including their deep preservation, their mechanisms of alteration, and how they originate to generate novel developmental programs.
Collapse
Affiliation(s)
- Mark Rebeiz
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania 15260;
| | | | | |
Collapse
|
24
|
Danino YM, Even D, Ideses D, Juven-Gershon T. The core promoter: At the heart of gene expression. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2015; 1849:1116-31. [PMID: 25934543 DOI: 10.1016/j.bbagrm.2015.04.003] [Citation(s) in RCA: 105] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Revised: 04/19/2015] [Accepted: 04/23/2015] [Indexed: 12/17/2022]
Abstract
The identities of different cells and tissues in multicellular organisms are determined by tightly controlled transcriptional programs that enable accurate gene expression. The mechanisms that regulate gene expression comprise diverse multiplayer molecular circuits of multiple dedicated components. The RNA polymerase II (Pol II) core promoter establishes the center of this spatiotemporally orchestrated molecular machine. Here, we discuss transcription initiation, diversity in core promoter composition, interactions of the basal transcription machinery with the core promoter, enhancer-promoter specificity, core promoter-preferential activation, enhancer RNAs, Pol II pausing, transcription termination, Pol II recycling and translation. We further discuss recent findings indicating that promoters and enhancers share similar features and may not substantially differ from each other, as previously assumed. Taken together, we review a broad spectrum of studies that highlight the importance of the core promoter and its pivotal role in the regulation of metazoan gene expression and suggest future research directions and challenges.
Collapse
Affiliation(s)
- Yehuda M Danino
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan 5290002, Israel
| | - Dan Even
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan 5290002, Israel
| | - Diana Ideses
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan 5290002, Israel
| | - Tamar Juven-Gershon
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan 5290002, Israel.
| |
Collapse
|
25
|
Abstract
Although it was originally believed that enhancers activate only the nearest promoter, recent global analyses enabled by high-throughput technology suggest that the network of enhancer-promoter interactions is far more complex. The mechanisms that determine the specificity of enhancer-promoter interactions are still poorly understood, but they are thought to include biochemical compatibility, constraints imposed by the three-dimensional architecture of chromosomes, insulator elements, and possibly the effects of local chromatin composition. In this review, we assess the current insights into these determinants, and highlight the functional genomic approaches that will lead the way towards better mechanistic understanding.
Collapse
|
26
|
van Arensbergen J, van Steensel B, Bussemaker HJ. In search of the determinants of enhancer-promoter interaction specificity. Trends Cell Biol 2014; 24:695-702. [PMID: 25160912 DOI: 10.1016/j.tcb.2014.07.004] [Citation(s) in RCA: 119] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2014] [Revised: 07/15/2014] [Accepted: 07/21/2014] [Indexed: 02/07/2023]
Abstract
Although it was originally believed that enhancers activate only the nearest promoter, recent global analyses enabled by high-throughput technology suggest that the network of enhancer-promoter interactions is far more complex. The mechanisms that determine the specificity of enhancer-promoter interactions are still poorly understood, but they are thought to include biochemical compatibility, constraints imposed by the three-dimensional architecture of chromosomes, insulator elements, and possibly the effects of local chromatin composition. In this review, we assess the current insights into these determinants, and highlight the functional genomic approaches that will lead the way towards better mechanistic understanding.
Collapse
Affiliation(s)
- Joris van Arensbergen
- Division of Gene Regulation, Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands
| | - Bas van Steensel
- Division of Gene Regulation, Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands.
| | - Harmen J Bussemaker
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA; Center for Computational Biology and Bioinformatics, Columbia University, New York, NY 10032, USA.
| |
Collapse
|
27
|
Maksimenko O, Georgiev P. Mechanisms and proteins involved in long-distance interactions. Front Genet 2014; 5:28. [PMID: 24600469 PMCID: PMC3927085 DOI: 10.3389/fgene.2014.00028] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2013] [Accepted: 01/25/2014] [Indexed: 12/28/2022] Open
Abstract
Due to advances in genome-wide technologies, consistent distant interactions within chromosomes of higher eukaryotes have been revealed. In particular, it has been shown that enhancers can specifically and directly interact with promoters by looping out intervening sequences, which can be up to several hundred kilobases long. This review is focused on transcription factors that are supposed to be involved in long-range interactions. Available data are in agreement with the model that several known transcription factors and insulator proteins belong to an abundant but poorly studied class of proteins that are responsible for chromosomal architecture.
Collapse
Affiliation(s)
- Oksana Maksimenko
- Laboratory of Gene Expression Regulation in Development, Institute of Gene Biology, Russian Academy of Sciences Moscow, Russia
| | - Pavel Georgiev
- Department of the Control of Genetic Processes, Institute of Gene Biology, Russian Academy of Sciences Moscow, Russia
| |
Collapse
|
28
|
Atkinson TJ, Halfon MS. Regulation of gene expression in the genomic context. Comput Struct Biotechnol J 2014; 9:e201401001. [PMID: 24688749 PMCID: PMC3962188 DOI: 10.5936/csbj.201401001] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2013] [Revised: 12/10/2013] [Accepted: 12/29/2013] [Indexed: 11/22/2022] Open
Abstract
Metazoan life is dependent on the proper temporal and spatial control of gene expression within the many cells-essentially all with the identical genome-that make up the organism. While much is understood about how individual gene regulatory elements function, many questions remain about how they interact to maintain correct regulation globally throughout the genome. In this review we summarize the basic features and functions of the crucial regulatory elements promoters, enhancers, and insulators and discuss some of the ways in which proper interactions between these elements is realized. We focus in particular on the role of core promoter sequences and propose explanations for some of the contradictory results seen in experiments aimed at understanding insulator function. We suggest that gene regulation depends on local genomic context and argue that more holistic in vivo investigations that take into account multiple local features will be necessary to understand how genome-wide gene regulation is maintained.
Collapse
Affiliation(s)
- Taylor J Atkinson
- Department of Biochemistry, University at Buffalo-State University of New York, Buffalo, NY 14203, USA
- NY State Center of Excellence in Bioinformatics and Life Sciences, Buffalo, NY 14203, USA
| | - Marc S Halfon
- Department of Biochemistry, University at Buffalo-State University of New York, Buffalo, NY 14203, USA
- Department of Biological Sciences, University at Buffalo-State University of New York, Buffalo, NY 14203, USA
- NY State Center of Excellence in Bioinformatics and Life Sciences, Buffalo, NY 14203, USA
- Molecular and Cellular Biology Department and Program in Cancer Genetics, Roswell Park Cancer Institute, Buffalo, NY 14263, USA
| |
Collapse
|
29
|
Mayer LR, Diegelmann S, Abassi Y, Eichinger F, Pflugfelder GO. Enhancer trap infidelity in Drosophila optomotor-blind. Fly (Austin) 2013; 7:118-28. [PMID: 23519069 DOI: 10.4161/fly.23657] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Reporter gene activity in enhancer trap lines is often implicitly assumed to mirror quite faithfully the endogenous expression of the "trapped" gene, even though there are numerous examples of enhancer trap infidelity. optomotor-blind (omb) is a 160 kb gene in which 16 independent P-element enhancer trap insertions of three different types have been mapped in a range of more than 60 kb. We have determined the expression pattern of these elements in wing, eye-antennal and leg imaginal discs as well as in the pupal tergites. We noted that one pGawB insertion (omb (P4) ) selectively failed to report parts of the omb pattern even though the missing pattern elements were apparent in all other 15 lines. We ruled out that omb (P4) was defective in the Gal4 promoter region or had inactivated genomic enhancers in the integration process. We propose that the Gal4 reporter gene in pGawB may be sensitive to orientation or promoter proximity effects.
Collapse
Affiliation(s)
- Lisa R Mayer
- Institute of Genetics, Johannes Gutenberg-Universität, Mainz, Germany
| | | | | | | | | |
Collapse
|
30
|
The border between the ultrabithorax and abdominal-A regulatory domains in the Drosophila bithorax complex. Genetics 2013; 193:1135-47. [PMID: 23288934 DOI: 10.1534/genetics.112.146340] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The bithorax complex in Drosophila melanogaster includes three homeobox-containing genes--Ultrabithorax (Ubx), abdominal--A (abd-A), and Abdominal-B (Abd-B)-which are required for the proper differentiation of the posterior 10 segments of the body. Each of these genes has multiple distinct regulatory regions; there is one for each segmental unit of the body plan where the genes are expressed. One additional protein- coding gene in the bithorax complex, Glut3, a sugar-transporter homolog, can be deleted without phenotype. We focus here on the upstream regulatory region for Ubx, the bithoraxoid (bxd) domain, and its border with the adjacent infraabdominal-2 (iab-2) domain, which controls abdA. These two domains can be defined by the phenotypes of rearrangement breakpoints, and by the expression patterns of enhancer traps. In D. virilis, the homeotic cluster is split between Ubx and abd-A, and so the border can also be located by a sequence comparison between species. When the border region is deleted in melanogaster, the flies show a dominant phenotype called Front-ultraabdominal (Fub); the first abdominal segment is transformed into a copy of the second abdominal segment. Thus, the border blocks the spread of activation from the bxd domain into the iab-2 domain.
Collapse
|
31
|
Frankel N. Multiple layers of complexity incis-regulatory regions of developmental genes. Dev Dyn 2012; 241:1857-66. [DOI: 10.1002/dvdy.23871] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/06/2012] [Indexed: 12/19/2022] Open
|
32
|
Abstract
Studies from diverse systems have shown that distinct interchromosomal interactions are a central component of nuclear organization. In some cases, these interactions allow an enhancer to act in trans, modulating the expression of a gene encoded on a separate chromosome held in close proximity. Despite recent advances in uncovering such phenomena, our understanding of how a regulatory element acts on another chromosome remains incomplete. Here, we describe a transgenic approach to better understand enhancer action in trans in Drosophila melanogaster. Using phiC31-based recombinase-mediated cassette exchange (RMCE), we placed transgenes carrying combinations of the simple enhancer GMR, a minimal promoter, and different fluorescent reporters at equivalent positions on homologous chromosomes so that they would pair via the endogenous somatic pairing machinery of Drosophila. Our data demonstrate that the enhancer GMR is capable of activating a promoter in trans and does so in a variegated pattern, suggesting stochastic interactions between the enhancer and the promoter when they are carried on separate chromosomes. Furthermore, we quantitatively assessed the impact of two concurrent promoter targets in cis and in trans to GMR, demonstrating that each promoter is capable of competing for the enhancer's activity, with the presence of one negatively affecting expression from the other. Finally, the single-cell resolution afforded by our approach allowed us to show that promoters in cis and in trans to GMR can both be activated in the same nucleus, implying that a single enhancer can share its activity between multiple promoter targets carried on separate chromosomes.
Collapse
|
33
|
Rebeiz M, Jikomes N, Kassner VA, Carroll SB. Evolutionary origin of a novel gene expression pattern through co-option of the latent activities of existing regulatory sequences. Proc Natl Acad Sci U S A 2011; 108:10036-43. [PMID: 21593416 PMCID: PMC3121811 DOI: 10.1073/pnas.1105937108] [Citation(s) in RCA: 94] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Spatiotemporal changes in gene expression underlie many evolutionary novelties in nature. However, the evolutionary origins of novel expression patterns, and the transcriptional control elements ("enhancers") that govern them, remain unclear. Here, we sought to explore the molecular genetic mechanisms by which new enhancers arise. We undertook a survey of closely related Drosophila species to identify recently evolved novel gene expression patterns and traced their evolutionary history. Analyses of gene expression in a variety of developing tissues of the Drosophila melanogaster species subgroup revealed high rates of expression pattern divergence, including numerous evolutionary losses, heterochronic shifts, and expansions or contractions of expression domains. However, gains of novel expression patterns were much less frequent. One gain was observed for the Neprilysin-1 (Nep1) gene, which has evolved a unique expression pattern in optic lobe neuroblasts of Drosophila santomea. Dissection of the Nep1 cis-regulatory region localized a newly derived optic lobe enhancer activity to a region of an intron that has accumulated a small number of mutations. The Nep1 optic lobe enhancer overlaps with other enhancer activities, from which the novel activity was co-opted. We suggest that the novel optic lobe enhancer evolved by exploiting the cryptic activity of extant regulatory sequences, and this may reflect a general mechanism whereby new enhancers evolve.
Collapse
Affiliation(s)
- Mark Rebeiz
- Howard Hughes Medical Institute and Laboratory of Molecular Biology, University of Wisconsin, Madison, WI 53706; and
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260
| | - Nick Jikomes
- Howard Hughes Medical Institute and Laboratory of Molecular Biology, University of Wisconsin, Madison, WI 53706; and
| | - Victoria A. Kassner
- Howard Hughes Medical Institute and Laboratory of Molecular Biology, University of Wisconsin, Madison, WI 53706; and
| | - Sean B. Carroll
- Howard Hughes Medical Institute and Laboratory of Molecular Biology, University of Wisconsin, Madison, WI 53706; and
| |
Collapse
|
34
|
Amouyal M. Gene insulation. Part I: natural strategies in yeast and Drosophila. Biochem Cell Biol 2011; 88:875-84. [PMID: 21102650 DOI: 10.1139/o10-110] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
This review in two parts deals with the increasing number of processes known to be used by eukaryotic cells to protect gene expression from undesired genomic enhancer or chromatin effects, by means of the so-called insulators or barriers. The most advanced studies in this expanding field concern yeasts and Drosophila (this article) and the vertebrates (next article in this issue). Clearly, the cell makes use of every gene context to find the appropriate, economic, solution. Thus, besides the elements formerly identified and specifically dedicated to insulation, a number of unexpected elements are diverted from their usual function to structure the genome and enhancer action or to prevent heterochromatin spreading. They are, for instance, genes actively transcribed by RNA polymerase II or III, partial elements of these transcriptional machineries (stalled RNA polymerase II, normally required by genes that must respond quickly to stimuli, or TFIIIC bound at its B-box, normally required by RNA polymerase III for assembly of the transcription initiation complex at tRNA genes), or genomic sequences occupied by variants of standard histones, which, being rapidly and permanently replaced, impede heterochromatin formation.
Collapse
|
35
|
Ho MCW, Schiller BJ, Akbari OS, Bae E, Drewell RA. Disruption of the abdominal-B promoter tethering element results in a loss of long-range enhancer-directed Hox gene expression in Drosophila. PLoS One 2011; 6:e16283. [PMID: 21283702 PMCID: PMC3025016 DOI: 10.1371/journal.pone.0016283] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2010] [Accepted: 12/21/2010] [Indexed: 11/29/2022] Open
Abstract
There are many examples within gene complexes of transcriptional enhancers interacting with only a subset of target promoters. A number of molecular mechanisms including promoter competition, insulators and chromatin looping are thought to play a role in regulating these interactions. At the Drosophila bithorax complex (BX-C), the IAB5 enhancer specifically drives gene expression only from the Abdominal-B (Abd-B) promoter, even though the enhancer and promoter are 55 kb apart and are separated by at least three insulators. In previous studies, we discovered that a 255 bp cis-regulatory module, the promoter tethering element (PTE), located 5′ of the Abd-B transcriptional start site is able to tether IAB5 to the Abd-B promoter in transgenic embryo assays. In this study we examine the functional role of the PTE at the endogenous BX-C using transposon-mediated mutagenesis. Disruption of the PTE by P element insertion results in a loss of enhancer-directed Abd-B expression during embryonic development and a homeotic transformation of abdominal segments. A partial deletion of the PTE and neighboring upstream genomic sequences by imprecise excision of the P element also results in a similar loss of Abd-B expression in embryos. These results demonstrate that the PTE is an essential component of the regulatory network at the BX-C and is required in vivo to mediate specific long-range enhancer-promoter interactions.
Collapse
Affiliation(s)
- Margaret C. W. Ho
- Biology Department, Harvey Mudd College, Claremont, California, United States of America
| | - Benjamin J. Schiller
- Biology Department, Harvey Mudd College, Claremont, California, United States of America
| | - Omar S. Akbari
- Biology Department, Harvey Mudd College, Claremont, California, United States of America
| | - Esther Bae
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, California, United States of America
| | - Robert A. Drewell
- Biology Department, Harvey Mudd College, Claremont, California, United States of America
- * E-mail:
| |
Collapse
|
36
|
Kyrchanova O, Ivlieva T, Toshchakov S, Parshikov A, Maksimenko O, Georgiev P. Selective interactions of boundaries with upstream region of Abd-B promoter in Drosophila bithorax complex and role of dCTCF in this process. Nucleic Acids Res 2010; 39:3042-52. [PMID: 21149269 PMCID: PMC3082887 DOI: 10.1093/nar/gkq1248] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Expression of the genes Ubx, abd-A, and Abd-B of the bithorax complex depends on its cis-regulatory region, which is divided into discrete functional domains (iab). Boundary/insulator elements, named Mcp, Fab-6, Fab-7 and Fab-8 (PTS/F8), have been identified at the borders of the iab domains. Recently, binding sites for a Drosophila homolog of the vertebrate insulator protein CTCF have been identified in Mcp, Fab-6 and Fab-8 and also in several regions that correspond to predicted boundaries, Fab-3 and Fab-4 in particular. Taking into account the inability of the yeast GAL4 activator to stimulate the white promoter when the activator and the promoter are separated by a 5-kb yellow gene, we have tested functional interactions between the boundaries. The results show that all dCTCF-containing boundaries interact with each other. However, inactivation of dCTCF binding sites in Mcp, Fab-6 and PTS/F8 only partially reduces their ability to interact, suggesting the presence of additional protein(s) supporting distant interactions between the boundaries. Interestingly, only Fab-6, Fab-7 (which contains no dCTCF binding sites) and PTS/F8 interact with the upstream region of the Abd-B promoter. Thus, the boundaries might be involved in supporting the specific interactions between iab enhancers and promoters of the bithorax complex.
Collapse
Affiliation(s)
- Olga Kyrchanova
- Department of the Control of Genetic Processes, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov St, Moscow 119334, Russia
| | | | | | | | | | | |
Collapse
|
37
|
Swanson CI, Evans NC, Barolo S. Structural rules and complex regulatory circuitry constrain expression of a Notch- and EGFR-regulated eye enhancer. Dev Cell 2010; 18:359-70. [PMID: 20230745 PMCID: PMC2847355 DOI: 10.1016/j.devcel.2009.12.026] [Citation(s) in RCA: 125] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2008] [Revised: 09/27/2009] [Accepted: 12/27/2009] [Indexed: 01/13/2023]
Abstract
Enhancers integrate spatiotemporal information to generate precise patterns of gene expression. How complex is the regulatory logic of a typical developmental enhancer, and how important is its internal organization? Here, we examine in detail the structure and function of sparkling, a Notch- and EGFR/MAPK-regulated, cone cell-specific enhancer of the Drosophila Pax2 gene, in vivo. In addition to its 12 previously identified protein-binding sites, sparkling is densely populated with previously unmapped regulatory sequences, which interact in complex ways to control gene expression. One segment is essential for activation at a distance, yet dispensable for other activation functions and for cell type patterning. Unexpectedly, rearranging sparkling's regulatory sites converts it into a robust photoreceptor-specific enhancer. Our results show that a single combination of regulatory inputs can encode multiple outputs, and suggest that the enhancer's organization determines the correct expression pattern by facilitating certain short-range regulatory interactions at the expense of others.
Collapse
MESH Headings
- Animals
- Animals, Genetically Modified
- Base Sequence
- Binding Sites/genetics
- DNA/genetics
- DNA-Binding Proteins/genetics
- DNA-Binding Proteins/metabolism
- Drosophila/genetics
- Drosophila/growth & development
- Drosophila/metabolism
- Drosophila Proteins/genetics
- Drosophila Proteins/metabolism
- Drosophila melanogaster/genetics
- Drosophila melanogaster/growth & development
- Drosophila melanogaster/metabolism
- Enhancer Elements, Genetic
- ErbB Receptors/genetics
- ErbB Receptors/metabolism
- Evolution, Molecular
- Eye/growth & development
- Eye/metabolism
- Eye Proteins/genetics
- Eye Proteins/metabolism
- Gene Expression Regulation, Developmental
- Genes, Insect
- MAP Kinase Signaling System
- Molecular Sequence Data
- Mutagenesis
- PAX2 Transcription Factor/genetics
- PAX2 Transcription Factor/metabolism
- Photoreceptor Cells, Invertebrate/cytology
- Photoreceptor Cells, Invertebrate/metabolism
- Receptors, Invertebrate Peptide/genetics
- Receptors, Invertebrate Peptide/metabolism
- Receptors, Notch/genetics
- Receptors, Notch/metabolism
- Sequence Homology, Nucleic Acid
Collapse
Affiliation(s)
- Christina I. Swanson
- Department of Cell & Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109-2200, USA
| | - Nicole C. Evans
- Department of Cell & Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109-2200, USA
| | - Scott Barolo
- Department of Cell & Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109-2200, USA
| |
Collapse
|
38
|
Maeda RK, Karch F. Cis-regulation in the Drosophila Bithorax Complex. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2010; 689:17-40. [PMID: 20795320 DOI: 10.1007/978-1-4419-6673-5_2] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The discovery of the first homeotic mutation by Calvin Bridges in 1915 profoundly influenced the way we think about developmental processes. Although many mutations modify or deform morphological structures, homeotic mutations cause a spectacular phenotype in which a morphological structure develops like a copy of a structure that is normally found elsewhere on an organism's body plan. This is best illustrated in Drosophila where homeotic mutations were first discovered. For example, Antennapedia mutants have legs developing on their head instead of antennae. Because a mutation in a single gene creates such complete structures, homeotic genes were proposed to be key "selector genes" regulating the initiation of a developmental program. According to this model, once a specific developmental program is initiated (i.e., antenna or leg), it can be executed by downstream "realizator genes" independent of its location along the body axis. Consistent with this idea, homeotic genes have been shown to encode transcription factor proteins that control the activity of the many downstream targets to "realize" a developmental program. Here, we will review the first and perhaps, best characterized homeotic complex, the Bithorax Complex (BX-C).
Collapse
Affiliation(s)
- Robert K Maeda
- NCCR Frontiers in Genetics, University of Geneva, 30 quai E. Ansermet, 1211 Geneva-4, Switzerland
| | | |
Collapse
|
39
|
Borok MJ, Tran DA, Ho MCW, Drewell RA. Dissecting the regulatory switches of development: lessons from enhancer evolution in Drosophila. Development 2010; 137:5-13. [PMID: 20023155 PMCID: PMC2796927 DOI: 10.1242/dev.036160] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Cis-regulatory modules are non-protein-coding regions of DNA essential for the control of gene expression. One class of regulatory modules is embryonic enhancers, which drive gene expression during development as a result of transcription factor protein binding at the enhancer sequences. Recent comparative studies have begun to investigate the evolution of the sequence architecture within enhancers. These analyses are illuminating the way that developmental biologists think about enhancers by revealing their molecular mechanism of function.
Collapse
Affiliation(s)
| | | | - Margaret C. W. Ho
- Biology Department, Harvey Mudd College, 301 Platt Boulevard, Claremont, CA 91711, USA
| | - Robert A. Drewell
- Biology Department, Harvey Mudd College, 301 Platt Boulevard, Claremont, CA 91711, USA
| |
Collapse
|
40
|
Ho MCW, Johnsen H, Goetz SE, Schiller BJ, Bae E, Tran DA, Shur AS, Allen JM, Rau C, Bender W, Fisher WW, Celniker SE, Drewell RA. Functional evolution of cis-regulatory modules at a homeotic gene in Drosophila. PLoS Genet 2009; 5:e1000709. [PMID: 19893611 PMCID: PMC2763271 DOI: 10.1371/journal.pgen.1000709] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2009] [Accepted: 10/05/2009] [Indexed: 11/19/2022] Open
Abstract
It is a long-held belief in evolutionary biology that the rate of molecular evolution for a given DNA sequence is inversely related to the level of functional constraint. This belief holds true for the protein-coding homeotic (Hox) genes originally discovered in Drosophila melanogaster. Expression of the Hox genes in Drosophila embryos is essential for body patterning and is controlled by an extensive array of cis-regulatory modules (CRMs). How the regulatory modules functionally evolve in different species is not clear. A comparison of the CRMs for the Abdominal-B gene from different Drosophila species reveals relatively low levels of overall sequence conservation. However, embryonic enhancer CRMs from other Drosophila species direct transgenic reporter gene expression in the same spatial and temporal patterns during development as their D. melanogaster orthologs. Bioinformatic analysis reveals the presence of short conserved sequences within defined CRMs, representing gap and pair-rule transcription factor binding sites. One predicted binding site for the gap transcription factor KRUPPEL in the IAB5 CRM was found to be altered in Superabdominal (Sab) mutations. In Sab mutant flies, the third abdominal segment is transformed into a copy of the fifth abdominal segment. A model for KRUPPEL-mediated repression at this binding site is presented. These findings challenge our current understanding of the relationship between sequence evolution at the molecular level and functional activity of a CRM. While the overall sequence conservation at Drosophila CRMs is not distinctive from neighboring genomic regions, functionally critical transcription factor binding sites within embryonic enhancer CRMs are highly conserved. These results have implications for understanding mechanisms of gene expression during embryonic development, enhancer function, and the molecular evolution of eukaryotic regulatory modules.
Collapse
Affiliation(s)
- Margaret C. W. Ho
- Biology Department, Harvey Mudd College, Claremont, California, United States of America
| | - Holly Johnsen
- Biology Department, Harvey Mudd College, Claremont, California, United States of America
| | - Sara E. Goetz
- Biology Department, Harvey Mudd College, Claremont, California, United States of America
| | - Benjamin J. Schiller
- Biology Department, Harvey Mudd College, Claremont, California, United States of America
| | - Esther Bae
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, California, United States of America
| | - Diana A. Tran
- Biology Department, Harvey Mudd College, Claremont, California, United States of America
| | - Andrey S. Shur
- Biology Department, Harvey Mudd College, Claremont, California, United States of America
| | - John M. Allen
- Biology Department, Harvey Mudd College, Claremont, California, United States of America
| | - Christoph Rau
- Biology Department, Harvey Mudd College, Claremont, California, United States of America
| | - Welcome Bender
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - William W. Fisher
- Berkeley Drosophila Genome Project, Lawrence Berkeley National Laboratory, Berkeley, California, United States of America
| | - Susan E. Celniker
- Berkeley Drosophila Genome Project, Lawrence Berkeley National Laboratory, Berkeley, California, United States of America
| | - Robert A. Drewell
- Biology Department, Harvey Mudd College, Claremont, California, United States of America
| |
Collapse
|
41
|
Fujioka M, Wu X, Jaynes JB. A chromatin insulator mediates transgene homing and very long-range enhancer-promoter communication. Development 2009; 136:3077-87. [PMID: 19675129 PMCID: PMC2730365 DOI: 10.1242/dev.036467] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/07/2009] [Indexed: 12/11/2022]
Abstract
Insulator sequences help to organize the genome into discrete functional regions by preventing inappropriate cross-regulation. This is thought to be mediated in part through associations with other insulators located elsewhere in the genome. Enhancers that normally drive Drosophila even skipped (eve) expression are located closer to the TER94 transcription start site than to that of eve. We discovered that the region between these genes has enhancer-blocking activity, and that this insulator region also mediates homing of P-element transgenes to the eve-TER94 genomic neighborhood. Localization of these activities to within 0.6 kb failed to separate them. Importantly, homed transgenic promoters respond to endogenous eve enhancers from great distances, and this long-range communication depends on the homing/insulator region, which we call Homie. We also find that the eve promoter contributes to long-distance communication. However, even the basal hsp70 promoter can communicate with eve enhancers across distances of several megabases, when the communication is mediated by Homie. These studies show that, while Homie blocks enhancer-promoter communication at short range, it facilitates long-range communication between distant genomic regions, possibly by organizing a large chromosomal loop between endogenous and transgenic Homies.
Collapse
Affiliation(s)
- Miki Fujioka
- Department of Biochemistry and Molecular Biology and the Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | | | | |
Collapse
|
42
|
Kwon D, Mucci D, Langlais KK, Americo JL, DeVido SK, Cheng Y, Kassis JA. Enhancer-promoter communication at the Drosophila engrailed locus. Development 2009; 136:3067-75. [PMID: 19675130 PMCID: PMC2730364 DOI: 10.1242/dev.036426] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/05/2009] [Indexed: 12/11/2022]
Abstract
Enhancers are often located many tens of kilobases away from the promoter they regulate, sometimes residing closer to the promoter of a neighboring gene. How do they know which gene to activate? We have used homing P[en] constructs to study the enhancer-promoter communication at the engrailed locus. Here we show that engrailed enhancers can act over large distances, even skipping over other transcription units, choosing the engrailed promoter over those of neighboring genes. This specificity is achieved in at least three ways. First, early acting engrailed stripe enhancers exhibit promoter specificity. Second, a proximal promoter-tethering element is required for the action of the imaginal disc enhancer(s). Our data suggest that there are two partially redundant promoter-tethering elements. Third, the long-distance action of engrailed enhancers requires a combination of the engrailed promoter and sequences within or closely linked to the promoter proximal Polycomb-group response elements. These data show that multiple mechanisms ensure proper enhancer-promoter communication at the Drosophila engrailed locus.
Collapse
Affiliation(s)
- Deborah Kwon
- Laboratory of Molecular Genetics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | | | | | |
Collapse
|
43
|
Kemppainen E, Fernández-Ayala DJM, Galbraith LCA, O'Dell KMC, Jacobs HT. Phenotypic suppression of the Drosophila mitochondrial disease-like mutant tko(25t) by duplication of the mutant gene in its natural chromosomal context. Mitochondrion 2009; 9:353-63. [PMID: 19616644 DOI: 10.1016/j.mito.2009.07.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2009] [Revised: 06/24/2009] [Accepted: 07/13/2009] [Indexed: 10/20/2022]
Abstract
A mutation in the Drosophila gene technical knockout (tko(25t)), encoding mitoribosomal protein S12, phenocopies human mitochondrial disease. We isolated three spontaneous X-dominant suppressors of tko(25t) (designated Weeble), exhibiting almost wild-type phenotype and containing overlapping segmental duplications including the mutant allele, plus a second mitoribosomal protein gene, mRpL14. Ectopic, expressed copies of tko(25t) and mRpL14 conferred no phenotypic suppression. When placed over a null allele of tko, Weeble retained the mutant phenotype, even in the presence of additional transgenic copies of tko(25t). Increased mutant gene dosage can thus compensate the mutant phenotype, but only when located in its normal chromosomal context.
Collapse
Affiliation(s)
- Esko Kemppainen
- Institute of Medical Technology and Tampere University Hospital, FI-33014 University of Tampere, Finland
| | | | | | | | | |
Collapse
|
44
|
Abstract
Enhancers act over many kilobase pairs to activate target promoters, but their activity is constrained by insulator elements that prevent indiscriminate activation of nearby genes. In the July 1, 2009, issue of Genes & Development, Chopra and colleagues (pp. 1505-1509) report that promoters containing a stalled Pol II are activated by enhancers, but these promoters also serve as insulators that block enhancers from reaching more distal genes. This new class of insulators provide critical clues to regulatory mechanisms.
Collapse
Affiliation(s)
- Leighton J. Core
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14853, USA
| | - John T. Lis
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14853, USA
| |
Collapse
|
45
|
Kleinjan DJ, Coutinho P. Cis-ruption mechanisms: disruption of cis-regulatory control as a cause of human genetic disease. BRIEFINGS IN FUNCTIONAL GENOMICS AND PROTEOMICS 2009; 8:317-32. [PMID: 19596743 DOI: 10.1093/bfgp/elp022] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The spatiotemporally and quantitatively correct activity of a gene requires the presence of intact coding sequence as well as properly functioning regulatory control. One of the great challenges of the post-genome era is to gain a better understanding of the mechanisms of gene control. Proper gene regulation depends not only on the required transcription factors and associated complexes being present (in the correct dosage), but also on the integrity, chromatin conformation and nuclear positioning of the gene's chromosomal segment. Thus, when either the cis-trans regulatory system of a gene or the normal context of its chromatin structure are disrupted, gene expression may be adversely affected, potentially leading to disease. As transcriptional regulation is a highly complex process depending on many factors, there are many different mechanisms that can cause aberrant gene expression. Traditionally, the term 'position effect' was used to refer to situations where the level of expression of a gene is deleteriously affected by an alteration in its chromosomal environment, while maintaining an intact transcription unit. Over the past years, an ever increasing number of such disease-related position effect cases have come to light, and detailed studies have revealed insight into the variety of causes, which can be categorized into a number of different mechanistic groups. We suggest replacing the outdated term of 'position effect disease' with the new generic name of 'cis-ruption disorder' to describe genetic disease cases that are caused by disruption of the normal cis-regulatory architecture of the disease gene locus. Here, we review these various cis-ruption mechanisms and discuss how their studies have contributed to our understanding of long- range gene regulation.
Collapse
Affiliation(s)
- Dirk-Jan Kleinjan
- Institute of Genetics and Molecular Medicine, Western General Hospital, Edinburgh, EH4 2XU, UK.
| | | |
Collapse
|
46
|
Bonn S, Furlong EE. cis-Regulatory networks during development: a view of Drosophila. Curr Opin Genet Dev 2008; 18:513-20. [DOI: 10.1016/j.gde.2008.09.005] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2008] [Revised: 09/16/2008] [Accepted: 09/20/2008] [Indexed: 10/21/2022]
|
47
|
Soshnev AA, Li X, Wehling MD, Geyer PK. Context differences reveal insulator and activator functions of a Su(Hw) binding region. PLoS Genet 2008; 4:e1000159. [PMID: 18704163 PMCID: PMC2493044 DOI: 10.1371/journal.pgen.1000159] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2008] [Accepted: 07/10/2008] [Indexed: 11/19/2022] Open
Abstract
Insulators are DNA elements that divide chromosomes into independent transcriptional domains. The Drosophila genome contains hundreds of binding sites for the Suppressor of Hairy-wing [Su(Hw)] insulator protein, corresponding to locations of the retroviral gypsy insulator and non-gypsy binding regions (BRs). The first non-gypsy BR identified, 1A-2, resides in cytological region 1A. Using a quantitative transgene system, we show that 1A-2 is a composite insulator containing enhancer blocking and facilitator elements. We discovered that 1A-2 separates the yellow (y) gene from a previously unannotated, non-coding RNA gene, named yar for y-achaete (ac) intergenic RNA. The role of 1A-2 was elucidated using homologous recombination to excise these sequences from the natural location, representing the first deletion of any Su(Hw) BR in the genome. Loss of 1A-2 reduced yar RNA accumulation, without affecting mRNA levels from the neighboring y and ac genes. These data indicate that within the 1A region, 1A-2 acts an activator of yar transcription. Taken together, these studies reveal that the properties of 1A-2 are context-dependent, as this element has both insulator and enhancer activities. These findings imply that the function of non-gypsy Su(Hw) BRs depends on the genomic environment, predicting that Su(Hw) BRs represent a diverse collection of genomic regulatory elements.
Collapse
Affiliation(s)
- Alexey A. Soshnev
- Program in Molecular and Cellular Biology, University of Iowa, Iowa City, Iowa, United States of America
| | - Xingguo Li
- Department of Biochemistry, University of Iowa, Iowa City, Iowa, United States of America
| | - Misty D. Wehling
- Program in Molecular and Cellular Biology, University of Iowa, Iowa City, Iowa, United States of America
| | - Pamela K. Geyer
- Program in Molecular and Cellular Biology, University of Iowa, Iowa City, Iowa, United States of America
- Department of Biochemistry, University of Iowa, Iowa City, Iowa, United States of America
| |
Collapse
|
48
|
Kyrchanova O, Toshchakov S, Podstreshnaya Y, Parshikov A, Georgiev P. Functional interaction between the Fab-7 and Fab-8 boundaries and the upstream promoter region in the Drosophila Abd-B gene. Mol Cell Biol 2008; 28:4188-95. [PMID: 18426914 PMCID: PMC2423118 DOI: 10.1128/mcb.00229-08] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2008] [Accepted: 04/05/2008] [Indexed: 11/20/2022] Open
Abstract
Boundary elements have been found in the regulatory region of the Drosophila melanogaster Abdominal-B (Abd-B) gene, which is subdivided into a series of iab domains. The best-studied Fab-7 and Fab-8 boundaries flank the iab-7 enhancer and isolate it from the four promoters regulating Abd-B expression. Recently binding sites for the Drosophila homolog of the vertebrate insulator protein CTCF (dCTCF) were identified in the Fab-8 boundary and upstream of Abd-B promoter A, with no binding of CTCF to the Fab-7 boundary being detected either in vivo or in vitro. Taking into account the inability of the yeast GAL4 activator to stimulate the white promoter when its binding sites are separated by a 5-kb yellow gene, we have tested the functional interactions between the Fab-7 and Fab-8 boundaries and between these boundaries and the upstream promoter A region containing a dCTCF binding site. It has been found that dCTCF binding sites are essential for pairing between two Fab-8 insulators. However, a strong functional interaction between the Fab-7 and Fab-8 boundaries suggests that additional, as yet unidentified proteins are involved in long-distance interactions between them. We have also shown that Fab-7 and Fab-8 boundaries effectively interact with the upstream region of the Abd-B promoter.
Collapse
Affiliation(s)
- Olga Kyrchanova
- Department of the Control of Genetic Processes, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov St., Moscow 119334, Russia
| | | | | | | | | |
Collapse
|
49
|
Akbari OS, Schiller BJ, Goetz SE, Ho MC, Bae E, Drewell RA. The abdominal-B promoter tethering element mediates promoter-enhancer specificity at the Drosophila bithorax complex. Fly (Austin) 2007; 1:337-9. [PMID: 18504507 PMCID: PMC2394718 DOI: 10.4161/fly.5607] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
At the Drosophila bithorax complex many distinct classes of cis-regulatory modules work collectively during development to control gene expression. Abdominal-B (Abd-B) is one of three homeotic genes in the BX-C and is expressed in specific presumptive abdominal segments in the embryo. The transcription of Abd-B is tightly controlled by an array of cis-regulatory modules that direct its expression over extended genomic distances. These regulatory modules include promoters, insulators, silencers, enhancers, promoter targeting sequences and the recently identified promoter tethering element (PTE). To activate gene expression at the endogenous complex, enhancers located >50 kb away must bypass intervening insulators to interact with the Abd-B promoter. The molecular mechanisms that allow enhancers to bypass insulators are not currently well understood. In this short article, we report on a novel mechanism for insulator bypass involving the PTE. In addition, we use bioinformatic analysis across twelve Drosophila genomes to identify putative cis-regulatory sequences that may be capable of facilitating specific promoter-enhancer interactions at the bithorax complex and propose a model for their molecular function during development.
Collapse
Affiliation(s)
- Omar S. Akbari
- Biology Department; University of Nevada at Reno; Reno, Nevada USA
| | - Ben J. Schiller
- Biology Department; Harvey Mudd College; Claremont, California USA
| | - Sara E. Goetz
- Biology Department; Harvey Mudd College; Claremont, California USA
| | - Margaret C.W. Ho
- Biology Department; Harvey Mudd College; Claremont, California USA
| | - Esther Bae
- College of Osteopathic Medicine of the Pacific; Western University of Health Sciences; Pomona, California USA
| | | |
Collapse
|