1
|
Fischer M, Wolf R, Hannemann R, Braunbeck T. Generalized additive modeling as a tool for the analysis of the time course of tail coiling behavior in zebrafish (Danio rerio) embryos - A proof-of-concept study with nicotine, a known developmental neurotoxicant. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2025; 284:107373. [PMID: 40288008 DOI: 10.1016/j.aquatox.2025.107373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 04/18/2025] [Accepted: 04/20/2025] [Indexed: 04/29/2025]
Abstract
The early detectable tail coiling behavior of zebrafish (Danio rerio) embryos is receiving increasing attention in the context of (developmental) neurotoxicity testing and may be used as a rapid screening tool for compounds with unknown or suspected neurotoxic potential. The observation of this behavior over a longer period of time already offered advantages such as the possibility of detecting effects that only occur after a few hours of development. The two major parameters, duration and frequency of coiling, allow a detailed characterization of the movements. However, this approach usually leads to complex data sets, which are often heavily simplified to allow for simpler analysis of the effects on an hourly basis. In this study, the suitability of generalized additive modeling (GAM) for the analysis of coiling behavior was tested in order to obtain an integrated impression of the trends in movement patterns. To this end, nicotine, a known potent developmental neurotoxicant, was used in a proof-of-concept study. The main advantage of GAM for biological data lies in the relaxation of assumptions, such as effect monotony, data distribution and homogeneity of variances and is, therefore, more flexible in describing different trends over time. The possibility to consider replicates and individuals as additional sources of (biological) variance is a further benefit, as highly variable data are common in behavioral studies. Here, the modeling approach demonstrates a monotone reduction of movement duration as a direct consequence of nicotine exposure. Additional pathomorphological studies revealed structural damage in secondary motoneurons and skeletal muscles as potential underlying mechanisms of changes in movement patterns. The GAM proved well-suited to illustrate and analyze complex non-linear behavioral data with high natural variability. The model also allows to reliably extract no observed effect (NOEC) and lowest observed effect concentrations (LOEC) from complex data sets, which may be of relevance in a regulatory context.
Collapse
Affiliation(s)
- Maria Fischer
- Aquatic Ecology and Toxicology Group, Center for Organismal Studies, University of Heidelberg, Im Neuenheimer Feld 504, d-69120 Heidelberg, Germany.
| | - Raoul Wolf
- NGI Norwegian Geotechnical Institute, Sandakerveien 140, N-0484 Oslo, Norway
| | - Robin Hannemann
- Aquatic Ecology and Toxicology Group, Center for Organismal Studies, University of Heidelberg, Im Neuenheimer Feld 504, d-69120 Heidelberg, Germany
| | - Thomas Braunbeck
- Aquatic Ecology and Toxicology Group, Center for Organismal Studies, University of Heidelberg, Im Neuenheimer Feld 504, d-69120 Heidelberg, Germany.
| |
Collapse
|
2
|
McCarthy MM, Hardy MJ, Leising SE, LaFollette AM, Stewart ES, Cogan AS, Sanghal T, Matteo K, Reeck JC, Oxford JT, Rohn TT. An amino-terminal fragment of apolipoprotein E4 leads to behavioral deficits, increased PHF-1 immunoreactivity, and mortality in zebrafish. PLoS One 2022; 17:e0271707. [PMID: 36520946 PMCID: PMC9754248 DOI: 10.1371/journal.pone.0271707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 10/19/2022] [Indexed: 12/23/2022] Open
Abstract
Although the increased risk of developing sporadic Alzheimer's disease (AD) associated with the inheritance of the apolipoprotein E4 (APOE4) allele is well characterized, the molecular underpinnings of how ApoE4 imparts risk remains unknown. Enhanced proteolysis of the ApoE4 protein with a toxic-gain of function has been suggested and a 17 kDa amino-terminal ApoE4 fragment (nApoE41-151) has been identified in post-mortem human AD frontal cortex sections. Recently, we demonstrated in vitro, exogenous treatment of nApoE41-151 in BV2 microglial cells leads to uptake, trafficking to the nucleus and increased expression of genes associated with cell toxicity and inflammation. In the present study, we extend these findings to zebrafish (Danio rerio), an in vivo model system to assess the toxicity of nApoE41-151. Exogenous treatment of nApoE41-151 to 24-hour post-fertilization for 24 hours resulted in significant mortality. In addition, developmental abnormalities were observed following treatment with nApoE41-151 including improper folding of the hindbrain, delay in ear development, deformed yolk sac, enlarged cardiac cavity, and significantly lower heart rates. A similar nApoE31-151 fragment that differs by a single amino acid change (C>R) at position 112 had no effects on these parameters under identical treatment conditions. Decreased presence of pigmentation was noted for both nApoE31-151- and nApoE41-151-treated larvae compared with controls. Behaviorally, touch-evoked responses to stimulus were negatively impacted by treatment with nApoE41-151 but did not reach statistical significance. Additionally, triple-labeling confocal microscopy not only confirmed the nuclear localization of the nApoE41-151 fragment within neuronal populations following exogenous treatment, but also identified the presence of tau pathology, one of the hallmark features of AD. Collectively, these in vivo data demonstrating toxicity as well as sublethal effects on organ and tissue development support a novel pathophysiological function of this AD associated-risk factor.
Collapse
Affiliation(s)
- Madyson M. McCarthy
- Department of Biological Sciences, Boise State University, Boise, Idaho, United States of America
| | - Makenna J. Hardy
- Department of Biological Sciences, Boise State University, Boise, Idaho, United States of America
| | - Saylor E. Leising
- Department of Biological Sciences, Boise State University, Boise, Idaho, United States of America
| | - Alex M. LaFollette
- Department of Biological Sciences, Boise State University, Boise, Idaho, United States of America
| | - Erica S. Stewart
- Department of Biological Sciences, Boise State University, Boise, Idaho, United States of America
| | - Amelia S. Cogan
- Department of Biological Sciences, Boise State University, Boise, Idaho, United States of America
| | - Tanya Sanghal
- Department of Biological Sciences, Boise State University, Boise, Idaho, United States of America
| | - Katie Matteo
- Department of Biological Sciences, Boise State University, Boise, Idaho, United States of America
| | - Jonathon C. Reeck
- Department of Biological Sciences, Boise State University, Boise, Idaho, United States of America
| | - Julia T. Oxford
- Department of Biological Sciences, Boise State University, Boise, Idaho, United States of America
| | - Troy T. Rohn
- Department of Biological Sciences, Boise State University, Boise, Idaho, United States of America,* E-mail:
| |
Collapse
|
3
|
Könemann S, von Wyl M, Vom Berg C. Zebrafish Larvae Rapidly Recover from Locomotor Effects and Neuromuscular Alterations Induced by Cholinergic Insecticides. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:8449-8462. [PMID: 35575681 DOI: 10.1021/acs.est.2c00161] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Owing to the importance of acetylcholine as a neurotransmitter, many insecticides target the cholinergic system. Across phyla, cholinergic signaling is essential for many neuro-developmental processes including axonal pathfinding and synaptogenesis. Consequently, early-life exposure to such insecticides can disturb these processes, resulting in an impaired nervous system. One test frequently used to assess developmental neurotoxicity is the zebrafish light-dark transition test, which measures larval locomotion as a response to light changes. However, it is only poorly understood which structural alterations cause insecticide-induced locomotion defects and how persistent these alterations are. Therefore, this study aimed to link locomotion defects with effects on neuromuscular structures, including motorneurons, synapses, and muscles, and to investigate the longevity of the effects. The cholinergic insecticides diazinon and dimethoate (organophosphates), methomyl and pirimicarb (carbamates), and imidacloprid and thiacloprid (neonicotinoids) were used to induce hypoactivity. Our analyses revealed that some insecticides did not alter any of the structures assessed, while others affected axon branching (methomyl, imidacloprid) or muscle integrity (methomyl, thiacloprid). The majority of effects, even structural, were reversible within 24 to 72 h. Overall, we find that both neurodevelopmental and non-neurodevelopmental effects of different longevity can account for the reduced locomotion. These findings provide unprecedented insights into the underpinnings of insecticide-induced hypoactivity.
Collapse
Affiliation(s)
- Sarah Könemann
- Department of Environmental Toxicology, Eawag, Überlandstrasse 133, 8600 Dübendorf, Switzerland
- École Polytechnique Fédéral de Lausanne, EPFL, Route Cantonale, 1015 Lausanne, Switzerland
| | - Melissa von Wyl
- Department of Environmental Toxicology, Eawag, Überlandstrasse 133, 8600 Dübendorf, Switzerland
- University of Zurich, UZH, Rämistrassse 71, 8006 Zurich, Switzerland
| | - Colette Vom Berg
- Department of Environmental Toxicology, Eawag, Überlandstrasse 133, 8600 Dübendorf, Switzerland
| |
Collapse
|
4
|
Pedersen AF, Meyer DN, Petriv AMV, Soto AL, Shields JN, Akemann C, Baker BB, Tsou WL, Zhang Y, Baker TR. Nanoplastics impact the zebrafish (Danio rerio) transcriptome: Associated developmental and neurobehavioral consequences. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 266:115090. [PMID: 32693326 PMCID: PMC7492438 DOI: 10.1016/j.envpol.2020.115090] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 06/05/2020] [Accepted: 06/22/2020] [Indexed: 05/20/2023]
Abstract
Microplastics (MPs) are a ubiquitous pollutant detected not only in marine and freshwater bodies, but also in tap and bottled water worldwide. While MPs have been extensively studied, the toxicity of their smaller counterpart, nanoplastics (NPs), is not well documented. Despite likely large-scale human and animal exposure to NPs, the associated health risks remain unclear, especially during early developmental stages. To address this, we investigated the health impacts of exposures to both 50 and 200 nm polystyrene NPs in larval zebrafish. From 6 to 120 h post-fertilization (hpf), developing zebrafish were exposed to a range of fluorescent NPs (10-10,000 parts per billion). Dose-dependent increases in accumulation were identified in exposed larval fish, potentially coinciding with an altered behavioral response as evidenced through swimming hyperactivity. Notably, exposures did not impact mortality, hatching rate, or deformities; however, transcriptomic analysis suggests neurodegeneration and motor dysfunction at both high and low concentrations. Furthermore, results of this study suggest that NPs can accumulate in the tissues of larval zebrafish, alter their transcriptome, and affect behavior and physiology, potentially decreasing organismal fitness in contaminated ecosystems. The uniquely broad scale of this study during a critical window of development provides crucial multidimensional characterization of NP impacts on human and animal health.
Collapse
Affiliation(s)
- Adam F Pedersen
- Institute of Environmental Health Sciences, Wayne State University, 6135 Woodward Ave, Detroit, MI, 48202, USA
| | - Danielle N Meyer
- Institute of Environmental Health Sciences, Wayne State University, 6135 Woodward Ave, Detroit, MI, 48202, USA; Department of Pharmacology - School of Medicine, Wayne State University, 540 E Canfield, Detroit, MI, 28201, USA
| | - Anna-Maria V Petriv
- Institute of Environmental Health Sciences, Wayne State University, 6135 Woodward Ave, Detroit, MI, 48202, USA
| | - Abraham L Soto
- Institute of Environmental Health Sciences, Wayne State University, 6135 Woodward Ave, Detroit, MI, 48202, USA
| | - Jeremiah N Shields
- Institute of Environmental Health Sciences, Wayne State University, 6135 Woodward Ave, Detroit, MI, 48202, USA
| | - Camille Akemann
- Institute of Environmental Health Sciences, Wayne State University, 6135 Woodward Ave, Detroit, MI, 48202, USA; Department of Pharmacology - School of Medicine, Wayne State University, 540 E Canfield, Detroit, MI, 28201, USA
| | - Bridget B Baker
- Institute of Environmental Health Sciences, Wayne State University, 6135 Woodward Ave, Detroit, MI, 48202, USA
| | - Wei-Ling Tsou
- Department of Pharmacology - School of Medicine, Wayne State University, 540 E Canfield, Detroit, MI, 28201, USA
| | - Yongli Zhang
- College of Engineering, Wayne State University, 5050 Anthony Wayne Dr, Detroit, MI, 28201, USA
| | - Tracie R Baker
- Institute of Environmental Health Sciences, Wayne State University, 6135 Woodward Ave, Detroit, MI, 48202, USA; Department of Pharmacology - School of Medicine, Wayne State University, 540 E Canfield, Detroit, MI, 28201, USA.
| |
Collapse
|
5
|
Cloning and characterization of nicotinic acetylcholine receptor γ-like gene in adult transparent Pristella maxillaris. Gene 2020; 769:145193. [PMID: 33007374 DOI: 10.1016/j.gene.2020.145193] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Revised: 08/26/2020] [Accepted: 09/24/2020] [Indexed: 11/23/2022]
Abstract
Nicotinic acetylcholine receptors (nAChRs) play an important role in regulating the development and function of nervous system. The muscle AChR is composed of four homologous glycoprotein subunits with a stoichiometry α2βγδ in fetal or α2βεδ in adult. But the mechanism controlling the transition of fetal AChR γ-subunit to adult AChR ε is still unknown. Here a gene annoted AChR γ-like in Pristella maxillaris was first cloned by rapid amplification of cDNA ends (RACE) based on a transcriptome of dorsal fins. The full length of AChR γ-like was 1984 bp and it encoded 518 amino acids from 100 bp to 1653 bp. The multiple alignment analysis showed that AChR γ-like had 98% protein identity to AChR γ-like in Astyanax mexicanus. Then an 11647 bp DNA from 5'-UTR to 3'-UTR was cloned based on gene structure of AChR γ-like in A.mexicanus. Additionally a 2768 bp DNA upstream 5'-UTR was cloned by chromosome walking method. Furthermore, the results from semi-quantitative PCR showed that AChR γ-like was highly expressed in embryo and adult tissues, such as the muscle, eye, heart and intestine. While it showed low expression in the brain and gill. Significantly, the results of in situ hybridization showed strong diffused expression of AChR γ-like in the muscle of 1 dpf (day post-fertilization) embryo. And weak signal was observed in the muscle of 2-4 dpf embryos. All these data indicated that AChR γ-like could be one subunit of AChRs in the muscle and it could be used to study the development of the neuromuscular junction in adult transparent Pristella maxillaris. Thus our work will lay the foundation for using Pristella maxillaris to analyze the in vivo function of the nAChRs in adult vertebrate.
Collapse
|
6
|
Egashira Y, Zempo B, Sakata S, Ono F. Recent advances in neuromuscular junction research prompted by the zebrafish model. CURRENT OPINION IN PHYSIOLOGY 2018. [DOI: 10.1016/j.cophys.2018.06.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
7
|
Roy NM, Zambrzycka E, Santangelo J. Butyl benzyl phthalate (BBP) induces caudal defects during embryonic development. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2017; 56:129-135. [PMID: 28934690 DOI: 10.1016/j.etap.2017.09.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Revised: 09/11/2017] [Accepted: 09/14/2017] [Indexed: 06/07/2023]
Abstract
Butyl benzyl phthalate (BBP) is commonly added during the manufacturing of plastics to increase flexibility and elasticity. However, BBP leaches off of plastic and environment presence has been detected in soil, groundwater and sediment potentially effecting organisms in the environment. Given the widespread uses of BBP in household, consumer goods and the presence of BBP in the environment, studies on developmental toxicity are needed. Here, we use a zebrafish model to investigate the early developmental toxicity of BBP. We treated gastrula staged embryos with increasing concentrations of BBP and noted concentration-dependent defects in caudal tail development, but the effect was caudal specific with no other developmental defects noted. In situ hybridization studies using muscle and notochord markers show alterations in muscle development and non-linear, kinked notochord staining. A more detailed antibody staining using a myosin specific marker shows disorganized myofibrils and a loss of chevron shaped somites. Furthermore, vascular development in the tail was also disrupted in a concentration dependent manner. We conclude that BBP is toxic to caudal development in zebrafish. The sensitivity of zebrafish during development to environmental toxins and chemicals has been useful in assessing the health of the aquatic environment. The results presented here are a useful early warning system for contamination that could affect human health.
Collapse
Affiliation(s)
- Nicole M Roy
- Department of Biology, Sacred Heart University, 5151 Park Ave, Fairfield, CT, 06825, United States.
| | - Ewelina Zambrzycka
- Department of Biology, Sacred Heart University, 5151 Park Ave, Fairfield, CT, 06825, United States
| | - Jenna Santangelo
- Department of Biology, Sacred Heart University, 5151 Park Ave, Fairfield, CT, 06825, United States
| |
Collapse
|
8
|
Dubińska-Magiera M, Daczewska M, Lewicka A, Migocka-Patrzałek M, Niedbalska-Tarnowska J, Jagla K. Zebrafish: A Model for the Study of Toxicants Affecting Muscle Development and Function. Int J Mol Sci 2016; 17:E1941. [PMID: 27869769 PMCID: PMC5133936 DOI: 10.3390/ijms17111941] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2016] [Revised: 11/10/2016] [Accepted: 11/14/2016] [Indexed: 01/08/2023] Open
Abstract
The rapid progress in medicine, agriculture, and allied sciences has enabled the development of a large amount of potentially useful bioactive compounds, such as drugs and pesticides. However, there is another side of this phenomenon, which includes side effects and environmental pollution. To avoid or minimize the uncontrollable consequences of using the newly developed compounds, researchers seek a quick and effective means of their evaluation. In achieving this goal, the zebrafish (Danio rerio) has proven to be a highly useful tool, mostly because of its fast growth and development, as well as the ability to absorb the molecules diluted in water through its skin and gills. In this review, we focus on the reports concerning the application of zebrafish as a model for assessing the impact of toxicants on skeletal muscles, which share many structural and functional similarities among vertebrates, including zebrafish and humans.
Collapse
Affiliation(s)
- Magda Dubińska-Magiera
- Department of Animal Developmental Biology, Institute of Experimental Biology, University of Wroclaw, 21 Sienkiewicza Street, 50-335 Wroclaw, Poland.
| | - Małgorzata Daczewska
- Department of Animal Developmental Biology, Institute of Experimental Biology, University of Wroclaw, 21 Sienkiewicza Street, 50-335 Wroclaw, Poland.
| | - Anna Lewicka
- Department of Animal Developmental Biology, Institute of Experimental Biology, University of Wroclaw, 21 Sienkiewicza Street, 50-335 Wroclaw, Poland.
| | - Marta Migocka-Patrzałek
- Department of Animal Developmental Biology, Institute of Experimental Biology, University of Wroclaw, 21 Sienkiewicza Street, 50-335 Wroclaw, Poland.
| | - Joanna Niedbalska-Tarnowska
- Department of Animal Developmental Biology, Institute of Experimental Biology, University of Wroclaw, 21 Sienkiewicza Street, 50-335 Wroclaw, Poland.
| | - Krzysztof Jagla
- GReD-Genetics, Reproduction and Development Laboratory, INSERM U1103, CNRS UMR6293, University of Clermont-Auvergne, 28 Place Henri-Dunant, 63000 Clermont-Ferrand, France.
| |
Collapse
|
9
|
Bragato C, Gaudenzi G, Blasevich F, Pavesi G, Maggi L, Giunta M, Cotelli F, Mora M. Zebrafish as a Model to Investigate Dynamin 2-Related Diseases. Sci Rep 2016; 6:20466. [PMID: 26842864 PMCID: PMC4740890 DOI: 10.1038/srep20466] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2015] [Accepted: 01/05/2016] [Indexed: 12/13/2022] Open
Abstract
Mutations in the dynamin-2 gene (DNM2) cause autosomal dominant centronuclear myopathy (CNM) and dominant intermediate Charcot-Marie-Tooth (CMT) neuropathy type B (CMTDIB). As the relation between these DNM2-related diseases is poorly understood, we used zebrafish to investigate the effects of two different DNM2 mutations. First we identified a new alternatively spliced zebrafish dynamin-2a mRNA (dnm2a-v2) with greater similarity to human DNM2 than the deposited sequence. Then we knocked-down the zebrafish dnm2a, producing defects in muscle morphology. Finally, we expressed two mutated DNM2 mRNA by injecting zebrafish embryos with human mRNAs carrying the R522H mutation, causing CNM, or the G537C mutation, causing CMT. Defects arose especially in secondary motor neuron formation, with incorrect branching in embryos injected with CNM-mutated mRNA, and total absence of branching in those injected with CMT-mutated mRNA. Muscle morphology in embryos injected with CMT-mutated mRNA appeared less regularly organized than in those injected with CNM-mutated mRNA. Our results showing, a continuum between CNM and CMTDIB phenotypes in zebrafish, similarly to the human conditions, confirm this animal model to be a powerful tool to investigate mutations of DNM2 in vivo.
Collapse
Affiliation(s)
- Cinzia Bragato
- Neuromuscular Diseases and Neuroimmunology Unit, IRCCS Neurological Institute C. Besta, Milano, Italy
| | - Germano Gaudenzi
- Department of Biosciences, University of Milan, Via Celoria, 26, 20133, Milan, Italy
| | - Flavia Blasevich
- Neuromuscular Diseases and Neuroimmunology Unit, IRCCS Neurological Institute C. Besta, Milano, Italy
| | - Giulio Pavesi
- Department of Biosciences, University of Milan, Via Celoria, 26, 20133, Milan, Italy
| | - Lorenzo Maggi
- Neuromuscular Diseases and Neuroimmunology Unit, IRCCS Neurological Institute C. Besta, Milano, Italy
| | - Michele Giunta
- Neuromuscular Diseases and Neuroimmunology Unit, IRCCS Neurological Institute C. Besta, Milano, Italy
| | - Franco Cotelli
- Department of Biosciences, University of Milan, Via Celoria, 26, 20133, Milan, Italy
| | - Marina Mora
- Neuromuscular Diseases and Neuroimmunology Unit, IRCCS Neurological Institute C. Besta, Milano, Italy
| |
Collapse
|
10
|
Luna VM, Daikoku E, Ono F. "Slow" skeletal muscles across vertebrate species. Cell Biosci 2015; 5:62. [PMID: 26568818 PMCID: PMC4644285 DOI: 10.1186/s13578-015-0054-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Accepted: 11/03/2015] [Indexed: 11/13/2022] Open
Abstract
Skeletal muscle fibers are generally classified into two groups: slow (type I) and fast (type II). Fibers in each group are uniquely designed for specific locomotory needs based on their intrinsic cellular properties and the types of motor neurons that innervate them. In this review, we will focus on the current concept of slow muscle fibers which, unlike the originally proposed version based purely on amphibian muscles, varies widely depending on the animal model system studied. We will discuss recent findings from zebrafish neuromuscular junction synapses that may provide the framework for establishing a more unified view of slow muscles across mammalian and non-mammalian species.
Collapse
Affiliation(s)
- Victor M Luna
- Division of Integrative Neuroscience, Department of Psychiatry, New York State Psychiatric Institute, Columbia University, New York, NY 10032 USA
| | - Eriko Daikoku
- Department of Molecular Physiology, Osaka Medical College, 2-7 Daigaku-machi, Takatsuki, Osaka 569-8686 Japan
| | - Fumihito Ono
- Department of Molecular Physiology, Osaka Medical College, 2-7 Daigaku-machi, Takatsuki, Osaka 569-8686 Japan.,Laboratory of Molecular Physiology, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD 20892 USA
| |
Collapse
|
11
|
Daikoku E, Saito M, Ono F. Zebrafish mutants of the neuromuscular junction: swimming in the gene pool. J Physiol Sci 2015; 65:217-21. [PMID: 25782439 PMCID: PMC4408355 DOI: 10.1007/s12576-015-0372-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Accepted: 02/28/2015] [Indexed: 01/07/2023]
Abstract
This review provides an overview of zebrafish mutants with dysfunctional acetylcholine receptors or related proteins at the neuromuscular junction (NMJ). The NMJ, which has served as the classical model of the chemical synapse, uses acetylcholine as the neurotransmitter, and mutations of proteins involved in the signaling cascade lead to a variety of behavioral phenotypes. Mutants isolated after random chemical mutagenesis screening are summarized, and advances in the field resulting from these mutants are discussed.
Collapse
Affiliation(s)
- Eriko Daikoku
- Department of Physiology, Osaka Medical College, Takatsuki, 569-8686 Japan
| | - Masahisa Saito
- Department of Physiology, Osaka Medical College, Takatsuki, 569-8686 Japan
| | - Fumihito Ono
- Department of Physiology, Osaka Medical College, Takatsuki, 569-8686 Japan
- Laboratory of Molecular Physiology, NIAAA, NIH, Bethesda, MD 20892 USA
| |
Collapse
|
12
|
Menelaou E, Paul LT, Perera SN, Svoboda KR. Motoneuron axon pathfinding errors in zebrafish: differential effects related to concentration and timing of nicotine exposure. Toxicol Appl Pharmacol 2015; 284:65-78. [PMID: 25668718 PMCID: PMC4567840 DOI: 10.1016/j.taap.2015.01.022] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2014] [Revised: 01/27/2015] [Accepted: 01/28/2015] [Indexed: 12/12/2022]
Abstract
Nicotine exposure during embryonic stages of development can affect many neurodevelopmental processes. In the developing zebrafish, exposure to nicotine was reported to cause axonal pathfinding errors in the later born secondary motoneurons (SMNs). These alterations in SMN axon morphology coincided with muscle degeneration at high nicotine concentrations (15-30 μM). Previous work showed that the paralytic mutant zebrafish known as sofa potato exhibited nicotine-induced effects onto SMN axons at these high concentrations but in the absence of any muscle deficits, indicating that pathfinding errors could occur independent of muscle effects. In this study, we used varying concentrations of nicotine at different developmental windows of exposure to specifically isolate its effects onto subpopulations of motoneuron axons. We found that nicotine exposure can affect SMN axon morphology in a dose-dependent manner. At low concentrations of nicotine, SMN axons exhibited pathfinding errors, in the absence of any nicotine-induced muscle abnormalities. Moreover, the nicotine exposure paradigms used affected the 3 subpopulations of SMN axons differently, but the dorsal projecting SMN axons were primarily affected. We then identified morphologically distinct pathfinding errors that best described the nicotine-induced effects on dorsal projecting SMN axons. To test whether SMN pathfinding was potentially influenced by alterations in the early born primary motoneuron (PMN), we performed dual labeling studies, where both PMN and SMN axons were simultaneously labeled with antibodies. We show that only a subset of the SMN axon pathfinding errors coincided with abnormal PMN axonal targeting in nicotine-exposed zebrafish. We conclude that nicotine exposure can exert differential effects depending on the levels of nicotine and developmental exposure window.
Collapse
Affiliation(s)
- Evdokia Menelaou
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Latoya T Paul
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Surangi N Perera
- Joseph J. Zilber School of Public Health, University of Wisconsin - Milwaukee, Milwaukee, WI 53205, USA
| | - Kurt R Svoboda
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA; Joseph J. Zilber School of Public Health, University of Wisconsin - Milwaukee, Milwaukee, WI 53205, USA.
| |
Collapse
|
13
|
Abstract
PURPOSE OF REVIEW Congenital myasthenic syndromes (CMSs) form a heterogeneous group of genetic diseases characterized by a dysfunction of neuromuscular transmission because of mutations in numerous genes. This review will focus on the causative genes recently identified and on the therapy of CMSs. RECENT FINDINGS Advances in exome sequencing allowed the discovery of a new group of genes that did not code for the known molecular components of the neuromuscular junction, and the definition of a new group of glycosylation-defective CMS. Rather than the specific drugs used, some of them having been known for decades, it is the rigorous therapeutic strategy that is now offered to the patient in relation to the identified mutated gene that is novel and promising. SUMMARY In addition to the above main points, we also present new data on the genes that were already known with an emphasis on the clinic and on animal models that may be of use to understand the pathophysiology of the disease. We also stress not only the diagnosis difficulties between congenital myopathies and CMSs, but also the continuum that may exist between the two.
Collapse
|
14
|
Abstract
BACKGROUND Zebrafish is an amenable vertebrate model useful for the study of development and genetics. Small molecule screenings in zebrafish have successfully identified several drugs that affect developmental process. OBJECTIVE This review covers the basics of zebrafish muscle system such as muscle development and muscle defects. It also reviews the potential use of zebrafish for chemical screening with regards to muscle disorders. CONCLUSION During embryogenesis, zebrafish start to coil their body by contracting trunk muscles 17 h postfertilization, indicating that a motor circuit and skeletal muscle are functionally developed at early stages. Mutagenesis screens in zebrafish have identified many motility mutants that display morphological or functional defects in the CNS, clustering defects of acetylcholine receptors at the neuromuscular junctions or pathological defects of muscles. Most of the muscular mutants are useful as animal models of human muscle disease such as muscle dystrophy. As zebrafish live in water, pharmacological drugs are easily assayable during development, and thus zebrafish may be used to determine novel drugs that mitigate muscle disease.
Collapse
Affiliation(s)
- Hiromi Hirata
- Nagoya University, Graduate School of Science, Proof to Hiromi Hirata Furo-cho, Chikusa-ku, Nagoya 464-8602, Japan +81 52 789 2980 ; +81 52 789 2979 ;
| |
Collapse
|
15
|
Selderslaghs IWT, Hooyberghs J, Blust R, Witters HE. Assessment of the developmental neurotoxicity of compounds by measuring locomotor activity in zebrafish embryos and larvae. Neurotoxicol Teratol 2013; 37:44-56. [PMID: 23357511 DOI: 10.1016/j.ntt.2013.01.003] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2012] [Revised: 01/17/2013] [Accepted: 01/17/2013] [Indexed: 12/27/2022]
Abstract
The developmental neurotoxic potential of the majority of environmental chemicals and drugs is currently undetermined. Specific in vivo studies provide useful data for hazard assessment but are not amenable to screen thousands of untested compounds. In this study, methods which use zebrafish embryos, eleutheroembryos and larvae as model organisms, were proposed as alternatives for developmental neurotoxicity (DNT) testing. The evaluation of spontaneous tail coilings in zebrafish embryos aged 24-26 hours post fertilization (hpf) and the swimming activity of eleutheroembryos at 120 and larvae at 144 hpf, i.e. parameters for locomotor activity, were investigated as potential endpoints for DNT testing, according to available standard protocols. The overall performance and predictive value of these methods was then examined by testing a training set of 10 compounds, including known developmental neurotoxicants and compounds not considered to be neurotoxic. The classification of the selected compounds as either neurotoxic or non-neurotoxic, based on the effects observed in zebrafish embryos and larvae, was compared to available mammalian data and an overall concordance of 90% was achieved. Furthermore, the specificity of the selected endpoints for DNT was evaluated as well as the potential similarities between zebrafish and mammals with regard to mechanisms of action for the selected compounds. Although further studies, including the screening of a large testing set of compounds are required, we suggest that the proposed methods with zebrafish embryos and larvae might be valuable alternatives for animal testing for the screening and prioritization of compounds for DNT.
Collapse
Affiliation(s)
- Ingrid W T Selderslaghs
- VITO NV, Flemish Institute for Technological Research, Environmental Risk and Health, Boeretang 200, Mol, Belgium.
| | | | | | | |
Collapse
|
16
|
Wolman M, Granato M. Behavioral genetics in larval zebrafish: learning from the young. Dev Neurobiol 2012; 72:366-72. [PMID: 22328273 DOI: 10.1002/dneu.20872] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Deciphering the genetic code that determines how the vertebrate nervous system assembles into neural circuits that ultimately control behavior is a fascinating and challenging question in modern neurobiology. Because of the complexity of this problem, successful strategies require a simple yet focused experimental approach without limiting the scope of the discovery. Unbiased, large-scale forward genetic screens in invertebrate organisms have yielded great insight into the genetic regulation of neural circuit assembly and function. For many reasons, this highly successful approach has been difficult to recapitulate in the behavioral neuroscience field's classic vertebrate model organisms-rodents. Here, we discuss how larval zebrafish provide a promising model system to which we can apply the design of invertebrate behavior-based screens to reveal the genetic mechanisms critical for neural circuit assembly and function in vertebrates.
Collapse
Affiliation(s)
- Marc Wolman
- Department of Cell and Developmental Biology, University of Pennsylvania School of Medicine, Philadelphia, PA 19104-6058, USA
| | | |
Collapse
|
17
|
Zebrafish model for congenital myasthenic syndrome reveals mechanisms causal to developmental recovery. Proc Natl Acad Sci U S A 2012; 109:17711-6. [PMID: 23045675 DOI: 10.1073/pnas.1215858109] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Mutations in muscle ACh receptors cause slow-channel syndrome (SCS) and Escobar syndrome, two forms of congenital myasthenia. SCS is a dominant disorder with mutations reported for all receptor subunits except γ. Escobar syndrome is distinct, with mutations located exclusively in γ, and characterized by developmental improvement of muscle function. The zebrafish mutant line, twister, models SCS in terms of a dominant mutation in the α subunit (α(twi)) but shows the behavioral improvement associated with Escobar syndrome. Here, we present a unique electrophysiological study into developmental improvement for a myasthenic syndrome. The embryonic α(twi)βδγ receptor isoform produces slowly decaying synaptic currents typical of SCS that transit to a much faster decay upon the appearance of adult ε, despite the α(twi) mutation. Thus, the continued expression of α(twi) into adulthood is tolerated because of the ε expression and associated recovery, raising the likelihood of unappreciated myasthenic cases that benefit from the γ-ε switch.
Collapse
|
18
|
Abstract
Slow-channel syndrome (SCS) is an autosomal-dominant disease resulting from mutations in muscle acetylcholine (ACh) receptor subunits. The associated fatigue and muscle degeneration are proposed to result from prolonged synaptic responses that overload intracellular calcium. Single-channel studies on reconstituted receptors bearing human mutations indicate that the prolonged responses result from an increase in receptor open duration and, in some cases, increased sensitivity to ACh. We show that both of these aberrant receptor properties are recapitulated in heterozygotic zebrafish bearing an L258P mutation in the α subunit, thus affording the unique opportunity to compare the single-channel properties of mutant receptors to the synaptic currents in vivo. Whole-cell recordings revealed synaptic currents that decayed along a multiexponential time course, reflecting receptors containing mixtures of wild-type and mutant α subunits. Treatment with quinidine, an open-channel blocker used to treat the human disorder, restored fast synaptic current kinetics and the ability to swim. Quinidine block also revealed that mutant receptors generate a large steady-state current in the absence of ACh. The spontaneous openings reflected a destabilization of the closed state, leading to an apparent increase in the sensitivity of these receptors to ACh. The effective block by quinidine on synaptic currents as well as nonliganded openings points to dual sources for the calcium-dependent myopathy in certain forms of SCS.
Collapse
|
19
|
Mutations that stabilize the open state of the Erwinia chrisanthemi ligand-gated ion channel fail to change the conformation of the pore domain in crystals. Proc Natl Acad Sci U S A 2012; 109:6331-6. [PMID: 22474383 DOI: 10.1073/pnas.1119268109] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The determination of structural models of the various stable states of an ion channel is a key step toward the characterization of its conformational dynamics. In the case of nicotinic-type receptors, different structures have been solved but, thus far, these different models have been obtained from different members of the superfamily. In the case of the bacterial member ELIC, a cysteamine-gated channel from Erwinia chrisanthemi, a structural model of the protein in the absence of activating ligand (and thus, conceivably corresponding to the closed state of this channel) has been previously generated. In this article, electrophysiological characterization of ELIC mutants allowed us to identify pore mutations that slow down the time course of desensitization to the extent that the channel seems not to desensitize at all for the duration of the agonist applications (>20 min). Thus, it seems reasonable to conclude that the probability of ELIC occupying the closed state is much lower for the ligand-bound mutants than for the unliganded wild-type channel. To gain insight into the conformation adopted by ELIC under these conditions, we solved the crystal structures of two of these mutants in the presence of a concentration of cysteamine that elicits an intracluster open probability of >0.9. Curiously, the obtained structural models turned out to be nearly indistinguishable from the model of the wild-type channel in the absence of bound agonist. Overall, our findings bring to light the limited power of functional studies in intact membranes when it comes to inferring the functional state of a channel in a crystal, at least in the case of the nicotinic-receptor superfamily.
Collapse
|
20
|
Khan TM, Benaich N, Malone CF, Bernardos RL, Russell AR, Downes GB, Barresi MJ, Hutson LD. Vincristine and bortezomib cause axon outgrowth and behavioral defects in larval zebrafish. J Peripher Nerv Syst 2012; 17:76-89. [DOI: 10.1111/j.1529-8027.2012.00371.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
21
|
Klüver N, Yang L, Busch W, Scheffler K, Renner P, Strähle U, Scholz S. Transcriptional response of zebrafish embryos exposed to neurotoxic compounds reveals a muscle activity dependent hspb11 expression. PLoS One 2011; 6:e29063. [PMID: 22205996 PMCID: PMC3242778 DOI: 10.1371/journal.pone.0029063] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2011] [Accepted: 11/20/2011] [Indexed: 01/13/2023] Open
Abstract
Acetylcholinesterase (AChE) inhibitors are widely used as pesticides and drugs. Their primary effect is the overstimulation of cholinergic receptors which results in an improper muscular function. During vertebrate embryonic development nerve activity and intracellular downstream events are critical for the regulation of muscle fiber formation. Whether AChE inhibitors and related neurotoxic compounds also provoke specific changes in gene transcription patterns during vertebrate development that allow them to establish a mechanistic link useful for identification of developmental toxicity pathways has, however, yet not been investigated. Therefore we examined the transcriptomic response of a known AChE inhibitor, the organophosphate azinphos-methyl (APM), in zebrafish embryos and compared the response with two non-AChE inhibiting unspecific control compounds, 1,4-dimethoxybenzene (DMB) and 2,4-dinitrophenol (DNP). A highly specific cluster of APM induced gene transcripts was identified and a subset of strongly regulated genes was analyzed in more detail. The small heat shock protein hspb11 was found to be the most sensitive induced gene in response to AChE inhibitors. Comparison of expression in wildtype, ache and sop(fixe) mutant embryos revealed that hspb11 expression was dependent on the nicotinic acetylcholine receptor (nAChR) activity. Furthermore, modulators of intracellular calcium levels within the whole embryo led to a transcriptional up-regulation of hspb11 which suggests that elevated intracellular calcium levels may regulate the expression of this gene. During early zebrafish development, hspb11 was specifically expressed in muscle pioneer cells and Hspb11 morpholino-knockdown resulted in effects on slow muscle myosin organization. Our findings imply that a comparative toxicogenomic approach and functional analysis can lead to the identification of molecular mechanisms and specific marker genes for potential neurotoxic compounds.
Collapse
Affiliation(s)
- Nils Klüver
- Department of Bioanalytical Ecotoxicology, UFZ-Helmholtz Centre for Environmental Research, Leipzig, Germany.
| | | | | | | | | | | | | |
Collapse
|
22
|
Spinocerebellar ataxia type 13 mutant potassium channel alters neuronal excitability and causes locomotor deficits in zebrafish. J Neurosci 2011; 31:6831-41. [PMID: 21543613 DOI: 10.1523/jneurosci.6572-10.2011] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Whether changes in neuronal excitability can cause neurodegenerative disease in the absence of other factors such as protein aggregation is unknown. Mutations in the Kv3.3 voltage-gated K(+) channel cause spinocerebellar ataxia type 13 (SCA13), a human autosomal-dominant disease characterized by locomotor impairment and the death of cerebellar neurons. Kv3.3 channels facilitate repetitive, high-frequency firing of action potentials, suggesting that pathogenesis in SCA13 is triggered by changes in electrical activity in neurons. To investigate whether SCA13 mutations alter excitability in vivo, we expressed the human dominant-negative R420H mutant subunit in zebrafish. The disease-causing mutation specifically suppressed the excitability of Kv3.3-expressing, fast-spiking motor neurons during evoked firing and fictive swimming and, in parallel, decreased the precision and amplitude of the startle response. The dominant-negative effect of the mutant subunit on K(+) current amplitude was directly responsible for the reduced excitability and locomotor phenotype. Our data provide strong evidence that changes in excitability initiate pathogenesis in SCA13 and establish zebrafish as an excellent model system for investigating how changes in neuronal activity impair locomotor control and cause cell death.
Collapse
|
23
|
Scheffer D, Sage C, Plazas PV, Huang M, Wedemeyer C, Zhang DS, Chen ZY, Elgoyhen AB, Corey DP, Pingault V. The α1 subunit of nicotinic acetylcholine receptors in the inner ear: transcriptional regulation by ATOH1 and co-expression with the γ subunit in hair cells. J Neurochem 2011; 103:2651-64. [PMID: 17961150 DOI: 10.1111/j.1471-4159.2007.04980.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Acetylcholine is a key neurotransmitter of the inner ear efferent system. In this study, we identify two novel nAChR subunits in the inner ear: α1 and γ, encoded by Chrna1 and Chrng, respectively. In situ hybridization shows that the messages of these two subunits are present in vestibular and cochlear hair cells during early development. Chrna1 and Chrng expression begin at embryonic stage E13.5 in the vestibular system and E17.5 in the organ of Corti. Chrna1 message continues through P7, whereas Chrng is undetectable at post-natal stage P6. The α1 and γ subunits are known as muscle-type nAChR subunits and are surprisingly expressed in hair cells which are sensory-neural cells. We also show that ATOH1/MATH1, a transcription factor essential for hair cell development, directly activates CHRNA1 transcription. Electrophoretic mobility-shift assays and supershift assays showed that ATOH1/E47 heterodimers selectively bind on two E boxes located in the proximal promoter of CHRNA1. Thus, Chrna1 could be the first transcriptional target of ATOH1 in the inner ear. Co-expression in Xenopus oocytes of the α1 subunit does not change the electrophysiological properties of the α9α10 receptor. We suggest that hair cells transiently express α1γ-containing nAChRs in addition to α9α10, and that these may have a role during development of the inner ear innervation.
Collapse
|
24
|
The biological role of the glycinergic synapse in early zebrafish motility. Neurosci Res 2011; 71:1-11. [PMID: 21712054 DOI: 10.1016/j.neures.2011.06.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2011] [Revised: 04/08/2011] [Accepted: 04/15/2011] [Indexed: 01/09/2023]
Abstract
Glycine mediates fast inhibitory neurotransmission in the spinal cord, brainstem and retina. Loss of synaptic glycinergic transmission in vertebrates leads to a severe locomotion defect characterized by an exaggerated startle response accompanied by transient muscle rigidity in response to sudden acoustic or tactile stimuli. Several molecular components of the glycinergic synapse have been characterized as an outcome of genetic and physiological analyses of synaptogenesis in mammals. Recently, the glycinergic synapse has been studied using a forward genetic approach in zebrafish. This review aims to discuss molecular components of the glycinergic synapse, such as glycine receptor subunits, gephyrin, gephyrin-binding proteins and glycine transporters, as well as recent studies relevant to the genetic analysis of the glycinergic synapse in zebrafish.
Collapse
|
25
|
Low SE, Zhou W, Choong I, Saint-Amant L, Sprague SM, Hirata H, Cui WW, Hume RI, Kuwada JY. Na(v)1.6a is required for normal activation of motor circuits normally excited by tactile stimulation. Dev Neurobiol 2010; 70:508-22. [PMID: 20225246 DOI: 10.1002/dneu.20791] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
A screen for zebrafish motor mutants identified two noncomplementing alleles of a recessive mutation that were named non-active (nav(mi89) and nav(mi130)). nav embryos displayed diminished spontaneous and touch-evoked escape behaviors during the first 3 days of development. Genetic mapping identified the gene encoding Na(V)1.6a (scn8aa) as a potential candidate for nav. Subsequent cloning of scn8aa from the two alleles of nav uncovered two missense mutations in Na(V)1.6a that eliminated channel activity when assayed heterologously. Furthermore, the injection of RNA encoding wild-type scn8aa rescued the nav mutant phenotype indicating that scn8aa was the causative gene of nav. In-vivo electrophysiological analysis of the touch-evoked escape circuit indicated that voltage-dependent inward current was decreased in mechanosensory neurons in mutants, but they were able to fire action potentials. Furthermore, tactile stimulation of mutants activated some neurons downstream of mechanosensory neurons but failed to activate the swim locomotor circuit in accord with the behavioral response of initial escape contractions but no swimming. Thus, mutant mechanosensory neurons appeared to respond to tactile stimulation but failed to initiate swimming. Interestingly fictive swimming could be initiated pharmacologically suggesting that a swim circuit was present in mutants. These results suggested that Na(V)1.6a was required for touch-induced activation of the swim locomotor network.
Collapse
Affiliation(s)
- Sean E Low
- Neuroscience Program, University of Michigan, Ann Arbor, Michigan 48109-1048, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Olson BD, Sgourdou P, Downes GB. Analysis of a zebrafish behavioral mutant reveals a dominant mutation in atp2a1/SERCA1. Genesis 2010; 48:354-61. [PMID: 20533403 DOI: 10.1002/dvg.20631] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Zebrafish embryos demonstrate robust swimming behavior, which consists of smooth, alternating body bends. In contrast, several motility mutants have been identified that perform sustained, bilateral trunk muscle contractions which result in abnormal body shortening. Unlike most of these mutants, accordion (acc)(dta5) demonstrates a semidominant effect: Heterozygotes exhibit a distinct but less severe phenotype than homozygotes. Using molecular-genetic mapping and candidate gene analysis, we determined that acc(dta5) mutants harbor a novel mutation in atp2a1, which encodes SERCA1, a calcium pump important for muscle relaxation. Previous studies have shown that eight other acc alleles compromise SERCA1 function, but these alleles were all reported to be recessive. Quantitative behavioral assays, complementation testing, and analysis of molecular models all indicate that the acc(dta5) mutation diminishes SERCA1 function to a greater degree than other acc alleles through either haploinsufficient or dominant-negative molecular mechanisms. Since mutation of human ATP2A1 results in Brody disease, an exercise-induced impairment of muscle relaxation, acc(dta5) mutants may provide a particularly sensitive model of this disorder.
Collapse
|
27
|
Hirata H, Carta E, Yamanaka I, Harvey RJ, Kuwada JY. Defective glycinergic synaptic transmission in zebrafish motility mutants. Front Mol Neurosci 2010; 2:26. [PMID: 20161699 PMCID: PMC2813725 DOI: 10.3389/neuro.02.026.2009] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2009] [Accepted: 11/11/2009] [Indexed: 11/20/2022] Open
Abstract
Glycine is a major inhibitory neurotransmitter in the spinal cord and brainstem. Recently, in vivo analysis of glycinergic synaptic transmission has been pursued in zebrafish using molecular genetics. An ENU mutagenesis screen identified two behavioral mutants that are defective in glycinergic synaptic transmission. Zebrafish bandoneon (beo) mutants have a defect in glrbb, one of the duplicated glycine receptor (GlyR) beta subunit genes. These mutants exhibit a loss of glycinergic synaptic transmission due to a lack of synaptic aggregation of GlyRs. Due to the consequent loss of reciprocal inhibition of motor circuits between the two sides of the spinal cord, motor neurons activate simultaneously on both sides resulting in bilateral contraction of axial muscles of beo mutants, eliciting the so-called 'accordion' phenotype. Similar defects in GlyR subunit genes have been observed in several mammals and are the basis for human hyperekplexia/startle disease. By contrast, zebrafish shocked (sho) mutants have a defect in slc6a9, encoding GlyT1, a glycine transporter that is expressed by astroglial cells surrounding the glycinergic synapse in the hindbrain and spinal cord. GlyT1 mediates rapid uptake of glycine from the synaptic cleft, terminating synaptic transmission. In zebrafish sho mutants, there appears to be elevated extracellular glycine resulting in persistent inhibition of postsynaptic neurons and subsequent reduced motility, causing the 'twitch-once' phenotype. We review current knowledge regarding zebrafish 'accordion' and 'twitch-once' mutants, including beo and sho, and report the identification of a new alpha2 subunit that revises the phylogeny of zebrafish GlyRs.
Collapse
Affiliation(s)
- Hiromi Hirata
- Graduate School of Science, Nagoya UniversityNagoya, Japan
| | - Eloisa Carta
- Department of Pharmacology, The School of PharmacyLondon, UK
| | - Iori Yamanaka
- Graduate School of Science, Nagoya UniversityNagoya, Japan
| | | | - John Y. Kuwada
- Department of Molecular, Cellular and Developmental Biology, University of MichiganAnn Arbor, MI, USA
| |
Collapse
|
28
|
Abstract
The nervous system can generate rhythms of various frequencies; on the low-frequency side, we have the circuits regulating circadian rhythms with a 24-h period, while on the high-frequency side we have the motor circuits that underlie flight in a hummingbird. Given the ubiquitous nature of rhythms, it is surprising that we know very little of the cellular and molecular mechanisms that produce them in the embryos and of their potential role during the development of neuronal circuits. Recently, zebrafish has been developed as a vertebrate model to study the genetics of neural development. Zebrafish offer several advantages to the study of nervous system development including optical and electrophysiological analysis of neuronal activity even at the earliest embryonic stages. This unique combination of physiology and genetics in the same animal model has led to insights into the development of neuronal networks. This chapter reviews work on the development of zebrafish motor rhythms and speculates on birth and maturation of the circuits that produce them.
Collapse
|
29
|
Wnt signals organize synaptic prepattern and axon guidance through the zebrafish unplugged/MuSK receptor. Neuron 2009; 61:721-33. [PMID: 19285469 DOI: 10.1016/j.neuron.2008.12.025] [Citation(s) in RCA: 148] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2008] [Revised: 11/13/2008] [Accepted: 12/24/2008] [Indexed: 11/24/2022]
Abstract
Early during neuromuscular development, acetylcholine receptors (AChRs) accumulate at the center of muscle fibers, precisely where motor growth cones navigate and synapses eventually form. Here, we show that Wnt11r binds to the zebrafish unplugged/MuSK ectodomain to organize this central muscle zone. In the absence of such a zone, prepatterned AChRs fail to aggregate and, as visualized by live-cell imaging, growth cones stray from their central path. Using inducible unplugged/MuSK transgenes, we show that organization of the central muscle zone is dispensable for the formation of neural synapses, but essential for AChR prepattern and motor growth cone guidance. Finally, we show that blocking noncanonical dishevelled signaling in muscle fibers disrupts AChR prepatterning and growth cone guidance. We propose that Wnt ligands activate unplugged/MuSK signaling in muscle fibers to restrict growth cone guidance and AChR prepatterns to the muscle center through a mechanism reminiscent of the planar cell polarity pathway.
Collapse
|
30
|
McMullen CA, Andrade FH. Functional and morphological evidence of age-related denervation in rat laryngeal muscles. J Gerontol A Biol Sci Med Sci 2009; 64:435-42. [PMID: 19223602 DOI: 10.1093/gerona/gln074] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Laryngeal muscle dysfunction compromises voice, swallowing, and airway protection in elderly adults. Laryngeal muscles and their motor neurons and their motor neurons communicate via the neuromuscular junction (NMJ). We tested the hypothesis that aging disrupts NMJ organization and function in the laryngeal thyroarytenoid (TA) and posterior cricoarytenoid (PCA) muscles We determined NMJ density and size and acetylcholine receptor (AChR) subunit mRNAs in TA and PCA muscles from 6-, 18-, and 30- month old-rats. NMJ function was determined with tubocurarine (TC) and contractions during nerve and muscle stimulation. NMJ size, abundance, and clustering decreased in 30-month TA and PCA muscles. AChRe mTNA and protein increased with age in both muscles. AChRg mRNA increased with age in both muscles while protein content increased in TA only. Aging PCA and TA were more sensitive to TC, demonstrating functional evidence of denervation. These results demonstrate that NMJs become smaller and less abundant in aging TA and PCA muscles.
Collapse
Affiliation(s)
- Colleen A McMullen
- Department of Physiology, University of Kentucky, MS508, 800 Rose Street, Lexington, KY 40536-0298, USA.
| | | |
Collapse
|
31
|
Menelaou E, Svoboda KR. Secondary motoneurons in juvenile and adult zebrafish: axonal pathfinding errors caused by embryonic nicotine exposure. J Comp Neurol 2009; 512:305-22. [PMID: 19006183 PMCID: PMC2798059 DOI: 10.1002/cne.21903] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
Nicotine is a drug of abuse that has been reported to have many adverse effects on the developing nervous system. We previously demonstrated that embryonic exposure to nicotine alters axonal pathfinding of spinal secondary motoneurons in zebrafish. We hypothesize that these changes will persist into adulthood. The Tg(isl1:GFP) line of zebrafish, which expresses green fluorescent protein (GFP) in a subtype of spinal secondary motoneurons, was used to investigate potential long-term consequences of nicotine exposure on motoneuron development. Anatomical characterization of Tg(isl1:GFP) zebrafish ranging between 3 and 30 days postfertilization (dpf) was initially performed in fixed tissue to characterize axonal trajectories in larval and juvenile fish. Tg(isl1:GFP) embryos were transiently exposed to 5–30 μM nicotine. They were then rescued from nicotine and raised into later stages of life (3–30 dpf) and fixed for microscopic examination. Morphological analysis revealed that nicotine-induced abnormalities in secondary motoneuron anatomy were still evident in juvenile fish. Live imaging of Tg(isl1:GFP) zebrafish using fluorescent stereomicroscopy revealed that the nicotine-induced changes in motoneuron axonal pathfinding persisted into adulthood. We detected abnormalities in 37-dpf fish that were transiently exposed to nicotine as embryos. These fish were subsequently imaged over a 7-week period of time until they were ≈3 months of age. These pathfinding errors of spinal secondary motoneuron axons detected at 37 dpf persisted within the same fish until 86 dpf, the latest age analyzed. These findings indicate that exposure to nicotine during embryonic development can have permanent consequences for motoneuron anatomy in zebrafish. J. Comp. Neurol. 512:305–322, 2009. © 2008 Wiley-Liss, Inc.
Collapse
Affiliation(s)
- Evdokia Menelaou
- Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana 70803, USA
| | | |
Collapse
|
32
|
Menelaou E, Husbands EE, Pollet RG, Coutts CA, Ali DW, Svoboda KR. Embryonic motor activity and implications for regulating motoneuron axonal pathfinding in zebrafish. Eur J Neurosci 2008; 28:1080-96. [PMID: 18823502 PMCID: PMC2741004 DOI: 10.1111/j.1460-9568.2008.06418.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Zebrafish embryos exhibit spontaneous contractions of the musculature as early as 18-19 h post fertilization (hpf) when removed from their protective chorion. These movements are likely initiated by early embryonic central nervous system activity. We have made the observation that narrowminded mutant embryos (hereafter, nrd(-/-)) lack normal embryonic motor output upon dechorionation. However, these mutants can swim and respond to tactile stimulation by larval stages of development. nrd(-/-) embryos exhibit defects in neural crest development, slow muscle development and also lack spinal mechanosensory neurons known as Rohon-Beard (RB) neurons. At early developmental stages (i.e. 21-22 hpf) and while still in their chorions, nrd siblings (nrd(+/?)) exhibited contractions of the musculature at a rate similar to wild-type embryos. Anatomical analysis indicated that RB neurons were present in the motile embryos, but absent in the non-motile embryos, indicating that the non-motile embryos were nrd(-/-) embryos. Further anatomical analysis of nrd(-/-) embryos revealed errors in motoneuron axonal pathfinding that persisted into the larval stage of development. These errors were reversed when nrd(-/-) embryos were raised in high [K(+)] beginning at 21 hpf, indicating that the abnormal axonal phenotypes may be related to a lack of depolarizing activity early in development. When activity was blocked with tricaine in wild-type embryos, motoneuron phenotypes were similar to the motoneuron phenotypes in nrd(-/-) embryos. These results implicate early embryonic activity in conjunction with other factors as necessary for normal motoneuron development.
Collapse
Affiliation(s)
- Evdokia Menelaou
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA
| | | | | | | | | | | |
Collapse
|
33
|
Burgess HA, Granato M. The neurogenetic frontier--lessons from misbehaving zebrafish. BRIEFINGS IN FUNCTIONAL GENOMICS & PROTEOMICS 2008; 7:474-82. [PMID: 18836206 PMCID: PMC2722256 DOI: 10.1093/bfgp/eln039] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
One of the central questions in neuroscience is how refined patterns of connectivity in the brain generate and monitor behavior. Genetic mutations can influence neural circuits by disrupting differentiation or maintenance of component neuronal cells or by altering functional patterns of nervous system connectivity. Mutagenesis screens therefore have the potential to reveal not only the molecular underpinnings of brain development and function, but to illuminate the cellular basis of behavior. Practical considerations make the zebrafish an organism of choice for undertaking forward genetic analysis of behavior. The powerful array of experimental tools at the disposal of the zebrafish researcher makes it possible to link molecular function to neuronal properties that underlie behavior. This review focuses on specific challenges to isolating and analyzing behavioral mutants in zebrafish.
Collapse
Affiliation(s)
- Harold A Burgess
- Department of Cell and Developmental Biology, University of Pennsylvania School of Medicine, Philadelphia, PA 19104-6058, USA.
| | | |
Collapse
|
34
|
Uncoupling nicotine mediated motoneuron axonal pathfinding errors and muscle degeneration in zebrafish. Toxicol Appl Pharmacol 2008; 237:29-40. [PMID: 18694773 DOI: 10.1016/j.taap.2008.06.025] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2008] [Revised: 06/16/2008] [Accepted: 06/16/2008] [Indexed: 11/23/2022]
Abstract
Zebrafish embryos offer a unique opportunity to investigate the mechanisms by which nicotine exposure impacts early vertebrate development. Embryos exposed to nicotine become functionally paralyzed by 42 hpf suggesting that the neuromuscular system is compromised in exposed embryos. We previously demonstrated that secondary spinal motoneurons in nicotine-exposed embryos were delayed in development and that their axons made pathfinding errors (Svoboda, K.R., Vijayaraghaven, S., Tanguay, R.L., 2002. Nicotinic receptors mediate changes in spinal motoneuron development and axonal pathfinding in embryonic zebrafish exposed to nicotine. J. Neurosci. 22, 10731-10741). In that study, we did not consider the potential role that altered skeletal muscle development caused by nicotine exposure could play in contributing to the errors in spinal motoneuron axon pathfinding. In this study, we show that an alteration in skeletal muscle development occurs in tandem with alterations in spinal motoneuron development upon exposure to nicotine. The alteration in the muscle involves the binding of nicotine to the muscle-specific AChRs. The nicotine-induced alteration in muscle development does not occur in the zebrafish mutant (sofa potato, [sop]), which lacks muscle-specific AChRs. Even though muscle development is unaffected by nicotine exposure in sop mutants, motoneuron axonal pathfinding errors still occur in these mutants, indicating a direct effect of nicotine exposure on nervous system development.
Collapse
|
35
|
Spitzer NC, Borodinsky LN. Implications of activity-dependent neurotransmitter-receptor matching. Philos Trans R Soc Lond B Biol Sci 2008; 363:1393-9. [PMID: 18198155 DOI: 10.1098/rstb.2007.2257] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Electrical activity has numerous roles in early neuronal development. Calcium transients generated at low frequencies regulate neural induction and neuronal proliferation, migration and differentiation. Recent work demonstrates that these signals participate in specification of the transmitters expressed in different classes of neurons. Matching of postsynaptic receptor expression with the novel expression of transmitters ensues. These findings have intriguing implications for development, mature function and evolution of the nervous system.
Collapse
Affiliation(s)
- Nicholas C Spitzer
- Neurobiology Section, Division of Biological Sciences, Center for Molecular Genetics, Kavli Institute for Brain and Mind, UCSD, La Jolla, CA 92093, USA.
| | | |
Collapse
|
36
|
Lefebvre JL, Jing L, Becaficco S, Franzini-Armstrong C, Granato M. Differential requirement for MuSK and dystroglycan in generating patterns of neuromuscular innervation. Proc Natl Acad Sci U S A 2007; 104:2483-8. [PMID: 17284594 PMCID: PMC1892914 DOI: 10.1073/pnas.0610822104] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Vertebrates display diverse patterns of neuromuscular innervation, but little is known about how such diversity is generated. In mammals, neuromuscular junctions form predominantly at equatorial locations, giving rise to a focal innervation pattern along a central endplate band. In addition, vertebrate striated muscles exhibit two nonfocal neuromuscular patterns, myoseptal and distributed innervation. Although agrin-MuSK-rapsyn signaling is essential for the focal innervation pattern, it is unknown whether the same genetic program also controls synaptogenesis at nonfocal innervation sites. Here we show that one of three transcripts generated by the zebrafish unplugged locus, unplugged FL, encodes the zebrafish MuSK ortholog. We demonstrate that UnpFL/MuSK is critical for the assembly of focal synapses in zebrafish and that it cooperates with dystroglycan in the formation of nonfocal myoseptal and distributed synapses. Our results provide the first genetic evidence that neuromuscular synapse formation can occur in the absence of MuSK and that the combinatorial function of UnpFL/MuSK and dystroglycan generates diverse patterns of vertebrate neuromuscular innervation.
Collapse
Affiliation(s)
- Julie L. Lefebvre
- Department of Cell and Developmental Biology, University of Pennsylvania School of Medicine, Philadelphia, PA 19104-6058
| | - Lili Jing
- Department of Cell and Developmental Biology, University of Pennsylvania School of Medicine, Philadelphia, PA 19104-6058
| | - Sara Becaficco
- Department of Cell and Developmental Biology, University of Pennsylvania School of Medicine, Philadelphia, PA 19104-6058
| | - Clara Franzini-Armstrong
- Department of Cell and Developmental Biology, University of Pennsylvania School of Medicine, Philadelphia, PA 19104-6058
| | - Michael Granato
- Department of Cell and Developmental Biology, University of Pennsylvania School of Medicine, Philadelphia, PA 19104-6058
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
37
|
Borodinsky LN, Spitzer NC. Activity-dependent neurotransmitter-receptor matching at the neuromuscular junction. Proc Natl Acad Sci U S A 2006; 104:335-40. [PMID: 17190810 PMCID: PMC1749326 DOI: 10.1073/pnas.0607450104] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Signaling in the nervous system requires matching of neurotransmitter receptors with cognate neurotransmitters at synapses. The vertebrate neuromuscular junction is the best studied cholinergic synapse, but the mechanisms by which acetylcholine is matched with acetylcholine receptors are not fully understood. Because alterations in neuronal calcium spike activity alter transmitter specification in embryonic spinal neurons, we hypothesized that receptor expression in postsynaptic cells follows changes in transmitter expression to achieve this specific match. We find that embryonic vertebrate striated muscle cells normally express receptors for glutamate, GABA, and glycine as well as for acetylcholine. As maturation progresses, acetylcholine receptor expression prevails. Receptor selection is altered when early neuronal calcium-dependent activity is perturbed, and remaining receptor populations parallel changes in transmitter phenotype. In these cases, glutamatergic, GABAergic, and glycinergic synaptic currents are recorded from muscle cells, demonstrating that activity regulates matching of transmitters and their receptors in the assembly of functional synapses.
Collapse
Affiliation(s)
- Laura N Borodinsky
- Neurobiology Section, Division of Biological Sciences and Center for Molecular Genetics, Kavli Institute for Brain and Mind, University of California at San Diego, La Jolla, CA 92093, USA.
| | | |
Collapse
|
38
|
Pineda RH, Svoboda KR, Wright MA, Taylor AD, Novak AE, Gamse JT, Eisen JS, Ribera AB. Knockdown of Nav1.6a Na+ channels affects zebrafish motoneuron development. Development 2006; 133:3827-36. [PMID: 16943272 DOI: 10.1242/dev.02559] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
In addition to rapid signaling, electrical activity provides important cues to developing neurons. Electrical activity relies on the function of several different types of voltage-gated ion channels. Whereas voltage-gated Ca2+ channel activity regulates several aspects of neuronal differentiation, much less is known about developmental roles of voltage-gated Na+ channels, essential mediators of electrical signaling. Here, we focus on the zebrafish Na+ channel isotype, Nav1.6a, which is encoded by the scn8a gene. A restricted set of spinal neurons, including dorsal sensory Rohon-Beard cells, two motoneuron subtypes with different axonal trajectories, express scn8a during embryonic development. CaP, an early born primary motoneuron subtype with ventrally projecting axons expresses scn8a, as does a class of secondary motoneurons with axons that project dorsally. To test for developmental roles of scn8a, we knocked down Nav1.6a protein using antisense morpholinos. Na+ channel protein and current amplitudes were reduced in neurons that express scn8a. Furthermore, Nav1.6a knockdown altered axonal morphologies of some but not all motoneurons. Dorsally projecting secondary motoneurons express scn8a and displayed delayed axonal outgrowth. By contrast, CaP axons developed normally, despite expression of the gene. Surprisingly, ventrally projecting secondary motoneurons, a population in which scn8a was not detected, displayed aberrant axonal morphologies. Mosaic analysis indicated that effects on ventrally projecting secondary motoneurons were non cell-autonomous. Thus, voltage-gated Na+ channels play cell-autonomous and non cell-autonomous roles during neuronal development.
Collapse
Affiliation(s)
- Ricardo H Pineda
- Department of Physiology and Biophysics, 8307 University of Colorado Denver and Health Sciences Center, Aurora, CO 80045, USA
| | | | | | | | | | | | | | | |
Collapse
|
39
|
van der Meer DLM, Marques IJ, Leito JTD, Besser J, Bakkers J, Schoonheere E, Bagowski CP. Zebrafish cypher is important for somite formation and heart development. Dev Biol 2006; 299:356-72. [PMID: 16982050 DOI: 10.1016/j.ydbio.2006.07.032] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2005] [Revised: 05/25/2006] [Accepted: 07/26/2006] [Indexed: 11/26/2022]
Abstract
Mammalian CYPHER (Oracle, KIA0613), a member of the PDZ-LIM family of proteins (Enigma/LMP-1, ENH, ZASP/Cypher, RIL, ALP, and CLP-36), has been associated with cardiac and muscular myopathies. Targeted deletion of Cypher in mice is neonatal lethal possibly caused by myopathies. To further investigate the role of cypher in development, we have cloned the zebrafish orthologue. We present here the gene, domain structure, and expression pattern of zebrafish cypher during development. Cypher was not present as a maternal mRNA and was absent during early development. Cypher mRNA was first detected at the 3-somite stage in adaxial somites, and as somites matured, cypher expression gradually enveloped the whole somite. Later, cypher expression was also found in the heart, in head and jaw musculature, and in the brain. We further identified 13 alternative spliced forms of cypher from zebrafish heart and skeletal muscle tissue, among them a very short form containing the PDZ domain but lacking the ZM (ZASP-like) motif and the LIM domains. Targeted gene knock-down experiments using cypher antisense morpholinos led to severe defects, including truncation of the embryo, deformation of somites, dilatation of the pericardium, and thinning of the ventricular wall. The phenotype could be rescued by a cypher form, which contains the PDZ domain and the ZM motif, but lacks all three LIM domains. These findings indicate that a PDZ domain protein is important for normal somite formation and in normal heart development. Treatment of zebrafish embryos with cyclopamine, which disrupts hedgehog signaling, abolished cypher expression in 9 somite and 15-somite stage embryos. Taken together, our data suggest that cypher may play a role downstream of sonic hedgehog, in a late stage of somite development, when slow muscle fibers differentiate and migrate from the adaxial cells.
Collapse
Affiliation(s)
- David L M van der Meer
- Institute of Biology, Department of Integrative Zoology University of Leiden, Kaiserstraat 3, 2311 GN, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
40
|
|
41
|
Panzer JA, Gibbs SM, Dosch R, Wagner D, Mullins MC, Granato M, Balice-Gordon RJ. Neuromuscular synaptogenesis in wild-type and mutant zebrafish. Dev Biol 2006; 285:340-57. [PMID: 16102744 DOI: 10.1016/j.ydbio.2005.06.027] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2005] [Revised: 06/20/2005] [Accepted: 06/21/2005] [Indexed: 11/30/2022]
Abstract
Genetic screens for synaptogenesis mutants have been performed in many organisms, but few if any have simultaneously screened for defects in pre- and postsynaptic specializations. Here, we report the results of a small-scale genetic screen, the first in vertebrates, for defects in synaptogenesis. Using zebrafish as a model system, we identified seven mutants that affect different aspects of neuromuscular synapse formation. Many of these mutant phenotypes have not been previously reported in zebrafish and are distinct from those described in other organisms. Characterization of mutant and wild-type zebrafish, from the time that motor axons first arrive at target muscles through adulthood, has provided the new information about the cellular events that occur during neuromuscular synaptogenesis. These include insights into the formation and dispersal of prepatterned AChR clusters, the relationship between motor axon elongation and synapse size, and the development of precise appositions between presynaptic clusters of synaptic vesicles in nerve terminals and postsynaptic receptor clusters. In addition, we show that the mechanisms underlying synapse formation within the myotomal muscle itself are largely independent of those that underlie synapse formation at myotendinous junctions and that the outgrowth of secondary motor axons requires at least one cue not necessary for the outgrowth of primary motor axons, while other cues are required for both. One-third of the mutants identified in this screen did not have impaired motility, suggesting that many genes involved in neuromuscular synaptogenesis were missed in large scale motility-based screens. Identification of the underlying genetic defects in these mutants will extend our understanding of the cellular and molecular mechanisms that underlie the formation and function of neuromuscular and other synapses.
Collapse
Affiliation(s)
- Jessica A Panzer
- Department of Neuroscience, University of Pennsylvania School of Medicine, 215 Stemmler Hall, 3610 Hamilton Walk, Philadelphia, PA 19104-6074, USA
| | | | | | | | | | | | | |
Collapse
|
42
|
van der Meulen T, Schipper H, van Leeuwen JL, Kranenbarg S. Effects of decreased muscle activity on developing axial musculature in nicb107 mutant zebrafish (Danio rerio). ACTA ACUST UNITED AC 2006; 208:3675-87. [PMID: 16169945 DOI: 10.1242/jeb.01826] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The present paper discusses the effects of decreased muscle activity (DMA) on embryonic development in the zebrafish. Wild-type zebrafish embryos become mobile around 18 h post-fertilisation, long before the axial musculature is fully differentiated. As a model for DMA, the nic(b107) mutant was used. In nic(b107) mutant embryos, muscle fibres are mechanically intact and able to contract, but neuronal signalling is defective and the fibres are not activated, rendering the embryos immobile. Despite the immobility, distinguished slow and fast muscle fibres developed at the correct location in the axial muscles, helical muscle fibre arrangements were detected and sarcomere architecture was generated. However, in nic(b107) mutant embryos the notochord is flatter and the cross-sectional body shape more rounded, also affecting muscle fibre orientation. The stacking of sarcomeres and myofibril arrangement show a less regular pattern. Finally, expression levels of several genes were changed. Together, these changes in expression indicate that muscle growth is not impeded and energy metabolism is not changed by the decrease in muscle activity but that the composition of muscle is altered. In addition, skin stiffness is affected. In conclusion, the lack of muscle fibre activity did not prevent the basal muscle components developing but influenced further organisation and differentiation of these components.
Collapse
Affiliation(s)
- T van der Meulen
- Experimental Zoology Group, Wageningen Institute of Animal Sciences, Wageningen University, The Netherlands.
| | | | | | | |
Collapse
|
43
|
Panzer JA, Song Y, Balice-Gordon RJ. In vivo imaging of preferential motor axon outgrowth to and synaptogenesis at prepatterned acetylcholine receptor clusters in embryonic zebrafish skeletal muscle. J Neurosci 2006; 26:934-47. [PMID: 16421313 PMCID: PMC6675385 DOI: 10.1523/jneurosci.3656-05.2006] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Little is known about the spatial and temporal dynamics of presynaptic and postsynaptic specializations that culminate in synaptogenesis. Here, we imaged presynaptic vesicle clusters in motor axons and postsynaptic acetylcholine receptor (AChR) clusters in embryonic zebrafish to study the earliest events in synaptogenesis in vivo. Prepatterned AChR clusters are present on muscle fibers in advance of motor axon outgrowth from the spinal cord. Motor axon growth cones and filopodia are selectively extended toward and contact prepatterned AChR clusters, followed by the rapid clustering of presynaptic vesicles and insertion of additional AChRs, hallmarks of synaptogenesis. All initially formed neuromuscular synapses contain AChRs that were inserted into the membrane at the time the prepattern is present. Examination of embryos in which AChRs were blocked or clustering is absent showed that neither receptor activity or receptor protein is required for these events to occur. Thus, during initial synaptogenesis, postsynaptic differentiation precedes presynaptic differentiation, and prepatterned neurotransmitter clusters mark sites destined for synapse formation.
Collapse
Affiliation(s)
- Jessica A Panzer
- Department of Neuroscience, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104, USA
| | | | | |
Collapse
|
44
|
Matthews RP, Plumb-Rudewiez N, Lorent K, Gissen P, Johnson CA, Lemaigre F, Pack M. Zebrafish vps33b, an ortholog of the gene responsible for human arthrogryposis-renal dysfunction-cholestasis syndrome, regulates biliary development downstream of the onecut transcription factor hnf6. Development 2005; 132:5295-306. [PMID: 16284120 DOI: 10.1242/dev.02140] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Arthrogryposis-renal dysfunction-cholestasis syndrome (ARC) is a rare cause of cholestasis in infants. Causative mutations in VPS33B, a gene that encodes a Class C vacuolar sorting protein, have recently been reported in individuals with ARC. We have identified a zebrafish vps33b-ortholog that is expressed in developing liver and intestine. Knockdown of vps33b causes bile duct paucity and impairs intestinal lipid absorption, thus phenocopying digestive defects characteristic of ARC. By contrast, neither motor axon nor kidney epithelial defects typically seen in ARC could be identified in vps33b-deficient larvae. Biliary defects in vps33b-deficient zebrafish larvae closely resemble the bile duct paucity associated with knockdown of the onecut transcription factor hnf6. Consistent with this, reduced vps33b expression was evident in hnf6-deficient larvae and in larvae with mutation of vhnf1, a downstream target of hnf6. Zebrafish vhnf1, but not hnf6, increases vps33b expression in zebrafish embryos and in mammalian liver cells. Electrophoretic mobility shift assays suggest that this regulation occurs through direct binding of vHnf1 to the vps33b promoter. These findings identify vps33b as a novel downstream target gene of the hnf6/vhnf1 pathway that regulates bile duct development in zebrafish. Furthermore, they show that tissue-specific roles for genes that regulate trafficking of intracellular proteins have been modified during vertebrate evolution.
Collapse
Affiliation(s)
- Randolph P Matthews
- Division of Gastroenterology and Nutrition, The Children's Hospital of Philadelphia and Department of Pediatrics, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
| | | | | | | | | | | | | |
Collapse
|
45
|
Brennan C, Mangoli M, Dyer CEF, Ashworth R. Acetylcholine and calcium signalling regulates muscle fibre formation in the zebrafish embryo. J Cell Sci 2005; 118:5181-90. [PMID: 16249237 DOI: 10.1242/jcs.02625] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Nerve activity is known to be an important regulator of muscle phenotype in the adult, but its contribution to muscle development during embryogenesis remains unresolved. We used the zebrafish embryo and in vivo imaging approaches to address the role of activity-generated signals, acetylcholine and intracellular calcium, in vertebrate slow muscle development. We show that acetylcholine drives initial muscle contraction and embryonic movement via release of intracellular calcium from ryanodine receptors. Inhibition of this activity-dependent pathway at the level of the acetylcholine receptor or ryanodine receptor did not disrupt slow fibre number, elongation or migration but affected myofibril organisation. In mutants lacking functional acetylcholine receptors myofibre length increased and sarcomere length decreased significantly. We propose that calcium is acting via the cytoskeleton to regulate myofibril organisation. Within a myofibre, sarcomere length and number are the key parameters regulating force generation; hence our findings imply a critical role for nerve-mediated calcium signals in the formation of physiologically functional muscle units during development.
Collapse
Affiliation(s)
- Caroline Brennan
- School of Biological Sciences, Queen Mary, University of London, London, E1 4NS, UK
| | | | | | | |
Collapse
|
46
|
Teraoka H, Urakawa S, Nanba S, Nagai Y, Dong W, Imagawa T, Tanguay RL, Svoboda K, Handley-Goldstone HM, Stegeman JJ, Hiraga T. Muscular contractions in the zebrafish embryo are necessary to reveal thiuram-induced notochord distortions. Toxicol Appl Pharmacol 2005; 212:24-34. [PMID: 16051294 DOI: 10.1016/j.taap.2005.06.016] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2005] [Revised: 06/07/2005] [Accepted: 06/10/2005] [Indexed: 11/19/2022]
Abstract
Dithiocarbamates form a large group of chemicals that have numerous uses in agriculture and medicine. It has been reported that dithiocarbamates, including thiuram (tetramethylthiuram disulfide), cause wavy distortions of the notochord in zebrafish and other fish embryos. In the present study, we investigated the mechanism underlying the toxicity of thiuram in zebrafish embryos. When embryos were exposed to thiuram (2-1000 nM: 0.48-240 microg/L) from 3 h post fertilization (hpf) (30% epiboly) until 24 hpf (Prim-5), all embryos develop wavy notochords, disorganized somites, and have shortened yolk sac extensions. The thiuram response was specific and did not cause growth retardation or mortality at 24 hpf. The thiuram-dependent responses showed the same concentration dependence with a waterborne EC50 values of approximately 7 nM. Morphometric measurements revealed that thiuram does not affect the rate of notochord lengthening. However, the rate of overall body lengthening was significantly reduced in thiuram-exposed animals. Other dithiocarbamates, such as ziram, caused similar malformations to thiuram. While expression of genes involved in somitogenesis was not affected, the levels of notochord-specific transcripts were altered after the onset of malformations. Distortion of the notochord started precisely at 18 hpf, which is concomitant with onset of spontaneous rhythmic trunk contractions. Abolishment of spontaneous contractions using tricaine, alpha-bungarotoxin, and a paralytic mutant sofa potato, resulted in normal notochord morphology in the presence of thiuram. These results indicate that muscle activity is necessary to reveal the underlying functional deficit and suggest that the developmental target of dithiocarbamates impairs trunk plasticity through an unknown mechanism.
Collapse
Affiliation(s)
- Hiroki Teraoka
- Department of Toxicology, School of Veterinary Medicine, Rakuno Gakuen University, Ebetsu 069-8501, Japan.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Hirata H, Saint-Amant L, Downes GB, Cui WW, Zhou W, Granato M, Kuwada JY. Zebrafish bandoneon mutants display behavioral defects due to a mutation in the glycine receptor beta-subunit. Proc Natl Acad Sci U S A 2005; 102:8345-50. [PMID: 15928085 PMCID: PMC1149420 DOI: 10.1073/pnas.0500862102] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2005] [Indexed: 11/18/2022] Open
Abstract
Bilateral alternation of muscle contractions requires reciprocal inhibition between the two sides of the hindbrain and spinal cord, and disruption of this inhibition should lead to simultaneous activation of bilateral muscles. At 1 day after fertilization, wild-type zebrafish respond to mechanosensory stimulation with multiple fast alternating trunk contractions, whereas bandoneon (beo) mutants contract trunk muscles on both sides simultaneously. Similar simultaneous contractions are observed in wild-type embryos treated with strychnine, a blocker of the inhibitory glycine receptor (GlyR). This result suggests that glycinergic synaptic transmission is defective in beo mutants. Muscle voltage recordings confirmed that muscles on both sides of the trunk in beo are likely to receive simultaneous synaptic input from the CNS. Recordings from motor neurons revealed that glycinergic synaptic transmission was missing in beo mutants. Furthermore, immunostaining with an antibody against GlyR showed clusters in wild-type neurons but not in beo neurons. These data suggest that the failure of GlyRs to aggregate at synaptic sites causes impairment of glycinergic transmission and abnormal behavior in beo mutants. Indeed, mutations in the GlyR beta-subunit, which are thought to be required for proper localization of GlyRs, were identified as the basis for the beo mutation. These data demonstrate that GlyRbeta is essential for physiologically relevant clustering of GlyRs in vivo. Because GlyR mutations in humans lead to hyperekplexia, a motor disorder characterized by startle responses, the zebrafish beo mutant should be a useful animal model for this condition.
Collapse
Affiliation(s)
- Hiromi Hirata
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109-1048, USA.
| | | | | | | | | | | | | |
Collapse
|
48
|
Birely J, Schneider VA, Santana E, Dosch R, Wagner DS, Mullins MC, Granato M. Genetic screens for genes controlling motor nerve-muscle development and interactions. Dev Biol 2005; 280:162-76. [PMID: 15766756 DOI: 10.1016/j.ydbio.2005.01.012] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2004] [Revised: 01/10/2005] [Accepted: 01/12/2005] [Indexed: 11/16/2022]
Abstract
Motor growth cones navigate long and complex trajectories to connect with their muscle targets. Experimental studies have shown that this guidance process critically depends on extrinsic cues. In the zebrafish embryo, a subset of mesodermal cells, the adaxial cells, delineates the prospective path of pioneering motor growth cones. Genetic ablation of adaxial cells causes profound pathfinding defects, suggesting the existence of adaxial cell derived guidance factors. Intriguingly, adaxial cells are themselves migratory, and as growth cones approach they migrate away from the prospective axonal path to the lateral surface of the myotome, where they develop into slow-twitching muscle fibers. Genetic screens in embryos stained with an antibody cocktail identified mutants with specific defects in differentiation and migration of adaxial cells/slow muscle fibers, as well as mutants with specific defects in axonal pathfinding, including exit from the spinal cord and pathway selection. Together, the genes underlying these mutant phenotypes define pathways essential for nerve and muscle development and interactions between these two cell types.
Collapse
Affiliation(s)
- Joanne Birely
- Department of Cell and Developmental Biology, University of Pennsylvania School of Medicine, Philadelphia, PA 19104-6058, USA
| | | | | | | | | | | | | |
Collapse
|
49
|
Gleason MR, Armisen R, Verdecia MA, Sirotkin H, Brehm P, Mandel G. A mutation in serca underlies motility dysfunction in accordion zebrafish. Dev Biol 2005; 276:441-51. [PMID: 15581877 DOI: 10.1016/j.ydbio.2004.09.008] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2004] [Revised: 08/31/2004] [Accepted: 09/07/2004] [Indexed: 11/17/2022]
Abstract
Zebrafish acquire the ability for fast swimming early in development. The motility mutant accordion (acc) undergoes exaggerated and prolonged contractions on both sides of the body, interfering with the acquisition of patterned swimming responses. Our whole cell recordings from muscle indicate that the defect is not manifested in neuromuscular transmission. However, imaging of skeletal muscle of larval acc reveals greatly prolonged calcium transients and associated contractions in response to depolarization. Positional cloning of acc identified a serca mutation as the cause of the acc phenotype. SERCA is a sarcoplasmic reticulum transmembrane protein in skeletal muscle that mediates calcium re-uptake from the myoplasm. The mutation in SERCA, a serine to phenylalanine substitution, is likely to result in compromised protein function that accounts for the observed phenotype. Indeed, direct evidence that mutant SERCA causes the motility dysfunction was provided by the finding that wild type fish injected with an antisense morpholino directed against serca, exhibited accordion-like contractions and impaired swimming. We conclude that the motility dysfunction in embryonic and larval accordion zebrafish stems directly from defective calcium transport in skeletal muscle rather than defective CNS drive.
Collapse
Affiliation(s)
- Michelle R Gleason
- Department of Neurobiology and Behavior, State University of New York at Stony Brook, 550 CMM, Stony Brook, NY 11794, USA.
| | | | | | | | | | | |
Collapse
|
50
|
Cousin X, Strähle U, Chatonnet A. Are there non-catalytic functions of acetylcholinesterases? Lessons from mutant animal models. Bioessays 2005; 27:189-200. [PMID: 15666354 DOI: 10.1002/bies.20153] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Acetylcholinesterase (AChE) hydrolyses acetylcholine (ACh) ensuring the fast clearance of released neurotransmitter at cholinergic synapses. Many studies led to the hypothesis that AChE and the closely related enzyme butyrylcholinesterase (BChE) may play other, non-hydrolytic roles during development. In this review, we compare data from in vivo studies performed on invertebrate and vertebrate genetic models. The loss of function of ache in these systems is responsible for the appearance of several phenotypes. In all aspects so far studied, the phenotypes can be explained by an excess of the undegraded substrate, ACh, leading to misfunction and pathological alterations. Thus, the lack of AChE catalytic activity in the mutants appears to be solely responsible for the observed phenotypes. None of them appears to require the postulated adhesive or other non-hydrolytic functions of AChE.
Collapse
Affiliation(s)
- Xavier Cousin
- UMR Différenciation Cellulaire et Croissance, INRA, Montpellier, France
| | | | | |
Collapse
|