1
|
Fadaili Y, Lu HC, Lee HC, Ryazapova A, Stern CD. Canonical Wnt signalling from the area opaca induces and maintains the marginal zone in pre-primitive-streak stage chick embryos. Development 2025; 152:dev204350. [PMID: 39804118 PMCID: PMC11829775 DOI: 10.1242/dev.204350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Accepted: 12/10/2024] [Indexed: 01/24/2025]
Abstract
In chick embryos before primitive streak formation, the outermost extra-embryonic region, known as the area opaca (AO), was generally thought to act only by providing nutrients and mechanical support to the embryo. Immediately internal to the AO is a ring of epiblast called the marginal zone (MZ), separating the former from the inner area pellucida (AP) epiblast. The MZ does not contribute cells to any part of the embryo but is involved in determining the position of primitive streak formation from the adjacent AP epiblast. Recently, it was discovered that the AO can induce an MZ from AP epiblast. Here, we explore the nature of this inductive signal. We find that WNT8C is highly expressed in the AO, whereas canonical Wnt pathway targets are enriched in the MZ, along with strong nuclear β-catenin localization. Using isolation and recombination experiments combined with gain- and loss-of-function by exogenous chemical modulators of the pathway, we reveal that Wnt signalling is essential for induction and maintenance of the MZ, as well as sufficient to induce MZ properties in AP epiblast. We propose that canonical Wnt signalling is responsible for induction of the MZ by the area opaca.
Collapse
Affiliation(s)
- Yara Fadaili
- Department of Cell and Developmental Biology, University College London, Gower Street, London WC1E 6BT, UK
| | - Hui-Chun Lu
- Department of Cell and Developmental Biology, University College London, Gower Street, London WC1E 6BT, UK
| | - Hyung Chul Lee
- Department of Cell and Developmental Biology, University College London, Gower Street, London WC1E 6BT, UK
| | - Amra Ryazapova
- Department of Cell and Developmental Biology, University College London, Gower Street, London WC1E 6BT, UK
| | - Claudio D. Stern
- Department of Cell and Developmental Biology, University College London, Gower Street, London WC1E 6BT, UK
| |
Collapse
|
2
|
Zhang X, Wang Y, Zhao W, Yang S, Moussian B, Zhao Z, Zhang J, Dong W. Excess Dally-like Induces Malformation of Drosophila Legs. Cells 2024; 13:1199. [PMID: 39056781 PMCID: PMC11274743 DOI: 10.3390/cells13141199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 07/09/2024] [Accepted: 07/12/2024] [Indexed: 07/28/2024] Open
Abstract
Glypicans are closely associated with organ development and tumorigenesis in animals. Dally-like (Dlp), a membrane-bound glypican, plays pivotal roles in various biological processes in Drosophila. In this study, we observed that an excess of Dlp led to the malformation of legs, particularly affecting the distal part. Accordingly, the leg disc was shrunken and frequently exhibited aberrant morphology. In addition, elevated Dlp levels induced ectopic cell death with no apparent cell proliferation changes. Furthermore, Dlp overexpression in the posterior compartment significantly altered Wingless (Wg) distribution. We observed a marked expansion of Wg distribution within the posterior compartment, accompanied by a corresponding decrease in the anterior compartment. It appears that excess Dlp guides Wg to diffuse to cells with higher Dlp levels. In addition, the distal-less (dll) gene, which is crucial for leg patterning, was up-regulated significantly. Notably, dachshund (dac) and homothorax (hth) expression, also essential for leg patterning and development, only appeared to be negligibly affected. Based on these findings, we speculate that excess Dlp may contribute to malformations of the distal leg region of Drosophila, possibly through its influence on Wg distribution, dll expression and induced cell death. Our research advances the understanding of Dlp function in Drosophila leg development.
Collapse
Affiliation(s)
- Xubo Zhang
- Shanxi Key Laboratory of Nucleic Acid Biopesticides, Research Institute of Applied Biology, Shanxi University, Taiyuan 030006, China
| | - Yi Wang
- Shanxi Key Laboratory of Nucleic Acid Biopesticides, Research Institute of Applied Biology, Shanxi University, Taiyuan 030006, China
| | - Wenting Zhao
- Shanxi Key Laboratory of Nucleic Acid Biopesticides, Research Institute of Applied Biology, Shanxi University, Taiyuan 030006, China
| | - Shumin Yang
- Shanxi Key Laboratory of Nucleic Acid Biopesticides, Research Institute of Applied Biology, Shanxi University, Taiyuan 030006, China
| | - Bernard Moussian
- Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement, Centre National de la Recherche Scientifique, Institut Sophia Agrobiotech, Sophia Antipolis, Université Côte d′Azur, 06108 Nice, France
| | - Zhangwu Zhao
- Shanxi Key Laboratory of Nucleic Acid Biopesticides, Research Institute of Applied Biology, Shanxi University, Taiyuan 030006, China
| | - Jianzhen Zhang
- Shanxi Key Laboratory of Nucleic Acid Biopesticides, Research Institute of Applied Biology, Shanxi University, Taiyuan 030006, China
| | - Wei Dong
- Shanxi Key Laboratory of Nucleic Acid Biopesticides, Research Institute of Applied Biology, Shanxi University, Taiyuan 030006, China
| |
Collapse
|
3
|
Wang C, Zhao T, Liu X, Li T, He L, Wang Q, Wang L, Zhou L. CRISPR/Cas9-Mediated Mutagenesis of Antennapedia in Spodoptera frugiperda. INSECTS 2023; 15:16. [PMID: 38249022 PMCID: PMC10816051 DOI: 10.3390/insects15010016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 12/25/2023] [Accepted: 12/28/2023] [Indexed: 01/23/2024]
Abstract
The homeotic gene Antennapedia (Antp) has been identified as playing a pivotal role in the morphogenesis of the thorax and wings across various insect species. Leveraging insights from previous studies, the functional characterization of Antp in S. frugiperda was undertaken using RT-qPCR and the CRISPR/Cas9 genome-editing system. Phylogenetic analyses indicate that Antp shares a high degree of sequence homology among Lepidoptera species. The expression profile of SfAntp was detected by RT-qPCR. The results showed that SfAntp was expressed in the whole growth cycle of S. frugiperda, the expression level was the highest in the egg stage, and the expression level was higher from 12 h to 48 h. Tissue-specific expression profiling demonstrated that SfAntp was most abundantly expressed in the thoracic segments and legs. To functionally disrupt SfAntp, two sgRNA sites were designed at the first exon of SfAntp and the gene was knocked out by CRISPR/Cas9 via microinjection. The results showed that the deletion of SfAntp produced a mutant phenotype of thoracic fusion, thoracic leg defect, leg-like protrusions between the head and thoracic segments and pupation deformity. In addition, deletion of SfAntp resulted in high embryo mortality. Through DNA sequencing, it was found that the target site of the SfAntp mutant had different degrees of frameshift mutations, indicating that the mutant phenotype was indeed caused by the knockout of SfAntp.
Collapse
Affiliation(s)
- Congke Wang
- College of Plant Protection, Henan Agricultural University, Zhengzhou 450046, China
- Key Laboratory of New Pesticide Development and Application, Henan Agricultural University, Zhengzhou 450046, China
- Green Pesticide Creation Engineering Technology Research Center, Henan Agricultural University, Zhengzhou 450046, China
| | - Te Zhao
- College of Plant Protection, Henan Agricultural University, Zhengzhou 450046, China
- Key Laboratory of New Pesticide Development and Application, Henan Agricultural University, Zhengzhou 450046, China
- Green Pesticide Creation Engineering Technology Research Center, Henan Agricultural University, Zhengzhou 450046, China
| | - Xiaolong Liu
- College of Plant Protection, Henan Agricultural University, Zhengzhou 450046, China
- Key Laboratory of New Pesticide Development and Application, Henan Agricultural University, Zhengzhou 450046, China
- Green Pesticide Creation Engineering Technology Research Center, Henan Agricultural University, Zhengzhou 450046, China
| | - Tianliang Li
- College of Plant Protection, Henan Agricultural University, Zhengzhou 450046, China
- Key Laboratory of New Pesticide Development and Application, Henan Agricultural University, Zhengzhou 450046, China
- Green Pesticide Creation Engineering Technology Research Center, Henan Agricultural University, Zhengzhou 450046, China
| | - Leiming He
- College of Plant Protection, Henan Agricultural University, Zhengzhou 450046, China
- Key Laboratory of New Pesticide Development and Application, Henan Agricultural University, Zhengzhou 450046, China
- Green Pesticide Creation Engineering Technology Research Center, Henan Agricultural University, Zhengzhou 450046, China
| | - Qinqin Wang
- College of Plant Protection, Henan Agricultural University, Zhengzhou 450046, China
- Key Laboratory of New Pesticide Development and Application, Henan Agricultural University, Zhengzhou 450046, China
- Green Pesticide Creation Engineering Technology Research Center, Henan Agricultural University, Zhengzhou 450046, China
| | - Li Wang
- College of Plant Protection, Henan Agricultural University, Zhengzhou 450046, China
- Key Laboratory of New Pesticide Development and Application, Henan Agricultural University, Zhengzhou 450046, China
- Green Pesticide Creation Engineering Technology Research Center, Henan Agricultural University, Zhengzhou 450046, China
| | - Lin Zhou
- College of Plant Protection, Henan Agricultural University, Zhengzhou 450046, China
- Key Laboratory of New Pesticide Development and Application, Henan Agricultural University, Zhengzhou 450046, China
- Green Pesticide Creation Engineering Technology Research Center, Henan Agricultural University, Zhengzhou 450046, China
| |
Collapse
|
4
|
Phillips LA, Atienza ML, Ryu JR, Svendsen PC, Kelemen LK, Brook WJ. midline represses Dpp signaling and target gene expression in Drosophila ventral leg development. Biol Open 2022; 11:275500. [PMID: 35608103 PMCID: PMC9167623 DOI: 10.1242/bio.059206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 04/25/2022] [Indexed: 11/20/2022] Open
Abstract
Ventral leg patterning in Drosophila is controlled by the expression of the redundant T-box Transcription factors midline (mid) and H15. Here, we show that mid represses the Dpp-activated gene Daughters against decapentaplegic (Dad) through a consensus T-box binding element (TBE) site in the minimal enhancer, Dad13. Mutating the Dad13 DNA sequence results in an increased and broadening of Dad expression. We also demonstrate that the engrailed-homology-1 domain of Mid is critical for regulating the levels of phospho-Mad, a transducer of Dpp-signaling. However, we find that mid does not affect all Dpp-target genes as we demonstrate that brinker (brk) expression is unresponsive to mid. This study further illuminates the interplay between mechanisms involved in determination of cellular fate and the varied roles of mid. Summary: Ventral patterning is controlled in part by the T-box Transcription factor midline blocking Dpp signaling and Dpp-activated genes, though midline does not affect the Dpp-repressed gene brk.
Collapse
Affiliation(s)
- Lindsay A Phillips
- Alberta Children's Hospital Research Institute, Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, AB T2N 4N1, Canada
| | - Markle L Atienza
- Alberta Children's Hospital Research Institute, Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, AB T2N 4N1, Canada
| | - Jae-Ryeon Ryu
- Alberta Children's Hospital Research Institute, Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, AB T2N 4N1, Canada
| | - Pia C Svendsen
- Alberta Children's Hospital Research Institute, Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, AB T2N 4N1, Canada
| | - Lynn K Kelemen
- Alberta Children's Hospital Research Institute, Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, AB T2N 4N1, Canada
| | - William J Brook
- Alberta Children's Hospital Research Institute, Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, AB T2N 4N1, Canada
| |
Collapse
|
5
|
Pechmann M, Prpic NM. The T-box gene optomotor-blind organizes proximodistal leg patterning in the beetle Tribolium castaneum by repressing dorsal Dpp pathway activity. Dev Biol 2021; 482:124-134. [PMID: 34942194 DOI: 10.1016/j.ydbio.2021.12.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 11/26/2021] [Accepted: 12/16/2021] [Indexed: 11/03/2022]
Abstract
Leg axis formation in Drosophila is organized by Wingless (Wg) and Decapentaplegic (Dpp) that control a number of downstream factors to pattern the dorsoventral (DV) and proximodistal (PD) axis. The T-box genes are important downstream factors mainly involved in dorsoventral leg axis formation. The ventral side is specified by H15 and midline, whereas optomotor-blind (omb) and Dorsocross (Doc1) are factors to specify dorsal cell fates. We show here that omb also organizes PD leg axis patterning in the beetle Tribolium castaneum. In the legs, Tc-omb is expressed along the dorsal side and represses ventral factors like wg and H15. Intriguingly, removing Tc-omb function leads to the activation of the Dpp pathway along the dorsal side of the legs, thus mimicking normal dpp expression in Drosophila. Dpp activity along the dorsal side leads to altered expression of proximal-distal patterning genes such as Distal-less (Dll) and dachshund (dac). Our results indicate a cell-autonomous activation of Dll and repression of dac by dpp. These findings are compatible with the cross-regulatory "cascade model" of proximal-distal leg imaginal disc patterning of Drosophila.
Collapse
Affiliation(s)
- Matthias Pechmann
- Universität zu Köln, Biozentrum Köln, Institut für Zoologie, Zülpicher Straße 47b, 50674, Köln, Germany.
| | - Nikola-Michael Prpic
- Justus-Liebig-Universität Gießen, Institut für Allgemeine Zoologie und Entwicklungsbiologie, AG Zoologie mit dem Schwerpunkt Molekulare Entwicklungsbiologie, Heinrich-Buff-Ring 38, 35392, Gießen, Germany.
| |
Collapse
|
6
|
Ruiz-Losada M, Pérez-Reyes C, Estella C. Role of the Forkhead Transcription Factors Fd4 and Fd5 During Drosophila Leg Development. Front Cell Dev Biol 2021; 9:723927. [PMID: 34409041 PMCID: PMC8365472 DOI: 10.3389/fcell.2021.723927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 07/12/2021] [Indexed: 11/13/2022] Open
Abstract
Appendage development requires the coordinated function of signaling pathways and transcription factors to pattern the leg along the three main axes: the antero-posterior (AP), proximo-distal (PD), and dorso-ventral (DV). The Drosophila leg DV axis is organized by two morphogens, Decapentaplegic (Dpp), and Wingless (Wg), which direct dorsal and ventral cell fates, respectively. However, how these signals regulate the differential expression of its target genes is mostly unknown. In this work, we found that two members of the Drosophila forkhead family of transcription factors, Fd4 and Fd5 (also known as fd96Ca and fd96Cb), are identically expressed in the ventro-lateral domain of the leg imaginal disc in response to Dpp signaling. Here, we analyze the expression regulation and function of these genes during leg development. We have generated specific mutant alleles for each gene and a double fd4/fd5 mutant chromosome to study their function during development. We highlight the redundant role of the fd4/fd5 genes during the formation of the sex comb, a male specific structure that appears in the ventro-lateral domain of the prothoracic leg.
Collapse
Affiliation(s)
- Mireya Ruiz-Losada
- Centro de Biología Molecular Severo Ochoa (C.S.I.C.-U.A.M.), Universidad Autónoma de Madrid, Madrid, Spain
| | - Cristian Pérez-Reyes
- Centro de Biología Molecular Severo Ochoa (C.S.I.C.-U.A.M.), Universidad Autónoma de Madrid, Madrid, Spain
| | - Carlos Estella
- Centro de Biología Molecular Severo Ochoa (C.S.I.C.-U.A.M.), Universidad Autónoma de Madrid, Madrid, Spain
| |
Collapse
|
7
|
McKenna KZ, Wagner GP, Cooper KL. A developmental perspective of homology and evolutionary novelty. Curr Top Dev Biol 2021; 141:1-38. [PMID: 33602485 DOI: 10.1016/bs.ctdb.2020.12.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The development and evolution of multicellular body plans is complex. Many distinct organs and body parts must be reproduced at each generation, and those that are traceable over long time scales are considered homologous. Among the most pressing and least understood phenomena in evolutionary biology is the mode by which new homologs, or "novelties" are introduced to the body plan and whether the developmental changes associated with such evolution deserve special treatment. In this chapter, we address the concepts of homology and evolutionary novelty through the lens of development. We present a series of case studies, within insects and vertebrates, from which we propose a developmental model of multicellular organ identity. With this model in hand, we make predictions regarding the developmental evolution of body plans and highlight the need for more integrative analysis of developing systems.
Collapse
Affiliation(s)
- Kenneth Z McKenna
- Division of Biological Sciences, University of California San Diego, La Jolla, CA, United States
| | - Günter P Wagner
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT, United States.
| | - Kimberly L Cooper
- Division of Biological Sciences, University of California San Diego, La Jolla, CA, United States
| |
Collapse
|
8
|
Fan Z, Zhang J, Wang D, Shen J. T-box transcription factors Dorsocross and optomotor-blind control Drosophila leg patterning in a functionally redundant manner. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2021; 129:103516. [PMID: 33412239 DOI: 10.1016/j.ibmb.2020.103516] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 12/23/2020] [Accepted: 12/24/2020] [Indexed: 06/12/2023]
Abstract
The T-box genes are essential transcription factors during limb development. In Drosophila, Dorsocross (Doc) and optomotor-blind (omb), members of the Tbx2 and Tbx6 families, are best studied in the Drosophila wing development. Despite prominently expressed in leg discs, the specific function of these genes in leg growth is still not revealed. Here we demonstrated that Doc and omb regulated the morphogenesis of leg intermediate regions in a functionally redundant manner. Loss of Doc or omb individually did not result in any developmental defects of the legs, but loss of both genes induced significant defects in femur and proximal tibia of the adult legs. These genes located in the dorsal domain, where the Doc region expanded and cross-overlapped with the omb region corresponding to the presumptive leg intermediate region. We detected that the normal epithelial folds in the leg discs were disrupted along with dorsal repression of cell proliferation and activation of cell apoptosis when Doc and omb were both reduced. Furthermore, the dorsal expression of dachshund (dac), a canonical leg developmental gene specifying the leg intermediate region, was maintained by Doc and omb. Meanwhile, the Notch pathway was compromised in the dorsal domain when these genes were reduced, which might contribute to the joint defect of the adult leg intermediate regions. Our study provides cytological and genetic evidence for understanding the redundant function of Doc and omb in leg morphogenesis.
Collapse
Affiliation(s)
- Zongyang Fan
- Department of Entomology and MOA Lab for Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, 100193, China
| | - JunZheng Zhang
- Department of Entomology and MOA Lab for Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, 100193, China
| | - Dan Wang
- Department of Entomology and MOA Lab for Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, 100193, China.
| | - Jie Shen
- Department of Entomology and MOA Lab for Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
9
|
Role of Notch Signaling in Leg Development in Drosophila melanogaster. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1218:103-127. [PMID: 32060874 DOI: 10.1007/978-3-030-34436-8_7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Notch pathway plays diverse and fundamental roles during animal development. One of the most relevant, which arises directly from its unique mode of activation, is the specification of cell fates and tissue boundaries. The development of the leg of Drosophila melanogaster is a fine example of this Notch function, as it is required to specify the fate of the cells that will eventually form the leg joints, the flexible structures that separate the different segments of the adult leg. Notch activity is accurately activated and maintained at the distal end of each segment in response to the proximo-distal patterning gene network of the developing leg. Region-specific downstream targets of Notch in turn regulate the formation of the different types of joints. We discuss recent findings that shed light on the molecular and cellular mechanisms that are ultimately governed by Notch to achieve epithelial fold and joint morphogenesis. Finally, we briefly summarize the role that Notch plays in inducing the nonautonomous growth of the leg. Overall, this book chapter aims to highlight leg development as a useful model to study how patterning information is translated into specific cell behaviors that shape the final form of an adult organ.
Collapse
|
10
|
Heingård M, Turetzek N, Prpic NM, Janssen R. FoxB, a new and highly conserved key factor in arthropod dorsal-ventral (DV) limb patterning. EvoDevo 2019; 10:28. [PMID: 31728178 PMCID: PMC6842170 DOI: 10.1186/s13227-019-0141-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Accepted: 10/16/2019] [Indexed: 12/25/2022] Open
Abstract
Forkhead box (Fox) transcription factors evolved early in animal evolution and represent important components of conserved gene regulatory networks (GRNs) during animal development. Most of the researches concerning Fox genes, however, are on vertebrates and only a relatively low number of studies investigate Fox gene function in invertebrates. In addition to this shortcoming, the focus of attention is often restricted to a few well-characterized Fox genes such as FoxA (forkhead), FoxC (crocodile) and FoxQ2. Although arthropods represent the largest and most diverse animal group, most other Fox genes have not been investigated in detail, not even in the arthropod model species Drosophila melanogaster. In a general gene expression pattern screen for panarthropod Fox genes including the red flour beetle Tribolium castaneum, the pill millipede Glomeris marginata, the common house spider Parasteatoda tepidariorum, and the velvet worm Euperipatoides kanangrensis, we identified a Fox gene with a highly conserved expression pattern along the ventral ectoderm of arthropod and onychophoran limbs. Functional investigation of FoxB in Parasteatoda reveals a hitherto unrecognized important function of FoxB upstream of wingless (wg) and decapentaplegic (dpp) in the GRN orchestrating dorsal–ventral limb patterning.
Collapse
Affiliation(s)
- Miriam Heingård
- 1Department of Earth Sciences, Palaeobiology, Uppsala University, Villavägen 16, Uppsala, Sweden.,4Present Address: Department of Geology, Faculty of Science, Lund University, Sölvegatan 12, Lund, Sweden
| | - Natascha Turetzek
- 2Abteilung für Entwicklungsbiologie, Johann-Friedrich-Blumenbach-Institut für Zoologie und Anthropologie, Georg-August-Universität, Göttingen, Germany.,Present Address: Göttingen Center for Molecular Biosciences (GZMB), Ernst-Caspari-Haus, Göttingen, Germany
| | - Nikola-Michael Prpic
- 2Abteilung für Entwicklungsbiologie, Johann-Friedrich-Blumenbach-Institut für Zoologie und Anthropologie, Georg-August-Universität, Göttingen, Germany.,5Present Address: Bereich Allgemeine Zoologie und Entwicklungsbiologie, Institut für Allgemeine und Spezielle Zoologie, Justus-Liebig-Universität Gießen, Heinrich-Buff-Ring 38, 35392 Gießen, Germany
| | - Ralf Janssen
- 1Department of Earth Sciences, Palaeobiology, Uppsala University, Villavägen 16, Uppsala, Sweden
| |
Collapse
|
11
|
Svendsen PC, Phillips LA, Deshwar AR, Ryu JR, Najand N, Brook WJ. The selector genes midline and H15 control ventral leg pattern by both inhibiting Dpp signaling and specifying ventral fate. Dev Biol 2019; 455:19-31. [PMID: 31299230 DOI: 10.1016/j.ydbio.2019.05.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2018] [Revised: 04/27/2019] [Accepted: 05/28/2019] [Indexed: 01/13/2023]
Abstract
mid and H15 encode Tbx20 transcription factors that specify ventral pattern in the Drosophila leg. We find that there are at least two pathways for mid and H15 specification of ventral fate. In the first pathway, mid and H15 negatively regulate Dpp, the dorsal signal in leg development. mid and H15 block the dorsalizing effects of Dpp signaling in the ventral leg. In loss- and gain-of-function experiments in imaginal discs, we show that mid and H15 block the accumulation of phospho-Mad, the activated form of the Drosophila pSmad1/5 homolog. In a second pathway, we find mid and H15 must also directly promote ventral fate because simultaneously blocking Dpp signaling in mid H15 mutants does not rescue the ventral to dorsal transformation in most ventral leg structures. We show that mid and H15 act as transcriptional repressors in ventral leg development. The two genes repress the Dpp target gene Dad, the laterally expressed gene Upd, and the mid VLE enhancer. This repression depends on the eh1 domain, a binding site for the Groucho co-repressor, and is likely direct because Mid localizes to target gene enhancers in PCR-ChIP assays. A mid allele mutant for the repressing domain (eh1), mideh1, was found to be compromised in gain-of-function assays and in rescue of mid H15 loss-of-function. We propose that mid and H15 specify ventral fate through inhibition of Dpp signaling and through coordinating the repression of genes in the ventral leg.
Collapse
Affiliation(s)
- Pia C Svendsen
- Alberta Children's Hospital Research Institute, Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, AB, T2N4N1, Canada
| | - Lindsay A Phillips
- Alberta Children's Hospital Research Institute, Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, AB, T2N4N1, Canada
| | - Ashish R Deshwar
- Alberta Children's Hospital Research Institute, Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, AB, T2N4N1, Canada
| | - Jae-Ryeon Ryu
- Alberta Children's Hospital Research Institute, Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, AB, T2N4N1, Canada
| | - Nima Najand
- Alberta Children's Hospital Research Institute, Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, AB, T2N4N1, Canada
| | - William J Brook
- Alberta Children's Hospital Research Institute, Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, AB, T2N4N1, Canada.
| |
Collapse
|
12
|
Connahs H, Tlili S, van Creij J, Loo TYJ, Banerjee TD, Saunders TE, Monteiro A. Activation of butterfly eyespots by Distal-less is consistent with a reaction-diffusion process. Development 2019; 146:dev169367. [PMID: 30992277 PMCID: PMC6526720 DOI: 10.1242/dev.169367] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Accepted: 04/05/2019] [Indexed: 01/08/2023]
Abstract
Eyespots on the wings of nymphalid butterflies represent colorful examples of pattern formation, yet the developmental origins and mechanisms underlying eyespot center differentiation are still poorly understood. Using CRISPR-Cas9 we re-examine the function of Distal-less (Dll) as an activator or repressor of eyespots, a topic that remains controversial. We show that the phenotypic outcome of CRISPR mutations depends upon which specific exon is targeted. In Bicyclus anynana, exon 2 mutations are associated with both missing and ectopic eyespots, and also exon skipping. Exon 3 mutations, which do not lead to exon skipping, produce only null phenotypes, including missing eyespots, lighter wing coloration and loss of scales. Reaction-diffusion modeling of Dll function, using Wnt and Dpp as candidate morphogens, accurately replicates these complex crispant phenotypes. These results provide new insight into the function of Dll as a potential activator of eyespot development, scale growth and melanization, and suggest that the tuning of Dll expression levels can generate a diversity of eyespot phenotypes, including their appearance on the wing.This article has an associated 'The people behind the papers' interview.
Collapse
Affiliation(s)
- Heidi Connahs
- Department of Biological Sciences, National University of Singapore, Singapore 117558
| | - Sham Tlili
- Mechanobiology Institute, National University of Singapore, Singapore 117411
| | - Jelle van Creij
- Department of Biological Sciences, National University of Singapore, Singapore 117558
| | - Tricia Y J Loo
- Department of Biological Sciences, National University of Singapore, Singapore 117558
| | - Tirtha Das Banerjee
- Department of Biological Sciences, National University of Singapore, Singapore 117558
| | - Timothy E Saunders
- Department of Biological Sciences, National University of Singapore, Singapore 117558
- Mechanobiology Institute, National University of Singapore, Singapore 117411
- Institute of Molecular and Cell Biology, A*Star, Proteos, Singapore 138673
| | - Antónia Monteiro
- Department of Biological Sciences, National University of Singapore, Singapore 117558
- Yale-NUS College, Singapore 138527
| |
Collapse
|
13
|
Morita S, Ando T, Maeno A, Mizutani T, Mase M, Shigenobu S, Niimi T. Precise staging of beetle horn formation in Trypoxylus dichotomus reveals the pleiotropic roles of doublesex depending on the spatiotemporal developmental contexts. PLoS Genet 2019; 15:e1008063. [PMID: 30969957 PMCID: PMC6457530 DOI: 10.1371/journal.pgen.1008063] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Accepted: 03/03/2019] [Indexed: 11/19/2022] Open
Abstract
Many scarab beetles have sexually dimorphic exaggerated horns that are an evolutionary novelty. Since the shape, number, size, and location of horns are highly diverged within Scarabaeidae, beetle horns are an attractive model for studying the evolution of sexually dimorphic and novel traits. In beetles including the Japanese rhinoceros beetle Trypoxylus dichotomus, the sex differentiation gene doublesex (dsx) plays a crucial role in sexually dimorphic horn formation during larval-pupal development. However, knowledge of when and how dsx drives the gene regulatory network (GRN) for horn formation to form sexually dimorphic horns during development remains elusive. To address this issue, we identified a Trypoxylus-ortholog of the sex determination gene, transformer (tra), that regulates sex-specific splicing of the dsx pre-mRNA, and whose loss of function results in sex transformation. By knocking down tra function at multiple developmental timepoints during larval-pupal development, we estimated the onset when the sex-specific GRN for horn formation is driven. In addition, we also revealed that dsx regulates different aspects of morphogenetic activities during the prepupal and pupal developmental stages to form appropriate morphologies of pupal head and thoracic horn primordia as well as those of adult horns. Based on these findings, we discuss the evolutionary developmental background of sexually dimorphic trait growth in horned beetles. Beetles in the family Scarabaeidae have various types of horns on their heads and thoraces, and the shape, size, number, and location of these horns are highly diversified within the group. In addition, many scarab beetle horns are sexually dimorphic. The acquisition of these evolutionarily novel horns, and the mechanisms for the diversification of these structures is an interesting question. To address this question, we focused on the rhinoceros beetle Tripoxylus dichotomus. Here we identified the exact developmental timepoints during which the morphological sexual dimorphism of horn primordia appears, estimated the onset of the developmental program for sexually dimorphic horn formation driven by doublesex, and revealed that doublesex regulates different aspects of cell activities during horn formation depending on particular spatiotemporal developmental contexts. Our study provides insights into regulatory shifts in these mechanisms during the evolution of sexually dimorphic traits in horned beetles.
Collapse
Affiliation(s)
- Shinichi Morita
- Division of Evolutionary Developmental Biology, National Institute for Basic Biology, 38 Nishigonaka, Myodaiji, Okazaki, Japan
| | - Toshiya Ando
- Division of Evolutionary Developmental Biology, National Institute for Basic Biology, 38 Nishigonaka, Myodaiji, Okazaki, Japan
- Department of Basic Biology, School of Life Science, SOKENDAI (The Graduate University for Advanced Studies), 38 Nishigonaka, Myodaiji, Okazaki, Japan
| | - Akiteru Maeno
- Mammalian Genetics Laboratory, Genetic Strains Research Center, National Institute of Genetics, Mishima, Shizuoka, Japan
| | - Takeshi Mizutani
- Division of Evolutionary Developmental Biology, National Institute for Basic Biology, 38 Nishigonaka, Myodaiji, Okazaki, Japan
| | - Mutsuki Mase
- Division of Evolutionary Developmental Biology, National Institute for Basic Biology, 38 Nishigonaka, Myodaiji, Okazaki, Japan
- Graduate School of Bioagricultural Sciences, Nagoya University, Chikusa, Nagoya, Japan
| | - Shuji Shigenobu
- Department of Basic Biology, School of Life Science, SOKENDAI (The Graduate University for Advanced Studies), 38 Nishigonaka, Myodaiji, Okazaki, Japan
- NIBB Core Research Facilities, National Institute for Basic Biology, 38 Nishigonaka Myodaiji, Okazaki, Japan
| | - Teruyuki Niimi
- Division of Evolutionary Developmental Biology, National Institute for Basic Biology, 38 Nishigonaka, Myodaiji, Okazaki, Japan
- Department of Basic Biology, School of Life Science, SOKENDAI (The Graduate University for Advanced Studies), 38 Nishigonaka, Myodaiji, Okazaki, Japan
- Graduate School of Bioagricultural Sciences, Nagoya University, Chikusa, Nagoya, Japan
- * E-mail:
| |
Collapse
|
14
|
Hogvall M, Budd GE, Janssen R. Gene expression analysis of potential morphogen signalling modifying factors in Panarthropoda. EvoDevo 2018; 9:20. [PMID: 30288252 PMCID: PMC6162966 DOI: 10.1186/s13227-018-0109-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Accepted: 09/04/2018] [Indexed: 11/28/2022] Open
Abstract
Background Morphogen signalling represents a key mechanism of developmental processes during animal development. Previously, several evolutionary conserved morphogen signalling pathways have been identified, and their players such as the morphogen receptors, morphogen modulating factors (MMFs) and the morphogens themselves have been studied. MMFs are factors that regulate morphogen distribution and activity. The interactions of MMFs with different morphogen signalling pathways such as Wnt signalling, Hedgehog (Hh) signalling and Decapentaplegic (Dpp) signalling are complex because some of the MMFs have been shown to interact with more than one signalling pathway, and depending on genetic context, to have different, biphasic or even opposing function. This complicates the interpretation of expression data and functional data of MMFs and may be one reason why data on MMFs in other arthropods than Drosophila are scarce or totally lacking. Results As a first step to a better understanding of the potential roles of MMFs in arthropod development, we investigate here the embryonic expression patterns of division abnormally delayed (dally), dally-like protein (dlp), shifted (shf) and secreted frizzled-related protein 125 (sFRP125) and sFRP34 in the beetle Tribolium castaneum, the spider Parasteatoda tepidariorum, the millipede Glomeris marginata and the onychophoran Euperipatoides kanangrensis. This pioneer study represents the first comprehensive comparative data set of these genes in panarthropods. Conclusions Expression profiles reveal a high degree of diversity, suggesting that MMFs may represent highly evolvable nodes in otherwise conserved gene regulatory networks. Conserved aspects of MMF expression, however, appear to concern function in segmentation and limb development, two of the key topics of evolutionary developmental research. Electronic supplementary material The online version of this article (10.1186/s13227-018-0109-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Mattias Hogvall
- Department of Earth Sciences, Palaeobiology, Uppsala University, Villavägen 16, Uppsala, Sweden
| | - Graham E Budd
- Department of Earth Sciences, Palaeobiology, Uppsala University, Villavägen 16, Uppsala, Sweden
| | - Ralf Janssen
- Department of Earth Sciences, Palaeobiology, Uppsala University, Villavägen 16, Uppsala, Sweden
| |
Collapse
|
15
|
Ruiz-Losada M, Blom-Dahl D, Córdoba S, Estella C. Specification and Patterning of Drosophila Appendages. J Dev Biol 2018; 6:jdb6030017. [PMID: 30011921 PMCID: PMC6162442 DOI: 10.3390/jdb6030017] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 07/10/2018] [Accepted: 07/12/2018] [Indexed: 02/06/2023] Open
Abstract
Appendages are external projections of the body that serve the animal for locomotion, feeding, or environment exploration. The appendages of the fruit fly Drosophilamelanogaster are derived from the imaginal discs, epithelial sac-like structures specified in the embryo that grow and pattern during larva development. In the last decades, genetic and developmental studies in the fruit fly have provided extensive knowledge regarding the mechanisms that direct the formation of the appendages. Importantly, many of the signaling pathways and patterning genes identified and characterized in Drosophila have similar functions during vertebrate appendage development. In this review, we will summarize the genetic and molecular mechanisms that lead to the specification of appendage primordia in the embryo and their posterior patterning during imaginal disc development. The identification of the regulatory logic underlying appendage specification in Drosophila suggests that the evolutionary origin of the insect wing is, in part, related to the development of ventral appendages.
Collapse
Affiliation(s)
- Mireya Ruiz-Losada
- Departamento de Biología Molecular and Centro de Biología Molecular Severo Ochoa, Universidad Autónoma de Madrid (UAM/CSIC), Nicolás Cabrera 1, 28049 Madrid, Spain.
| | - David Blom-Dahl
- Departamento de Biología Molecular and Centro de Biología Molecular Severo Ochoa, Universidad Autónoma de Madrid (UAM/CSIC), Nicolás Cabrera 1, 28049 Madrid, Spain.
| | - Sergio Córdoba
- Departamento de Biología Molecular and Centro de Biología Molecular Severo Ochoa, Universidad Autónoma de Madrid (UAM/CSIC), Nicolás Cabrera 1, 28049 Madrid, Spain.
| | - Carlos Estella
- Departamento de Biología Molecular and Centro de Biología Molecular Severo Ochoa, Universidad Autónoma de Madrid (UAM/CSIC), Nicolás Cabrera 1, 28049 Madrid, Spain.
| |
Collapse
|
16
|
Enriquez J, Rio LQ, Blazeski R, Bellemin S, Godement P, Mason C, Mann RS. Differing Strategies Despite Shared Lineages of Motor Neurons and Glia to Achieve Robust Development of an Adult Neuropil in Drosophila. Neuron 2018; 97:538-554.e5. [PMID: 29395908 PMCID: PMC5941948 DOI: 10.1016/j.neuron.2018.01.007] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Revised: 12/04/2017] [Accepted: 01/03/2018] [Indexed: 11/15/2022]
Abstract
In vertebrates and invertebrates, neurons and glia are generated in a stereotyped manner from neural stem cells, but the purpose of invariant lineages is not understood. We show that two stem cells that produce leg motor neurons in Drosophila also generate neuropil glia, which wrap and send processes into the neuropil where motor neuron dendrites arborize. The development of the neuropil glia and leg motor neurons is highly coordinated. However, although motor neurons have a stereotyped birth order and transcription factor code, the number and individual morphologies of the glia born from these lineages are highly plastic, yet the final structure they contribute to is highly stereotyped. We suggest that the shared lineages of these two cell types facilitate the assembly of complex neural circuits and that the two birth order strategies-hardwired for motor neurons and flexible for glia-are important for robust nervous system development, homeostasis, and evolution.
Collapse
Affiliation(s)
- Jonathan Enriquez
- Institut de Génomique Fonctionnelle de Lyon, ENS de Lyon, CNRS, Univ Lyon 1, 46 Allée d'Italie, 69364 Lyon Cedex 07, France; Departments of Biochemistry and Molecular Biophysics, and Neuroscience, Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027, USA.
| | - Laura Quintana Rio
- Departments of Biochemistry and Molecular Biophysics, and Neuroscience, Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027, USA
| | - Richard Blazeski
- Departments of Pathology and Cell Biology, Neuroscience and Ophthalmology, Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027, USA
| | - Stephanie Bellemin
- Institut de Génomique Fonctionnelle de Lyon, ENS de Lyon, CNRS, Univ Lyon 1, 46 Allée d'Italie, 69364 Lyon Cedex 07, France
| | - Pierre Godement
- Institut de Génomique Fonctionnelle de Lyon, ENS de Lyon, CNRS, Univ Lyon 1, 46 Allée d'Italie, 69364 Lyon Cedex 07, France
| | - Carol Mason
- Departments of Pathology and Cell Biology, Neuroscience and Ophthalmology, Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027, USA
| | - Richard S Mann
- Departments of Biochemistry and Molecular Biophysics, and Neuroscience, Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027, USA.
| |
Collapse
|
17
|
Upadhyay A, Moss-Taylor L, Kim MJ, Ghosh AC, O'Connor MB. TGF-β Family Signaling in Drosophila. Cold Spring Harb Perspect Biol 2017; 9:cshperspect.a022152. [PMID: 28130362 DOI: 10.1101/cshperspect.a022152] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The transforming growth factor β (TGF-β) family signaling pathway is conserved and ubiquitous in animals. In Drosophila, fewer representatives of each signaling component are present compared with vertebrates, simplifying mechanistic study of the pathway. Although there are fewer family members, the TGF-β family pathway still regulates multiple and diverse functions in Drosophila. In this review, we focus our attention on several of the classic and best-studied functions for TGF-β family signaling in regulating Drosophila developmental processes such as embryonic and imaginal disc patterning, but we also describe several recently discovered roles in regulating hormonal, physiological, neuronal, innate immunity, and tissue homeostatic processes.
Collapse
Affiliation(s)
- Ambuj Upadhyay
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, Minnesota 55455
| | - Lindsay Moss-Taylor
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, Minnesota 55455
| | - Myung-Jun Kim
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, Minnesota 55455
| | - Arpan C Ghosh
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, Minnesota 55455
| | - Michael B O'Connor
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, Minnesota 55455
| |
Collapse
|
18
|
Schwarz O, Bohra AA, Liu X, Reichert H, VijayRaghavan K, Pielage J. Motor control of Drosophila feeding behavior. eLife 2017; 6:e19892. [PMID: 28211791 PMCID: PMC5315463 DOI: 10.7554/elife.19892] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Accepted: 02/02/2017] [Indexed: 12/01/2022] Open
Abstract
The precise coordination of body parts is essential for survival and behavior of higher organisms. While progress has been made towards the identification of central mechanisms coordinating limb movement, only limited knowledge exists regarding the generation and execution of sequential motor action patterns at the level of individual motoneurons. Here we use Drosophila proboscis extension as a model system for a reaching-like behavior. We first provide a neuroanatomical description of the motoneurons and muscles contributing to proboscis motion. Using genetic targeting in combination with artificial activation and silencing assays we identify the individual motoneurons controlling the five major sequential steps of proboscis extension and retraction. Activity-manipulations during naturally evoked proboscis extension show that orchestration of serial motoneuron activation does not rely on feed-forward mechanisms. Our data support a model in which central command circuits recruit individual motoneurons to generate task-specific proboscis extension sequences.
Collapse
Affiliation(s)
- Olivia Schwarz
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
- Biozentrum University of Basel, Basel, Switzerland
- Division of Zoology and Neurobiology, Technical University Kaiserslautern, Kaiserslautern, Germany
| | - Ali Asgar Bohra
- National Centre for Biological Sciences, Tata Institute for Fundamental Research, Bangalore, India
| | - Xinyu Liu
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
- Biozentrum University of Basel, Basel, Switzerland
| | | | | | - Jan Pielage
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
- Biozentrum University of Basel, Basel, Switzerland
- Division of Zoology and Neurobiology, Technical University Kaiserslautern, Kaiserslautern, Germany
| |
Collapse
|
19
|
Pflugfelder G, Eichinger F, Shen J. T-Box Genes in Drosophila Limb Development. Curr Top Dev Biol 2017; 122:313-354. [DOI: 10.1016/bs.ctdb.2016.08.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
20
|
Córdoba S, Requena D, Jory A, Saiz A, Estella C. The evolutionary conserved transcription factor Sp1 controls appendage growth through Notch signaling. Development 2016; 143:3623-3631. [DOI: 10.1242/dev.138735] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Accepted: 08/12/2016] [Indexed: 12/25/2022]
Abstract
The appendages of arthropods and vertebrates are not homologous structures, although the underlying genetic mechanisms that pattern them are highly conserved. Members of the Sp family of transcription factors are expressed in the developing limbs and their function is required for limb growth in both insects and chordates. Despite the fundamental and conserved role that these transcription factors play during appendage development, their target genes and the mechanisms in which they participate to control limb growth are mostly unknown. We analyzed here the individual contributions of two Drosophila Sp members, buttonhead (btd) and Sp1, during leg development. We show that Sp1 plays a more prominent role controlling leg growth than btd. We identified a regulatory function of Sp1 in Notch signaling, and performed a genome wide transcriptome analysis to identify other potential Sp1 target genes contributing to leg growth. Our data suggest a mechanism by which the Sp factors control appendage growth through the Notch signaling.
Collapse
Affiliation(s)
- Sergio Córdoba
- Departamento de Biología Molecular and Centro de Biología Molecular Severo Ochoa, Universidad Autónoma de Madrid (UAM), Nicolás Cabrera 1, 28049 Madrid, Spain
| | - David Requena
- Departamento de Biología Molecular and Centro de Biología Molecular Severo Ochoa, Universidad Autónoma de Madrid (UAM), Nicolás Cabrera 1, 28049 Madrid, Spain
| | - Aurelie Jory
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, New York, United States of America
| | - Almudena Saiz
- Departamento de Biología Molecular and Centro de Biología Molecular Severo Ochoa, Universidad Autónoma de Madrid (UAM), Nicolás Cabrera 1, 28049 Madrid, Spain
| | - Carlos Estella
- Departamento de Biología Molecular and Centro de Biología Molecular Severo Ochoa, Universidad Autónoma de Madrid (UAM), Nicolás Cabrera 1, 28049 Madrid, Spain
| |
Collapse
|
21
|
Svendsen PC, Ryu JR, Brook WJ. The expression of the T-box selector gene midline in the leg imaginal disc is controlled by both transcriptional regulation and cell lineage. Biol Open 2015; 4:1707-14. [PMID: 26581591 PMCID: PMC4736030 DOI: 10.1242/bio.013565] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Drosophila Tbx20 homologs midline and H15 act as selector genes for ventral fate in Drosophila legs. midline and H15 expression defines the ventral domain of the leg and the two genes are necessary and sufficient for the development of ventral fate. Ventral-specific expression of midline and H15 is activated by Wingless (Wg) and repressed by Decapentaplegic (Dpp). Here we identify VLE, a 5 kb enhancer that drives ventral specific expression in the leg disc that is very similar to midline expression. Subdivision of VLE identifies two regions that mediate both activation and repression and third region that only mediates repression. Loss- and gain-of-function genetic mosaic analysis shows that the activating and repressing regions respond to Wg and Dpp signaling respectively. All three repression regions depend on the activity of Mothers-against-decapentaplegic, a Drosophila r-Smad that mediates Dpp signaling, and respond to ectopic expression of the Dpp target genes optomoter-blind and Dorsocross 3. However, only one repression region is responsive to loss of schnurri, a co-repressor required for direct repression by Dpp-signaling. Thus, Dpp signaling restricts midline expression through both direct repression and through the activation of downstream repressors. We also find that midline and H15 expression are both subject to cross-repression and feedback inhibition. Finally, a lineage analysis indicates that ventral midline-expressing cells and dorsal omb-expressing cells do not mix during development. Together this data indicates that the ventral-specific expression of midline results from both transcriptional regulation and from a lack of cell-mixing between dorsal and ventral cells.
Collapse
Affiliation(s)
- Pia C Svendsen
- Genes and Development Research Group, Alberta Children's Hospital Research Institute, Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary T2N4N1, Alberta, Canada
| | - Jae-Ryeon Ryu
- Genes and Development Research Group, Alberta Children's Hospital Research Institute, Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary T2N4N1, Alberta, Canada
| | - William J Brook
- Genes and Development Research Group, Alberta Children's Hospital Research Institute, Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary T2N4N1, Alberta, Canada
| |
Collapse
|
22
|
Janssen R, Jörgensen M, Prpic NM, Budd GE. Aspects of dorso-ventral and proximo-distal limb patterning in onychophorans. Evol Dev 2015; 17:21-33. [DOI: 10.1111/ede.12107] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Ralf Janssen
- Department of Earth Sciences, Palaeobiology; Uppsala University; Villavägen 16 75236 Uppsala Sweden
| | - Mette Jörgensen
- Department of Earth Sciences, Palaeobiology; Uppsala University; Villavägen 16 75236 Uppsala Sweden
| | - Nikola-Michael Prpic
- Abteilung für Entwicklungsbiologie; Johann-Friedrich-Blumenbach-Institut für Zoologie und Anthropologie; Georg-August-Universität Göttingen; GZMB; Ernst-Caspari-Haus; Justus-von-Liebig-Weg 11 37077 Göttingen Germany
| | - Graham E. Budd
- Department of Earth Sciences, Palaeobiology; Uppsala University; Villavägen 16 75236 Uppsala Sweden
| |
Collapse
|
23
|
Refki PN, Armisén D, Crumière AJJ, Viala S, Khila A. Emergence of tissue sensitivity to Hox protein levels underlies the evolution of an adaptive morphological trait. Dev Biol 2014; 392:441-53. [PMID: 24886828 PMCID: PMC4111901 DOI: 10.1016/j.ydbio.2014.05.021] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2013] [Revised: 05/20/2014] [Accepted: 05/24/2014] [Indexed: 11/16/2022]
Abstract
Growth control scales morphological attributes and, therefore, provides a critical contribution to the evolution of adaptive traits. Yet, the genetic mechanisms underlying growth in the context of specific ecological adaptations are poorly understood. In water striders, adaptation to locomotion on the water surface is associated with allometric and functional changes in thoracic appendages, such that T2-legs, used as propelling oars, are longer than T3-legs, used as steering rudders. The Hox gene Ubx establishes this derived morphology by elongating T2-legs but shortening T3-legs. Using gene expression assays, RNAi knockdown, and comparative transcriptomics, we demonstrate that the evolution of water surface rowing as a novel means of locomotion is associated with the evolution of a dose-dependent promoting-repressing effect of Ubx on leg growth. In the water strider Limnoporus dissortis, T3-legs express six to seven times higher levels of Ubx compared to T2-legs. Ubx RNAi shortens T2-legs and the severity of this phenotype increases with increased depletion of Ubx protein. Conversely, Ubx RNAi lengthens T3-legs but this phenotype is partially rescued when Ubx protein is further depleted. This dose-dependent effect of Ubx on leg growth is absent in non-rowing relatives that retain the ancestral relative leg length. We also show that the spatial patterns of expression of dpp, wg, hh, egfr, dll, exd, hth, and dac are unchanged in Ubx RNAi treatments. This indicates that the dose-dependent opposite effect of Ubx on T2- and T3-legs operates without any apparent effect on the spatial expression of major leg patterning genes. Our data suggest that scaling of adaptive allometries can evolve through changes in the levels of expression of Hox proteins early during ontogeny, and in the sensitivity of the tissues that express them, without any major effects on pattern formation. Ubx is generally expressed at higher levels in T3- relative to T2-legs in semi-aquatic insects. It is only in the derived Gerridae where the high levels of Ubx result in reduced T3-leg length. In the Gerridae, the response of leg tissues to Ubx levels is bimodal. Changes in Ubx regulation and function have evolved in Limnoporus without disrupting patterning hierarchies. Changes in Hox protein levels and emergence of tissue sensitivity to these levels can shape adaptive morphological traits.
Collapse
Affiliation(s)
- Peter Nagui Refki
- Institut de Génomique Fonctionnelle de Lyon, CNRS-UMR5242, Ecole Normale Supérieure de Lyon, 46 Allée d׳Italie, 69364 Lyon Cedex 07, France; Université Claude Bernard Lyon 1, 43 Boulevard du 11 Novembre 1918, 69622 Villeurbanne Cedex, France
| | - David Armisén
- Institut de Génomique Fonctionnelle de Lyon, CNRS-UMR5242, Ecole Normale Supérieure de Lyon, 46 Allée d׳Italie, 69364 Lyon Cedex 07, France
| | - Antonin Jean Johan Crumière
- Institut de Génomique Fonctionnelle de Lyon, CNRS-UMR5242, Ecole Normale Supérieure de Lyon, 46 Allée d׳Italie, 69364 Lyon Cedex 07, France; Université Claude Bernard Lyon 1, 43 Boulevard du 11 Novembre 1918, 69622 Villeurbanne Cedex, France
| | - Séverine Viala
- Institut de Génomique Fonctionnelle de Lyon, CNRS-UMR5242, Ecole Normale Supérieure de Lyon, 46 Allée d׳Italie, 69364 Lyon Cedex 07, France
| | - Abderrahman Khila
- Institut de Génomique Fonctionnelle de Lyon, CNRS-UMR5242, Ecole Normale Supérieure de Lyon, 46 Allée d׳Italie, 69364 Lyon Cedex 07, France.
| |
Collapse
|
24
|
Appendage patterning in the primitively wingless hexapods Thermobia domestica (Zygentoma: Lepismatidae) and Folsomia candida (Collembola: Isotomidae). Dev Genes Evol 2013; 223:341-50. [DOI: 10.1007/s00427-013-0449-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2013] [Accepted: 07/01/2013] [Indexed: 12/21/2022]
|
25
|
Pancratov R, Peng F, Smibert P, Yang JS, Olson ER, Guha-Gilford C, Kapoor AJ, Liang FX, Lai EC, Flaherty MS, DasGupta R. The miR-310/13 cluster antagonizes β-catenin function in the regulation of germ and somatic cell differentiation in the Drosophila testis. Development 2013; 140:2904-16. [PMID: 23821034 PMCID: PMC3699279 DOI: 10.1242/dev.092817] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/12/2013] [Indexed: 12/19/2022]
Abstract
MicroRNAs (miRNAs) are regulators of global gene expression and function in a broad range of biological processes. Recent studies have suggested that miRNAs can function as tumor suppressors or oncogenes by modulating the activities of evolutionarily conserved signaling pathways that are commonly dysregulated in cancer. We report the identification of the miR-310 to miR-313 (miR-310/13) cluster as a novel antagonist of Wingless (Drosophila Wnt) pathway activity in a functional screen for Drosophila miRNAs. We demonstrate that miR-310/13 can modulate Armadillo (Arm; Drosophila β-catenin) expression and activity by directly targeting the 3'-UTRs of arm and pangolin (Drosophila TCF) in vivo. Notably, the miR-310/13-deficient flies exhibit abnormal germ and somatic cell differentiation in the male gonad, which can be rescued by reducing Arm protein levels or activity. Our results implicate a previously unrecognized function for miR-310/13 in dampening the activity of Arm in early somatic and germline progenitor cells, whereby inappropriate/sustained activation of Arm-mediated signaling or cell adhesion may impact normal differentiation in the Drosophila male gonad.
Collapse
Affiliation(s)
- Raluca Pancratov
- New York University Langone Medical Center, Department of Pharmacology and the NYU Cancer Institute, 522 First Avenue, SRB #1211, New York, NY 10016, USA
| | - Felix Peng
- New York University Langone Medical Center, Department of Pharmacology and the NYU Cancer Institute, 522 First Avenue, SRB #1211, New York, NY 10016, USA
| | - Peter Smibert
- Sloan-Kettering Institute, Department of Developmental Biology, 1275 York Avenue Box 252, New York, NY 10065, USA
| | - Jr-Shiuan Yang
- Sloan-Kettering Institute, Department of Developmental Biology, 1275 York Avenue Box 252, New York, NY 10065, USA
| | - Emily Ruth Olson
- New York University Langone Medical Center, Department of Pharmacology and the NYU Cancer Institute, 522 First Avenue, SRB #1211, New York, NY 10016, USA
| | - Ciaran Guha-Gilford
- New York University Langone Medical Center, Department of Pharmacology and the NYU Cancer Institute, 522 First Avenue, SRB #1211, New York, NY 10016, USA
| | - Amol J. Kapoor
- New York University Langone Medical Center, Department of Pharmacology and the NYU Cancer Institute, 522 First Avenue, SRB #1211, New York, NY 10016, USA
| | - Feng-Xia Liang
- New York University Langone Medical Center, Office of Collaborative Science, Microscopy Core, 550 First Avenue, New York, NY 10016, USA
| | - Eric C. Lai
- Sloan-Kettering Institute, Department of Developmental Biology, 1275 York Avenue Box 252, New York, NY 10065, USA
| | - Maria Sol Flaherty
- New York University Langone Medical Center, Department of Pharmacology and the NYU Cancer Institute, 522 First Avenue, SRB #1211, New York, NY 10016, USA
- City University of New York, New York City College of Technology, Biological Sciences Department, 300 Jay Street, Brooklyn, NY 11201, USA
| | - Ramanuj DasGupta
- New York University Langone Medical Center, Department of Pharmacology and the NYU Cancer Institute, 522 First Avenue, SRB #1211, New York, NY 10016, USA
| |
Collapse
|
26
|
Grossmann D, Prpic NM. Egfr signaling regulates distal as well as medial fate in the embryonic leg of Tribolium castaneum. Dev Biol 2012; 370:264-72. [DOI: 10.1016/j.ydbio.2012.08.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2012] [Revised: 07/18/2012] [Accepted: 08/10/2012] [Indexed: 11/30/2022]
|
27
|
Namigai EKO, Suzuki Y. Functional conservation and divergence of BMP ligands in limb development and lipid homeostasis of holometabolous insects. Evol Dev 2012; 14:296-310. [PMID: 23017077 DOI: 10.1111/j.1525-142x.2012.546.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Bone morphogenetic protein (BMP) ligands play key roles in regulating morphological and physiological traits. To investigate how the functions of BMP ligands have evolved among insects, the roles of two key BMP ligands, decapentaplegic (dpp) and glass bottom boat (gbb), were studied in the flour beetle, Tribolium castaneum. RNA interference-mediated knockdown revealed that the role of dpp in establishing limb segmentation is conserved among insects. Based on the expression pattern of dpp in the presumptive leg tarsal segments, we propose that the function of dpp has evolved through heterochronic changes during the evolution of complete metamorphosis. Gbb1 was found to be necessary for sculpting the tarsal segment morphology characteristic of beetles. Knockdown of Dpp and Gbb1 expression also resulted in transparent larvae and reduced triglyceride levels, indicating their critical roles in maintaining lipid homeostasis. Both knockdown phenotypes were mediated by larval translucida. Because only Gbb regulates lipid metabolism in Drosophila, regulation of lipid homeostasis appears to have evolved by developmental systems drift. Thus, developmental systems drift may underlie evolution of both morphology and physiological processes.
Collapse
Affiliation(s)
- Erica K O Namigai
- Department of Biological Sciences, Wellesley College, 106 Central St., Wellesley, MA 02481, USA
| | | |
Collapse
|
28
|
Estella C, Voutev R, Mann RS. A dynamic network of morphogens and transcription factors patterns the fly leg. Curr Top Dev Biol 2012; 98:173-98. [PMID: 22305163 DOI: 10.1016/b978-0-12-386499-4.00007-0] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Animal appendages require a proximodistal (PD) axis, which forms orthogonally from the two main body axes, anteroposterior and dorsoventral. In this review, we discuss recent advances that begin to provide insights into the molecular mechanisms controlling PD axis formation in the Drosophila leg. In this case, two morphogens, Wingless (Wg) and Decapentaplegic (Dpp), initiate a genetic cascade that, together with growth of the leg imaginal disc, establishes the PD axis. The analysis of cis-regulatory modules (CRMs) that control the expression of genes at different positions along the PD axis has been particularly valuable in dissecting this complex process. From these experiments, it appears that only one concentration of Wg and Dpp are required to initiate PD axis formation by inducing the expression of Distal-less (Dll), a homeodomain-encoding gene that is required for leg development. Once Dll is turned on, it activates the medially expressed gene dachshund (dac). Cross-regulation between Dll and dac, together with cell proliferation in the growing leg imaginal disc, results in the formation of a rudimentary PD axis. Wg and Dpp also initiate the expression of ligands for the EGFR pathway, which in turn induces the expression of a series of target genes that pattern the distal-most portion of the leg.
Collapse
Affiliation(s)
- Carlos Estella
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, New York, USA
| | | | | |
Collapse
|
29
|
Giorgianni MW, Mann RS. Establishment of medial fates along the proximodistal axis of the Drosophila leg through direct activation of dachshund by Distalless. Dev Cell 2011; 20:455-68. [PMID: 21497759 DOI: 10.1016/j.devcel.2011.03.017] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2011] [Revised: 03/21/2011] [Accepted: 03/24/2011] [Indexed: 01/28/2023]
Abstract
The proximodistal (PD) axis of the Drosophila leg is thought to be established by the combined gradients of two secreted morphogens, Wingless (Wg) and Decapentaplegic (Dpp). According to this model, high [Wg+Dpp] activates Distalless (Dll) and represses dachshund (dac) in the distal cells of the leg disc, while intermediate [Wg+Dpp] activates dac in medial tissue. To test this model we identified and characterized a dac cis-regulatory element (dac RE) that recapitulates dac's medial expression domain during leg development. Counter to the gradient model, we find that Wg and Dpp do not act in a graded manner to activate RE. Instead, dac RE is activated directly by Dll and repressed distally by a combination of factors, including the homeodomain protein Bar. Thus, medial leg fates are established via a regulatory cascade in which Wg+Dpp activate Dll and then Dll directly activates dac, with Wg+Dpp as less critical, permissive inputs.
Collapse
Affiliation(s)
- Matt W Giorgianni
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA
| | | |
Collapse
|
30
|
Baker NE, Firth LC. Retinal determination genes function along with cell-cell signals to regulate Drosophila eye development: examples of multi-layered regulation by master regulators. Bioessays 2011; 33:538-46. [PMID: 21607995 DOI: 10.1002/bies.201000131] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
It is thought that retinal determination (RD) gene products define the response made to cell-cell signals in the field of eye development by binding to enhancers of genes that are also regulated by cell-cell signaling pathways. In Drosophila, RD genes, including eyeless, teashirt, eyes absent, dachsous, and sine oculis, are required for normal eye development and can induce ectopic eyes when mis-expressed. Characterization of the enhancers responsible for eye expression of the hedgehog, shaven, and atonal genes, as well as the dynamics of RD gene expression themselves, now suggest a multilayered network whereby transcriptional regulation by either RD genes or cell-cell signaling pathways can sometimes be indirect and mediated by other transcription factor intermediates. In this updated view of the interaction between extracellular information and cell intrinsic programs during development, regulation of individual genes might sometimes be several steps removed from either the RD genes or the cell-cell signaling pathways that nevertheless govern their expression.
Collapse
Affiliation(s)
- Nicholas E Baker
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY, USA; Department of Opthalmology and Visual Sciences, Albert Einstein College of Medicine, Bronx, NY, USA.
| | | |
Collapse
|
31
|
Ahn Y, Zou J, Mitchell PJ. Segment-specific regulation of the Drosophila AP-2 gene during leg and antennal development. Dev Biol 2011; 355:336-48. [PMID: 21575621 DOI: 10.1016/j.ydbio.2011.04.032] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2010] [Revised: 04/02/2011] [Accepted: 04/28/2011] [Indexed: 11/18/2022]
Abstract
Segmentation involves subdivision of a developing body part into multiple repetitive units during embryogenesis. In Drosophila and other insects, embryonic segmentation is regulated by genes expressed in the same domain of every segment. Less is known about the molecular basis for segmentation of individual body parts occurring at later developmental stages. The Drosophila transcription factor AP-2 gene, dAP-2, is required for outgrowth of leg and antennal segments and is expressed in every segment boundary within the larval imaginal discs. To investigate the molecular mechanisms generating the segmentally repetitive pattern of dAP-2 expression, we performed transgenic reporter analyses and isolated multiple cis-regulatory elements that can individually or cooperatively recapitulate endogenous dAP-2 expression in different segments of the appendages. We further analyzed an enhancer specific for the proximal femur region which corresponds to the distal-most expression domain of homothorax (hth) in the leg imaginal discs. Hth is known to be responsible for the nuclear localization and, hence, function of the Hox cofactor, Extradenticle (Exd). We show that both Hth and Exd are required for dAP-2 expression in the femur and that a conserved Exd/Hox binding site is essential for enhancer activity. Our loss- and gain-of-function studies further support direct regulation of dAP-2 by Hox proteins and suggest that Hox proteins function redundantly in dAP-2 regulation. Our study reveals that discrete segment-specific enhancers underlie the seemingly simple repetitive expression of dAP-2 and provides evidence for direct regulation of leg segmentation by regional combinations of the proximodistal patterning genes.
Collapse
Affiliation(s)
- Youngwook Ahn
- Department of Biochemistry and Molecular Biology, Eberly College of Science, Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA 16802, USA.
| | | | | |
Collapse
|
32
|
Control of Distal-less expression in the Drosophila appendages by functional 3' enhancers. Dev Biol 2011; 353:396-410. [PMID: 21320482 DOI: 10.1016/j.ydbio.2011.02.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2010] [Revised: 02/04/2011] [Accepted: 02/06/2011] [Indexed: 11/22/2022]
Abstract
The expression of the Hox gene Distal-less (Dll) directs the development of appendages in a wide variety of animals. In Drosophila, its expression is subjected to a complex developmental control. In the present work we have studied a 17kb genomic region in the Dll locus which lies downstream of the coding sequence and found control elements of primary functional importance for the expression of Dll in the leg and in other tissues. Of particular interest is a control element, which we have called LP, which drives expression of Dll in the leg primordium from early embryonic development, and whose deletion causes severe truncation and malformation of the adult leg. This is the first Dll enhancer for which, in addition to the ability to drive expression of a reporter, a role can be demonstrated in the expression of the endogenous Dll gene and in the development of the leg. In addition, our results suggest that some enhancers, contrary to the widely accepted notion, may require a specific 5' or 3' position with respect to the transcribed region.
Collapse
|
33
|
Estella C, Mann RS. Non-redundant selector and growth-promoting functions of two sister genes, buttonhead and Sp1, in Drosophila leg development. PLoS Genet 2010; 6:e1001001. [PMID: 20585625 PMCID: PMC2891808 DOI: 10.1371/journal.pgen.1001001] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2010] [Accepted: 05/25/2010] [Indexed: 11/18/2022] Open
Abstract
The radically distinct morphologies of arthropod and tetrapod legs argue that these appendages do not share a common evolutionary origin. Yet, despite dramatic differences in morphology, it has been known for some time that transcription factors encoded by the Distalless (Dll)/Dlx gene family play a critical role in the development of both structures. Here we show that a second transcription factor family encoded by the Sp8 gene family, previously implicated in vertebrate limb development, also plays an early and fundamental role in arthropod leg development. By simultaneously removing the function of two Sp8 orthologs, buttonhead (btd) and Sp1, during Drosophila embryogenesis, we find that adult leg development is completely abolished. Remarkably, in the absence of these factors, transformations from ventral to dorsal appendage identities are observed, suggesting that adult dorsal fates become derepressed when ventral fates are eliminated. Further, we show that Sp1 plays a much more important role in ventral appendage specification than btd and that Sp1 lies genetically upstream of Dll. In addition to these selector-like gene functions, Sp1 and btd are also required during larval stages for the growth of the leg. Vertebrate Sp8 can rescue many of the functions of the Drosophila genes, arguing that these activities have been conserved, despite more than 500 million years of independent evolution. These observations suggest that an ancient Sp8/Dlx gene cassette was used in an early metazoan for primitive limb-like outgrowths and that this cassette was co-opted multiple times for appendage formation in multiple animal phyla.
Collapse
Affiliation(s)
- Carlos Estella
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, New York, United States of America
| | - Richard S. Mann
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, New York, United States of America
- * E-mail:
| |
Collapse
|
34
|
Egger-Adam D, Katanaev VL. The trimeric G protein Go inflicts a double impact on axin in the Wnt/frizzled signaling pathway. Dev Dyn 2010; 239:168-83. [PMID: 19705439 DOI: 10.1002/dvdy.22060] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The Wnt/Frizzled signaling pathway plays crucial roles in animal development and is deregulated in many cases of carcinogenesis. We and others have previously demonstrated that Frizzled proteins initiating the intracellular signaling are typical G protein-coupled receptors and rely on the trimeric G protein Go for Wnt transduction in Drosophila. However, the mode of action of Go and its interplay with other transducers of the pathway such as Dishevelled and Axin remained unclear. Here we show that the alpha-subunit of Go directly acts on Axin, the multidomain protein playing a negative role in the Wnt signaling. G alpha o physically binds Axin and re-localizes it to the plasma membrane. Furthermore, G alpha o suppresses Axin's inhibitory action on the Wnt pathway in Drosophila wing development. The interaction of G alpha o with Axin critically depends on the RGS domain of the latter. Additionally, we show that the betagamma-component of Go can directly bind and recruit Dishevelled from cytoplasm to the plasma membrane, where activated Dishevelled can act on the DIX domain of Axin. Thus, the two components of the trimeric Go protein mediate a double-direct and indirect-impact on different regions of Axin, which likely serves to ensure a robust inhibition of this protein and transduction of the Wnt signal.
Collapse
Affiliation(s)
- Diane Egger-Adam
- Department of Biology, University of Konstanz, Konstanz, Germany
| | | |
Collapse
|
35
|
Separable functions of wingless in distal and ventral patterning of the Tribolium leg. Dev Genes Evol 2009; 219:469-79. [PMID: 20024581 PMCID: PMC2811246 DOI: 10.1007/s00427-009-0310-z] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2009] [Accepted: 11/23/2009] [Indexed: 11/29/2022]
Abstract
The gene wingless (wg) in Drosophila is an important factor in leg development. During embryonic development wg is involved in the allocation of the limb primordia. During imaginal disk development wg is involved in distal development and it has a separate role in ventral development. The expression pattern of wg is highly conserved in all arthropods (comprising data from insects, myriapods, crustaceans, and chelicerates), suggesting that its function in leg development is also conserved. However, recent work in other insects (e.g. the milkweed bug Oncopeltus fasciatus) argued against a role of wg in leg development. We have studied the role of wg in leg development of the flour beetle Tribolium castaneum. Using stage-specific staggered embryonic RNAi in wild-type and transgenic EGFP expressing enhancer trap lines we are able to demonstrate separable functions of Tribolium wg in distal and in ventral leg development. The distal role affects all podomeres distal to the coxa, whereas the ventral role is restricted to cells along the ventral midline of the legs. In addition, severe leg defects after injection into early embryonic stages are evidence that wg is also involved in proximal development and limb allocation in Tribolium. Our data suggest that the roles of wg in leg development are highly conserved in the holometabolous insects. Further studies will reveal the degree of conservation in other arthropod groups.
Collapse
|
36
|
Peng HW, Slattery M, Mann RS. Transcription factor choice in the Hippo signaling pathway: homothorax and yorkie regulation of the microRNA bantam in the progenitor domain of the Drosophila eye imaginal disc. Genes Dev 2009; 23:2307-19. [PMID: 19762509 DOI: 10.1101/gad.1820009] [Citation(s) in RCA: 170] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The accurate control of cell proliferation and survival is critical for animal development. The Hippo tumor suppressor pathway regulates both of these parameters by controlling the nuclear availability of the transcriptional coactivator Yorkie (Yki), which regulates downstream target genes together with Scalloped (Sd), a DNA-binding protein. Here we provide evidence that Yki can also regulate target genes in conjunction with Homothorax (Hth) and Teashirt (Tsh), two DNA-binding transcription factors expressed in the uncommitted progenitor cells of the Drosophila eye imaginal disc. Clonal analyses demonstrate that Hth and Tsh promote cell proliferation and protect eye progenitor cells from apoptosis. Genetic epistasis experiments suggest that Hth and Tsh execute these functions with Yki, in part by up-regulating the microRNA bantam. A physical interaction between Hth and Yki can be detected in cell culture, and we show that Hth and Yki are bound to a DNA sequence approximately 14 kb upstream of the bantam hairpin in eye imaginal disc cells, arguing that this regulation is direct. These data suggest that the Hippo pathway uses different DNA-binding transcription factors depending on the cellular context. In the eye disc, Hth and Tsh provide spatial information to this pathway, promoting cell proliferation and survival in the progenitor domain.
Collapse
Affiliation(s)
- H Wayne Peng
- Department of Biochemistry and Molecular Biophysics, Columbia University Medical Center, New York, New York 10032, USA
| | | | | |
Collapse
|
37
|
Insertional mutagenesis screening identifies the zinc finger homeodomain 2 (zfh2) gene as a novel factor required for embryonic leg development in Tribolium castaneum. Dev Genes Evol 2009; 219:399-407. [PMID: 19760181 PMCID: PMC2773040 DOI: 10.1007/s00427-009-0303-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2009] [Accepted: 08/30/2009] [Indexed: 11/18/2022]
Abstract
The genetic control of leg development is well characterized in the fly Drosophila melanogaster. These control mechanisms, however, must differ to some degree between different insect species to account for the morphological diversity of thoracic legs in the insects. The legs of the flour beetle Tribolium castaneum differ from the Drosophila legs in their developmental mode as well as in their specific morphology especially at the larval stage. In order to identify genes involved in the morphogenesis of the Tribolium larval legs, we have analyzed EGFP enhancer trap lines of Tribolium. We have identified the zfh2 gene as a novel factor required for normal leg development in Tribolium. RNA interference with zfh2 function leads to two alternative classes of leg phenotype. The loss of a leg segment boundary and the generation of ectopic outgrowths in one class of phenotype suggest a role in leg segmentation and segment growth. The malformation of the pretarsal claw in the second class of phenotype suggests a role in distal development and the morphogenesis of the claw-shaped morphology of the pretarsus. This suggests that zfh2 is involved in the regulation of an unidentified target gene in a concentration-dependent manner. Our results demonstrate that enhancer trap screens in T. castaneum have the potential to identify novel gene functions regulating specific developmental processes.
Collapse
|
38
|
Svendsen PC, Formaz-Preston A, Leal SM, Brook WJ. The Tbx20 homologs midline and H15 specify ventral fate in the Drosophila melanogaster leg. Development 2009; 136:2689-93. [DOI: 10.1242/dev.037911] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Regional fates in the developing limbs of Drosophila melanogasterare controlled by selector gene transcription factors. Ventral fate in the fly leg is specified by the expression of the ligand Wingless. We present evidence that midline and H15, members of the Tbx20 class of T-box transcription factors, are key mediators of the Wingless signal in the formation of the ventral region of the fly leg. midline and H15 are restricted to identical ventral domains of expression through activation by Wingless and repression by the dorsal signal Decapentaplegic. midline and H15 function redundantly and cell autonomously in the formation of ventral-specific structures. Conversely, midlineis sufficient to induce ventral fate. Finally, the induction of ectopic ventral fate by mid is compromised when Wingless signaling is attenuated, suggesting that Wingless acts both upstream and in parallel with midline/H15 to specify ventral fate. Based on these results,we propose that midline and H15 may be considered as the selector genes for ventral leg fate.
Collapse
Affiliation(s)
- Pia C. Svendsen
- Genes and Development Research Group, Department of Biochemistry and Molecular Biology, Department of Medical Genetics, University of Calgary, 3330 Hospital Drive NW, Calgary AB, Canada T2N 4N1
| | - Ann Formaz-Preston
- Genes and Development Research Group, Department of Biochemistry and Molecular Biology, Department of Medical Genetics, University of Calgary, 3330 Hospital Drive NW, Calgary AB, Canada T2N 4N1
| | - Sandra M. Leal
- Department of Biological Sciences, University of Southern Mississippi, 118 College Drive #5018, Hattiesburg, MS 39406-0001, USA
| | - William J. Brook
- Genes and Development Research Group, Department of Biochemistry and Molecular Biology, Department of Medical Genetics, University of Calgary, 3330 Hospital Drive NW, Calgary AB, Canada T2N 4N1
| |
Collapse
|
39
|
Lineage and birth date specify motor neuron targeting and dendritic architecture in adult Drosophila. J Neurosci 2009; 29:6904-16. [PMID: 19474317 DOI: 10.1523/jneurosci.1585-09.2009] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Locomotion in adult Drosophila depends on motor neurons that target a set of multifibered muscles in the appendages. Here, we describe the development of motor neurons in adult Drosophila, focusing on those that target the legs. Leg motor neurons are born from at least 11 neuroblast lineages, but two lineages generate the majority of these cells. Using genetic single-cell labeling methods, we analyze the birth order, muscle targeting, and dendritic arbors for most of the leg motor neurons. Our results reveal that each leg motor neuron is born at a characteristic time of development, from a specific lineage, and has a stereotyped dendritic architecture. Motor axons that target a particular leg segment or muscle have similar dendritic arbors but can derive from different lineages. Thus, although Drosophila uses a lineage-based method to generate leg motor neurons, individual lineages are not dedicated to generate neurons that target a single leg segment or muscle type.
Collapse
|
40
|
McKay DJ, Estella C, Mann RS. The origins of the Drosophila leg revealed by the cis-regulatory architecture of the Distalless gene. Development 2009; 136:61-71. [PMID: 19036798 PMCID: PMC2653810 DOI: 10.1242/dev.029975] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/27/2008] [Indexed: 11/20/2022]
Abstract
Limb development requires the elaboration of a proximodistal (PD) axis, which forms orthogonally to previously defined dorsoventral (DV) and anteroposterior (AP) axes. In arthropods, the PD axis of the adult leg is subdivided into two broad domains, a proximal coxopodite and a distal telopodite. We show that the progressive subdivision of the PD axis into these two domains occurs during embryogenesis and is reflected in the cis-regulatory architecture of the Distalless (Dll) gene. Early Dll expression, governed by the Dll304 enhancer, is in cells that can give rise to both domains of the leg as well as to the entire dorsal (wing) appendage. A few hours after Dll304 is activated, the activity of this enhancer fades, and two later-acting enhancers assume control over Dll expression. The LT enhancer is expressed in cells that will give rise to the entire telopodite, and only the telopodite. By contrast, cells that activate the DKO enhancer will give rise to a leg-associated larval sensory structure known as the Keilin's organ (KO). Cells that activate neither LT nor DKO, but had activated Dll304, will give rise to the coxopodite. In addition, we describe the trans-acting signals controlling the LT and DKO enhancers, and show, surprisingly, that the coxopodite progenitors begin to proliferate approximately 24 hours earlier than the telopodite progenitors. Together, these findings provide a complete and high-resolution fate map of the Drosophila appendage primordia, linking the primary domains to specific cis-regulatory elements in Dll.
Collapse
Affiliation(s)
- Daniel J McKay
- Department of Biochemistry and Molecular Biophysics, Integrated Program in Cellular, Molecular, Structural and Genetic Studies, Columbia University, 701 W. 168th Street, HHSC 1104, New York, NY 10032, USA
| | | | | |
Collapse
|
41
|
Pueyo JI, Couso JP. The 11-aminoacid long Tarsal-less peptides trigger a cell signal in Drosophila leg development. Dev Biol 2008; 324:192-201. [PMID: 18801356 DOI: 10.1016/j.ydbio.2008.08.025] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2008] [Revised: 08/13/2008] [Accepted: 08/26/2008] [Indexed: 10/21/2022]
Abstract
The polycistronic and non-canonical gene tarsal-less encodes several short peptides 11 to 32 aminoacids long. tarsal-less is required for embryonic and imaginal development in Drosophila, but the molecular and cellular bases of its function are not known. Here we show that tarsal-less function triggers a cell signal. This signal has a range of 2-3 cells in Drosophila legs and may be provided directly by the Tarsal-less peptides. During leg development, this Tarsal-less signal implements the patterning activity of a tarsal boundary and regulates the transcription of several genes in a specific manner. Thus tarsal-less is necessary for the intercalation of the tarsal segments two to four and for the activation of the homeobox gene apterous, the Zinc-finger gene rotund and the bHLH-PAS gene spineless, and for the repression of the homeobox gene Bar and the putative transcription factor dacshund. These regulatory effects complement the known genetic scenario required for distal leg development and explain the requirements for tarsal-less in this process.
Collapse
Affiliation(s)
- Jose Ignacio Pueyo
- School of Life Sciences, University of Sussex, Falmer, Brighton BN1 9QG, UK
| | | |
Collapse
|
42
|
Molecular integration of wingless, decapentaplegic, and autoregulatory inputs into Distalless during Drosophila leg development. Dev Cell 2008; 14:86-96. [PMID: 18194655 DOI: 10.1016/j.devcel.2007.11.002] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2007] [Revised: 10/22/2007] [Accepted: 11/01/2007] [Indexed: 01/19/2023]
Abstract
The development of the Drosophila leg requires both Decapentaplegic (Dpp) and Wingless (Wg), two signals that establish the proximo-distal (PD) axis by activating target genes such as Distalless (Dll). Dll expression in the leg depends on a Dpp- and Wg-dependent phase and a maintenance phase that is independent of these signals. Here, we show that accurate Dll expression in the leg results from the synergistic interaction between two cis-regulatory elements. The Leg Trigger (LT) element directly integrates Wg and Dpp inputs and is only active in cells receiving high levels of both signals. The Maintenance (M) element is able to maintain Wg- and Dpp-independent expression, but only when in cis to LT. M, which includes the native Dll promoter, functions as an autoregulatory element by directly binding Dll. The "trigger-maintenance" model describes a mechanism by which secreted morphogens act combinatorially to induce the stable expression of target genes.
Collapse
|