1
|
Sánchez-Cisneros LE, Frutis-Osorio MF, Ríos-Barrera LD. A tale of two tissues: Patterning of the epidermis through morphogens and their role in establishing tracheal system organization. Cells Dev 2025:203998. [PMID: 39884391 DOI: 10.1016/j.cdev.2025.203998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 01/23/2025] [Accepted: 01/24/2025] [Indexed: 02/01/2025]
Abstract
Throughout embryonic development, cells respond to a diverse set of signals and forces, making individual or collective decisions that drive the formation of specialized tissues. The development of these structures is tightly regulated in space and time. In recent years, the possibility that neighboring tissues influence one another's morphogenesis has been explored, as some of them develop simultaneously. We study this issue by reviewing the interactions between Drosophila epidermal and tracheal tissues in early and late stages of embryogenesis. Early in development, the epidermis emerges from the ectodermal layer. During its differentiation, epidermal cells produce morphogen gradients that influence the fundamental organization of the embryo. In this work, we analyze how molecules produced by the epidermis guide tracheal system development. Since both tissues emerge from the same germ layer and lie in close proximity all along their development, they are an excellent model for studying induction processes and tissue interactions.
Collapse
Affiliation(s)
- L E Sánchez-Cisneros
- Departamento de Biología Celular y Fisiología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico
| | - M F Frutis-Osorio
- Departamento de Biología Celular y Fisiología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico
| | - L D Ríos-Barrera
- Departamento de Biología Celular y Fisiología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico.
| |
Collapse
|
2
|
Gavrilchenko T, Simpkins AG, Simpson T, Barrett LA, Hansen P, Shvartsman SY, Schottenfeld-Roames J. The Drosophila tracheal terminal cell as a model for branching morphogenesis. Proc Natl Acad Sci U S A 2024; 121:e2404462121. [PMID: 39356666 PMCID: PMC11474054 DOI: 10.1073/pnas.2404462121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Accepted: 08/31/2024] [Indexed: 10/04/2024] Open
Abstract
The terminal cells of the Drosophila larval tracheal system are perhaps the simplest delivery networks, providing an analogue for mammalian vascular growth and function in a system with many fewer components. These cells are a prime example of single-cell morphogenesis, branching significantly over time to adapt to the needs of the growing tissue they supply. While the genetic mechanisms governing local branching decisions have been studied extensively, an understanding of the emergence of a global network architecture is still lacking. Mapping out the full network architecture of populations of terminal cells at different developmental times of Drosophila larvae, we find that cell growth follows scaling laws relating the total edge length, supply area, and branch density. Using time-lapse imaging of individual terminal cells, we identify that the cells grow in three ways: by extending branches, by the side budding of new branches, and by internally growing existing branches. A generative model based on these modes of growth recapitulates statistical properties of the terminal cell network data. These results suggest that the scaling laws arise from the coupled contributions of branching and internal growth. This study establishes the terminal cell as a uniquely tractable model system for further studies of transportation and distribution networks.
Collapse
Affiliation(s)
| | - Alison G. Simpkins
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ08544
| | - Tanner Simpson
- Department of Molecular Biology, Princeton University, Princeton, NJ08544
| | - Lena A. Barrett
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ08544
- McKinsey & Company, Philadelphia, PA19104
| | - Pauline Hansen
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ08544
| | - Stanislav Y. Shvartsman
- Flatiron Institute, Simons Foundation, New York, NY10010
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ08544
- Department of Molecular Biology, Princeton University, Princeton, NJ08544
| | | |
Collapse
|
3
|
Araújo SJ, Llimargas M. Time-Lapse Imaging and Morphometric Analysis of Tracheal Development in Drosophila. Methods Mol Biol 2023; 2608:163-182. [PMID: 36653708 DOI: 10.1007/978-1-0716-2887-4_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Detailed and quantitative analyses of the cellular events underlying the formation of specific organs or tissues is essential to understand the general mechanisms of morphogenesis and pattern formation. Observation of live tissues or whole-mount fixed specimens has emerged as the method of choice for identifying and quantifying specific cellular and tissular structures within the organism. In both cases, cell and subcellular structure identification and good quality image acquisition for these analyses are essential. Many markers for live imaging and fixed tissue are now available for detecting cell membranes, subcellular structures, and extracellular structures like the extracellular matrix (ECM). Combination of live imaging and analysis of fixed tissue is ideal to obtain a general and detailed picture of the events underlying embryonic development. By applying morphometric methods to both approaches, we can, in addition, obtain a quantitative evaluation of the specific parameters under investigation in morphogenetic and cell biological studies. In this chapter, we focus on the development of the tracheal system of Drosophila melanogaster, which provides an ideal paradigm to understand the formation of branched tubular organs. We describe the most used methods of imaging and morphometric analysis in tubulogenesis using mainly (but not exclusively) examples from embryonic development. We cover embryo preparation for fixed and live analysis of tubulogenesis, together with methods to visualize larval tracheal terminal cell branching and lumen formation. Finally, we describe morphometric analysis and quantification methods using fluorescent images of tracheal cells.
Collapse
Affiliation(s)
- Sofia J Araújo
- Department of Genetics, Microbiology and Statistics, School of Biology, University of Barcelona (UB), Barcelona, Spain. .,Institute of Biomedicine, University of Barcelona (IBUB), Barcelona, Spain.
| | - Marta Llimargas
- Institute of Molecular Biology of Barcelona (IBMB), CSIC, Parc Científic de Barcelona, Barcelona, Spain.
| |
Collapse
|
4
|
Lam G, Beebe K, Thummel CS. A direct-drive GFP reporter for studies of tracheal development in Drosophila. Fly (Austin) 2022; 16:105-110. [PMID: 35094652 PMCID: PMC8803062 DOI: 10.1080/19336934.2022.2030191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Affiliation(s)
- Geanette Lam
- Department of Human Genetics, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Katherine Beebe
- Molecular Medicine Program, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Carl S. Thummel
- Department of Human Genetics, University of Utah School of Medicine, Salt Lake City, UT, USA
| |
Collapse
|
5
|
Fraire-Zamora JJ, Tosi S, Solon J, Casanova J. Control of hormone-driven organ disassembly by ECM remodeling and Yorkie-dependent apoptosis. Curr Biol 2021; 31:5261-5273.e4. [PMID: 34666006 DOI: 10.1016/j.cub.2021.09.057] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 06/30/2021] [Accepted: 09/22/2021] [Indexed: 01/13/2023]
Abstract
Epithelia grow and shape into functional structures during organogenesis. Although most of the focus on organogenesis has been drawn to the building of biological structures, the disassembly of pre-existing structures is also an important event to reach a functional adult organ. Examples of disassembly processes include the regression of the Müllerian or Wolffian ducts during gonad development and mammary gland involution during the post-lactational period in adult females. To date, it is unclear how organ disassembly is controlled at the cellular level. Here, we follow the Drosophila larval trachea through metamorphosis and show that its disassembly is a hormone-driven and precisely orchestrated process. It occurs in two phases: first, remodeling of the apical extracellular matrix (aECM), mediated by matrix metalloproteases and independent of the actomyosin cytoskeleton, results in a progressive shortening of the entire trachea and a nuclear-to-cytoplasmic relocalization of the Hippo effector Yorkie (Yki). Second, a decreased transcription of the Yki target, Diap1, in the posterior metameres and the activation of caspases result in the apoptotic loss of the posterior half of the trachea while the anterior half escapes cell death. Thus, our work unravels a mechanism by which hormone-driven ECM remodeling controls sequential tissue shortening and apoptotic cell removal through the transcriptional activity of Yki, leading to organ disassembly during animal development.
Collapse
Affiliation(s)
- Juan J Fraire-Zamora
- Cell and Developmental Biology Programme, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona 08003, Spain; Institut de Biologia Molecular de Barcelona (CSIC), Barcelona, Catalonia, Spain; Institut de Recerca Biomèdica (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac, 10, 08028 Barcelona, Spain; Instituto Biofisika (CSIC, UPV/EHU), Basque Excellence Research Centre, Barrio Sarriena, 48940 Leioa, Spain.
| | - Sébastien Tosi
- Institut de Recerca Biomèdica (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac, 10, 08028 Barcelona, Spain
| | - Jérôme Solon
- Cell and Developmental Biology Programme, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona 08003, Spain; Universitat Pompeu Fabra (UPF), Barcelona 08003, Spain; Instituto Biofisika (CSIC, UPV/EHU), Basque Excellence Research Centre, Barrio Sarriena, 48940 Leioa, Spain; Ikerbasque, Basque Foundation for Science, 48013 Bilbao, Spain.
| | - Jordi Casanova
- Institut de Biologia Molecular de Barcelona (CSIC), Barcelona, Catalonia, Spain; Institut de Recerca Biomèdica (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac, 10, 08028 Barcelona, Spain
| |
Collapse
|
6
|
Multiple Requirements for Rab GTPases in the Development of Drosophila Tracheal Dorsal Branches and Terminal Cells. G3-GENES GENOMES GENETICS 2020; 10:1099-1112. [PMID: 31980432 PMCID: PMC7056964 DOI: 10.1534/g3.119.400967] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The tracheal epithelium in fruit fly larvae is a popular model for multi- and unicellular migration and morphogenesis. Like all epithelial cells, tracheal cells use Rab GTPases to organize their internal membrane transport, resulting in the specific localization or secretion of proteins on the apical or basal membrane compartments. Some contributions of Rabs to junctional remodelling and governance of tracheal lumen contents are known, but it is reasonable to assume that they play important further roles in morphogenesis. This pertains in particular to terminal tracheal cells, specialized branch-forming cells that drastically reshape both their apical and basal membrane during the larval stages. We performed a loss-of-function screen in the tracheal system, knocking down endogenously tagged alleles of 26 Rabs by targeting the tag via RNAi. This revealed that at least 14 Rabs are required to ensure proper cell fate specification and migration of the dorsal branches, as well as their epithelial fusion with the contralateral dorsal branch. The screen implicated four Rabs in the subcellular morphogenesis of terminal cells themselves. Further tests suggested residual gene function after knockdown, leading us to discuss the limitations of this approach. We conclude that more Rabs than identified here may be important for tracheal morphogenesis, and that the tracheal system offers great opportunities for studying several Rabs that have barely been characterized so far.
Collapse
|
7
|
Best BT. Single-cell branching morphogenesis in the Drosophila trachea. Dev Biol 2018; 451:5-15. [PMID: 30529233 DOI: 10.1016/j.ydbio.2018.12.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2018] [Revised: 11/23/2018] [Accepted: 12/01/2018] [Indexed: 12/20/2022]
Abstract
The terminal cells of the tracheal epithelium in Drosophila melanogaster are one of the few known cell types that undergo subcellular morphogenesis to achieve a stable, branched shape. During the animal's larval stages, the cells repeatedly sprout new cytoplasmic processes. These grow very long, wrapping around target tissues to which the terminal cells adhere, and are hollowed by a gas-filled subcellular tube for oxygen delivery. Our understanding of this ramification process remains rudimentary. This review aims to provide a comprehensive summary of studies on terminal cells to date, and attempts to extrapolate how terminal branches might be formed based on the known genetic and molecular components. Next to this cell-intrinsic branching mechanism, we examine the extrinsic regulation of terminal branching by the target tissue and the animal's environment. Finally, we assess the degree of similarity between the patterns established by the branching programs of terminal cells and other branched cells and tissues from a mathematical and conceptual point of view.
Collapse
Affiliation(s)
- Benedikt T Best
- Director's Research Unit, European Molecular Biology Laboratory (EMBL), Meyerhofstr. 1, 69117 Heidelberg, Germany; Collaboration for Joint PhD degree from EMBL and Heidelberg University, Faculty of Biosciences, Germany
| |
Collapse
|
8
|
Development and Function of the Drosophila Tracheal System. Genetics 2018; 209:367-380. [PMID: 29844090 DOI: 10.1534/genetics.117.300167] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Accepted: 02/12/2018] [Indexed: 12/14/2022] Open
Abstract
The tracheal system of insects is a network of epithelial tubules that functions as a respiratory organ to supply oxygen to various target organs. Target-derived signaling inputs regulate stereotyped modes of cell specification, branching morphogenesis, and collective cell migration in the embryonic stage. In the postembryonic stages, the same set of signaling pathways controls highly plastic regulation of size increase and pattern elaboration during larval stages, and cell proliferation and reprograming during metamorphosis. Tracheal tube morphogenesis is also regulated by physicochemical interaction of the cell and apical extracellular matrix to regulate optimal geometry suitable for air flow. The trachea system senses both the external oxygen level and the metabolic activity of internal organs, and helps organismal adaptation to changes in environmental oxygen level. Cellular and molecular mechanisms underlying the high plasticity of tracheal development and physiology uncovered through research on Drosophila are discussed.
Collapse
|
9
|
Miao G, Hayashi S. Escargot controls the sequential specification of two tracheal tip cell types by suppressing FGF signaling in Drosophila. Development 2016; 143:4261-4271. [PMID: 27742749 PMCID: PMC5117212 DOI: 10.1242/dev.133322] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Accepted: 10/04/2016] [Indexed: 01/05/2023]
Abstract
Extrinsic branching factors promote the elongation and migration of tubular organs. In the Drosophila tracheal system, Branchless (Drosophila FGF) stimulates the branching program by specifying tip cells that acquire motility and lead branch migration to a specific destination. Tip cells have two alternative cell fates: the terminal cell (TC), which produces long cytoplasmic extensions with intracellular lumen, and the fusion cell (FC), which mediates branch connections to form tubular networks. How Branchless controls this specification of cells with distinct shapes and behaviors is unknown. Here we report that this cell type diversification involves the modulation of FGF signaling by the zinc-finger protein Escargot (Esg), which is expressed in the FC and is essential for its specification. The dorsal branch begins elongation with a pair of tip cells with high FGF signaling. When the branch tip reaches its final destination, one of the tip cells becomes an FC and expresses Esg. FCs and TCs differ in their response to FGF: TCs are attracted by FGF, whereas FCs are repelled. Esg suppresses ERK signaling in FCs to control this differential migratory behavior. Summary: The migratory behavior of tracheal fusion cells is controlled by the FGF-induced expression of the transcription factor Escargot, which subsequently suppresses ERK signaling.
Collapse
Affiliation(s)
- Guangxia Miao
- Laboratory for Morphogenetic Signaling, RIKEN Center for Developmental Biology, 2-2-3 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan.,Department of Biology, Kobe University Graduate School of Science, 1-1 Rokkodai-cho, Nada-ku, Kobe, Hyogo 657-8051, Japan
| | - Shigeo Hayashi
- Laboratory for Morphogenetic Signaling, RIKEN Center for Developmental Biology, 2-2-3 Minatojima-minamimachi, Chuo-ku, Kobe, Hyogo 650-0047, Japan .,Department of Biology, Kobe University Graduate School of Science, 1-1 Rokkodai-cho, Nada-ku, Kobe, Hyogo 657-8051, Japan
| |
Collapse
|
10
|
Microtubule-dependent balanced cell contraction and luminal-matrix modification accelerate epithelial tube fusion. Nat Commun 2016; 7:11141. [PMID: 27067650 PMCID: PMC4832058 DOI: 10.1038/ncomms11141] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Accepted: 02/25/2016] [Indexed: 01/22/2023] Open
Abstract
Connection of tubules into larger networks is the key process for the development of circulatory systems. In Drosophila development, tip cells of the tracheal system lead the migration of each branch and connect tubules by adhering to each other and simultaneously changing into a torus-shape. We show that as adhesion sites form between fusion cells, myosin and microtubules form polarized bundles that connect the new adhesion site to the cells' microtubule-organizing centres, and that E-cadherin and retrograde recycling endosomes are preferentially deposited at the new adhesion site. We demonstrate that microtubules help balancing tip cell contraction, which is driven by myosin, and is required for adhesion and tube fusion. We also show that retrograde recycling and directed secretion of a specific matrix protein into the fusion-cell interface promote fusion. We propose that microtubule bundles connecting these cell–cell interfaces coordinate cell contractility and apical secretion to facilitate tube fusion. During tracheal tube fusion in Drosophila, a pair of tip cells form an adherens junction and then fuse their plasma membranes. Here the authors show that a balanced pulling force mediated by myosin and microtubules, as well as localized deposition of matrix, promotes plasma membrane fusion.
Collapse
|
11
|
Huebner RJ, Neumann NM, Ewald AJ. Mammary epithelial tubes elongate through MAPK-dependent coordination of cell migration. Development 2016; 143:983-93. [PMID: 26839364 DOI: 10.1242/dev.127944] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Accepted: 01/27/2016] [Indexed: 01/18/2023]
Abstract
Mammary branching morphogenesis is regulated by receptor tyrosine kinases (RTKs). We sought to determine how these RTK signals alter proliferation and migration to accomplish tube elongation in mouse. Both behaviors occur but it has been difficult to determine their relative contribution to elongation in vivo, as mammary adipocytes scatter light and limit the depth of optical imaging. Accordingly, we utilized 3D culture to study elongation in an experimentally accessible setting. We first used antibodies to localize RTK signals and discovered that phosphorylated ERK1/2 (pERK) was spatially enriched in cells near the front of elongating ducts, whereas phosphorylated AKT was ubiquitous. We next observed a gradient of cell migration speeds from rear to front of elongating ducts, with the front characterized by both high pERK and the fastest cells. Furthermore, cells within elongating ducts oriented both their protrusions and their migration in the direction of tube elongation. By contrast, cells within the organoid body were isotropically protrusive. We next tested the requirement for proliferation and migration. Early inhibition of proliferation blocked the creation of migratory cells, whereas late inhibition of proliferation did not block continued duct elongation. By contrast, pharmacological inhibition of either MEK or Rac1 signaling acutely blocked both cell migration and duct elongation. Finally, conditional induction of MEK activity was sufficient to induce collective cell migration and ductal elongation. Our data suggest a model for ductal elongation in which RTK-dependent proliferation creates motile cells with high pERK, the collective migration of which acutely requires both MEK and Rac1 signaling.
Collapse
Affiliation(s)
- Robert J Huebner
- Departments of Cell Biology, Oncology, and Biomedical Engineering, Center for Cell Dynamics, Johns Hopkins University School of Medicine, 855 N. Wolfe Street, 452 Rangos Building, Baltimore, MD 21205, USA
| | - Neil M Neumann
- Departments of Cell Biology, Oncology, and Biomedical Engineering, Center for Cell Dynamics, Johns Hopkins University School of Medicine, 855 N. Wolfe Street, 452 Rangos Building, Baltimore, MD 21205, USA
| | - Andrew J Ewald
- Departments of Cell Biology, Oncology, and Biomedical Engineering, Center for Cell Dynamics, Johns Hopkins University School of Medicine, 855 N. Wolfe Street, 452 Rangos Building, Baltimore, MD 21205, USA
| |
Collapse
|
12
|
Araújo SJ. The Hedgehog Signalling Pathway in Cell Migration and Guidance: What We Have Learned from Drosophila melanogaster. Cancers (Basel) 2015; 7:2012-22. [PMID: 26445062 PMCID: PMC4695873 DOI: 10.3390/cancers7040873] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Revised: 09/23/2015] [Accepted: 09/28/2015] [Indexed: 01/20/2023] Open
Abstract
Cell migration and guidance are complex processes required for morphogenesis, the formation of tumor metastases, and the progression of human cancer. During migration, guidance molecules induce cell directionality and movement through complex intracellular mechanisms. Expression of these molecules has to be tightly regulated and their signals properly interpreted by the receiving cells so as to ensure correct navigation. This molecular control is fundamental for both normal morphogenesis and human disease. The Hedgehog (Hh) signaling pathway is evolutionarily conserved and known to be crucial for normal cellular growth and differentiation throughout the animal kingdom. The relevance of Hh signaling for human disease is emphasized by its activation in many cancers. Here, I review the current knowledge regarding the involvement of the Hh pathway in cell migration and guidance during Drosophila development and discuss its implications for human cancer origin and progression.
Collapse
Affiliation(s)
- Sofia J Araújo
- Institut de Biologia Molecular de Barcelona (IBMB-CSIC), Parc Cientific de Barcelona, C. Baldiri Reixac 10,08028 Barcelona, Spain.
| |
Collapse
|
13
|
Miao G, Hayashi S. Manipulation of gene expression by infrared laser heat shock and its application to the study of tracheal development inDrosophila. Dev Dyn 2015; 244:479-87. [DOI: 10.1002/dvdy.24192] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2014] [Revised: 09/07/2014] [Accepted: 09/08/2014] [Indexed: 11/06/2022] Open
Affiliation(s)
- Guangxia Miao
- Laboratory for Morphogenetic Signaling; RIKEN Center for Developmental Biology; Chuo-ku Kobe Hyogo Japan
- Department of Biology; Kobe University Graduate School of Science; Nada-ku Kobe Hyogo Japan
| | - Shigeo Hayashi
- Laboratory for Morphogenetic Signaling; RIKEN Center for Developmental Biology; Chuo-ku Kobe Hyogo Japan
- Department of Biology; Kobe University Graduate School of Science; Nada-ku Kobe Hyogo Japan
| |
Collapse
|
14
|
Matsuda R, Hosono C, Saigo K, Samakovlis C. The intersection of the extrinsic hedgehog and WNT/wingless signals with the intrinsic Hox code underpins branching pattern and tube shape diversity in the drosophila airways. PLoS Genet 2015; 11:e1004929. [PMID: 25615601 PMCID: PMC4304712 DOI: 10.1371/journal.pgen.1004929] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2014] [Accepted: 11/28/2014] [Indexed: 01/04/2023] Open
Abstract
The tubular networks of the Drosophila respiratory system and our vasculature show distinct branching patterns and tube shapes in different body regions. These local variations are crucial for organ function and organismal fitness. Organotypic patterns and tube geometries in branched networks are typically controlled by variations of extrinsic signaling but the impact of intrinsic factors on branch patterns and shapes is not well explored. Here, we show that the intersection of extrinsic hedgehog(hh) and WNT/wingless (wg) signaling with the tube-intrinsic Hox code of distinct segments specifies the tube pattern and shape of the Drosophila airways. In the cephalic part of the airways, hh signaling induces expression of the transcription factor (TF) knirps (kni) in the anterior dorsal trunk (DTa1). kni represses the expression of another TF spalt major (salm), making DTa1 a narrow and long tube. In DTa branches of more posterior metameres, Bithorax Complex (BX-C) Hox genes autonomously divert hh signaling from inducing kni, thereby allowing DTa branches to develop as salm-dependent thick and short tubes. Moreover, the differential expression of BX-C genes is partly responsible for the anterior-to-posterior gradual increase of the DT tube diameter through regulating the expression level of Salm, a transcriptional target of WNT/wg signaling. Thus, our results highlight how tube intrinsic differential competence can diversify tube morphology without changing availabilities of extrinsic factors. Tubes are common structural elements of many internal organs,
facilitating fluid flow and material exchange. To meet the local needs of diverse tissues, the branching patterns and tube shapes vary regionally. Diametric tapering and specialized branch targeting to the brain represent two common examples of variations with organismal benefits in the Drosophila airways and our vascular system. Several extrinsic signals instruct tube diversifications but the impact of intrinsic factors remains underexplored. Here, we show that the local, tube-intrinsic Hox code instructs the pattern and shape of the dorsal trunk (DT), the main Drosophila airway. In the cephalic part (DT1), where Bithorax Complex (BX-C) Hox genes are not expressed, the extrinsic Hedgehog signal is epistatic to WNT/Wingless signals. Hedgehog instructs anterior DT1 cells to take a long and narrow tube fate targeting the brain. In more posterior metameres, BX-C genes make the extrinsic WNT/Wingless signals epistatic over Hedgehog. There, WNT/Wingless instruct all DT cells to take the thick and short tube fate. Moreover, BX-C genes modulate the outputs of WNT/wingless signaling, making the DT tubes thicker in more posterior metameres. We provide a model for how intrinsic factors modify extrinsic signaling to control regional tube morphologies in a network.
Collapse
Affiliation(s)
- Ryo Matsuda
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Chie Hosono
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Kaoru Saigo
- Department of Biophysics and Biochemistry, Graduate School of Science, University of Tokyo, Tokyo, Japan
| | - Christos Samakovlis
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
- ECCPS, University of Giessen, Giessen, Germany
- * E-mail:
| |
Collapse
|
15
|
Spracklen AJ, Fagan TN, Lovander KE, Tootle TL. The pros and cons of common actin labeling tools for visualizing actin dynamics during Drosophila oogenesis. Dev Biol 2014; 393:209-226. [PMID: 24995797 DOI: 10.1016/j.ydbio.2014.06.022] [Citation(s) in RCA: 93] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2013] [Revised: 04/04/2014] [Accepted: 06/17/2014] [Indexed: 10/25/2022]
Abstract
Dynamic remodeling of the actin cytoskeleton is required for both development and tissue homeostasis. While fixed image analysis has provided significant insight into such events, a complete understanding of cytoskeletal dynamics requires live imaging. Numerous tools for the live imaging of actin have been generated by fusing the actin-binding domain from an actin-interacting protein to a fluorescent protein. Here we comparatively assess the utility of three such tools--Utrophin, Lifeact, and F-tractin--for characterizing the actin remodeling events occurring within the germline-derived nurse cells during Drosophila mid-oogenesis or follicle development. Specifically, we used the UAS/GAL4 system to express these tools at different levels and in different cells, and analyzed these tools for effects on fertility, alterations in the actin cytoskeleton, and ability to label filamentous actin (F-actin) structures by both fixed and live imaging. While both Utrophin and Lifeact robustly label F-actin structures within the Drosophila germline, when strongly expressed they cause sterility and severe actin defects including cortical actin breakdown resulting in multi-nucleate nurse cells, early F-actin filament and aggregate formation during stage 9 (S9), and disorganized parallel actin filament bundles during stage 10B (S10B). However, by using a weaker germline GAL4 driver in combination with a higher temperature, Utrophin can label F-actin with minimal defects. Additionally, strong Utrophin expression within the germline causes F-actin formation in the nurse cell nuclei and germinal vesicle during mid-oogenesis. Similarly, Lifeact expression results in nuclear F-actin only within the germinal vesicle. F-tractin expresses at a lower level than the other two labeling tools, but labels cytoplasmic F-actin structures well without causing sterility or striking actin defects. Together these studies reveal how critical it is to evaluate the utility of each actin labeling tool within the tissue and cell type of interest in order to identify the tool that represents the best compromise between acceptable labeling and minimal disruption of the phenomenon being observed. In this case, we find that F-tractin, and perhaps Utrophin, when Utrophin expression levels are optimized to label efficiently without causing actin defects, can be used to study F-actin dynamics within the Drosophila nurse cells.
Collapse
Affiliation(s)
- Andrew J Spracklen
- Anatomy and Cell Biology Department, Carver College of Medicine, University of Iowa, 51 Newton Rd, Iowa City, IA 52242, USA
| | - Tiffany N Fagan
- Anatomy and Cell Biology Department, Carver College of Medicine, University of Iowa, 51 Newton Rd, Iowa City, IA 52242, USA
| | - Kaylee E Lovander
- Anatomy and Cell Biology Department, Carver College of Medicine, University of Iowa, 51 Newton Rd, Iowa City, IA 52242, USA
| | - Tina L Tootle
- Anatomy and Cell Biology Department, Carver College of Medicine, University of Iowa, 51 Newton Rd, Iowa City, IA 52242, USA.
| |
Collapse
|
16
|
Okenve-Ramos P, Llimargas M. Fascin links Btl/FGFR signalling to the actin cytoskeleton during Drosophila tracheal morphogenesis. Development 2014; 141:929-39. [PMID: 24496629 DOI: 10.1242/dev.103218] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
A key challenge in normal development and in disease is to elucidate the mechanisms of cell migration. Here we approach this question using the tracheal system of Drosophila as a model. Tracheal cell migration requires the Breathless/FGFR pathway; however, how the pathway induces migration remains poorly understood. We find that the Breathless pathway upregulates singed at the tip of tracheal branches, and that this regulation is functionally relevant. singed encodes Drosophila Fascin, which belongs to a conserved family of actin-bundling proteins involved in cancer progression and metastasis upon misregulation. We show that singed is required for filopodia stiffness and proper morphology of tracheal tip cells, defects that correlate with an abnormal actin organisation. We propose that singed-regulated filopodia and cell fronts are required for timely and guided branch migration and for terminal branching and branch fusion. We find that singed requirements rely on its actin-bundling activity controlled by phosphorylation, and that active Singed can promote tip cell features. Furthermore, we find that singed acts in concert with forked, another actin cross-linker. The absence of both cross-linkers further stresses the relevance of tip cell morphology and filopodia for tracheal development. In summary, our results on the one hand reveal a previously undescribed role for forked in the organisation of transient actin structures such as filopodia, and on the other hand identify singed as a new target of Breathless signal, establishing a link between guidance cues, the actin cytoskeleton and tracheal morphogenesis.
Collapse
Affiliation(s)
- Pilar Okenve-Ramos
- Institut de Biologia Molecular de Barcelona, CSIC, Parc Científic de Barcelona, Baldiri Reixac, 4-8, 08028 Barcelona, Spain
| | | |
Collapse
|
17
|
Weavers H, Skaer H. Tip cells: master regulators of tubulogenesis? Semin Cell Dev Biol 2014; 31:91-9. [PMID: 24721475 PMCID: PMC4071413 DOI: 10.1016/j.semcdb.2014.04.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2014] [Revised: 03/26/2014] [Accepted: 04/01/2014] [Indexed: 11/18/2022]
Abstract
Single tip cells or groups of leading cells develop at the forefront of growing tissues. Tip cells regulate tubule growth and morphogenesis. Tip cells develop distinctive patterns of gene expression and specialised characteristics. Tip cells are required for health and may be involved in the progression of cancer.
The normal development of an organ depends on the coordinated regulation of multiple cell activities. Focusing on tubulogenesis, we review the role of specialised cells or groups of cells that are selected from within tissue primordia and differentiate at the outgrowing tips or leading edge of developing tubules. Tip or leading cells develop distinctive patterns of gene expression that enable them to act both as sensors and transmitters of intercellular signalling. This enables them to explore the environment, respond to both tissue intrinsic signals and extrinsic cues from surrounding tissues and to regulate the behaviour of their neighbours, including the setting of cell fate, patterning cell division, inducing polarity and promoting cell movement and cell rearrangements by neighbour exchange. Tip cells are also able to transmit mechanical tension to promote tissue remodelling and, by interacting with the extracellular matrix, they can dictate migratory pathways and organ shape. Where separate tubular structures fuse to form networks, as in the airways of insects or the vascular system of vertebrates, specialised fusion tip cells act to interconnect disparate elements of the developing network. Finally, we consider their importance in the maturation of mature physiological function and in the development of disease.
Collapse
Affiliation(s)
- Helen Weavers
- Department of Zoology, Downing Street, Cambridge CB2 3EJ, UK
| | - Helen Skaer
- Department of Zoology, Downing Street, Cambridge CB2 3EJ, UK.
| |
Collapse
|
18
|
Butí E, Mesquita D, Araújo SJ. Hedgehog is a positive regulator of FGF signalling during embryonic tracheal cell migration. PLoS One 2014; 9:e92682. [PMID: 24651658 PMCID: PMC3961400 DOI: 10.1371/journal.pone.0092682] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2013] [Accepted: 02/25/2014] [Indexed: 11/18/2022] Open
Abstract
Cell migration is a widespread and complex process that is crucial for morphogenesis and for the underlying invasion and metastasis of human cancers. During migration, cells are steered toward target sites by guidance molecules that induce cell direction and movement through complex intracellular mechanisms. The spatio-temporal regulation of the expression of these guidance molecules is of extreme importance for both normal morphogenesis and human disease. One way to achieve this precise regulation is by combinatorial inputs of different transcription factors. Here we used Drosophila melanogaster mutants with migration defects in the ganglionic branches of the tracheal system to further clarify guidance regulation during cell migration. By studying the cellular consequences of overactivated Hh signalling, using ptc mutants, we found that Hh positively regulates Bnl/FGF levels during embryonic stages. Our results show that Hh modulates cell migration non-autonomously in the tissues surrounding the action of its activity. We further demonstrate that the Hh signalling pathway regulates bnl expression via Stripe (Sr), a zinc-finger transcription factor with homology to the Early Growth Response (EGR) family of vertebrate transcription factors. We propose that Hh modulates embryonic cell migration by participating in the spatio-temporal regulation of bnl expression in a permissive mode. By doing so, we provide a molecular link between the activation of Hh signalling and increased chemotactic responses during cell migration.
Collapse
Affiliation(s)
- Elisenda Butí
- Developmental Biology Department, Institute of Molecular Biology of Barcelona (IBMB-CSIC), Barcelona, Spain
- Cell and Developmental Biology Programme, Institute for Research in Biomedicine (IRB Barcelona), Barcelona, Spain
| | - Duarte Mesquita
- Developmental Biology Department, Institute of Molecular Biology of Barcelona (IBMB-CSIC), Barcelona, Spain
- Cell and Developmental Biology Programme, Institute for Research in Biomedicine (IRB Barcelona), Barcelona, Spain
| | - Sofia J. Araújo
- Developmental Biology Department, Institute of Molecular Biology of Barcelona (IBMB-CSIC), Barcelona, Spain
- Cell and Developmental Biology Programme, Institute for Research in Biomedicine (IRB Barcelona), Barcelona, Spain
- * E-mail:
| |
Collapse
|
19
|
The hedgehog pathway gene shifted functions together with the hmgcr-dependent isoprenoid biosynthetic pathway to orchestrate germ cell migration. PLoS Genet 2013; 9:e1003720. [PMID: 24068944 PMCID: PMC3772052 DOI: 10.1371/journal.pgen.1003720] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2012] [Accepted: 06/28/2013] [Indexed: 11/19/2022] Open
Abstract
The Drosophila embryonic gonad is assembled from two distinct cell types, the Primordial Germ Cells (PGCs) and the Somatic Gonadal Precursor cells (SGPs). The PGCs form at the posterior of blastoderm stage embryos and are subsequently carried inside the embryo during gastrulation. To reach the SGPs, the PGCs must traverse the midgut wall and then migrate through the mesoderm. A combination of local repulsive cues and attractive signals emanating from the SGPs guide migration. We have investigated the role of the hedgehog (hh) pathway gene shifted (shf) in directing PGC migration. shf encodes a secreted protein that facilitates the long distance transmission of Hh through the proteoglycan matrix after it is released from basolateral membranes of Hh expressing cells in the wing imaginal disc. shf is expressed in the gonadal mesoderm, and loss- and gain-of-function experiments demonstrate that it is required for PGC migration. Previous studies have established that the hmgcr-dependent isoprenoid biosynthetic pathway plays a pivotal role in generating the PGC attractant both by the SGPs and by other tissues when hmgcr is ectopically expressed. We show that production of this PGC attractant depends upon shf as well as a second hh pathway gene gγ1. Further linking the PGC attractant to Hh, we present evidence indicating that ectopic expression of hmgcr in the nervous system promotes the release/transmission of the Hh ligand from these cells into and through the underlying mesodermal cell layer, where Hh can contact migrating PGCs. Finally, potentiation of Hh by hmgcr appears to depend upon cholesterol modification. The molecular mechanisms underlying directed cell migration have been studied extensively in different biological contexts. Germ cell migration provides an effective model to study the dynamics of in vivo cell migration. The process of germ cell migration in Drosophila melanogaster results in embryonic gonad formation consisting of primordial germ cells (PGCs) and somatic gonadal precursor cells (SGPs). Moreover, it likely involves a complex series of attractive and repulsive cues. Molecular and genetic analysis has been performed to elucidate the nature of the attractive cue(s) and components that guide germ cells to the SGPs in the mesoderm. One current model proposes that 3-Hydroxy-3-Methylglutaryl Coenzyme A reductase (Hmgcr), synthesized in the SGPs, potentiates signaling downstream of Hedgehog (Hh) ligand also emanating from the SGPs. The model pivots on the novel activity of an established morphogen, Hedgehog, to function as a chemoattractant for the migrating germ cells. A variety of ‘loss-’ and ‘gain-of-function’ strategies manipulating different components of this signaling pathway have been successfully employed in support of the proposed model.
Collapse
|
20
|
Fuse N, Yu F, Hirose S. Gprk2 adjusts Fog signaling to organize cell movements in Drosophila gastrulation. Development 2013; 140:4246-55. [PMID: 24026125 DOI: 10.1242/dev.093625] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Gastrulation of Drosophila melanogaster proceeds through sequential cell movements: ventral mesodermal (VM) cells are induced by secreted Fog protein to constrict their apical surfaces to form the ventral furrow, and subsequently lateral mesodermal (LM) cells involute toward the furrow. How these cell movements are organized remains elusive. Here, we observed that LM cells extended apical protrusions and then underwent accelerated involution movement, confirming that VM and LM cells display distinct cell morphologies and movements. In a mutant for the GPCR kinase Gprk2, apical constriction was expanded to all mesodermal cells and the involution movement was abolished. In addition, the mesodermal cells halted apical constriction prematurely in accordance with the aberrant accumulation of Myosin II. Epistasis analyses revealed that the Gprk2 mutant phenotypes were dependent on the fog gene. Overexpression of Gprk2 suppressed the effects of excess Cta, a downstream component of Fog signaling. Based on these findings, we propose that Gprk2 attenuates and tunes Fog-Cta signaling to prevent apical constriction in LM cells and to support appropriate apical constriction in VM cells. Thus, the two distinct cell movements in mesoderm invagination are not predetermined, but rather are organized by the adjustment of cell signaling.
Collapse
Affiliation(s)
- Naoyuki Fuse
- Department of Developmental Genetics, National Institute of Genetics, Yata 1111, Mishima 411-8540, Japan
| | | | | |
Collapse
|
21
|
Kanesaki T, Hirose S, Grosshans J, Fuse N. Heterotrimeric G protein signaling governs the cortical stability during apical constriction in Drosophila gastrulation. Mech Dev 2012; 130:132-42. [PMID: 23085574 DOI: 10.1016/j.mod.2012.10.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2011] [Revised: 09/14/2012] [Accepted: 10/03/2012] [Indexed: 11/19/2022]
Abstract
During gastrulation in Drosophila melanogaster, coordinated apical constriction of the cellular surface drives invagination of the mesoderm anlage. Forces generated by the cortical cytoskeletal network have a pivotal role in this cellular shape change. Here, we show that the organisation of cortical actin is essential for stabilisation of the cellular surface against contraction. We found that mutation of genes related to heterotrimeric G protein (HGP) signaling, such as Gβ13F, Gγ1, and ric-8, results in formation of blebs on the ventral cellular surface. The formation of blebs is caused by perturbation of cortical actin and induced by local surface contraction. HGP signaling mediated by two Gα subunits, Concertina and G-iα65A, constitutively regulates actin organisation. We propose that the organisation of cortical actin by HGP is required to reinforce the cortex so that the cells can endure hydrostatic stress during tissue folding.
Collapse
Affiliation(s)
- Takuma Kanesaki
- Department of Developmental Genetics, National Institute of Genetics, 1111 Yata, Mishima 411-8540, Japan
| | | | | | | |
Collapse
|
22
|
Tajiri R, Misaki K, Yonemura S, Hayashi S. Joint morphology in the insect leg: evolutionary history inferred from Notch loss-of-function phenotypes in Drosophila. Development 2011; 138:4621-6. [PMID: 21989911 PMCID: PMC3207860 DOI: 10.1242/dev.067330] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Joints permit efficient locomotion, especially among animals with a rigid skeleton. Joint morphologies vary in the body of individual animals, and the shapes of homologous joints often differ across species. The diverse locomotive behaviors of animals are based, in part, on the developmental and evolutionary history of joint morphogenesis. We showed previously that strictly coordinated cell-differentiation and cell-movement events within the epidermis sculpt the interlocking ball-and-socket joints in the adult Drosophila tarsus (distal leg). Here, we show that the tarsal joints of various insect species can be classified into three types: ball-and-socket, side-by-side and uniform. The last two probably result from joint formation without the cell-differentiation step, the cell-movement step, or both. Similar morphological variations were observed in Drosophila legs when Notch function was temporarily blocked during joint formation, implying that the independent acquisition of cell differentiation and cell movement underlay the elaboration of tarsal joint morphologies during insect evolution. These results provide a framework for understanding how the seemingly complex morphology of the interlocking joint could have developed during evolution by the addition of simple developmental modules: cell differentiation and cell movement.
Collapse
Affiliation(s)
- Reiko Tajiri
- Laboratory for Morphogenetic Signaling, RIKEN Center for Developmental Biology, Kobe 650-0047, Japan.
| | | | | | | |
Collapse
|
23
|
Maruyama R, Andrew DJ. Drosophila as a model for epithelial tube formation. Dev Dyn 2011; 241:119-35. [PMID: 22083894 DOI: 10.1002/dvdy.22775] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/10/2011] [Indexed: 12/17/2022] Open
Abstract
Epithelial tubular organs are essential for life in higher organisms and include the pancreas and other secretory organs that function as biological factories for the synthesis and delivery of secreted enzymes, hormones, and nutrients essential for tissue homeostasis and viability. The lungs, which are necessary for gas exchange, vocalization, and maintaining blood pH, are organized as highly branched tubular epithelia. Tubular organs include arteries, veins, and lymphatics, high-speed passageways for delivery and uptake of nutrients, liquids, gases, and immune cells. The kidneys and components of the reproductive system are also epithelial tubes. Both the heart and central nervous system of many vertebrates begin as epithelial tubes. Thus, it is not surprising that defects in tube formation and maintenance underlie many human diseases. Accordingly, a thorough understanding how tubes form and are maintained is essential to developing better diagnostics and therapeutics. Among the best-characterized tubular organs are the Drosophila salivary gland and trachea, organs whose relative simplicity have allowed for in depth analysis of gene function, yielding key mechanistic insight into tube initiation, remodeling and maintenance. Here, we review our current understanding of salivary gland and trachea formation - highlighting recent discoveries into how these organs attain their final form and function.
Collapse
Affiliation(s)
- Rika Maruyama
- The Johns Hopkins University School of Medicine, Department of Cell Biology, Baltimore, Maryland 21205-2196, USA
| | | |
Collapse
|
24
|
Hemocyte-secreted type IV collagen enhances BMP signaling to guide renal tubule morphogenesis in Drosophila. Dev Cell 2010; 19:296-306. [PMID: 20708591 PMCID: PMC2941037 DOI: 10.1016/j.devcel.2010.07.019] [Citation(s) in RCA: 98] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2010] [Revised: 07/09/2010] [Accepted: 07/28/2010] [Indexed: 12/17/2022]
Abstract
Details of the mechanisms that determine the shape and positioning of organs in the body cavity remain largely obscure. We show that stereotypic positioning of outgrowing Drosophila renal tubules depends on signaling in a subset of tubule cells and results from enhanced sensitivity to guidance signals by targeted matrix deposition. VEGF/PDGF ligands from the tubules attract hemocytes, which secrete components of the basement membrane to ensheath them. Collagen IV sensitizes tubule cells to localized BMP guidance cues. Signaling results in pathway activation in a subset of tubule cells that lead outgrowth through the body cavity. Failure of hemocyte migration, loss of collagen IV, or abrogation of BMP signaling results in tubule misrouting and defective organ shape and positioning. Such regulated interplay between cell-cell and cell-matrix interactions is likely to have wide relevance in organogenesis and congenital disease.
Collapse
|
25
|
Tajiri R, Misaki K, Yonemura S, Hayashi S. Dynamic shape changes of ECM-producing cells drive morphogenesis of ball-and-socket joints in the fly leg. Development 2010; 137:2055-63. [PMID: 20501594 DOI: 10.1242/dev.047175] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Animal body shape is framed by the skeleton, which is composed of extracellular matrix (ECM). Although how the body plan manifests in skeletal morphology has been studied intensively, cellular mechanisms that directly control skeletal ECM morphology remain elusive. In particular, how dynamic behaviors of ECM-secreting cells, such as shape changes and movements, contribute to ECM morphogenesis is unclear. Strict control of ECM morphology is crucial in the joints, where opposing sides of the skeleton must have precisely reciprocal shapes to fit each other. Here we found that, in the development of ball-and-socket joints in the Drosophila leg, the two sides of ECM form sequentially. We show that distinct cell populations produce the 'ball' and the 'socket', and that these cells undergo extensive shape changes while depositing ECM. We propose that shape changes of ECM-producing cells enable the sequential ECM formation to allow the morphological coupling of adjacent components. Our results highlight the importance of dynamic cell behaviors in precise shaping of skeletal ECM architecture.
Collapse
Affiliation(s)
- Reiko Tajiri
- Laboratory for Morphogenetic Signaling, RIKEN Center for Developmental Biology, Kobe 650-0047, Japan
| | | | | | | |
Collapse
|
26
|
Ninov N, Menezes-Cabral S, Prat-Rojo C, Manjón C, Weiss A, Pyrowolakis G, Affolter M, Martín-Blanco E. Dpp signaling directs cell motility and invasiveness during epithelial morphogenesis. Curr Biol 2010; 20:513-20. [PMID: 20226662 DOI: 10.1016/j.cub.2010.01.063] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2009] [Revised: 01/12/2010] [Accepted: 01/14/2010] [Indexed: 01/13/2023]
Abstract
Tissue remodeling in development and disease involves the coordinated invasion of neighboring territories and/or the replacement of entire cell populations. Cell guidance, cell matching, transitions from passive to migratory epithelia, cell growth and death, and extracellular matrix remodeling all impinge on epithelial spreading. Significantly, the extracellular signals that direct these activities and the specific cellular elements and mechanisms regulated by these signals remain in most cases to be identified. To address these issues, we performed an analysis of histoblasts (Drosophila abdominal epithelial founder cells) on their transition from a dormant state to active migration replacing obsolete larval epidermal cells (LECs). We found that during expansion, Decapentaplegic (Dpp) secreted from surrounding LECs leads to graded pathway activation in cells at the periphery of histoblast nests. Across nests, Dpp activity confers differential cellular behavior and motility by modulating cell-cell contacts, the organization and activity of the cytoskeleton, and histoblast attachment to the substrate. Furthermore, Dpp also prevents the premature death of LECs, allowing the coordination of histoblast expansion to LEC delamination. Dpp signaling activity directing histoblast spreading and invasiveness mimics transforming growth factor-beta and bone morphogenetic proteins' role in enhancing the motility and invasiveness of cancer cells, resulting in the promotion of metastasis.
Collapse
Affiliation(s)
- Nikolay Ninov
- Instituto de Biología Molecular de Barcelona, Consejo Superior de Investigaciones Científicas, Parc Científic de Barcelona, Baldiri Reixac 10, 08028 Barcelona, Spain
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Gervais L, Casanova J. In vivo coupling of cell elongation and lumen formation in a single cell. Curr Biol 2010; 20:359-66. [PMID: 20137948 DOI: 10.1016/j.cub.2009.12.043] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2009] [Revised: 11/26/2009] [Accepted: 12/17/2009] [Indexed: 10/19/2022]
Abstract
Fine tubes form inside cells as they reach their target tissues in epithelial ducts and in angiogenesis. Although a very suggestive model of cell hollowing proposes that intracellular lumen could arise by coalescence of intracellular vacuoles, how those tubes form in vivo remains an open question. We addressed this issue by examining intracellular lumen formation in the Drosophila trachea. The main branches of the Drosophila tracheal system have an extracellular lumen because their cells fold to form a tube. However, terminal cells, specialized cells in some of the main branches, form unicellular branches by the generation of an intracellular lumen. Conversely to the above-mentioned model, we find that the intracellular lumen arises by growth of an apical membrane inwards the cell. In support, we detect an appropriate subcellular compartmentalization of different components of the intracellular trafficking machinery. We show that both cellular elongation and lumen formation depend on a mechanism based on asymmetric actin accumulation and microtubule network organization. Given the similarities in the formation of fine respiratory tubes and capillaries, we propose that an inward membrane growth model could account for lumen formation in both processes.
Collapse
Affiliation(s)
- Louis Gervais
- Institut de Biologia Molecular de Barcelona-CSIC, Baldiri Reixac 10-12, 08028 Barcelona, Spain
| | | |
Collapse
|
28
|
|
29
|
Chung S, Vining MS, Bradley PL, Chan CC, Wharton KA, Andrew DJ. Serrano (sano) functions with the planar cell polarity genes to control tracheal tube length. PLoS Genet 2009; 5:e1000746. [PMID: 19956736 PMCID: PMC2776533 DOI: 10.1371/journal.pgen.1000746] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2009] [Accepted: 10/30/2009] [Indexed: 11/18/2022] Open
Abstract
Epithelial tubes are the functional units of many organs, and proper tube geometry is crucial for organ function. Here, we characterize serrano (sano), a novel cytoplasmic protein that is apically enriched in several tube-forming epithelia in Drosophila, including the tracheal system. Loss of sano results in elongated tracheae, whereas Sano overexpression causes shortened tracheae with reduced apical boundaries. Sano overexpression during larval and pupal stages causes planar cell polarity (PCP) defects in several adult tissues. In Sano-overexpressing pupal wing cells, core PCP proteins are mislocalized and prehairs are misoriented; sano loss or overexpression in the eye disrupts ommatidial polarity and rotation. Importantly, Sano binds the PCP regulator Dishevelled (Dsh), and loss or ectopic expression of many known PCP proteins in the trachea gives rise to similar defects observed with loss or gain of sano, revealing a previously unrecognized role for PCP pathway components in tube size control. Tubular organ formation is a ubiquitous process required to sustain life in multicellular organisms. In this study, we focused on the tracheal system of the fruit fly, Drosophila melanogaster, and identified Serrano (Sano) as a novel protein expressed in several embryonic tubular organs, including trachea. sano loss results in over-elongated trachea, whereas Sano overexpression causes shortened trachea, suggesting that sano is required for proper tracheal tube length. Interestingly, Sano overexpression results in typical planar cell polarity (PCP) defects in many adult tissues and pupal wing cells. The PCP pathway is highly conserved from flies to mammals and it has been known to control cell polarity within the plane of epithelial tissues. Importantly, we found that Sano binds Dishevelled (Dsh), a key PCP regulator, and loss or ectopic expression of many known PCP proteins in the trachea give rise to similar defects observed with loss or gain of sano, suggesting a new role for the PCP genes in tube length control. Interestingly, the changes in tube length and PCP defects in the wing were linked to changes in apical domain size, suggesting that Sano and the PCP components affect either membrane recycling and/or the linkage of the membrane to the cytoskeleton.
Collapse
Affiliation(s)
- SeYeon Chung
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Melissa S. Vining
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Pamela L. Bradley
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Chih-Chiang Chan
- Departments of Pathology and Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Keith A. Wharton
- Departments of Pathology and Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Deborah J. Andrew
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- * E-mail:
| |
Collapse
|
30
|
Andrew DJ, Ewald AJ. Morphogenesis of epithelial tubes: Insights into tube formation, elongation, and elaboration. Dev Biol 2009; 341:34-55. [PMID: 19778532 DOI: 10.1016/j.ydbio.2009.09.024] [Citation(s) in RCA: 254] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2009] [Revised: 09/16/2009] [Accepted: 09/16/2009] [Indexed: 12/17/2022]
Abstract
Epithelial tubes are a fundamental tissue across the metazoan phyla and provide an essential functional component of many of the major organs. Recent work in flies and mammals has begun to elucidate the cellular mechanisms driving the formation, elongation, and branching morphogenesis of epithelial tubes during development. Both forward and reverse genetic techniques have begun to identify critical molecular regulators for these processes and have revealed the conserved role of key pathways in regulating the growth and elaboration of tubular networks. In this review, we discuss the developmental programs driving the formation of branched epithelial networks, with specific emphasis on the trachea and salivary gland of Drosophila melanogaster and the mammalian lung, mammary gland, kidney, and salivary gland. We both highlight similarities in the development of these organs and attempt to identify tissue and organism specific strategies. Finally, we briefly consider how our understanding of the regulation of proliferation, apicobasal polarity, and epithelial motility during branching morphogenesis can be applied to understand the pathologic dysregulation of these same processes during metastatic cancer progression.
Collapse
Affiliation(s)
- Deborah J Andrew
- Department of Cell Biology and Center for Cell Dynamics, Johns Hopkins University School of Medicine, 725 North Wolfe Street, Baltimore, MD 21205, USA
| | | |
Collapse
|
31
|
Caussinus E, Colombelli J, Affolter M. Tip-Cell Migration Controls Stalk-Cell Intercalation during Drosophila Tracheal Tube Elongation. Curr Biol 2008; 18:1727-34. [DOI: 10.1016/j.cub.2008.10.062] [Citation(s) in RCA: 117] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2008] [Revised: 10/03/2008] [Accepted: 10/17/2008] [Indexed: 01/11/2023]
|
32
|
Sánchez-Camacho C, Bovolenta P. Autonomous and non-autonomous Shh signalling mediate the in vivo growth and guidance of mouse retinal ganglion cell axons. Development 2008; 135:3531-41. [PMID: 18832395 DOI: 10.1242/dev.023663] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In non-mammalian vertebrates, the relatively homogeneous population of retinal ganglion cells (RGCs) differentiates and projects entirely to the contralateral side of the brain under the influence of sonic hedgehog (Shh). In mammals, by contrast, there are two different RGC types: the Zic2-positive ipsilateral projecting and the Isl2-positive contralateral projecting. We asked whether the axons of these two populations respond to Shh and if their response differs. We have also analysed whether midline- and RGC-derived Shh contributes to the growth of the axons in the proximal visual pathway. We show that these two RGC types are characterised by a differential expression of Shh signalling components and that they respond differently to Shh when challenged in vitro. In vivo blockade of Shh activity, however, alters the path and distribution mostly of the contralateral projecting RGC axons at the chiasm, indicating that midline-derived Shh participates in funnelling contralateral visual fibres in this region. Furthermore, interference with Shh signalling in the RGCs themselves causes abnormal growth and navigation of contralateral projecting axons in the proximal portion of the pathway, highlighting a novel cell-autonomous mechanism by which Shh can influence growth cone behaviour.
Collapse
Affiliation(s)
- Cristina Sánchez-Camacho
- Departamento de Neurobiología Molecular Celular y del Desarrollo, Instituto Cajal, CSIC and CIBER de Enfermedades Raras (CIBERER) 37, Madrid 28002, Spain
| | | |
Collapse
|
33
|
Abstract
Time-lapse imaging of fluorescent proteins in living cells has become an indispensable tool in biological sciences. However, its application at the organismal level still faces a number of obstacles, such as large specimen sizes preventing illumination of internal tissues, high background fluorescence and uncontrollable movement of target tissues or embryos. Here we describe our solutions for these issues to obtain 4-D fluorescent images from living Drosophila embryos using confocal microscopes. A computational procedure that detects and corrects the shift of moving objects to virtually stabilize them in time-lapse movies (iSEMS) is presented. We discuss the importance of postimaging treatment of raw image stacks for the discovery of novel phenotypes that have previously escaped attention from the analyses of fixed specimens.
Collapse
|
34
|
Shindo M, Wada H, Kaido M, Tateno M, Aigaki T, Tsuda L, Hayashi S. Dual function of Src in the maintenance of adherens junctions during tracheal epithelial morphogenesis. Development 2008; 135:1355-64. [PMID: 18305002 DOI: 10.1242/dev.015982] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The downregulation of E-cadherin by Src promotes epithelial to mesenchymal transition and tumorigenesis. However, a simple loss of cell adhesion is not sufficient to explain the diverse developmental roles of Src and metastatic behavior of viral Src-transformed cells. Here, we studied the functions of endogenous and activated forms of Drosophila Src in the context of tracheal epithelial development, during which extensive remodeling of adherens junctions takes place. We show that Src42A is selectively activated in the adherens junctions of epithelia undergoing morphogenesis. Src42A and Src64B are required for tracheal development and to increase the rate of adherens junction turnover. The activation of Src42A caused opposing effects: it reduced the E-cadherin protein level but stimulated transcription of the E-cadherin gene through the activation of Armadillo and TCF. This TCF-dependent pathway was essential for the maintenance of E-cadherin expression and for tissue integrity under conditions of high Src activity. Our data suggest that the two opposing outcomes of Src activation on E-cadherin facilitate the efficient exchange of adherens junctions, demonstrating the key role of Src in the maintenance of epithelial integrity.
Collapse
Affiliation(s)
- Masayo Shindo
- Riken Center for Developmental Biology, 2-2-3 Minatojima-minamimachi, Chuo-ku Kobe 650-0047, Japan
| | | | | | | | | | | | | |
Collapse
|
35
|
Nishimura M, Inoue Y, Hayashi S. A wave of EGFR signaling determines cell alignment and intercalation in the Drosophila tracheal placode. Development 2007; 134:4273-82. [PMID: 17978004 DOI: 10.1242/dev.010397] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Invagination of organ placodes converts flat epithelia into three-dimensional organs. Cell tracing in the Drosophila tracheal placode revealed that, in the 30-minute period before invagination, cells enter mitotic quiescence and form short rows that encircle the future invagination site. The cells in the rows align to form a smooth boundary (;boundary smoothing'), accompanied by a transient increase in myosin at the boundary and cell intercalation oriented in parallel with the cellular rows. Cells then undergo apical constriction and invaginate, followed by radially oriented mitosis in the placode. Prior to invagination, ERK MAP kinase is activated in an outward circular wave, with the wave front often correlating with the smoothing cell boundaries. EGFR signaling is required for myosin accumulation and cell boundary smoothing, suggesting its propagation polarizes the planar cell rearrangement in the tracheal placode, and coordinates the timing and position of intrinsic cell internalization activities.
Collapse
Affiliation(s)
- Mayuko Nishimura
- Riken Center for Developmental Biology, 2-2-3 Minatojima-minamimachi, Kobe 650-0047, Japan
| | | | | |
Collapse
|
36
|
Baer MM, Bilstein A, Leptin M. A clonal genetic screen for mutants causing defects in larval tracheal morphogenesis in Drosophila. Genetics 2007; 176:2279-91. [PMID: 17603107 PMCID: PMC1950631 DOI: 10.1534/genetics.107.074088] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
The initial establishment of the tracheal network in the Drosophila embryo is beginning to be understood in great detail, both in its genetic control cascades and in its cell biological events. By contrast, the vast expansion of the system during larval growth, with its extensive ramification of preexisting tracheal branches, has been analyzed less well. The mutant phenotypes of many genes involved in this process are probably not easy to reveal, as these genes may be required for other functions at earlier developmental stages. We therefore conducted a screen for defects in individual clonal homozygous mutant cells in the tracheal network of heterozygous larvae using the mosaic analysis with a repressible cell marker (MARCM) system to generate marked, recombinant mitotic clones. We describe the identification of a set of mutants with distinct phenotypic effects. In particular we found a range of defects in terminal cells, including failure in lumen formation and reduced or extensive branching. Other mutations affect cell growth, cell shape, and cell migration.
Collapse
Affiliation(s)
- Magdalena M Baer
- Institute of Genetics, University of Cologne, Zülpicher Strasse 47, D-50674 Cologne, Germany
| | | | | |
Collapse
|
37
|
Johnson AN, Burnett LA, Sellin J, Paululat A, Newfeld SJ. Defective decapentaplegic signaling results in heart overgrowth and reduced cardiac output in Drosophila. Genetics 2007; 176:1609-24. [PMID: 17507674 PMCID: PMC1931542 DOI: 10.1534/genetics.107.073569] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
During germ-band extension, Decapentaplegic (Dpp) signals from the dorsal ectoderm to maintain Tinman (Tin) expression in the underlying mesoderm. This signal specifies the cardiac field, and homologous genes (BMP2/4 and Nkx2.5) perform this function in mammals. We showed previously that a second Dpp signal from the dorsal ectoderm restricts the number of pericardial cells expressing the transcription factor Zfh1. Here we report that, via Zfh1, the second Dpp signal restricts the number of Odd-skipped-expressing and the number of Tin-expressing pericardial cells. Dpp also represses Tin expression independently of Zfh1, implicating a feed-forward mechanism in the regulation of Tin pericardial cell number. In the adjacent dorsal muscles, Dpp has the opposite effect. Dpp maintains Krüppel and Even-skipped expression required for muscle development. Our data show that Dpp refines the cardiac field by limiting the number of pericardial cells. This maintains the boundary between pericardial and dorsal muscle cells and defines the size of the heart. In the absence of the second Dpp signal, pericardial cells overgrow and this significantly reduces larval cardiac output. Our study suggests the existence of a second round of BMP signaling in mammalian heart development and that perhaps defects in this signal play a role in congenital heart defects.
Collapse
Affiliation(s)
- Aaron N Johnson
- School of Life Sciences, Arizona State University, Tempe, Arizona 85287-4501, USA
| | | | | | | | | |
Collapse
|
38
|
Inoue Y, Hayashi S. Tissue-specific laminin expression facilitates integrin-dependent association of the embryonic wing disc with the trachea in Drosophila. Dev Biol 2006; 304:90-101. [PMID: 17223100 DOI: 10.1016/j.ydbio.2006.12.022] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2006] [Revised: 11/24/2006] [Accepted: 12/10/2006] [Indexed: 01/30/2023]
Abstract
The interaction of heterologous tissues involves cell adhesion mediated by the extracellular matrix and its receptor integrins. The Drosophila wing disc is an ectodermal invagination that contacts specific tracheal branches at the basolateral cell surface. We show that an alpha subunit of laminin, encoded by wing blister (wb), is essential for the establishment of the interaction between the wing and trachea. During embryogenesis, wing disc cells present Wb at their basolateral surface and extend posteriorly, expanding their association to more posteriorly located tracheal branches. These migratory processes are impaired in the absence of the trachea, Wb, or integrins. Time-lapse and transmission electron microscopy analyses suggest that Wb facilitates integrin-dependent contact over a large surface and controls the cellular behavior of the wing cells, including their exploratory filopodial activity. Our data identify Wb laminin as an extracellular matrix ligand that is essential for integrin-dependent cellular migration in Drosophila.
Collapse
Affiliation(s)
- Yoshiko Inoue
- Riken Center for Developmental Biology, 2-2-3 Minatojima-minamimachi, Chuo-ku Kobe 650-0047, Japan
| | | |
Collapse
|
39
|
Oshima K, Takeda M, Kuranaga E, Ueda R, Aigaki T, Miura M, Hayashi S. IKK epsilon regulates F actin assembly and interacts with Drosophila IAP1 in cellular morphogenesis. Curr Biol 2006; 16:1531-7. [PMID: 16887350 DOI: 10.1016/j.cub.2006.06.032] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2006] [Revised: 05/29/2006] [Accepted: 06/05/2006] [Indexed: 11/16/2022]
Abstract
Differentiated cells assume complex shapes through polarized cell migration and growth. These processes require the restricted organization of the actin cytoskeleton at limited subcellular regions. IKK epsilon is a member of the IkappaB kinase family, and its developmental role has not been clear. Drosophila IKK epsilon was localized to the ruffling membrane of cultured cells and was required for F actin turnover at the cell margin. In IKK epsilon mutants, tracheal terminal cells, bristles, and arista laterals, which require accurate F actin assembly for their polarized elongation, all exhibited aberrantly branched morphology. These phenotypes were sensitive to a change in the dosage of Drosophila inhibitor of apoptosis protein 1 (DIAP1) and the caspase DRONC without apparent change in cell viability. In contrast to this, hyperactivation of IKK epsilon destabilized F actin-based structures. Expression of a dominant-negative form of IKK epsilon increased the amount of DIAP1. The results suggest that at the physiological level, IKK epsilon acts as a negative regulator of F actin assembly and maintains the fidelity of polarized elongation during cell morphogenesis. This IKK epsilon function involves the negative regulation of the nonapoptotic activity of DIAP1.
Collapse
Affiliation(s)
- Kenzi Oshima
- Riken Center for Developmental Biology, 2-2-3 Minatojima-minamimachi, Chuo-ku, Kobe 650-0047, Japan
| | | | | | | | | | | | | |
Collapse
|
40
|
Wada A, Kato K, Uwo MF, Yonemura S, Hayashi S. Specialized extraembryonic cells connect embryonic and extraembryonic epidermis in response to Dpp during dorsal closure in Drosophila. Dev Biol 2006; 301:340-9. [PMID: 17034783 DOI: 10.1016/j.ydbio.2006.09.020] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2006] [Revised: 09/11/2006] [Accepted: 09/12/2006] [Indexed: 12/20/2022]
Abstract
Dorsal closure in Drosophila embryogenesis involves expansion of the dorsal epidermis, followed by closure of the opposite epidermal edges. This process is driven by contractile force generated by an extraembryonic epithelium covering the yolk syncytium known as the amnioserosa. The secreted signaling molecule Dpp is expressed in the leading edge of the dorsal epidermis and is essential for dorsal closure. We found that the outermost row of amnioserosa cells (termed pAS) maintains a tight basolateral cell-cell adhesion interface with the leading edge of dorsal epidermis throughout the dorsal closure process. pAS was subject to altered cell motility in response to Dpp emanating from the dorsal epidermis, and this response was essential for dorsal closure. alphaPS3 and betaPS integrin subunits accumulated in the interface between pAS and dorsal epidermis, and were both required for dorsal closure. Looking at alphaPS3, type I Dpp receptor, and JNK mutants, we found that pAS cell motility was altered and pAS and dorsal epidermis adhesion failed under the mechanical stress of dorsal closure, suggesting that a Dpp-mediated mechanism connects the squamous pAS to the columnar dorsal epidermis to form a single coherent epithelial layer.
Collapse
Affiliation(s)
- Atsushi Wada
- Laboratory for Morphogenetic Signaling, RIKEN Center for Developmental Biology, 2-2-3 Minatojima-minamimachi, Chuo-ku, Kobe 650-0047, Japan
| | | | | | | | | |
Collapse
|
41
|
Hochman E, Castiel A, Jacob-Hirsch J, Amariglio N, Izraeli S. Molecular pathways regulating pro-migratory effects of Hedgehog signaling. J Biol Chem 2006; 281:33860-70. [PMID: 16943197 DOI: 10.1074/jbc.m605905200] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
The Hedgehog proteins play a crucial role in metazoan embryo development. Constitutive activation of the pathway is associated with multiple types of cancer. Recent experimental data suggest involvement of Hedgehog signaling in vascular remodeling, germ cell migration, and axon guidance. The molecular mechanisms underlying these effects remain elusive. Here we show that yolk sac-derived endothelial cells and embryonic fibroblasts can directly respond to the Hedgehog signal by increased migration in an in vitro scratch (wound) assay. We also identify Hedgehog transcriptional target genes in these cells, many of which participate in cell migration, axon guidance, and angiogenesis processes. Inhibition of one such molecular pathway, neuropilin-flavomonooxygenase, blocks Hedgehog-induced cell migration. These findings suggest that Hedgehog signaling directly affects embryonic endothelial and fibroblast cell migration via molecules and pathways known to regulate cell migration in response to a variety of environmental cues.
Collapse
Affiliation(s)
- Eldar Hochman
- Research Section of Childhood Malignancies, Sheba Cancer Research Center, Safra Children Hospital, Sheba Medical Center and Faculty of Medicine, Tel-Aviv University, Tel Hashomer 52621, Israel
| | | | | | | | | |
Collapse
|
42
|
Vining MS, Bradley PL, Comeaux CA, Andrew DJ. Organ positioning in Drosophila requires complex tissue-tissue interactions. Dev Biol 2005; 287:19-34. [PMID: 16171793 DOI: 10.1016/j.ydbio.2005.08.017] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2005] [Revised: 08/05/2005] [Accepted: 08/09/2005] [Indexed: 12/25/2022]
Abstract
Positioning an organ with respect to other tissues is a complex process necessary for proper anatomical development and organ function. The local environment surrounding an organ can serve both as a substrate for migration and as a source of guidance cues that direct migration. Little is known about the factors guiding Drosophila salivary gland movement or about the contacts the glands establish along their migratory path. Here, we provide a detailed description of the spatial and temporal interactions between the salivary glands and surrounding tissues during embryogenesis. The glands directly contact five other tissues: the visceral mesoderm, gastric caecae, somatic mesoderm, fat body, and central nervous system. Mutational analysis reveals that all of the tissues tested in this study are important for normal salivary gland positioning; proper differentiation of the visceral and somatic mesoderm is necessary for the glands to attain their final correct position. We also provide evidence that the segment-polarity gene, gooseberry (gsb), controls expression of signals from the developing fat body that direct posterior migration of the glands. These data further the understanding of how organ morphology and position are determined by three-dimensional constraints and guidance cues provided by neighboring tissues.
Collapse
Affiliation(s)
- Melissa S Vining
- The Johns Hopkins University School of Medicine, Department of Cell Biology, Baltimore, MD 21205, USA
| | | | | | | |
Collapse
|