1
|
Doe CQ, Thor S. 40 years of homeodomain transcription factors in the Drosophila nervous system. Development 2024; 151:dev202910. [PMID: 38819456 PMCID: PMC11190446 DOI: 10.1242/dev.202910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2024]
Abstract
Drosophila nervous system development progresses through a series of well-characterized steps in which homeodomain transcription factors (HDTFs) play key roles during most, if not all, phases. Strikingly, although some HDTFs have only one role, many others are involved in multiple steps of the developmental process. Most Drosophila HDTFs engaged in nervous system development are conserved in vertebrates and often play similar roles during vertebrate development. In this Spotlight, we focus on the role of HDTFs during embryogenesis, where they were first characterized.
Collapse
Affiliation(s)
- Chris Q. Doe
- Institute of Neuroscience, Howard Hughes Medical Institute, University of Oregon, Eugene, OR 97403, USA
| | - Stefan Thor
- School of Biomedical Sciences, The University of Queensland, St Lucia, QLD 4072, Australia
| |
Collapse
|
2
|
Huang X, Li Q, Xu Y, Li A, Wang S, Chen Y, Zhang C, Zhang X, Wang H, Lv C, Sun B, Li S, Kang L, Chen B. A neural m 6A pathway regulates behavioral aggregation in migratory locusts. SCIENCE CHINA. LIFE SCIENCES 2024; 67:1242-1254. [PMID: 38478296 DOI: 10.1007/s11427-023-2476-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Accepted: 10/07/2023] [Indexed: 06/07/2024]
Abstract
RNA N6-methyladenosine (m6A), as the most abundant modification of messenger RNA, can modulate insect behaviors, but its specific roles in aggregation behaviors remain unexplored. Here, we conducted a comprehensive molecular and physiological characterization of the individual components of the methyltransferase and demethylase in the migratory locust Locusta migratoria. Our results demonstrated that METTL3, METTL14 and ALKBH5 were dominantly expressed in the brain and exhibited remarkable responses to crowding or isolation. The individual knockdown of methyltransferases (i.e., METTL3 and METTL14) promoted locust movement and conspecific attraction, whereas ALKBH5 knockdown induced a behavioral shift toward the solitary phase. Furthermore, global transcriptome profiles revealed that m6A modification could regulate the orchestration of gene expression to fine tune the behavioral aggregation of locusts. In summary, our in vivo characterization of the m6A functions in migratory locusts clearly demonstrated the crucial roles of the m6A pathway in effectively modulating aggregation behaviors.
Collapse
Affiliation(s)
- Xianliang Huang
- School of Life Science, Institutes of Life Science and Green Development, Hebei University, Baoding, 071002, China
| | - Qing Li
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yanan Xu
- Institute of Health Sciences, Anhui University, Hefei, 230601, China
| | - Ang Li
- Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Shanzheng Wang
- Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yusheng Chen
- Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Chunrui Zhang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Xia Zhang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Hailin Wang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100101, China
| | - Cong Lv
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100101, China
| | - Baofa Sun
- Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Shaoqin Li
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Le Kang
- School of Life Science, Institutes of Life Science and Green Development, Hebei University, Baoding, 071002, China.
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Bing Chen
- School of Life Science, Institutes of Life Science and Green Development, Hebei University, Baoding, 071002, China.
| |
Collapse
|
3
|
Post-transcriptional regulation of transcription factor codes in immature neurons drives neuronal diversity. Cell Rep 2022; 39:110992. [PMID: 35767953 PMCID: PMC9479746 DOI: 10.1016/j.celrep.2022.110992] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 04/15/2022] [Accepted: 06/01/2022] [Indexed: 12/31/2022] Open
Abstract
How the vast array of neuronal diversity is generated remains an unsolved problem. Here, we investigate how 29 morphologically distinct leg motoneurons are generated from a single stem cell in Drosophila. We identify 19 transcription factor (TF) codes expressed in immature motoneurons just before their morphological differentiation. Using genetic manipulations and a computational tool, we demonstrate that the TF codes are progressively established in immature motoneurons according to their birth order. Comparing RNA and protein expression patterns of multiple TFs reveals that post-transcriptional regulation plays an essential role in shaping these TF codes. Two RNA-binding proteins, Imp and Syp, expressed in opposing gradients in immature motoneurons, control the translation of multiple TFs. The varying sensitivity of TF mRNAs to the opposing gradients of Imp and Syp in immature motoneurons decrypts these gradients into distinct TF codes, establishing the connectome between motoneuron axons and their target muscles.
Collapse
|
4
|
Certel SJ, McCabe BD, Stowers RS. A conditional GABAergic synaptic vesicle marker for Drosophila. J Neurosci Methods 2022; 372:109540. [PMID: 35219770 PMCID: PMC8940707 DOI: 10.1016/j.jneumeth.2022.109540] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 02/15/2022] [Accepted: 02/22/2022] [Indexed: 10/24/2022]
Abstract
BACKGROUND Throughout the animal kingdom, GABA is the principal inhibitory neurotransmitter of the nervous system. It is essential for maintaining the homeostatic balance between excitation and inhibition required for the brain to operate normally. Identification of GABAergic neurons and their GABA release sites are thus essential for understanding how the brain regulates the excitability of neurons and the activity of neural circuits responsible for numerous aspects of brain function including information processing, locomotion, learning, memory, and synaptic plasticity, among others. NEW METHOD Since the structure and features of GABA synapses are critical to understanding their function within specific neural circuits of interest, here we developed and characterized a conditional marker of GABAergic synaptic vesicles for Drosophila, 9XV5-vGAT. RESULTS 9XV5-vGAT is validated for conditionality of expression, specificity for localization to synaptic vesicles, specificity for expression in GABAergic neurons, and functionality. Its utility for GABAergic neurotransmitter phenotyping and identification of GABA release sites was verified for ellipsoid body neurons of the central complex. In combination with previously reported conditional SV markers for acetylcholine and glutamate, 9XV5-vGAT was used to demonstrate fast neurotransmitter phenotyping of subesophageal ganglion neurons. COMPARISON WITH EXISTING METHODS This method is an alternative to single cell transcriptomics for neurotransmitter phenotyping and can be applied to any neurons of interest represented by a binary transcription system driver. CONCLUSION A conditional GABAergic synaptic vesicle marker has been developed and validated for GABA neurotransmitter phenotyping and subcellular localization of GABAergic synaptic vesicles.
Collapse
|
5
|
Certel SJ, Ruchti E, McCabe BD, Stowers RS. A conditional glutamatergic synaptic vesicle marker for Drosophila. G3 (BETHESDA, MD.) 2022; 12:6493328. [PMID: 35100385 PMCID: PMC8895992 DOI: 10.1093/g3journal/jkab453] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Accepted: 12/24/2021] [Indexed: 11/21/2022]
Abstract
Glutamate is a principal neurotransmitter used extensively by the nervous systems of all vertebrate and invertebrate animals. It is primarily an excitatory neurotransmitter that has been implicated in nervous system development, as well as a myriad of brain functions from the simple transmission of information between neurons to more complex aspects of nervous system function including synaptic plasticity, learning, and memory. Identification of glutamatergic neurons and their sites of glutamate release are thus essential for understanding the mechanisms of neural circuit function and how information is processed to generate behavior. Here, we describe and characterize smFLAG-vGlut, a conditional marker of glutamatergic synaptic vesicles for the Drosophila model system. smFLAG-vGlut is validated for functionality, conditional expression, and specificity for glutamatergic neurons and synaptic vesicles. The utility of smFLAG-vGlut is demonstrated by glutamatergic neurotransmitter phenotyping of 26 different central complex neuron types of which nine were established to be glutamatergic. This illumination of glutamate neurotransmitter usage will enhance the modeling of central complex neural circuitry and thereby our understanding of information processing by this region of the fly brain. The use of smFLAG for glutamatergic neurotransmitter phenotyping and identification of glutamate release sites can be extended to any Drosophila neuron(s) represented by a binary transcription system driver.
Collapse
Affiliation(s)
- Sarah J Certel
- Division of Biological Sciences, Center for Structural and Functional Neuroscience, The University of Montana, Missoula, MT 59812, USA
| | - Evelyne Ruchti
- Brain Mind Institute, Swiss Federal Institute of Technology (EPFL), Lausanne VD 1015, Switzerland
| | - Brian D McCabe
- Brain Mind Institute, Swiss Federal Institute of Technology (EPFL), Lausanne VD 1015, Switzerland
| | - R Steven Stowers
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT 59717, USA
| |
Collapse
|
6
|
Velten J, Gao X, Van Nierop y Sanchez P, Domsch K, Agarwal R, Bognar L, Paulsen M, Velten L, Lohmann I. Single‐cell RNA sequencing of motoneurons identifies regulators of synaptic wiring in
Drosophila
embryos. Mol Syst Biol 2022; 18:e10255. [PMID: 35225419 PMCID: PMC8883443 DOI: 10.15252/msb.202110255] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 01/28/2022] [Accepted: 02/07/2022] [Indexed: 12/14/2022] Open
Abstract
The correct wiring of neuronal circuits is one of the most complex processes in development, since axons form highly specific connections out of a vast number of possibilities. Circuit structure is genetically determined in vertebrates and invertebrates, but the mechanisms guiding each axon to precisely innervate a unique pre‐specified target cell are poorly understood. We investigated Drosophila embryonic motoneurons using single‐cell genomics, imaging, and genetics. We show that a cell‐specific combination of homeodomain transcription factors and downstream immunoglobulin domain proteins is expressed in individual cells and plays an important role in determining cell‐specific connections between differentiated motoneurons and target muscles. We provide genetic evidence for a functional role of five homeodomain transcription factors and four immunoglobulins in the neuromuscular wiring. Knockdown and ectopic expression of these homeodomain transcription factors induces cell‐specific synaptic wiring defects that are partly phenocopied by genetic modulations of their immunoglobulin targets. Taken together, our data suggest that homeodomain transcription factor and immunoglobulin molecule expression could be directly linked and function as a crucial determinant of neuronal circuit structure.
Collapse
Affiliation(s)
- Jessica Velten
- Department of Developmental Biology Centre for Organismal Studies (COS) Heidelberg Heidelberg Germany
- The Barcelona Institute of Science and Technology Centre for Genomic Regulation (CRG) Barcelona Spain
- Flow Cytometry Core Facility European Molecular Biology Laboratory (EMBL) Heidelberg Germany
| | - Xuefan Gao
- Department of Developmental Biology Centre for Organismal Studies (COS) Heidelberg Heidelberg Germany
| | | | - Katrin Domsch
- Department of Developmental Biology Centre for Organismal Studies (COS) Heidelberg Heidelberg Germany
- Developmental Biology Erlangen‐Nürnberg University Erlangen Germany
| | - Rashi Agarwal
- Department of Developmental Biology Centre for Organismal Studies (COS) Heidelberg Heidelberg Germany
| | - Lena Bognar
- Department of Developmental Biology Centre for Organismal Studies (COS) Heidelberg Heidelberg Germany
| | - Malte Paulsen
- Flow Cytometry Core Facility European Molecular Biology Laboratory (EMBL) Heidelberg Germany
| | - Lars Velten
- The Barcelona Institute of Science and Technology Centre for Genomic Regulation (CRG) Barcelona Spain
- Universitat Pompeu Fabra (UPF) Barcelona Spain
| | - Ingrid Lohmann
- Department of Developmental Biology Centre for Organismal Studies (COS) Heidelberg Heidelberg Germany
| |
Collapse
|
7
|
Watanabe LP, Riddle NC. Exercise-induced changes in climbing performance. ROYAL SOCIETY OPEN SCIENCE 2021; 8:211275. [PMID: 34804578 PMCID: PMC8580468 DOI: 10.1098/rsos.211275] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Accepted: 10/12/2021] [Indexed: 05/13/2023]
Abstract
Exercise is recommended to promote health and prevent a range of diseases. However, how exercise precipitates these benefits is unclear, nor do we understand why exercise responses differ so widely between individuals. We investigate how climbing ability in Drosophila melanogaster changes in response to an exercise treatment. We find extensive variation in baseline climbing ability and exercise-induced changes ranging from -13% to +20% in climbing ability. Climbing ability, and its exercise-induced change, is sex- and genotype-dependent. GWASs implicate 'cell-cell signalling' genes in the control of climbing ability. We also find that animal activity does not predict climbing ability and that the exercise-induced climbing ability change cannot be predicted from the activity level induced by the exercise treatment. These results provide promising new avenues for further research into the molecular pathways controlling climbing activity and illustrate the complexities involved in trying to predict individual responses to exercise.
Collapse
Affiliation(s)
- Louis P. Watanabe
- Department of Biology, The University of Alabama at Birmingham, CH464, 1720 2nd Ave South, Birmingham, AL 35294, US
| | - Nicole C. Riddle
- Department of Biology, The University of Alabama at Birmingham, CH464, 1720 2nd Ave South, Birmingham, AL 35294, US
| |
Collapse
|
8
|
Zhao Y, Lindberg BG, Esfahani SS, Tang X, Piazza S, Engström Y. Stop codon readthrough alters the activity of a POU/Oct transcription factor during Drosophila development. BMC Biol 2021; 19:185. [PMID: 34479564 PMCID: PMC8417969 DOI: 10.1186/s12915-021-01106-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 07/19/2021] [Indexed: 11/24/2022] Open
Abstract
Background A number of cellular processes have evolved in metazoans that increase the proteome repertoire in relation to the genome, such as alternative splicing and translation recoding. Another such process, translational stop codon readthrough (SCR), generates C-terminally extended protein isoforms in many eukaryotes, including yeast, plants, insects, and humans. While comparative genome analyses have predicted the existence of programmed SCR in many species including humans, experimental proof of its functional consequences are scarce. Results We show that SCR of the Drosophila POU/Oct transcription factor Ventral veins lacking/Drifter (Vvl/Dfr) mRNA is prevalent in certain tissues in vivo, reaching a rate of 50% in the larval prothoracic gland. Phylogenetically, the C-terminal extension is conserved and harbors intrinsically disordered regions and amino acid stretches implied in transcriptional activation. Elimination of Vvl/Dfr translational readthrough by CRISPR/Cas9 mutagenesis changed the expression of a large number of downstream genes involved in processes such as chromatin regulation, neurogenesis, development, and immune response. As a proof-of-principle, we demonstrate that the C-terminal extension of Vvl/Dfr is necessary for correct timing of pupariation, by increasing the capacity to regulate its target genes. The extended Vvl/Dfr isoform acts in synergy with the transcription factor Molting defective (Mld) to increase the expression and biosynthesis of the steroid hormone ecdysone, thereby advancing pupariation. Consequently, late-stage larval development was prolonged and metamorphosis delayed in vvl/dfr readthrough mutants. Conclusions We demonstrate that translational recoding of a POU/Oct transcription factor takes place in a highly tissue-specific and temporally controlled manner. This dynamic and regulated recoding is necessary for normal expression of a large number of genes involved in many cellular and developmental processes. Loss of Vvl/Dfr translational readthrough negatively affects steroid hormone biosynthesis and delays larval development and progression into metamorphosis. Thus, this study demonstrates how SCR of a transcription factor can act as a developmental switch in a spatiotemporal manner, feeding into the timing of developmental transitions between different life-cycle stages. Graphical abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s12915-021-01106-0.
Collapse
Affiliation(s)
- Yunpo Zhao
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, SE-106 91, Stockholm, Sweden.,Present address: Department of Molecular Biology, Umeå University, SE-901 87, Umeå, SE, Sweden
| | - Bo Gustav Lindberg
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, SE-106 91, Stockholm, Sweden
| | - Shiva Seyedoleslami Esfahani
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, SE-106 91, Stockholm, Sweden
| | - Xiongzhuo Tang
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, SE-106 91, Stockholm, Sweden.,Present address: Yale Stem Cell Center, Yale University School of Medicine, New Haven, Connecticut, 06520, USA
| | - Stefano Piazza
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, SE-106 91, Stockholm, Sweden.,Present address: Research and Innovation Centre, Fondazione Edmund Mach, via E Mach 1, 38010, San Michele a/Adige, Italy
| | - Ylva Engström
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, SE-106 91, Stockholm, Sweden.
| |
Collapse
|
9
|
McKinney HM, Sherer LM, Williams JL, Certel SJ, Stowers RS. Characterization of Drosophila octopamine receptor neuronal expression using MiMIC-converted Gal4 lines. J Comp Neurol 2020; 528:2174-2194. [PMID: 32060912 DOI: 10.1002/cne.24883] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 01/31/2020] [Accepted: 02/09/2020] [Indexed: 01/08/2023]
Abstract
Octopamine, the invertebrate analog of norepinephrine, is known to modulate a large variety of behaviors in Drosophila including feeding initiation, locomotion, aggression, and courtship, among many others. Significantly less is known about the identity of the neurons that receive octopamine input and how they mediate octopamine-regulated behaviors. Here, we characterize adult neuronal expression of MiMIC-converted Trojan-Gal4 lines for each of the five Drosophila octopamine receptors. Broad neuronal expression was observed for all five octopamine receptors, yet distinct differences among them were also apparent. Use of immunostaining for the octopamine neurotransmitter synthesis enzyme Tdc2, along with a novel genome-edited conditional Tdc2-LexA driver, revealed all five octopamine receptors express in Tdc2/octopamine neurons to varying degrees. This suggests autoreception may be an important circuit mechanism by which octopamine modulates behavior.
Collapse
Affiliation(s)
- Hannah M McKinney
- Department of Cell Biology and Neuroscience, Montana State University, Bozeman, Montana
| | - Lewis M Sherer
- Cellular, Molecular and Microbial Biology Graduate Program, The University of Montana, Missoula, Montana
| | - Jessica L Williams
- Department of Cell Biology and Neuroscience, Montana State University, Bozeman, Montana.,Department of Plant Sciences, Montana State University, Bozeman, Montana
| | - Sarah J Certel
- Cellular, Molecular and Microbial Biology Graduate Program, The University of Montana, Missoula, Montana.,Division of Biological Sciences, Center for Structural and Functional Neuroscience, The University of Montana, Missoula, Montana
| | - R Steven Stowers
- Department of Cell Biology and Neuroscience, Montana State University, Bozeman, Montana
| |
Collapse
|
10
|
Tison KV, McKinney HM, Stowers RS. Demonstration of a Simple Epitope Tag Multimerization Strategy for Enhancing the Sensitivity of Protein Detection Using Drosophila vAChT. G3 (BETHESDA, MD.) 2020; 10:495-504. [PMID: 31767639 PMCID: PMC7003071 DOI: 10.1534/g3.119.400750] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Accepted: 11/21/2019] [Indexed: 11/18/2022]
Abstract
The expression and distribution of a protein can provide critical information about its function in a cell. For some neuronal proteins this information may include neurotransmitter (NT) usage and sites of NT release. However, visualizing the expression of a protein within a given neuron is often challenging because most neurons are intricately intermingled with numerous other neurons, making individual neuronal expression difficult to discern, especially since many neuronal genes are expressed at low levels. To overcome these difficulties for the Drosophila vesicular acetylcholine transporter (vAChT), attempts were made to generate conditional Drosophila vAChT alleles containing two tandem copies of epitope tags. In the course of these attempts, a strategy for multimerizing DNA repeats using the Gibson cloning reaction was serendipitously discovered. Attempts at optimization routinely yielded six or seven copies of MYC and OLLAS epitope tag coding sequences, but occasionally as many as 10 copies, thus potentially enhancing the sensitivity of protein detection up to an order of magnitude. As proof-of-principle of the method, conditionally expressible genome-edited 7XMYC-vAChT and 6XOLLAS-vAChT were developed and characterized for conditionality, synaptic vesicle specificity, and neurotransmitter specific-expression. The utility of these conditional vAChT variants was demonstrated for cholinergic neurotransmitter phenotyping and defining the polarity of cholinergic neurons, important information for understanding the functional role of neurons of interest in neural circuits and behavior. The repeat multimerization method is effective for DNA repeats of at least 56 bp and should be generally applicable to any species.
Collapse
Affiliation(s)
- Kole V Tison
- Department of Cell Biology and Neuroscience, Montana State University, Bozeman MT 59717
| | - Hannah M McKinney
- Department of Cell Biology and Neuroscience, Montana State University, Bozeman MT 59717
| | - R Steven Stowers
- Department of Cell Biology and Neuroscience, Montana State University, Bozeman MT 59717
| |
Collapse
|
11
|
Crews ST. Drosophila Embryonic CNS Development: Neurogenesis, Gliogenesis, Cell Fate, and Differentiation. Genetics 2019; 213:1111-1144. [PMID: 31796551 PMCID: PMC6893389 DOI: 10.1534/genetics.119.300974] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Accepted: 09/26/2019] [Indexed: 01/04/2023] Open
Abstract
The Drosophila embryonic central nervous system (CNS) is a complex organ consisting of ∼15,000 neurons and glia that is generated in ∼1 day of development. For the past 40 years, Drosophila developmental neuroscientists have described each step of CNS development in precise molecular genetic detail. This has led to an understanding of how an intricate nervous system emerges from a single cell. These studies have also provided important, new concepts in developmental biology, and provided an essential model for understanding similar processes in other organisms. In this article, the key genes that guide Drosophila CNS development and how they function is reviewed. Features of CNS development covered in this review are neurogenesis, gliogenesis, cell fate specification, and differentiation.
Collapse
Affiliation(s)
- Stephen T Crews
- Department of Biochemistry and Biophysics, Integrative Program for Biological and Genome Sciences, School of Medicine, The University of North Carolina at Chapel Hill, North Carolina 27599
| |
Collapse
|
12
|
Catela C, Kratsios P. Transcriptional mechanisms of motor neuron development in vertebrates and invertebrates. Dev Biol 2019; 475:193-204. [PMID: 31479648 DOI: 10.1016/j.ydbio.2019.08.022] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Revised: 07/08/2019] [Accepted: 08/29/2019] [Indexed: 02/04/2023]
Abstract
Across phylogeny, motor neurons (MNs) represent a single but often remarkably diverse neuronal class composed of a multitude of subtypes required for vital behaviors, such as eating and locomotion. Over the past decades, seminal studies in multiple model organisms have advanced our molecular understanding of the early steps of MN development, such as progenitor specification and acquisition of MN subtype identity, by revealing key roles for several evolutionarily conserved transcription factors. However, very little is known about the molecular strategies that allow distinct MN subtypes to maintain their identity- and function-defining features during the late steps of development and postnatal life. Here, we provide an overview of invertebrate and vertebrate studies on transcription factor-based strategies that control early and late steps of MN development, aiming to highlight evolutionarily conserved gene regulatory principles necessary for establishment and maintenance of neuronal identity.
Collapse
Affiliation(s)
- Catarina Catela
- Department of Neurobiology, University of Chicago, Chicago, IL, 60637, USA; The Grossman Institute for Neuroscience, Quantitative Biology and Human Behavior, The University of Chicago, Chicago, IL, USA
| | - Paschalis Kratsios
- Department of Neurobiology, University of Chicago, Chicago, IL, 60637, USA; The Grossman Institute for Neuroscience, Quantitative Biology and Human Behavior, The University of Chicago, Chicago, IL, USA.
| |
Collapse
|
13
|
Knockdown of the neuronal gene Lim3 at the early stages of development affects mitochondrial function and lifespan in Drosophila. Mech Ageing Dev 2019; 181:29-41. [DOI: 10.1016/j.mad.2019.111121] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2018] [Revised: 04/29/2019] [Accepted: 05/30/2019] [Indexed: 01/08/2023]
|
14
|
Alekseyenko OV, Chan YB, Okaty BW, Chang Y, Dymecki SM, Kravitz EA. Serotonergic Modulation of Aggression in Drosophila Involves GABAergic and Cholinergic Opposing Pathways. Curr Biol 2019; 29:2145-2156.e5. [PMID: 31231050 DOI: 10.1016/j.cub.2019.05.070] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 05/19/2019] [Accepted: 05/29/2019] [Indexed: 12/22/2022]
Abstract
Pathological aggression is commonly associated with psychiatric and neurological disorders and can impose a substantial burden and cost on human society. Serotonin (5HT) has long been implicated in the regulation of aggression in a wide variety of animal species. In Drosophila, a small group of serotonergic neurons selectively modulates the escalation of aggression. Here, we identified downstream targets of serotonergic input-two types of neurons with opposing roles in aggression control. The dendritic fields of both neurons converge on a single optic glomerulus LC12, suggesting a key pathway linking visual input to the aggression circuitry. The first type is an inhibitory GABAergic neuron: its activation leads to a decrease in aggression. The second neuron type is excitatory: its silencing reduces and its activation increases aggression. RNA sequencing (RNA-seq) profiling of this neuron type identified that it uses acetylcholine as a neurotransmitter and likely expresses 5HT1A, short neuropeptide F receptor (sNPFR), and the resistant to dieldrin (RDL) category of GABA receptors. Knockdown of RDL receptors in these neurons increases aggression, suggesting the possibility of a direct crosstalk between the inhibitory GABAergic and the excitatory cholinergic neurons. Our data show further that neurons utilizing serotonin, GABA, ACh, and short neuropeptide F interact in the LC12 optic glomerulus. Parallel cholinergic and GABAergic pathways descending from this sensory integration area may be key elements in fine-tuning the regulation of aggression.
Collapse
Affiliation(s)
- Olga V Alekseyenko
- Department of Neurobiology, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA; Department of Genetics, Harvard Medical School, 77 Avenue Louise Pasteur, Boston, MA 02115, USA.
| | - Yick-Bun Chan
- Department of Neurobiology, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA
| | - Benjamin W Okaty
- Department of Genetics, Harvard Medical School, 77 Avenue Louise Pasteur, Boston, MA 02115, USA
| | - YoonJeung Chang
- Department of Genetics, Harvard Medical School, 77 Avenue Louise Pasteur, Boston, MA 02115, USA
| | - Susan M Dymecki
- Department of Genetics, Harvard Medical School, 77 Avenue Louise Pasteur, Boston, MA 02115, USA
| | - Edward A Kravitz
- Department of Neurobiology, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA
| |
Collapse
|
15
|
Abstract
The release of neurotransmitters from synaptic vesicles (SVs) at pre-synaptic release sites is the principle means by which information transfer between neurons occurs. Knowledge of the location of SVs within a neuron can thus provide valuable clues about the location of neurotransmitter release within a neuron and the downstream neurons to which a given neuron is connected, important information for understanding how neural circuits generate behavior. Here the development and characterization of four conditional tagged SV markers for Drosophila melanogaster is presented. This characterization includes evaluation of conditionality, specificity for SV localization, and sensitivity of detection in diverse neuron subtypes. These four SV markers are genome-edited variants of the synaptic vesicle-specific protein Rab3. They depend on either the B2 or FLP recombinases for conditionality, and incorporate GFP or mCherry fluorescent proteins, or FLAG or HA epitope tags, for detection.
Collapse
|
16
|
Rybina OY, Rozovsky YM, Veselkina ER, Pasyukova EG. Polycomb/Trithorax group-dependent regulation of the neuronal gene Lim3 involved in Drosophila lifespan control. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2018; 1861:451-462. [PMID: 29555581 DOI: 10.1016/j.bbagrm.2018.03.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Revised: 02/18/2018] [Accepted: 03/14/2018] [Indexed: 12/14/2022]
Abstract
Molecular mechanisms governing gene expression and defining complex phenotypes are central to understanding the basics of development and aging. Here, we demonstrate that naturally occurring polymorphisms of the Lim3 regulatory region that are associated with variation in gene expression and Drosophila lifespan control are located exclusively in the Polycomb response element (PRE). We find that the Polycomb group (PcG) protein Polycomb (PC) is bound to the PRE only in embryos where Lim3 is present in both repressed and active states. In contrast, the Trithorax group (TrxG) protein absent, small, or homeotic discs 1 (ASH1) is bound downstream of the PRE, to a region adjacent to the Lim3 transcription start site in embryos and adult flies, in which Lim3 is in an active state. Furthermore, mutations in Pc and ash1 genes affect Lim3 expression depending on the structural integrity of the Lim3 PRE, thus confirming functional interactions between these proteins and Lim3 regulatory region. In addition, we demonstrate that the evolutionary conserved Lim3 core promoter provides basic Lim3 expression, whereas structural changes in the Lim3 PRE of distal promoter provide stage-, and tissue-specific Lim3 expression. Therefore, we hypothesize that PcG/TrxG proteins, which are directly involved in Lim3 transcription regulation, participate in lifespan control.
Collapse
Affiliation(s)
- Olga Y Rybina
- Institute of Molecular Genetics of Russian Academy of Sciences, Kurtchatov Sq. 2, Moscow 123182, Russia; Federal State-Financed Educational Institution of Higher Professional Education, Moscow State Pedagogical University, M. Pirogovskaya Str. 1/1, Moscow 119991, Russia.
| | - Yakov M Rozovsky
- Institute of Molecular Genetics of Russian Academy of Sciences, Kurtchatov Sq. 2, Moscow 123182, Russia
| | - Ekaterina R Veselkina
- Institute of Molecular Genetics of Russian Academy of Sciences, Kurtchatov Sq. 2, Moscow 123182, Russia
| | - Elena G Pasyukova
- Institute of Molecular Genetics of Russian Academy of Sciences, Kurtchatov Sq. 2, Moscow 123182, Russia
| |
Collapse
|
17
|
Santiago C, Bashaw GJ. Islet Coordinately Regulates Motor Axon Guidance and Dendrite Targeting through the Frazzled/DCC Receptor. Cell Rep 2017; 18:1646-1659. [PMID: 28199838 DOI: 10.1016/j.celrep.2017.01.041] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Revised: 11/30/2016] [Accepted: 01/18/2017] [Indexed: 01/27/2023] Open
Abstract
Motor neuron axon targeting in the periphery is correlated with the positions of motor neuron inputs in the CNS, but how these processes are coordinated to form a myotopic map remains poorly understood. We show that the LIM homeodomain factor Islet (Isl) controls targeting of both axons and dendrites in Drosophila motor neurons through regulation of the Frazzled (Fra)/DCC receptor. Isl is required for fra expression in ventrally projecting motor neurons, and isl and fra mutants have similar axon guidance defects. Single-cell labeling indicates that isl and fra are also required for dendrite targeting in a subset of motor neurons. Finally, overexpression of Fra rescues axon and dendrite targeting defects in isl mutants. These results indicate that Fra acts downstream of Isl in both the periphery and the CNS, demonstrating how a single regulatory relationship is used in multiple cellular compartments to coordinate neural circuit wiring.
Collapse
Affiliation(s)
- Celine Santiago
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Greg J Bashaw
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
18
|
Abstract
The Drosophila motor system starts to assemble during embryonic development. It is composed of 30 muscles per abdominal hemisegment and 36 motor neurons assembling into nerve branches to exit the CNS, navigate within the muscle field and finally establish specific connections with their target muscles. Several families of guidance molecules that play a role controlling this process as well as transcriptional regulators that program the behavior of specific motor neuron have been identified. In this review we summarize the role of both groups of molecules in the motor system as well as their relationship where known. It is apparent that partially redundant guidance protein families and membrane molecules with different functional output direct guidance decisions cooperatively. Some distinct transcriptional regulators seem to control guidance of specific nerve branches globally directing the expression of groups of pathfinding molecules in all motor neurons within the same motor branch.
Collapse
|
19
|
Tissue-specific transcription of the neuronal gene Lim3 affects Drosophila melanogaster lifespan and locomotion. Biogerontology 2017; 18:739-757. [DOI: 10.1007/s10522-017-9704-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Accepted: 04/27/2017] [Indexed: 12/22/2022]
|
20
|
Campbell RF, Walthall WW. Meis/UNC-62 isoform dependent regulation of CoupTF-II/UNC-55 and GABAergic motor neuron subtype differentiation. Dev Biol 2016; 419:250-261. [PMID: 27634571 DOI: 10.1016/j.ydbio.2016.09.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Revised: 08/24/2016] [Accepted: 09/09/2016] [Indexed: 11/28/2022]
Abstract
Gene regulatory networks orchestrate the assembly of functionally related cells within a cellular network. Subtle differences often exist among functionally related cells within such networks. How differences are created among cells with similar functions has been difficult to determine due to the complexity of both the gene and the cellular networks. In Caenorhabditis elegans, the DD and VD motor neurons compose a cross-inhibitory, GABAergic network that coordinates dorsal and ventral muscle contractions during locomotion. The Pitx2 homologue, UNC-30, acts as a terminal selector gene to create similarities and the Coup-TFII homologue, UNC-55, is necessary for creating differences between the two motor neuron classes. What is the organizing gene regulatory network responsible for initiating the expression of UNC-55 and thus creating differences between the DD and VD motor neurons? We show that the unc-55 promoter has modules that contain Meis/UNC-62 binding sites. These sites can be subdivided into regions that are capable of activating or repressing UNC-55 expression in different motor neurons. Interestingly, different isoforms of UNC-62 are responsible for the activation and the stabilization of unc-55 transcription. Furthermore, specific isoforms of UNC-62 are required for proper synaptic patterning of the VD motor neurons. Isoform specific regulation of differentiating neurons is a relatively unexplored area of research and presents a mechanism for creating differences among functionally related cells within a network.
Collapse
MESH Headings
- Animals
- Animals, Genetically Modified
- CRISPR-Cas Systems
- Caenorhabditis elegans/genetics
- Caenorhabditis elegans/physiology
- Caenorhabditis elegans Proteins/biosynthesis
- Caenorhabditis elegans Proteins/physiology
- GABAergic Neurons/cytology
- Gene Expression Regulation, Developmental
- Gene Regulatory Networks/genetics
- Genes, Reporter
- Homeodomain Proteins/physiology
- Motor Neurons/classification
- Motor Neurons/cytology
- Neurogenesis/genetics
- Promoter Regions, Genetic/genetics
- Protein Isoforms/physiology
- RNA, Helminth/biosynthesis
- RNA, Helminth/genetics
- RNA, Messenger/biosynthesis
- RNA, Messenger/genetics
- Receptors, Cell Surface/biosynthesis
- Receptors, Cell Surface/physiology
- Receptors, Cytoplasmic and Nuclear/biosynthesis
- Receptors, Cytoplasmic and Nuclear/physiology
- Recombinant Fusion Proteins/genetics
- Recombinant Fusion Proteins/metabolism
- Transcription Factors
- Transcription, Genetic/genetics
- RNA, Guide, CRISPR-Cas Systems
Collapse
Affiliation(s)
- Richard F Campbell
- Department of Biology, Georgia State University, Atlanta, GA 30303, United States
| | - Walter W Walthall
- Department of Biology, Georgia State University, Atlanta, GA 30303, United States.
| |
Collapse
|
21
|
Lu CS, Zhai B, Mauss A, Landgraf M, Gygi S, Van Vactor D. MicroRNA-8 promotes robust motor axon targeting by coordinate regulation of cell adhesion molecules during synapse development. Philos Trans R Soc Lond B Biol Sci 2015; 369:rstb.2013.0517. [PMID: 25135978 PMCID: PMC4142038 DOI: 10.1098/rstb.2013.0517] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Neuronal connectivity and specificity rely upon precise coordinated deployment of multiple cell-surface and secreted molecules. MicroRNAs have tremendous potential for shaping neural circuitry by fine-tuning the spatio-temporal expression of key synaptic effector molecules. The highly conserved microRNA miR-8 is required during late stages of neuromuscular synapse development in Drosophila. However, its role in initial synapse formation was previously unknown. Detailed analysis of synaptogenesis in this system now reveals that miR-8 is required at the earliest stages of muscle target contact by RP3 motor axons. We find that the localization of multiple synaptic cell adhesion molecules (CAMs) is dependent on the expression of miR-8, suggesting that miR-8 regulates the initial assembly of synaptic sites. Using stable isotope labelling in vivo and comparative mass spectrometry, we find that miR-8 is required for normal expression of multiple proteins, including the CAMs Fasciclin III (FasIII) and Neuroglian (Nrg). Genetic analysis suggests that Nrg and FasIII collaborate downstream of miR-8 to promote accurate target recognition. Unlike the function of miR-8 at mature larval neuromuscular junctions, at the embryonic stage we find that miR-8 controls key effectors on both sides of the synapse. MiR-8 controls multiple stages of synapse formation through the coordinate regulation of both pre- and postsynaptic cell adhesion proteins.
Collapse
Affiliation(s)
- Cecilia S Lu
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA Program in Neuroscience, Harvard Medical School, Boston, MA 02115, USA Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
| | - Bo Zhai
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Alex Mauss
- Department of Zoology, University of Cambridge, Cambridge, UK Max Planck Institute of Neurobiology, Martinsried, Germany
| | | | - Stephen Gygi
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - David Van Vactor
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA Program in Neuroscience, Harvard Medical School, Boston, MA 02115, USA Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
| |
Collapse
|
22
|
Enriquez J, Venkatasubramanian L, Baek M, Peterson M, Aghayeva U, Mann RS. Specification of individual adult motor neuron morphologies by combinatorial transcription factor codes. Neuron 2015; 86:955-970. [PMID: 25959734 DOI: 10.1016/j.neuron.2015.04.011] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2014] [Revised: 03/12/2015] [Accepted: 04/04/2015] [Indexed: 11/27/2022]
Abstract
How the highly stereotyped morphologies of individual neurons are genetically specified is not well understood. We identify six transcription factors (TFs) expressed in a combinatorial manner in seven post-mitotic adult leg motor neurons (MNs) that are derived from a single neuroblast in Drosophila. Unlike TFs expressed in mitotically active neuroblasts, these TFs do not regulate each other's expression. Removing the activity of a single TF resulted in specific morphological defects, including muscle targeting and dendritic arborization, and in a highly specific walking defect in adult flies. In contrast, when the expression of multiple TFs was modified, nearly complete transformations in MN morphologies were generated. These results show that the morphological characteristics of a single neuron are dictated by a combinatorial code of morphology TFs (mTFs). mTFs function at a previously unidentified regulatory tier downstream of factors acting in the NB but independently of factors that act in terminally differentiated neurons.
Collapse
Affiliation(s)
- Jonathan Enriquez
- Department of Biochemistry and Molecular Biophysics, Columbia University, HHSC 1108, 701 W. 168(th) Street, New York, NY 10032, USA.
| | - Lalanti Venkatasubramanian
- Department of Biochemistry and Molecular Biophysics, Columbia University, HHSC 1108, 701 W. 168(th) Street, New York, NY 10032, USA
| | - Myungin Baek
- Department of Biochemistry and Molecular Biophysics, Columbia University, HHSC 1108, 701 W. 168(th) Street, New York, NY 10032, USA
| | - Meredith Peterson
- Department of Biochemistry and Molecular Biophysics, Columbia University, HHSC 1108, 701 W. 168(th) Street, New York, NY 10032, USA
| | - Ulkar Aghayeva
- Department of Biochemistry and Molecular Biophysics, Columbia University, HHSC 1108, 701 W. 168(th) Street, New York, NY 10032, USA
| | - Richard S Mann
- Department of Biochemistry and Molecular Biophysics, Columbia University, HHSC 1108, 701 W. 168(th) Street, New York, NY 10032, USA.
| |
Collapse
|
23
|
Chung WJ. Analysis of the Asymmetric Gene Expression between the Left and Right Hemispheres of <i>Drosophila</i> Brain. ACTA ACUST UNITED AC 2015. [DOI: 10.4236/jbbs.2015.510042] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
24
|
The POU factor ventral veins lacking/Drifter directs the timing of metamorphosis through ecdysteroid and juvenile hormone signaling. PLoS Genet 2014; 10:e1004425. [PMID: 24945490 PMCID: PMC4063743 DOI: 10.1371/journal.pgen.1004425] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2013] [Accepted: 04/20/2014] [Indexed: 12/22/2022] Open
Abstract
Although endocrine changes are known to modulate the timing of major developmental transitions, the genetic mechanisms underlying these changes remain poorly understood. In insects, two developmental hormones, juvenile hormone (JH) and ecdysteroids, are coordinated with each other to induce developmental changes associated with metamorphosis. However, the regulation underlying the coordination of JH and ecdysteroid synthesis remains elusive. Here, we examined the function of a homolog of the vertebrate POU domain protein, Ventral veins lacking (Vvl)/Drifter, in regulating both of these hormonal pathways in the red flour beetle, Tribolium castaneum (Tenebrionidae). RNA interference-mediated silencing of vvl expression led to both precocious metamorphosis and inhibition of molting in the larva. Ectopic application of a JH analog on vvl knockdown larvae delayed the onset of metamorphosis and led to a prolonged larval stage, indicating that Vvl acts upstream of JH signaling. Accordingly, vvl knockdown also reduced the expression of a JH biosynthesis gene, JH acid methyltransferase 3 (jhamt3). In addition, ecdysone titer and the expression of the ecdysone response gene, hormone receptor 3 (HR3), were reduced in vvl knockdown larvae. The expression of the ecdysone biosynthesis gene phantom (phm) and spook (spo) were reduced in vvl knockdown larvae in the anterior and posterior halves, respectively, indicating that Vvl might influence ecdysone biosynthesis in both the prothoracic gland and additional endocrine sources. Injection of 20-hydroxyecdysone (20E) into vvl knockdown larvae could restore the expression of HR3 although molting was never restored. These findings suggest that Vvl coordinates both JH and ecdysteroid biosynthesis as well as molting behavior to influence molting and the timing of metamorphosis. Thus, in both vertebrates and insects, POU factors modulate the production of major neuroendocrine regulators during sexual maturation. Hormones play major roles in initiating major developmental transitions, such as puberty and metamorphosis. However, how organisms coordinate changes across multiple hormones remains unclear. In this study, we show that silencing the POU domain transcription factor Ventral veins lacking (Vvl)/Drifter in the red flour beetle Tribolium castaneum leads to precocious metamorphosis and an inability to molt. We show that Vvl regulates the biosynthesis and signaling of two key insect developmental hormones, juvenile hormone (JH) and ecdysteroids. Vvl therefore appears to act as a potential central regulator of developmental timing by influencing two major hormones. Because POU factors are known as a major regulator of the onset of puberty, POU factors play a major role during sexual maturation in both vertebrates and insects.
Collapse
|
25
|
Danielsen ET, Moeller ME, Dorry E, Komura-Kawa T, Fujimoto Y, Troelsen JT, Herder R, O'Connor MB, Niwa R, Rewitz KF. Transcriptional control of steroid biosynthesis genes in the Drosophila prothoracic gland by ventral veins lacking and knirps. PLoS Genet 2014; 10:e1004343. [PMID: 24945799 PMCID: PMC4063667 DOI: 10.1371/journal.pgen.1004343] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Accepted: 03/17/2014] [Indexed: 12/21/2022] Open
Abstract
Specialized endocrine cells produce and release steroid hormones that govern development, metabolism and reproduction. In order to synthesize steroids, all the genes in the biosynthetic pathway must be coordinately turned on in steroidogenic cells. In Drosophila, the steroid producing endocrine cells are located in the prothoracic gland (PG) that releases the steroid hormone ecdysone. The transcriptional regulatory network that specifies the unique PG specific expression pattern of the ecdysone biosynthetic genes remains unknown. Here, we show that two transcription factors, the POU-domain Ventral veins lacking (Vvl) and the nuclear receptor Knirps (Kni), have essential roles in the PG during larval development. Vvl is highly expressed in the PG during embryogenesis and is enriched in the gland during larval development, suggesting that Vvl might function as a master transcriptional regulator in this tissue. Vvl and Kni bind to PG specific cis-regulatory elements that are required for expression of the ecdysone biosynthetic genes. Knock down of either vvl or kni in the PG results in a larval developmental arrest due to failure in ecdysone production. Furthermore, Vvl and Kni are also required for maintenance of TOR/S6K and prothoracicotropic hormone (PTTH) signaling in the PG, two major pathways that control ecdysone biosynthesis and PG cell growth. We also show that the transcriptional regulator, Molting defective (Mld), controls early biosynthetic pathway steps. Our data show that Vvl and Kni directly regulate ecdysone biosynthesis by transcriptional control of biosynthetic gene expression and indirectly by affecting PTTH and TOR/S6K signaling. This provides new insight into the regulatory network of transcription factors involved in the coordinated regulation of steroidogenic cell specific transcription, and identifies a new function of Vvl and Knirps in endocrine cells during post-embryonic development.
Collapse
Affiliation(s)
| | - Morten E. Moeller
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Elad Dorry
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Tatsuya Komura-Kawa
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Yoshinori Fujimoto
- Department of Chemistry and Materials Science, Tokyo Institute of Technology, Meguro, Tokyo, Japan
| | - Jesper T. Troelsen
- Department of Science, Systems and Models, Roskilde University, Roskilde, Denmark
| | - Rachel Herder
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Michael B. O'Connor
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Ryusuke Niwa
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
- PRESTO, JST, Kawaguchi, Saitama, Japan
| | - Kim F. Rewitz
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
- * E-mail:
| |
Collapse
|
26
|
Abstract
Expression of appropriate ion channels is essential to allow developing neurons to form functional networks. Our previous studies have identified LIM-homeodomain (HD) transcription factors (TFs), expressed by developing neurons, that are specifically able to regulate ion channel gene expression. In this study, we use the technique of DNA adenine methyltransferase identification (DamID) to identify putative gene targets of four such TFs that are differentially expressed in Drosophila motoneurons. Analysis of targets for Islet (Isl), Lim3, Hb9, and Even-skipped (Eve) identifies both ion channel genes and genes predicted to regulate aspects of dendritic and axonal morphology. Significantly, some ion channel genes are bound by more than one TF, consistent with the possibility of combinatorial regulation. One such gene is Shaker (Sh), which encodes a voltage-dependent fast K(+) channel (Kv1.1). DamID reveals that Sh is bound by both Isl and Lim3. We used body wall muscle as a test tissue because in conditions of low Ca(2+), the fast K(+) current is carried solely by Sh channels (unlike neurons in which a second fast K(+) current, Shal, also contributes). Ectopic expression of isl, but not Lim3, is sufficient to reduce both Sh transcript and Sh current level. By contrast, coexpression of both TFs is additive, resulting in a significantly greater reduction in both Sh transcript and current compared with isl expression alone. These observations provide evidence for combinatorial activity of Isl and Lim3 in regulating ion channel gene expression.
Collapse
|
27
|
Santiago C, Labrador JP, Bashaw GJ. The homeodomain transcription factor Hb9 controls axon guidance in Drosophila through the regulation of Robo receptors. Cell Rep 2014; 7:153-65. [PMID: 24685136 DOI: 10.1016/j.celrep.2014.02.037] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2013] [Revised: 02/06/2014] [Accepted: 02/25/2014] [Indexed: 02/05/2023] Open
Abstract
Transcription factors establish neural diversity and wiring specificity; however, how they orchestrate changes in cell morphology remains poorly understood. The Drosophila Roundabout (Robo) receptors regulate connectivity in the CNS, but how their precise expression domains are established is unknown. Here, we show that the homeodomain transcription factor Hb9 acts upstream of Robo2 and Robo3 to regulate axon guidance in the Drosophila embryo. In ventrally projecting motor neurons, hb9 is required for robo2 expression, and restoring Robo2 activity in hb9 mutants rescues motor axon defects. Hb9 requires its conserved repressor domain and functions in parallel with Nkx6 to regulate robo2. Moreover, hb9 can regulate the medio-lateral position of axons through robo2 and robo3, and restoring robo3 expression in hb9 mutants rescues the lateral position defects of a subset of neurons. Altogether, these data identify Robo2 and Robo3 as key effectors of Hb9 in regulating nervous system development.
Collapse
Affiliation(s)
- Celine Santiago
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | - Greg J Bashaw
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
28
|
Li R, Wu F, Ruonala R, Sapkota D, Hu Z, Mu X. Isl1 and Pou4f2 form a complex to regulate target genes in developing retinal ganglion cells. PLoS One 2014; 9:e92105. [PMID: 24643061 PMCID: PMC3958441 DOI: 10.1371/journal.pone.0092105] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2013] [Accepted: 02/17/2014] [Indexed: 02/01/2023] Open
Abstract
Precise regulation of gene expression during biological processes, including development, is often achieved by combinatorial action of multiple transcription factors. The mechanisms by which these factors collaborate are largely not known. We have shown previously that Isl1, a Lim-Homeodomain transcription factor, and Pou4f2, a class IV POU domain transcription factor, co-regulate a set of genes required for retinal ganglion cell (RGC) differentiation. Here we further explore how these two factors interact to precisely regulate gene expression during RGC development. By GST pulldown assays, co-immunoprecipitation, and electrophoretic mobility shift assays, we show that Isl1 and Pou4f2 form a complex in vitro and in vivo, and identify the domains within these two proteins that are responsible for this interaction. By luciferase assay, in situ hybridization, and RNA-seq, we further demonstrate that the two factors contribute quantitatively to gene expression in the developing RGCs. Although each factor alone can activate gene expression, both factors are required to achieve optimal expression levels. Finally, we discover that Isl1 and Pou4f2 can interact with other POU and Lim-Homeodomain factors respectively, indicating the interactions between these two classes of transcription factors are prevalent in development and other biological processes.
Collapse
Affiliation(s)
- Renzhong Li
- Department of Ophthalmology/Ross Eye Institute, University of Buffalo, Buffalo, New York, United States of America
- Developmental Genomics Group, New York State Center of Excellence in Bioinformatics and Life Sciences, University of Buffalo, Buffalo, New York, United States of America
- SUNY Eye Institute, University of Buffalo, Buffalo, New York, United States of America
| | - Fuguo Wu
- Department of Ophthalmology/Ross Eye Institute, University of Buffalo, Buffalo, New York, United States of America
- Developmental Genomics Group, New York State Center of Excellence in Bioinformatics and Life Sciences, University of Buffalo, Buffalo, New York, United States of America
- SUNY Eye Institute, University of Buffalo, Buffalo, New York, United States of America
| | - Raili Ruonala
- Department of Ophthalmology/Ross Eye Institute, University of Buffalo, Buffalo, New York, United States of America
- Developmental Genomics Group, New York State Center of Excellence in Bioinformatics and Life Sciences, University of Buffalo, Buffalo, New York, United States of America
- SUNY Eye Institute, University of Buffalo, Buffalo, New York, United States of America
| | - Darshan Sapkota
- Department of Ophthalmology/Ross Eye Institute, University of Buffalo, Buffalo, New York, United States of America
- Department of Biochemistry, University of Buffalo, Buffalo, New York, United States of America
- Developmental Genomics Group, New York State Center of Excellence in Bioinformatics and Life Sciences, University of Buffalo, Buffalo, New York, United States of America
- SUNY Eye Institute, University of Buffalo, Buffalo, New York, United States of America
| | - Zihua Hu
- Department of Ophthalmology/Ross Eye Institute, University of Buffalo, Buffalo, New York, United States of America
- Department of Biostatistics, University of Buffalo, Buffalo, New York, United States of America
- Department of Medicine, University of Buffalo, Buffalo, New York, United States of America
- Center of Computational Research, New York State Center of Excellence in Bioinformatics and Life Sciences, University of Buffalo, Buffalo, New York, United States of America
- SUNY Eye Institute, University of Buffalo, Buffalo, New York, United States of America
| | - Xiuqian Mu
- Department of Ophthalmology/Ross Eye Institute, University of Buffalo, Buffalo, New York, United States of America
- Department of Biochemistry, University of Buffalo, Buffalo, New York, United States of America
- Developmental Genomics Group, New York State Center of Excellence in Bioinformatics and Life Sciences, University of Buffalo, Buffalo, New York, United States of America
- SUNY Eye Institute, University of Buffalo, Buffalo, New York, United States of America
- CCSG Cancer Genetics Program, Roswell Park Cancer Institute, Buffalo, New York, United States of America
- * E-mail:
| |
Collapse
|
29
|
Zarin AA, Asadzadeh J, Hokamp K, McCartney D, Yang L, Bashaw GJ, Labrador JP. A transcription factor network coordinates attraction, repulsion, and adhesion combinatorially to control motor axon pathway selection. Neuron 2014; 81:1297-1311. [PMID: 24560702 DOI: 10.1016/j.neuron.2014.01.038] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/07/2014] [Indexed: 11/26/2022]
Abstract
Combinations of transcription factors (TFs) instruct precise wiring patterns in the developing nervous system; however, how these factors impinge on surface molecules that control guidance decisions is poorly understood. Using mRNA profiling, we identified the complement of membrane molecules regulated by the homeobox TF Even-skipped (Eve), the major determinant of dorsal motor neuron (dMN) identity in Drosophila. Combinatorial loss- and gain-of-function genetic analyses of Eve target genes indicate that the integrated actions of attractive, repulsive, and adhesive molecules direct eve-dependent dMN axon guidance. Furthermore, combined misexpression of Eve target genes is sufficient to partially restore CNS exit and can convert the guidance behavior of interneurons to that of dMNs. Finally, we show that a network of TFs, comprised of eve, zfh1, and grain, induces the expression of the Unc5 and Beaten-path guidance receptors and the Fasciclin 2 and Neuroglian adhesion molecules to guide individual dMN axons.
Collapse
Affiliation(s)
- Aref Arzan Zarin
- Smurfit Institute of Genetics, Trinity College Dublin, Dublin 2, Ireland; Institute of Neuroscience, Trinity College Dublin, Dublin 2, Ireland
| | - Jamshid Asadzadeh
- Smurfit Institute of Genetics, Trinity College Dublin, Dublin 2, Ireland; Institute of Neuroscience, Trinity College Dublin, Dublin 2, Ireland
| | - Karsten Hokamp
- Smurfit Institute of Genetics, Trinity College Dublin, Dublin 2, Ireland
| | - Daniel McCartney
- Smurfit Institute of Genetics, Trinity College Dublin, Dublin 2, Ireland
| | - Long Yang
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Greg J Bashaw
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Juan-Pablo Labrador
- Smurfit Institute of Genetics, Trinity College Dublin, Dublin 2, Ireland; Institute of Neuroscience, Trinity College Dublin, Dublin 2, Ireland.
| |
Collapse
|
30
|
Lacin H, Rusch J, Yeh RT, Fujioka M, Wilson BA, Zhu Y, Robie AA, Mistry H, Wang T, Jaynes JB, Skeath JB. Genome-wide identification of Drosophila Hb9 targets reveals a pivotal role in directing the transcriptome within eight neuronal lineages, including activation of nitric oxide synthase and Fd59a/Fox-D. Dev Biol 2014; 388:117-33. [PMID: 24512689 DOI: 10.1016/j.ydbio.2014.01.029] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2013] [Revised: 01/11/2014] [Accepted: 01/31/2014] [Indexed: 11/25/2022]
Abstract
Hb9 is a homeodomain-containing transcription factor that acts in combination with Nkx6, Lim3, and Tail-up (Islet) to guide the stereotyped differentiation, connectivity, and function of a subset of neurons in Drosophila. The role of Hb9 in directing neuronal differentiation is well documented, but the lineage of Hb9(+) neurons is only partly characterized, its regulation is poorly understood, and most of the downstream genes through which it acts remain at large. Here, we complete the lineage tracing of all embryonic Hb9(+) neurons (to eight neuronal lineages) and provide evidence that hb9, lim3, and tail-up are coordinately regulated by a common set of upstream factors. Through the parallel use of micro-array gene expression profiling and the Dam-ID method, we searched for Hb9-regulated genes, uncovering transcription factors as the most over-represented class of genes regulated by Hb9 (and Nkx6) in the CNS. By a nearly ten-to-one ratio, Hb9 represses rather than activates transcription factors, highlighting transcriptional repression of other transcription factors as a core mechanism by which Hb9 governs neuronal determination. From the small set of genes activated by Hb9, we characterized the expression and function of two - fd59a/foxd, which encodes a transcription factor, and Nitric oxide synthase. Under standard lab conditions, both genes are dispensable for Drosophila development, but Nos appears to inhibit hyper-active behavior and fd59a appears to act in octopaminergic neurons to control egg-laying behavior. Together our data clarify the mechanisms through which Hb9 governs neuronal specification and differentiation and provide an initial characterization of the expression and function of Nos and fd59a in the Drosophila CNS.
Collapse
Affiliation(s)
- Haluk Lacin
- Department of Genetics, Washington University School of Medicine, St. Louis 4566, Scott Avenue, St. Louis, MO 63110, USA
| | - Jannette Rusch
- Department of Genetics, Washington University School of Medicine, St. Louis 4566, Scott Avenue, St. Louis, MO 63110, USA
| | - Raymond T Yeh
- Department of Genetics, Washington University School of Medicine, St. Louis 4566, Scott Avenue, St. Louis, MO 63110, USA
| | - Miki Fujioka
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, 1020 Locust Street, Philadelphia, PA 19107, USA
| | - Beth A Wilson
- Department of Genetics, Washington University School of Medicine, St. Louis 4566, Scott Avenue, St. Louis, MO 63110, USA
| | - Yi Zhu
- Department of Genetics, Washington University School of Medicine, St. Louis 4566, Scott Avenue, St. Louis, MO 63110, USA
| | - Alice A Robie
- Howard Hughes Medical Institute, Janelia Farm Research Campus (HHMI JFRC), Ashburn, VA, USA
| | - Hemlata Mistry
- Department of Genetics, Washington University School of Medicine, St. Louis 4566, Scott Avenue, St. Louis, MO 63110, USA
| | - Ting Wang
- Department of Genetics, Washington University School of Medicine, St. Louis 4566, Scott Avenue, St. Louis, MO 63110, USA
| | - James B Jaynes
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, 1020 Locust Street, Philadelphia, PA 19107, USA
| | - James B Skeath
- Department of Genetics, Washington University School of Medicine, St. Louis 4566, Scott Avenue, St. Louis, MO 63110, USA.
| |
Collapse
|
31
|
Tantin D. Oct transcription factors in development and stem cells: insights and mechanisms. Development 2013; 140:2857-66. [PMID: 23821033 DOI: 10.1242/dev.095927] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The POU domain family of transcription factors regulates developmental processes ranging from specification of the early embryo to terminal differentiation. About half of these factors display substantial affinity for an 8 bp DNA site termed the octamer motif, and are hence known as Oct proteins. Oct4 (Pou5f1) is a well-known Oct factor, but there are other Oct proteins with varied and essential roles in development. This Primer outlines our current understanding of Oct proteins and the regulatory mechanisms that govern their role in developmental processes and concludes with the assertion that more investigation into their developmental functions is needed.
Collapse
Affiliation(s)
- Dean Tantin
- Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT 84112, USA.
| |
Collapse
|
32
|
Cis-regulatory complexity within a large non-coding region in the Drosophila genome. PLoS One 2013; 8:e60137. [PMID: 23613719 PMCID: PMC3632565 DOI: 10.1371/journal.pone.0060137] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2012] [Accepted: 02/21/2013] [Indexed: 11/22/2022] Open
Abstract
Analysis of cis-regulatory enhancers has revealed that they consist of clustered blocks of highly conserved sequences. Although most characterized enhancers reside near their target genes, a growing number of studies have shown that enhancers located over 50 kb from their minimal promoter(s) are required for appropriate gene expression and many of these ‘long-range’ enhancers are found in genomic regions that are devoid of identified exons. To gain insight into the complexity of Drosophila cis-regulatory sequences within exon-poor regions, we have undertaken an evolutionary analysis of 39 of these regions located throughout the genome. This survey revealed that within these genomic expanses, clusters of conserved sequence blocks (CSBs) are positioned once every 1.1 kb, on average, and that a typical cluster contains multiple (5 to 30 or more) CSBs that have been maintained for at least 190 My of evolutionary divergence. As an initial step toward assessing the cis-regulatory activity of conserved clusters within gene-free genomic expanses, we have tested the in-vivo enhancer activity of 19 consecutive CSB clusters located in the middle of a 115 kb gene-poor region on the 3rd chromosome. Our studies revealed that each cluster functions independently as a specific spatial/temporal enhancer. In total, the enhancers possess a diversity of regulatory functions, including dynamically activating expression in defined patterns within subsets of cells in discrete regions of the embryo, larvae and/or adult. We also observed that many of the enhancers are multifunctional–that is, they activate expression during multiple developmental stages. By extending these results to the rest of the Drosophila genome, which contains over 70,000 non-coding CSB clusters, we suggest that most function as enhancers.
Collapse
|
33
|
Abstract
Monoamines, including dopamine (DA), have been linked to aggression in various species. However, the precise role or roles served by the amine in aggression have been difficult to define because dopaminergic systems influence many behaviors, and all can be altered by changing the function of dopaminergic neurons. In the fruit fly, with the powerful genetic tools available, small subsets of brain cells can be reliably manipulated, offering enormous advantages for exploration of how and where amine neurons fit into the circuits involved with aggression. By combining the GAL4/upstream activating sequence (UAS) binary system with the Flippase (FLP) recombination technique, we were able to restrict the numbers of targeted DA neurons down to a single-cell level. To explore the function of these individual dopaminergic neurons, we inactivated them with the tetanus toxin light chain, a genetically encoded inhibitor of neurotransmitter release, or activated them with dTrpA1, a temperature-sensitive cation channel. We found two sets of dopaminergic neurons that modulate aggression, one from the T1 cluster and another from the PPM3 cluster. Both activation and inactivation of these neurons resulted in an increase in aggression. We demonstrate that the presynaptic terminals of the identified T1 and PPM3 dopaminergic neurons project to different parts of the central complex, overlapping with the receptor fields of DD2R and DopR DA receptor subtypes, respectively. These data suggest that the two types of dopaminergic neurons may influence aggression through interactions in the central complex region of the brain involving two different DA receptor subtypes.
Collapse
|
34
|
Wolfram V, Southall TD, Brand AH, Baines RA. The LIM-homeodomain protein islet dictates motor neuron electrical properties by regulating K(+) channel expression. Neuron 2012; 75:663-74. [PMID: 22920257 PMCID: PMC3427859 DOI: 10.1016/j.neuron.2012.06.015] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/05/2012] [Indexed: 11/24/2022]
Abstract
Neuron electrical properties are critical to function and generally subtype specific, as are patterns of axonal and dendritic projections. Specification of motoneuron morphology and axon pathfinding has been studied extensively, implicating the combinatorial action of Lim-homeodomain transcription factors. However, the specification of electrical properties is not understood. Here, we address the key issues of whether the same transcription factors that specify morphology also determine subtype specific electrical properties. We show that Drosophila motoneuron subtypes express different K+ currents and that these are regulated by the conserved Lim-homeodomain transcription factor Islet. Specifically, Islet is sufficient to repress a Shaker-mediated A-type K+ current, most likely due to a direct transcriptional effect. A reduction in Shaker increases the frequency of action potential firing. Our results demonstrate the deterministic role of Islet on the excitability patterns characteristic of motoneuron subtypes.
Collapse
|
35
|
Kohsaka H, Okusawa S, Itakura Y, Fushiki A, Nose A. Development of larval motor circuits in Drosophila. Dev Growth Differ 2012; 54:408-19. [PMID: 22524610 DOI: 10.1111/j.1440-169x.2012.01347.x] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
How are functional neural circuits formed during development? Despite recent advances in our understanding of the development of individual neurons, little is known about how complex circuits are assembled to generate specific behaviors. Here, we describe the ways in which Drosophila motor circuits serve as an excellent model system to tackle this problem. We first summarize what has been learned during the past decades on the connectivity and development of component neurons, in particular motor neurons and sensory feedback neurons. We then review recent progress in our understanding of the development of the circuits as well as studies that apply optogenetics and other innovative techniques to dissect the circuit diagram. New approaches using Drosophila as a model system are now making it possible to search for developmental rules that regulate the construction of neural circuits.
Collapse
Affiliation(s)
- Hiroshi Kohsaka
- Department of Physics, Graduate School of Science, University of Tokyo, 7-3-1, Hongo, Tokyo 113-0033, Japan
| | | | | | | | | |
Collapse
|
36
|
Oyallon J, Apitz H, Miguel-Aliaga I, Timofeev K, Ferreira L, Salecker I. Regulation of locomotion and motoneuron trajectory selection and targeting by the Drosophila homolog of Olig family transcription factors. Dev Biol 2012; 369:261-76. [PMID: 22796650 PMCID: PMC3464432 DOI: 10.1016/j.ydbio.2012.06.027] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2012] [Revised: 06/28/2012] [Accepted: 06/29/2012] [Indexed: 01/12/2023]
Abstract
During the development of locomotion circuits it is essential that motoneurons with distinct subtype identities select the correct trajectories and target muscles. In vertebrates, the generation of motoneurons and myelinating glia depends on Olig2, one of the five Olig family bHLH transcription factors. We investigated the so far unknown function of the single Drosophila homolog Oli. Combining behavioral and genetic approaches, we demonstrate that oli is not required for gliogenesis, but plays pivotal roles in regulating larval and adult locomotion, and axon pathfinding and targeting of embryonic motoneurons. In the embryonic nervous system, Oli is primarily expressed in postmitotic progeny, and in particular, in distinct ventral motoneuron subtypes. oli mediates axonal trajectory selection of these motoneurons within the ventral nerve cord and targeting to specific muscles. Genetic interaction assays suggest that oli acts as part of a conserved transcription factor ensemble including Lim3, Islet and Hb9. Moreover, oli is expressed in postembryonic leg-innervating motoneuron lineages and required in glutamatergic neurons for walking. Finally, over-expression of vertebrate Olig2 partially rescues the walking defects of oli-deficient flies. Thus, our findings reveal a remarkably conserved role of Drosophila Oli and vertebrate family members in regulating motoneuron development, while the steps that require their function differ in detail.
Collapse
Affiliation(s)
- Justine Oyallon
- Division of Molecular Neurobiology, MRC National Institute for Medical Research, London, UK
| | | | | | | | | | | |
Collapse
|
37
|
Wang JQ, Hou L, Yi N, Zhang RF, Zou XY. Molecular analysis and its expression of a pou homeobox protein gene during development and in response to salinity stress from brine shrimp, Artemia sinica. Comp Biochem Physiol A Mol Integr Physiol 2011; 161:36-43. [PMID: 21911072 DOI: 10.1016/j.cbpa.2011.08.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2011] [Revised: 08/29/2011] [Accepted: 08/29/2011] [Indexed: 10/17/2022]
Abstract
Brine shrimps of the genus Artemia are aquatic species of economic importance because of their important significance to aquaculture and are used as a model species in physiology and developmental biology. Research on Artemia POU homeobox gene function will enhance our understanding of the physiological and developmental processes of POU homeobox gene in animals. Herein, a full-length cDNA encoding an Artemia POU homeobox protein gene 1 (APH-1) from Artemia sinica (designated as As-APH-1) was cloned and characterized by a reverse-transcription polymerase chain reaction (RT-PCR) and rapid amplification of cDNA end (RACE) method. The As-APH-1 gene encoded a protein of 388 amino acid polypeptide with a calculated molecular mass of 42.85kDa and an isoelectric point of 6.90 and the protein belongs to the POU III family. Multiple sequence alignments revealed that A. sinica As-APH-1 protein sequence shared a conserved POU homeobox domain with other species. The early and persistent expression of As-APH-1 in the naupliar stages by semi-quantitative RT-PCR and whole-mount embryonic immunohistochemistry suggest that As-APH-1 functions very early in the salt gland and may be required continuously in this organ. Later in development, expression of As-APH-1 begins to dramatically decrease and disappear in salt gland of the sub-adult Artemia. In addition, we also discovered that As-APH-1 increased obviously as the salinity increased, indicating that As-APH-1 might be used as a good indicator of salinity stress. In summary, we are the first to identify the As-APH-1 gene and to determine its gene expression patterns in early embryogenesis stages and in different salinity stress in brine shrimp, A. sinica. The result of expression of As-APH-1 affected by salinity changes will provide us further understanding of the underlying mechanisms of osmoregulation in Artemia early embryonic development.
Collapse
Affiliation(s)
- Jia-Qing Wang
- College of Science and Technology, Shenyang Agricultural University, Fushun, PR China
| | | | | | | | | |
Collapse
|
38
|
Gabilondo H, Losada-Pérez M, del Saz D, Molina I, León Y, Canal I, Torroja L, Benito-Sipos J. A targeted genetic screen identifies crucial players in the specification of the Drosophila abdominal Capaergic neurons. Mech Dev 2011; 128:208-21. [PMID: 21236339 DOI: 10.1016/j.mod.2011.01.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2010] [Revised: 12/01/2010] [Accepted: 01/05/2011] [Indexed: 01/29/2023]
Abstract
The central nervous system contains a wide variety of neuronal subclasses generated by neural progenitors. The achievement of a unique neural fate is the consequence of a sequence of early and increasingly restricted regulatory events, which culminates in the expression of a specific genetic combinatorial code that confers individual characteristics to the differentiated cell. How the earlier regulatory events influence post-mitotic cell fate decisions is beginning to be understood in the Drosophila NB 5-6 lineage. However, it remains unknown to what extent these events operate in other lineages. To better understand this issue, we have used a very highly specific marker that identifies a small subset of abdominal cells expressing the Drosophila neuropeptide Capa: the ABCA neurons. Our data support the birth of the ABCA neurons from NB 5-3 in a cas temporal window in the abdominal segments A2-A4. Moreover, we show that the ABCA neuron has an ABCA-sibling cell which dies by apoptosis. Surprisingly, both cells are also generated in the abdominal segments A5-A7, although they undergo apoptosis before expressing Capa. In addition, we have performed a targeted genetic screen to identify players involved in ABCA specification. We have found that the ABCA fate requires zfh2, grain, Grunge and hedgehog genes. Finally, we show that the NB 5-3 generates other subtype of Capa-expressing cells (SECAs) in the third suboesophageal segment, which are born during a pdm/cas temporal window, and have different genetic requirements for their specification.
Collapse
Affiliation(s)
- Hugo Gabilondo
- Departamento de Biología, Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Benito-Sipos J, Estacio-Gómez A, Moris-Sanz M, Baumgardt M, Thor S, Díaz-Benjumea FJ. A genetic cascade involving klumpfuss, nab and castor specifies the abdominal leucokinergic neurons in the Drosophila CNS. Development 2010; 137:3327-36. [PMID: 20823069 DOI: 10.1242/dev.052233] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Identification of the genetic mechanisms underlying the specification of large numbers of different neuronal cell fates from limited numbers of progenitor cells is at the forefront of developmental neurobiology. In Drosophila, the identities of the different neuronal progenitor cells, the neuroblasts, are specified by a combination of spatial cues. These cues are integrated with temporal competence transitions within each neuroblast to give rise to a specific repertoire of cell types within each lineage. However, the nature of this integration is poorly understood. To begin addressing this issue, we analyze the specification of a small set of peptidergic cells: the abdominal leucokinergic neurons. We identify the progenitors of these neurons, the temporal window in which they are specified and the influence of the Notch signaling pathway on their specification. We also show that the products of the genes klumpfuss, nab and castor play important roles in their specification via a genetic cascade.
Collapse
Affiliation(s)
- Jonathan Benito-Sipos
- Centro de Biología Molecular-Severo Ochoa, Universidad Autónoma-C.S.I.C., Madrid, Spain
| | | | | | | | | | | |
Collapse
|
40
|
Certel SJ, Leung A, Lin CY, Perez P, Chiang AS, Kravitz EA. Octopamine neuromodulatory effects on a social behavior decision-making network in Drosophila males. PLoS One 2010; 5:e13248. [PMID: 20967276 PMCID: PMC2953509 DOI: 10.1371/journal.pone.0013248] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2010] [Accepted: 09/05/2010] [Indexed: 11/18/2022] Open
Abstract
Situations requiring rapid decision-making in response to dynamic environmental demands occur repeatedly in natural environments. Neuromodulation can offer important flexibility to the output of neural networks in coping with changing conditions, but the contribution of individual neuromodulatory neurons in social behavior networks remains relatively unknown. Here we manipulate the Drosophila octopaminergic system and assay changes in adult male decision-making in courtship and aggression paradigms. When the functional state of OA neural circuits is enhanced, males exhibit elevated courtship behavior towards other males in both behavioral contexts. Eliminating the expression of the male form of the neural sex determination factor, Fruitless (Fru(M)), in three OA suboesophageal ganglia (SOG) neurons also leads to increased male-male courtship behavior in these same contexts. We analyzed the fine anatomical structure through confocal examination of labeled single neurons to determine the arborization patterns of each of the three Fru(M)-positive OA SOG neurons. These neurons send processes that display mirror symmetric, widely distributed arbors of endings within brain regions including the ventrolateral protocerebra, the SOG and the peri-esophageal complex. The results suggest that a small subset of OA neurons have the potential to provide male selective modulation of behavior at a single neuron level.
Collapse
Affiliation(s)
- Sarah J Certel
- Department of Neurobiology, Harvard Medical School, Boston, Massachusetts, United States of America.
| | | | | | | | | | | |
Collapse
|
41
|
Rybina OY, Pasyukova EG. A naturally occurring polymorphism at Drosophila melanogaster Lim3 Locus, a homolog of human LHX3/4, affects Lim3 transcription and fly lifespan. PLoS One 2010; 5:e12621. [PMID: 20838645 PMCID: PMC2935391 DOI: 10.1371/journal.pone.0012621] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2010] [Accepted: 08/05/2010] [Indexed: 11/18/2022] Open
Abstract
Lim3 encodes an RNA polymerase II transcription factor with a key role in neuron specification. It was also identified as a candidate gene that affects lifespan. These pleiotropic effects indicate the fundamental significance of the potential interplay between neural development and lifespan control. The goal of this study was to analyze the causal relationships between Lim3 structural variations, and gene expression and lifespan changes, and to provide insights into regulatory pathways controlling lifespan. Fifty substitution lines containing second chromosomes from a Drosophila natural population were used to analyze the association between lifespan and sequence variation in the 5'-regulatory region, and first exon and intron of Lim3A, in which we discovered multiple transcription start sites (TSS). The core and proximal promoter organization for Lim3A and a previously unknown mRNA named Lim3C were described. A haplotype of two markers in the Lim3A regulatory region was significantly associated with variation in lifespan. We propose that polymorphisms in the regulatory region affect gene transcription, and consequently lifespan. Indeed, five polymorphic markers located within 380 to 680 bp of the Lim3A major TSS, including two markers associated with lifespan variation, were significantly associated with the level of Lim3A transcript, as evaluated by real time RT-PCR in embryos, adult heads, and testes. A naturally occurring polymorphism caused a six-fold change in gene transcription and a 25% change in lifespan. Markers associated with long lifespan and intermediate Lim3A transcription were present in the population at high frequencies. We hypothesize that polymorphic markers associated with Lim3A expression are located within the binding sites for proteins that regulate gene function, and provide general rather than tissue-specific regulation of transcription, and that intermediate levels of Lim3A expression confer a selective advantage and longer lifespan.
Collapse
|
42
|
Junell A, Uvell H, Davis MM, Edlundh-Rose E, Antonsson Å, Pick L, Engström Y. The POU transcription factor Drifter/Ventral veinless regulates expression of Drosophila immune defense genes. Mol Cell Biol 2010; 30:3672-84. [PMID: 20457811 PMCID: PMC2897550 DOI: 10.1128/mcb.00223-10] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2010] [Revised: 04/13/2010] [Accepted: 05/02/2010] [Indexed: 01/02/2023] Open
Abstract
Innate immunity operates as a first line of defense in multicellular organisms against infections caused by different classes of microorganisms. Antimicrobial peptides (AMPs) are synthesized constitutively in barrier epithelia to protect against microbial attack and are also upregulated in response to infection. Here, we implicate Drifter/Ventral veinless (Dfr/Vvl), a class III POU domain transcription factor, in tissue-specific regulation of the innate immune defense of Drosophila. We show that Dfr/Vvl is highly expressed in a range of immunocompetent tissues, including the male ejaculatory duct, where its presence overlaps with and drives the expression of cecropin, a potent broad-spectrum AMP. Dfr/Vvl overexpression activates transcription of several AMP genes in uninfected flies in a Toll pathway- and Imd pathway-independent manner. Dfr/Vvl activates a CecA1 reporter gene both in vitro and in vivo by binding to an upstream enhancer specific for the male ejaculatory duct. Further, Dfr/Vvl and the homeodomain protein Caudal (Cad) activate transcription synergistically via this enhancer. We propose that the POU protein Dfr/Vvl acts together with other regulators in a combinatorial manner to control constitutive AMP gene expression in a gene-, tissue-, and sex-specific manner, thus promoting a first-line defense against infection in tissues that are readily exposed to pathogens.
Collapse
Affiliation(s)
- Anna Junell
- Department of Molecular Biology and Functional Genomics, Stockholm University, SE-106 91 Stockholm, Sweden, Department of Entomology, University of Maryland, 4112 Plant Sciences Building, College Park, Maryland 20742-4454
| | - Hanna Uvell
- Department of Molecular Biology and Functional Genomics, Stockholm University, SE-106 91 Stockholm, Sweden, Department of Entomology, University of Maryland, 4112 Plant Sciences Building, College Park, Maryland 20742-4454
| | - Monica M. Davis
- Department of Molecular Biology and Functional Genomics, Stockholm University, SE-106 91 Stockholm, Sweden, Department of Entomology, University of Maryland, 4112 Plant Sciences Building, College Park, Maryland 20742-4454
| | - Esther Edlundh-Rose
- Department of Molecular Biology and Functional Genomics, Stockholm University, SE-106 91 Stockholm, Sweden, Department of Entomology, University of Maryland, 4112 Plant Sciences Building, College Park, Maryland 20742-4454
| | - Åsa Antonsson
- Department of Molecular Biology and Functional Genomics, Stockholm University, SE-106 91 Stockholm, Sweden, Department of Entomology, University of Maryland, 4112 Plant Sciences Building, College Park, Maryland 20742-4454
| | - Leslie Pick
- Department of Molecular Biology and Functional Genomics, Stockholm University, SE-106 91 Stockholm, Sweden, Department of Entomology, University of Maryland, 4112 Plant Sciences Building, College Park, Maryland 20742-4454
| | - Ylva Engström
- Department of Molecular Biology and Functional Genomics, Stockholm University, SE-106 91 Stockholm, Sweden, Department of Entomology, University of Maryland, 4112 Plant Sciences Building, College Park, Maryland 20742-4454
| |
Collapse
|
43
|
Van Buskirk C, Sternberg PW. Paired and LIM class homeodomain proteins coordinate differentiation of the C. elegans ALA neuron. Development 2010; 137:2065-74. [PMID: 20501595 PMCID: PMC2875845 DOI: 10.1242/dev.040881] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/20/2010] [Indexed: 11/20/2022]
Abstract
The ancient origin of sleep is evidenced by deeply conserved signaling pathways regulating sleep-like behavior, such as signaling through the Epidermal growth factor receptor (EGFR). In Caenorhabditis elegans, a sleep-like state can be induced at any time during development or adulthood through conditional expression of LIN-3/EGF. The behavioral response to EGF is mediated by EGFR activity within a single cell, the ALA neuron, and mutations that impair ALA differentiation are expected to confer EGF-resistance. Here we describe three such EGF-resistant mutants. One of these corresponds to the LIM class homeodomain (HD) protein CEH-14/Lhx3, and the other two correspond to Paired-like HD proteins CEH-10/Chx10 and CEH-17/Phox2. Whereas CEH-14 is required for ALA-specific gene expression throughout development, the Prd-like proteins display complementary temporal contributions to gene expression, with the requirement for CEH-10 decreasing as that of CEH-17 increases. We present evidence that CEH-17 participates in a positive autoregulatory loop with CEH-14 in ALA, and that CEH-10, in addition to its role in ALA differentiation, functions in the generation of the ALA neuron. Similarly to CEH-17, CEH-10 is required for the posterior migration of the ALA axons, but CEH-14 appears to regulate an aspect of ALA axon outgrowth that is distinct from that of the Prd-like proteins. Our findings reveal partial modularity among the features of a neuronal differentiation program and their coordination by Prd and LIM class HD proteins.
Collapse
Affiliation(s)
- Cheryl Van Buskirk
- Howard Hughes Medical Institute, Division of Biology 156-29, California Institute of Technology, 1200 E. California Boulevard, Pasadena, CA 91125, USA
| | - Paul W. Sternberg
- Howard Hughes Medical Institute, Division of Biology 156-29, California Institute of Technology, 1200 E. California Boulevard, Pasadena, CA 91125, USA
| |
Collapse
|
44
|
Alekseyenko OV, Lee C, Kravitz EA. Targeted manipulation of serotonergic neurotransmission affects the escalation of aggression in adult male Drosophila melanogaster. PLoS One 2010; 5:e10806. [PMID: 20520823 PMCID: PMC2875409 DOI: 10.1371/journal.pone.0010806] [Citation(s) in RCA: 159] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2010] [Accepted: 05/02/2010] [Indexed: 11/23/2022] Open
Abstract
Dopamine (DA) and serotonin (5HT) are reported to serve important roles in aggression in a wide variety of animals. Previous investigations of 5HT function in adult Drosophila behavior have relied on pharmacological manipulations, or on combinations of genetic tools that simultaneously target both DA and 5HT neurons. Here, we generated a transgenic line that allows selective, direct manipulation of serotonergic neurons and asked whether DA and 5HT have separable effects on aggression. Quantitative morphological examination demonstrated that our newly generated tryptophan hydroxylase (TRH)-Gal4 driver line was highly selective for 5HT-containing neurons. This line was used in conjunction with already available Gal4 driver lines that target DA or both DA and 5HT neurons to acutely alter the function of aminergic systems. First, we showed that acute impairment of DA and 5HT neurotransmission using expression of a temperature sensitive form of dynamin completely abolished mid- and high-level aggression. These flies did not escalate fights beyond brief low-intensity interactions and therefore did not yield dominance relationships. We showed next that manipulation of either 5HT or DA neurotransmission failed to duplicate this phenotype. Selective disruption of 5HT neurotransmission yielded flies that fought, but with reduced ability to escalate fights, leading to fewer dominance relationships. Acute activation of 5HT neurons using temperature sensitive dTrpA1 channel expression, in contrast, resulted in flies that escalated fights faster and that fought at higher intensities. Finally, acute disruption of DA neurotransmission produced hyperactive flies that moved faster than controls, and rarely engaged in any social interactions. By separately manipulating 5HT- and DA- neuron systems, we collected evidence demonstrating a direct role for 5HT in the escalation of aggression in Drosophila.
Collapse
Affiliation(s)
- Olga V Alekseyenko
- Neurobiology Department, Harvard Medical School, Boston, Massachusetts, USA.
| | | | | |
Collapse
|
45
|
Baumgardt M, Karlsson D, Terriente J, Díaz-Benjumea FJ, Thor S. Neuronal subtype specification within a lineage by opposing temporal feed-forward loops. Cell 2009; 139:969-82. [PMID: 19945380 DOI: 10.1016/j.cell.2009.10.032] [Citation(s) in RCA: 138] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2009] [Revised: 08/27/2009] [Accepted: 10/01/2009] [Indexed: 11/29/2022]
Abstract
Neural progenitors generate distinct cell types at different stages, but the mechanisms controlling these temporal transitions are poorly understood. In the Drosophila CNS, a cascade of transcription factors, the "temporal gene cascade," has been identified that acts to alter progenitor competence over time. However, many CNS lineages display broad temporal windows, and it is unclear how broad windows progress into subwindows that generate unique cell types. We have addressed this issue in an identifiable Drosophila CNS lineage and find that a broad castor temporal window is subdivided by two different feed-forward loops, both of which are triggered by castor itself. The first loop acts to specify a unique cell fate, whereas the second loop suppresses the first loop, thereby allowing for the generation of alternate cell fates. This mechanism of temporal and "subtemporal" genes acting in opposing feed-forward loops may be used by many stem cell lineages to generate diversity.
Collapse
Affiliation(s)
- Magnus Baumgardt
- Department of Clinical and Experimental Medicine, Linkoping University, Linkoping SE-581 85, Sweden
| | | | | | | | | |
Collapse
|
46
|
Shi Y, Zhao S, Li J, Mao B. Islet-1 is required for ventral neuron survival in Xenopus. Biochem Biophys Res Commun 2009; 388:506-10. [DOI: 10.1016/j.bbrc.2009.08.017] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2009] [Accepted: 08/02/2009] [Indexed: 11/16/2022]
|
47
|
Zhang TY, Xu WH. Identification and characterization of a POU transcription factor in the cotton bollworm, Helicoverpa armigera. BMC Mol Biol 2009; 10:25. [PMID: 19320969 PMCID: PMC2672083 DOI: 10.1186/1471-2199-10-25] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2008] [Accepted: 03/25/2009] [Indexed: 11/10/2022] Open
Abstract
Background The POU family genes containing the POU domain are common in vertebrates and invertebrates and play critical roles in cell-type-specific gene expression and cell fate determination. Results Har-POU, a new member of the POU gene family, was cloned from the suboesophageal ganglion of Helicoverpa armigera (Har), and its potential functions in the development of the central nervous system (CNS) were analyzed. Southern blot analysis suggests that a single copy of this gene is present in the H. armigera haploid genome. Har-POU mRNA is distributed widely in various tissues and expressed highly in the CNS, salivary gland, and trachea. In vitro-translated Har-POU specifically bound canonical octamer motifs on the promoter of diapause hormone and pheromone biosynthesis activating neuropeptide (DH-PBAN) gene in H. armigera. Expression of the Har-POU gene is markedly higher in the CNS of nondiapause-destined pupae than in diapause-destined pupae. Expression of the Har-POU gene in diapausing pupae was upregulated quickly by injection of ecdysone. Conclusion Har-POU may respond to ecdysone and bind to the promoter of DH-PBAN gene to regulate pupal development in H. armigera.
Collapse
Affiliation(s)
- Tian-Yi Zhang
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen (Zhongshan) University, Guangzhou 510275, PR China.
| | | |
Collapse
|
48
|
Voutev R, Keating R, Hubbard EJA, Vallier LG. Characterization of the Caenorhabditis elegans Islet LIM-homeodomain ortholog, lim-7. FEBS Lett 2009; 583:456-64. [PMID: 19116151 PMCID: PMC2719984 DOI: 10.1016/j.febslet.2008.12.046] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2008] [Accepted: 12/16/2008] [Indexed: 11/29/2022]
Abstract
lim-7 is one of seven Caenorhabditis elegans LIM-homeodomain (LIM-HD)-encoding genes and the sole Islet ortholog. LIM-HD transcription factors, including Islets, function in neuronal and non-neuronal development across diverse phyla. Our results show that a lim-7 deletion allele causes early larval lethality with terminal phenotypes including uncoordination, detached pharynx, constipation and morphological defects. A lim-7(+) transgene rescues lethality but not adult sterility. A lim-7(+) reporter in the full genomic context is expressed in all gonadal sheath cells, URA neurons, and additional cells in the pharyngeal region. Finally, we identify a 45-bp regulatory element in the first intron that is necessary and sufficient for lim-7 gonadal sheath expression.
Collapse
Affiliation(s)
- Roumen Voutev
- Developmental Genetics Program, Skirball Institute of Biomolecular Medicine, New York University School of Medicine, New York, NY 10016, United States
| | | | | | | |
Collapse
|
49
|
Junion G, Bataillé L, Jagla T, Da Ponte JP, Tapin R, Jagla K. Genome-wide view of cell fate specification: ladybird acts at multiple levels during diversification of muscle and heart precursors. Genes Dev 2008; 21:3163-80. [PMID: 18056427 DOI: 10.1101/gad.437307] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Correct diversification of cell types during development ensures the formation of functional organs. The evolutionarily conserved homeobox genes from ladybird/Lbx family were found to act as cell identity genes in a number of embryonic tissues. A prior genetic analysis showed that during Drosophila muscle and heart development ladybird is required for the specification of a subset of muscular and cardiac precursors. To learn how ladybird genes exert their cell identity functions we performed muscle and heart-targeted genome-wide transcriptional profiling and a chromatin immunoprecipitation (ChIP)-on-chip search for direct Ladybird targets. Our data reveal that ladybird not only contributes to the combinatorial code of transcription factors specifying the identity of muscle and cardiac precursors, but also regulates a large number of genes involved in setting cell shape, adhesion, and motility. Among direct ladybird targets, we identified bric-a-brac 2 gene as a new component of identity code and inflated encoding alphaPS2-integrin playing a pivotal role in cell-cell interactions. Unexpectedly, ladybird also contributes to the regulation of terminal differentiation genes encoding structural muscle proteins or contributing to muscle contractility. Thus, the identity gene-governed diversification of cell types is a multistep process involving the transcriptional control of genes determining both morphological and functional properties of cells.
Collapse
Affiliation(s)
- Guillaume Junion
- Institut National de la Santé et de la Recherche Médicale U384, 63000 Clermont-Ferrand, France
| | | | | | | | | | | |
Collapse
|
50
|
Certel SJ, Savella MG, Schlegel DCF, Kravitz EA. Modulation of Drosophila male behavioral choice. Proc Natl Acad Sci U S A 2007; 104:4706-11. [PMID: 17360588 PMCID: PMC1810337 DOI: 10.1073/pnas.0700328104] [Citation(s) in RCA: 117] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2006] [Indexed: 11/18/2022] Open
Abstract
The reproductive and defensive behaviors that are initiated in response to specific sensory cues can provide insight into how choices are made between different social behaviors. We manipulated both the activity and sex of a subset of neurons and found significant changes in male social behavior. Results from aggression assays indicate that the neuromodulator octopamine (OCT) is necessary for Drosophila males to coordinate sensory cue information presented by a second male and respond with the appropriate behavior: aggression rather than courtship. In competitive male courtship assays, males with no OCT or with low OCT levels do not adapt to changing sensory cues and court both males and females. We identified a small subset of neurons in the suboesophageal ganglion region of the adult male brain that coexpress OCT and male forms of the neural sex determination factor, Fruitless (Fru(M)). A single Fru(M)-positive OCT neuron sends extensive bilateral arborizations to the suboesophageal ganglion, the lateral accessory lobe, and possibly the posterior antennal lobe, suggesting a mechanism for integrating multiple sensory modalities. Furthermore, eliminating the expression of Fru(M) by transformer expression in OCT/tyramine neurons changes the aggression versus courtship response behavior. These results provide insight into how complex social behaviors are coordinated in the nervous system and suggest a role for neuromodulators in the functioning of male-specific circuitry relating to behavioral choice.
Collapse
Affiliation(s)
- Sarah J. Certel
- Department of Neurobiology, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115
| | - Mary Grace Savella
- Department of Neurobiology, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115
| | - Dana C. F. Schlegel
- Department of Neurobiology, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115
| | - Edward A. Kravitz
- Department of Neurobiology, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115
| |
Collapse
|