1
|
Duester G. Early retinoic acid signaling organizes the body axis and defines domains for the forelimb and eye. Curr Top Dev Biol 2024; 161:1-32. [PMID: 39870430 PMCID: PMC11969570 DOI: 10.1016/bs.ctdb.2024.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2025]
Abstract
All-trans RA (ATRA) is a small molecule derived from retinol (vitamin A) that directly controls gene expression at the transcriptional level by serving as a ligand for nuclear ATRA receptors. ATRA is produced by ATRA-generating enzymes that convert retinol to retinaldehyde (retinol dehydrogenase; RDH10) followed by conversion of retinaldehyde to ATRA (retinaldehyde dehydrogenase; ALDH1A1, ALDH1A2, or ALDH1A3). Determining what ATRA normally does during vertebrate development has been challenging as studies employing ATRA gain-of-function (RA treatment) often do not agree with genetic loss-of-function studies that remove ATRA via knockouts of ATRA-generating enzymes. In mouse embryos, ATRA is first generated at stage E7.5 by ATRA-generating enzymes whose genes are first expressed at that stage. This article focuses upon what ATRA normally does at early stages based upon these knockout studies. It has been observed that early-generated ATRA performs three essential functions: (1) activation of genes that control hindbrain and spinal cord patterning; (2) repression of Fgf8 in the heart field and caudal progenitors to provide an FGF8-free region in the trunk essential for somitogenesis, heart morphogenesis, and initiation of forelimb fields; and (3) actions that stimulate invagination of the optic vesicle to form the optic cup.
Collapse
Affiliation(s)
- Gregg Duester
- Development, Aging, and Regeneration Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, United States.
| |
Collapse
|
2
|
Isoherranen N, Wen YW. The interplay between retinoic acid binding proteins and retinoic acid degrading enzymes in modulating retinoic acid concentrations. Curr Top Dev Biol 2024; 161:167-200. [PMID: 39870433 DOI: 10.1016/bs.ctdb.2024.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2025]
Abstract
The active metabolite of vitamin A, all-trans-retinoic acid (atRA), is critical for maintenance of many cellular processes. Although the enzymes that can synthesize and clear atRA in mammals have been identified, their tissue and cell-type specific roles are still not fully established. Based on the plasma protein binding, tissue distribution and lipophilicity of atRA, atRA partitions extensively to lipid membranes and other neutral lipids in cells. As a consequence, free atRA concentrations in cells are expected to be exceedingly low. As such mechanisms must exist that allow sufficiently high atRA concentrations to occur for binding to retinoic acid receptor (RARs) and for RAR mediated signaling. Kinetic simulations suggest that cellular retinoic acid binding proteins (CRABPs) provide a cytosolic reservoir for atRA to allow high enough cytosolic concentrations that enable RAR signaling. Yet, the different CRABP family members CRABP1 and CRABP2 may serve different functions in this context. CRABP1 may reside in the cytosol as a member of a cytosolic signalosome and CRABP2 may bind atRA in the cytosol and localize to the nucleus. Both CRABPs appear to interact with the atRA-degrading cytochrome P450 (CYP) family 26 enzymes in the endoplasmic reticulum. These interactions, together with the expression levels of the CRABPs and CYP26s, likely modulate cellular atRA concentration gradients and tissue atRA concentrations in a tightly coordinated manner. This review provides a summary of the current knowledge of atRA distribution, metabolism and protein binding and how these characteristics may alter tissue atRA concentrations.
Collapse
Affiliation(s)
- Nina Isoherranen
- Department of Pharmaceutics, School of Pharmacy, University of Washington.
| | - Yue Winnie Wen
- Department of Pharmaceutics, School of Pharmacy, University of Washington
| |
Collapse
|
3
|
Nakamura M, Sandell LL. Multiple roles for retinoid signaling in craniofacial development. Curr Top Dev Biol 2024; 161:33-57. [PMID: 39870438 DOI: 10.1016/bs.ctdb.2024.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2025]
Abstract
Retinoic acid (RA) signaling plays multiple essential roles in development of the head and face. Animal models with mutations in genes involved in RA signaling have enabled understanding of craniofacial morphogenic processes that are regulated by the retinoid pathway. During craniofacial morphogenesis RA signaling is active in spatially restricted domains defined by the expression of genes involved in RA production and RA breakdown. The spatial distribution of RA signaling changes with progressive development, corresponding to a multiplicity of craniofacial developmental processes that are regulated by RA. One important role of RA signaling occurs in the hindbrain. There RA contributes to specification of the anterior-posterior (AP) axis of the developing CNS and to the neural crest cells (NCC) which form the bones and nerves of the face and pharyngeal region. In the optic vesicles and frontonasal process RA orchestrates development of the midface, eyes, and nasal airway. Additional roles for RA in craniofacial development include regulation of submandibular salivary gland development and maintaining patency in the sutures of the cranial vault.
Collapse
Affiliation(s)
- Masahiro Nakamura
- Department of Oral Immunology and Infectious Diseases, University of Louisville School of Dentistry, Louisville, KY, United States
| | - Lisa L Sandell
- Department of Oral Immunology and Infectious Diseases, University of Louisville School of Dentistry, Louisville, KY, United States.
| |
Collapse
|
4
|
Moreno-Oñate M, Gallardo-Fuentes L, Martínez-García PM, Naranjo S, Jiménez-Gancedo S, Tena JJ, Santos-Pereira JM. Rewiring of the epigenome and chromatin architecture by exogenously induced retinoic acid signaling during zebrafish embryonic development. Nucleic Acids Res 2024; 52:3682-3701. [PMID: 38321954 PMCID: PMC11040003 DOI: 10.1093/nar/gkae065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 01/15/2024] [Accepted: 01/24/2024] [Indexed: 02/08/2024] Open
Abstract
Retinoic acid (RA) is the ligand of RA receptors (RARs), transcription factors that bind to RA response elements. RA signaling is required for multiple processes during embryonic development, including body axis extension, hindbrain antero-posterior patterning and forelimb bud initiation. Although some RA target genes have been identified, little is known about the genome-wide effects of RA signaling during in vivo embryonic development. Here, we stimulate the RA pathway by treating zebrafish embryos with all-trans-RA (atRA) and use a combination of RNA-seq, ATAC-seq, ChIP-seq and HiChIP to gain insight into the molecular mechanisms by which exogenously induced RA signaling controls gene expression. We find that RA signaling is involved in anterior/posterior patterning, central nervous system development, and the transition from pluripotency to differentiation. AtRA treatment also alters chromatin accessibility during early development and promotes chromatin binding of RARαa and the RA targets Hoxb1b, Meis2b and Sox3, which cooperate in central nervous system development. Finally, we show that exogenous RA induces a rewiring of chromatin architecture, with alterations in chromatin 3D interactions involving target genes. Altogether, our findings identify genome-wide targets of RA signaling and provide a molecular mechanism by which developmental signaling pathways regulate target gene expression by altering chromatin topology.
Collapse
Affiliation(s)
- Marta Moreno-Oñate
- Centro Andaluz de Biología del Desarrollo (CABD), Consejo Superior de Investigaciones Científicas/Universidad Pablo de Olavide, 41013 Sevilla, Spain
| | - Lourdes Gallardo-Fuentes
- Centro Andaluz de Biología del Desarrollo (CABD), Consejo Superior de Investigaciones Científicas/Universidad Pablo de Olavide, 41013 Sevilla, Spain
| | - Pedro M Martínez-García
- Centro Andaluz de Biología del Desarrollo (CABD), Consejo Superior de Investigaciones Científicas/Universidad Pablo de Olavide, 41013 Sevilla, Spain
| | - Silvia Naranjo
- Centro Andaluz de Biología del Desarrollo (CABD), Consejo Superior de Investigaciones Científicas/Universidad Pablo de Olavide, 41013 Sevilla, Spain
| | - Sandra Jiménez-Gancedo
- Centro Andaluz de Biología del Desarrollo (CABD), Consejo Superior de Investigaciones Científicas/Universidad Pablo de Olavide, 41013 Sevilla, Spain
| | - Juan J Tena
- Centro Andaluz de Biología del Desarrollo (CABD), Consejo Superior de Investigaciones Científicas/Universidad Pablo de Olavide, 41013 Sevilla, Spain
| | - José M Santos-Pereira
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, 41013 Sevilla, Spain
- Departamento de Biología Celular, Facultad de Biología, Universidad de Sevilla, 41012 Sevilla, Spain
| |
Collapse
|
5
|
Bedois AMH, Parker HJ, Price AJ, Morrison JA, Bronner ME, Krumlauf R. Sea lamprey enlightens the origin of the coupling of retinoic acid signaling to vertebrate hindbrain segmentation. Nat Commun 2024; 15:1538. [PMID: 38378737 PMCID: PMC10879103 DOI: 10.1038/s41467-024-45911-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 02/06/2024] [Indexed: 02/22/2024] Open
Abstract
Retinoic acid (RA) is involved in antero-posterior patterning of the chordate body axis and, in jawed vertebrates, has been shown to play a major role at multiple levels of the gene regulatory network (GRN) regulating hindbrain segmentation. Knowing when and how RA became coupled to the core hindbrain GRN is important for understanding how ancient signaling pathways and patterning genes can evolve and generate diversity. Hence, we investigated the link between RA signaling and hindbrain segmentation in the sea lamprey Petromyzon marinus, an important jawless vertebrate model providing clues to decipher ancestral vertebrate features. Combining genomics, gene expression, and functional analyses of major components involved in RA synthesis (Aldh1as) and degradation (Cyp26s), we demonstrate that RA signaling is coupled to hindbrain segmentation in lamprey. Thus, the link between RA signaling and hindbrain segmentation is a pan vertebrate feature of the hindbrain and likely evolved at the base of vertebrates.
Collapse
Affiliation(s)
- Alice M H Bedois
- Stowers Institute for Medical Research, Kansas City, MO, 64110, USA
| | - Hugo J Parker
- Stowers Institute for Medical Research, Kansas City, MO, 64110, USA
| | - Andrew J Price
- Stowers Institute for Medical Research, Kansas City, MO, 64110, USA
| | - Jason A Morrison
- Stowers Institute for Medical Research, Kansas City, MO, 64110, USA
| | - Marianne E Bronner
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, 91125, USA
| | - Robb Krumlauf
- Stowers Institute for Medical Research, Kansas City, MO, 64110, USA.
- Department of Anatomy and Cell Biology, Kansas University Medical Center, Kansas City, MO, 66160, USA.
| |
Collapse
|
6
|
Bernheim S, Borgel A, Le Garrec JF, Perthame E, Desgrange A, Michel C, Guillemot L, Sart S, Baroud CN, Krezel W, Raimondi F, Bonnet D, Zaffran S, Houyel L, Meilhac SM. Identification of Greb1l as a genetic determinant of crisscross heart in mice showing torsion of the heart tube by shortage of progenitor cells. Dev Cell 2023; 58:2217-2234.e8. [PMID: 37852253 DOI: 10.1016/j.devcel.2023.09.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 04/28/2023] [Accepted: 09/20/2023] [Indexed: 10/20/2023]
Abstract
Despite their burden, most congenital defects remain poorly understood, due to lack of knowledge of embryological mechanisms. Here, we identify Greb1l mutants as a mouse model of crisscross heart. Based on 3D quantifications of shape changes, we demonstrate that torsion of the atrioventricular canal occurs together with supero-inferior ventricles at E10.5, after heart looping. Mutants phenocopy partial deficiency in retinoic acid signaling, which reflect overlapping pathways in cardiac precursors. Spatiotemporal gene mapping and cross-correlated transcriptomic analyses further reveal the role of Greb1l in maintaining a pool of dorsal pericardial wall precursor cells during heart tube elongation, likely by controlling ribosome biogenesis and cell differentiation. Consequently, we observe growth arrest and malposition of the outflow tract, which are predictive of abnormal tube remodeling in mutants. Our work on a rare cardiac malformation opens novel perspectives on the origin of a broader spectrum of congenital defects associated with GREB1L in humans.
Collapse
Affiliation(s)
- Ségolène Bernheim
- Université Paris Cité, Imagine-Institut Pasteur, Unit of Heart Morphogenesis, INSERM UMR1163, 75015 Paris, France
| | - Adrien Borgel
- Université Paris Cité, Imagine-Institut Pasteur, Unit of Heart Morphogenesis, INSERM UMR1163, 75015 Paris, France
| | - Jean-François Le Garrec
- Université Paris Cité, Imagine-Institut Pasteur, Unit of Heart Morphogenesis, INSERM UMR1163, 75015 Paris, France
| | - Emeline Perthame
- Université Paris Cité, Imagine-Institut Pasteur, Unit of Heart Morphogenesis, INSERM UMR1163, 75015 Paris, France; Institut Pasteur, Université Paris Cité, Bioinformatics and Biostatistics Hub, 75015 Paris, France
| | - Audrey Desgrange
- Université Paris Cité, Imagine-Institut Pasteur, Unit of Heart Morphogenesis, INSERM UMR1163, 75015 Paris, France
| | - Cindy Michel
- Université Paris Cité, Imagine-Institut Pasteur, Unit of Heart Morphogenesis, INSERM UMR1163, 75015 Paris, France
| | - Laurent Guillemot
- Université Paris Cité, Imagine-Institut Pasteur, Unit of Heart Morphogenesis, INSERM UMR1163, 75015 Paris, France
| | - Sébastien Sart
- Institut Pasteur, Université Paris Cité, Physical Microfluidics and Bio-Engineering, Department of Genomes and Genetics, 75015 Paris, France
| | - Charles N Baroud
- Institut Pasteur, Université Paris Cité, Physical Microfluidics and Bio-Engineering, Department of Genomes and Genetics, 75015 Paris, France; Laboratoire d'Hydrodynamique, CNRS, École polytechnique, Institut Polytechnique de Paris, 91120 Palaiseau, France
| | - Wojciech Krezel
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Institut de la Santé et de la Recherche Médicale (U1258), Centre National de la Recherche Scientifique (UMR7104), Université de Strasbourg, Fédération de Médecine Translationnelle de Strasbourg, 67404 Illkirch, France
| | - Francesca Raimondi
- Pediatric Radiology Unit, Hôpital universitaire Necker-Enfants Malades, APHP, Université Paris Cité, 149 Rue de Sèvres, 75015 Paris, France; M3C-Necker, Hôpital universitaire Necker-Enfants Malades, APHP, Université Paris Cité, 149 Rue de Sèvres, 75015 Paris, France
| | - Damien Bonnet
- M3C-Necker, Hôpital universitaire Necker-Enfants Malades, APHP, Université Paris Cité, 149 Rue de Sèvres, 75015 Paris, France
| | | | - Lucile Houyel
- M3C-Necker, Hôpital universitaire Necker-Enfants Malades, APHP, Université Paris Cité, 149 Rue de Sèvres, 75015 Paris, France
| | - Sigolène M Meilhac
- Université Paris Cité, Imagine-Institut Pasteur, Unit of Heart Morphogenesis, INSERM UMR1163, 75015 Paris, France.
| |
Collapse
|
7
|
Leino SA, Constable SCJ, Streit A, Wilkinson DG. Zbtb16 mediates a switch between Fgf signalling regimes in the developing hindbrain. Development 2023; 150:dev201319. [PMID: 37642135 PMCID: PMC10508701 DOI: 10.1242/dev.201319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Accepted: 08/22/2023] [Indexed: 08/31/2023]
Abstract
Developing tissues are sequentially patterned by extracellular signals that are turned on and off at specific times. In the zebrafish hindbrain, fibroblast growth factor (Fgf) signalling has different roles at different developmental stages: in the early hindbrain, transient Fgf3 and Fgf8 signalling from rhombomere 4 is required for correct segmentation, whereas later, neuronal Fgf20 expression confines neurogenesis to specific spatial domains within each rhombomere. How the switch between these two signalling regimes is coordinated is not known. We present evidence that the Zbtb16 transcription factor is required for this transition to happen in an orderly fashion. Zbtb16 expression is high in the early anterior hindbrain, then gradually upregulated posteriorly and confined to neural progenitors. In mutants lacking functional Zbtb16, fgf3 expression fails to be downregulated and persists until a late stage, resulting in excess and more widespread Fgf signalling during neurogenesis. Accordingly, the spatial pattern of neurogenesis is disrupted in Zbtb16 mutants. Our results reveal how the distinct stage-specific roles of Fgf signalling are coordinated in the zebrafish hindbrain.
Collapse
Affiliation(s)
- Sami A. Leino
- Neural Development Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
- Centre for Craniofacial and Regenerative Biology, Faculty of Dentistry, Oral and Craniofacial Sciences, King's College London, London SE1 1UL, UK
| | - Sean C. J. Constable
- Neural Development Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Andrea Streit
- Centre for Craniofacial and Regenerative Biology, Faculty of Dentistry, Oral and Craniofacial Sciences, King's College London, London SE1 1UL, UK
| | - David G. Wilkinson
- Neural Development Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| |
Collapse
|
8
|
Bedois AMH, Parker HJ, Bronner ME, Krumlauf R. Sea lamprey enlightens the origin of the coupling of retinoic acid signaling to vertebrate hindbrain segmentation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.07.548143. [PMID: 37461675 PMCID: PMC10350081 DOI: 10.1101/2023.07.07.548143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
Retinoic acid (RA) is involved in antero-posterior patterning of the chordate body axis and, in jawed vertebrates, has been shown to play a major role at multiple levels of the gene regulatory network (GRN) regulating hindbrain segmentation. Knowing when and how RA became coupled to the core hindbrain GRN is important for understanding how ancient signaling pathways and patterning genes can evolve and generate diversity. Hence, we investigated the link between RA signaling and hindbrain segmentation in the sea lamprey Petromyzon marinus, an important jawless vertebrate model providing clues to decipher ancestral vertebrate features. Combining genomics, gene expression, and functional analyses of major components involved in RA synthesis (Aldh1as) and degradation (Cyp26s), we demonstrate that RA signaling is coupled to hindbrain segmentation in lamprey. Thus, the link between RA signaling and hindbrain segmentation is a pan vertebrate feature of the hindbrain and likely evolved at the base of vertebrates.
Collapse
Affiliation(s)
- Alice M. H. Bedois
- Stowers Institute for Medical Research, Kansas City, Missouri 64110, USA
| | - Hugo J. Parker
- Stowers Institute for Medical Research, Kansas City, Missouri 64110, USA
| | - Marianne E. Bronner
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, 91125, USA
| | - Robb Krumlauf
- Stowers Institute for Medical Research, Kansas City, Missouri 64110, USA
- Department of Anatomy and Cell Biology, Kansas University Medical Center, Kansas City, Kansas 66160, USA
| |
Collapse
|
9
|
Afzal Z, Lange JJ, Nolte C, McKinney S, Wood C, Paulson A, De Kumar B, Unruh J, Slaughter BD, Krumlauf R. Shared retinoic acid responsive enhancers coordinately regulate nascent transcription of Hoxb coding and non-coding RNAs in the developing mouse neural tube. Development 2023; 150:dev201259. [PMID: 37102683 PMCID: PMC10233718 DOI: 10.1242/dev.201259] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 04/19/2023] [Indexed: 04/28/2023]
Abstract
Signaling pathways regulate the patterns of Hox gene expression that underlie their functions in the specification of axial identity. Little is known about the properties of cis-regulatory elements and underlying transcriptional mechanisms that integrate graded signaling inputs to coordinately control Hox expression. Here, we optimized a single molecule fluorescent in situ hybridization (smFISH) technique with probes spanning introns to evaluate how three shared retinoic acid response element (RARE)-dependent enhancers in the Hoxb cluster regulate patterns of nascent transcription in vivo at the level of single cells in wild-type and mutant embryos. We predominately detect nascent transcription of only a single Hoxb gene in each cell, with no evidence for simultaneous co-transcriptional coupling of all or specific subsets of genes. Single and/or compound RARE mutations indicate that each enhancer differentially impacts global and local patterns of nascent transcription, suggesting that selectivity and competitive interactions between these enhancers is important to robustly maintain the proper levels and patterns of nascent Hoxb transcription. This implies that rapid and dynamic regulatory interactions potentiate transcription of genes through combined inputs from these enhancers in coordinating the retinoic acid response.
Collapse
Affiliation(s)
- Zainab Afzal
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
- Anatomy and Cell Biology Department, Kansas University Medical Center, Kansas City, KS 66160, USA
| | - Jeffrey J. Lange
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
| | - Christof Nolte
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
| | - Sean McKinney
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
| | - Christopher Wood
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
| | - Ariel Paulson
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
| | - Bony De Kumar
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
| | - Jay Unruh
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
| | | | - Robb Krumlauf
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
- Anatomy and Cell Biology Department, Kansas University Medical Center, Kansas City, KS 66160, USA
| |
Collapse
|
10
|
Abstract
Vitamin A (retinol) is an important nutrient for embryonic development and adult health. Early studies identified retinoic acid (RA) as a metabolite of retinol, however, its importance was not apparent. Later, it was observed that RA treatment of vertebrate embryos had teratogenic effects on limb development. Subsequently, the discovery of nuclear RA receptors (RARs) revealed that RA controls gene expression directly at the transcriptional level through a process referred to as RA signaling. This important discovery led to further studies demonstrating that RA and RARs are required for normal embryonic development. The determination of RA function during normal development has been challenging as RA gain-of-function studies often lead to conclusions about normal development that conflict with RAR or RA loss-of-function studies. However, genetic loss-of-function studies have identified direct target genes of endogenous RA/RAR that are required for normal development of specific tissues. Thus, genetic loss-of-function studies that eliminate RARs or RA-generating enzymes have been instrumental in revealing that RA signaling is required for normal early development of many organs and tissues, including the hindbrain, posterior body axis, somites, spinal cord, forelimbs, heart, and eye.
Collapse
Affiliation(s)
- Marie Berenguer
- Development, Aging, and Regeneration Program, Sanford Burnham Prebys Medical Discovery Institute, 10901 N. Torrey Pines Road, La Jolla, CA 92037, USA
| | - Gregg Duester
- Development, Aging, and Regeneration Program, Sanford Burnham Prebys Medical Discovery Institute, 10901 N. Torrey Pines Road, La Jolla, CA 92037, USA
| |
Collapse
|
11
|
Endoh M, Niwa H. Stepwise pluripotency transitions in mouse stem cells. EMBO Rep 2022; 23:e55010. [PMID: 35903955 PMCID: PMC9442314 DOI: 10.15252/embr.202255010] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 05/13/2022] [Accepted: 07/01/2022] [Indexed: 07/31/2023] Open
Abstract
Pluripotent cells in mouse embryos, which first emerge in the inner cell mass of the blastocyst, undergo gradual transition marked by changes in gene expression, developmental potential, polarity, and morphology as they develop from the pre-implantation until post-implantation gastrula stage. Recent studies of cultured mouse pluripotent stem cells (PSCs) have clarified the presence of intermediate pluripotent stages between the naïve pluripotent state represented by embryonic stem cells (ESCs-equivalent to the pre-implantation epiblast) and the primed pluripotent state represented by epiblast stem cells (EpiSCs-equivalent to the late post-implantation gastrula epiblast). In this review, we discuss these recent findings in light of our knowledge on peri-implantation mouse development and consider the implications of these new PSCs to understand their temporal sequence and the feasibility of using them as model system for pluripotency.
Collapse
Affiliation(s)
- Mitsuhiro Endoh
- Department of Pluripotent Stem Cell Biology, Institute of Molecular Embryology and Genetics (IMEG)Kumamoto UniversityKumamotoJapan
| | - Hitoshi Niwa
- Department of Pluripotent Stem Cell Biology, Institute of Molecular Embryology and Genetics (IMEG)Kumamoto UniversityKumamotoJapan
| |
Collapse
|
12
|
O’Connor C, Varshosaz P, Moise AR. Mechanisms of Feedback Regulation of Vitamin A Metabolism. Nutrients 2022; 14:1312. [PMID: 35334970 PMCID: PMC8950952 DOI: 10.3390/nu14061312] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/15/2022] [Accepted: 03/17/2022] [Indexed: 02/06/2023] Open
Abstract
Vitamin A is an essential nutrient required throughout life. Through its various metabolites, vitamin A sustains fetal development, immunity, vision, and the maintenance, regulation, and repair of adult tissues. Abnormal tissue levels of the vitamin A metabolite, retinoic acid, can result in detrimental effects which can include congenital defects, immune deficiencies, proliferative defects, and toxicity. For this reason, intricate feedback mechanisms have evolved to allow tissues to generate appropriate levels of active retinoid metabolites despite variations in the level and format, or in the absorption and conversion efficiency of dietary vitamin A precursors. Here, we review basic mechanisms that govern vitamin A signaling and metabolism, and we focus on retinoic acid-controlled feedback mechanisms that contribute to vitamin A homeostasis. Several approaches to investigate mechanistic details of the vitamin A homeostatic regulation using genomic, gene editing, and chromatin capture technologies are also discussed.
Collapse
Affiliation(s)
- Catherine O’Connor
- MD Program, Northern Ontario School of Medicine, 317-MSE Bldg., 935 Ramsey Lake Rd., Sudbury, ON P3E 2C6, Canada;
| | - Parisa Varshosaz
- Biology and Biomolecular Sciences Ph.D. Program, Northern Ontario School of Medicine, Laurentian University, Sudbury, ON P3E 2C6, Canada;
| | - Alexander R. Moise
- Medical Sciences Division, Northern Ontario School of Medicine, 317-MSE Bldg., 935 Ramsey Lake Rd., Sudbury, ON P3E 2C6, Canada
- Department of Chemistry and Biochemistry, Biology and Biomolecular Sciences Program, Laurentian University, Sudbury, ON P3E 2C6, Canada
| |
Collapse
|
13
|
AOP Key Event Relationship report: Linking decreased retinoic acid levels with disrupted meiosis in developing oocytes. Curr Res Toxicol 2022; 3:100069. [PMID: 35345548 PMCID: PMC8957012 DOI: 10.1016/j.crtox.2022.100069] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 02/24/2022] [Accepted: 03/17/2022] [Indexed: 12/03/2022] Open
Abstract
The first case study to develop and publish an individual KER as a stand-alone unit of information under the AOP framework overseen by the OECD. Full description of a KER linking decreased all-trans retinoic acid (atRA) levels in developing ovaries with disrupted meiotic entry of oogonia. KER described is associated with an intended AOP linking inhibition of the atRA producing ALDH1A enzymes with reduced fertility in women.
The Adverse Outcome Pathway (AOP) concept is an emerging tool in regulatory toxicology that uses simplified descriptions to show cause-effect relationships between stressors and toxicity outcomes in intact organisms. The AOP structure is a modular framework, with Key Event Relationships (KERs) representing the unit of causal relationship based on existing knowledge, describing the connection between two Key Events. Because KERs are the only unit to support inference it has been argued recently that KERs should be recognized as the core building blocks of knowledge assembly within the AOP-Knowledge Base. Herein, we present a first case to support this proposal and provide a full description of a KER linking decreased all-trans retinoic acid (atRA) levels in developing ovaries with disrupted meiotic entry of oogonia. We outline the evidence to support a role for atRA in inducing meiosis in oogonia across mammals; this is important because elements of the RA synthesis/degradation pathway are recognized targets for numerous environmental chemicals. The KER we describe will be used to support an intended AOP linking inhibition of the atRA producing ALDH1A enzymes with reduced fertility in women.
Collapse
|
14
|
Abstract
During early development, the hindbrain is sub-divided into rhombomeres that underlie the organisation of neurons and adjacent craniofacial tissues. A gene regulatory network of signals and transcription factors establish and pattern segments with a distinct anteroposterior identity. Initially, the borders of segmental gene expression are imprecise, but then become sharply defined, and specialised boundary cells form. In this Review, we summarise key aspects of the conserved regulatory cascade that underlies the formation of hindbrain segments. We describe how the pattern is sharpened and stabilised through the dynamic regulation of cell identity, acting in parallel with cell segregation. Finally, we discuss evidence that boundary cells have roles in local patterning, and act as a site of neurogenesis within the hindbrain.
Collapse
Affiliation(s)
- Robb Krumlauf
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA.,Dept of Anatomy and Cell Biology, Kansas University Medical School, Kansas City, KS 66160, USA
| | | |
Collapse
|
15
|
An adverse outcome pathway on the disruption of retinoic acid metabolism leading to developmental craniofacial defects. Toxicology 2021; 458:152843. [PMID: 34186166 DOI: 10.1016/j.tox.2021.152843] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 05/28/2021] [Accepted: 06/24/2021] [Indexed: 11/21/2022]
Abstract
Adverse outcome pathway (AOP) is a conceptual framework that links a molecular initiating event (MIE) via intermediate key events (KEs) with adverse effects (adverse outcomes, AO) relevant for risk assessment, through defined KE relationships (KERs). The aim of the present work is to describe a linear AOP, supported by experimental data, for skeletal craniofacial defects as the AO. This AO was selected in view of its relative high incidence in humans and the suspected relation to chemical exposure. We focused on inhibition of CYP26, a retinoic acid (RA) metabolizing enzyme, as MIE, based on robust previously published data. Conazoles were selected as representative stressors. Intermediate KEs are RA disbalance, aberrant HOX gene expression, disrupted specification, migration, and differentiation of neural crest cells, and branchial arch dysmorphology. We described the biological basis of the postulated events and conducted weight of evidence (WoE) assessments. The biological plausibility and the overall empirical evidence were assessed as high and moderate, respectively, the latter taking into consideration the moderate evidence for concordance of dose-response and temporal relationships. Finally, the essentiality assessment of the KEs, considered as high, supported the robustness of the presented AOP. This AOP, which appears of relevance to humans, thus contributes to mechanistic underpinning of selected test methods, thereby supporting their application in integrated new approach test methodologies and strategies and application in a regulatory context.
Collapse
|
16
|
Sasai N, Kadoya M, Ong Lee Chen A. Neural induction: Historical views and application to pluripotent stem cells. Dev Growth Differ 2021; 63:26-37. [PMID: 33289091 DOI: 10.1111/dgd.12703] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Revised: 10/22/2020] [Accepted: 11/02/2020] [Indexed: 12/20/2022]
Abstract
Embryonic stem (ES) cells are a useful experimental material to recapitulate the differentiation steps of early embryos, which are usually invisible and inaccessible from outside of the body, especially in mammals. ES cells have greatly facilitated the analyses of gene expression profiles and cell characteristics. In addition, understanding the mechanisms during neural differentiation is important for clinical purposes, such as developing new therapeutic methods or regenerative medicine. As neurons have very limited regenerative ability, neurodegenerative diseases are usually intractable, and patients suffer from the disease throughout their lifetimes. The functional cells generated from ES cells in vitro could replace degenerative areas by transplantation. In this review, we will first demonstrate the historical views and widely accepted concepts regarding the molecular mechanisms of neural induction and positional information to produce the specific types of neurons in model animals. Next, we will describe how these concepts have recently been applied to the research in the establishment of the methodology of neural differentiation from mammalian ES cells. Finally, we will focus on examples of the applications of differentiation systems to clinical purposes. Overall, the discussion will focus on how historical developmental studies are applied to state-of-the-art stem cell research.
Collapse
Affiliation(s)
- Noriaki Sasai
- Developmental Biomedical Science, Nara Institute of Science and Technology, Ikoma, Japan
| | - Minori Kadoya
- Developmental Biomedical Science, Nara Institute of Science and Technology, Ikoma, Japan
| | - Agnes Ong Lee Chen
- Developmental Biomedical Science, Nara Institute of Science and Technology, Ikoma, Japan
| |
Collapse
|
17
|
Pujades C. The multiple functions of hindbrain boundary cells: Tinkering boundaries? Semin Cell Dev Biol 2020; 107:179-189. [DOI: 10.1016/j.semcdb.2020.05.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 04/29/2020] [Accepted: 05/02/2020] [Indexed: 02/01/2023]
|
18
|
Kukreja S, Udaykumar N, Yogesh B, Sen J. Retinoic acid signaling regulates proliferation and lamina formation in the developing chick optic tectum. Dev Biol 2020; 467:95-107. [PMID: 32919944 DOI: 10.1016/j.ydbio.2020.09.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 09/03/2020] [Accepted: 09/06/2020] [Indexed: 01/05/2023]
Abstract
The retinotectal system has been extensively studied for investigating the mechanism(s) for topographic map formation. The optic tectum, which is composed of multiple laminae, is the major retino recipient structure in the developing avian brain. Laminar development of the tectum results from cell proliferation, differentiation and migration, coordinated in strict temporal and spatial patterns. However, the molecular mechanisms that orchestrate these complex developmental events, have not been fully elucidated. In this study, we have identified the presence of differential retinoic acid (RA) signaling along the rostro-caudal and dorsoventral axis of the tectum. We show for the first time that loss of RA signaling in the anterior optic tectum, leads to an increase in cell proliferation and gross changes in the morphology manifested as defects in lamination. Detailed analysis points to delayed migration of cells as the plausible cause for the defects in lamina formation. Thus, we conclude that in the optic tectum, RA signaling is involved in maintaining cell proliferation and in regulating the formation of the tectal laminae.
Collapse
Affiliation(s)
- Shweta Kukreja
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur, 208016, Uttar Pradesh, India; Present address: Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, USA
| | - Niveda Udaykumar
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur, 208016, Uttar Pradesh, India
| | - Baba Yogesh
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur, 208016, Uttar Pradesh, India; Present address: Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Jonaki Sen
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur, 208016, Uttar Pradesh, India.
| |
Collapse
|
19
|
Retinoids and developmental neurotoxicity: Utilizing toxicogenomics to enhance adverse outcome pathways and testing strategies. Reprod Toxicol 2020; 96:102-113. [PMID: 32544423 DOI: 10.1016/j.reprotox.2020.06.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Revised: 06/02/2020] [Accepted: 06/07/2020] [Indexed: 12/17/2022]
Abstract
The use of genomic approaches in toxicological studies has greatly increased our ability to define the molecular profiles of environmental chemicals associated with developmental neurotoxicity (DNT). Integration of these approaches with adverse outcome pathways (AOPs), a framework that translates environmental exposures to adverse developmental phenotypes, can potentially inform DNT testing strategies. Here, using retinoic acid (RA) as a case example, we demonstrate that the integration of toxicogenomic profiles into the AOP framework can be used to establish a paradigm for chemical testing. RA is a critical regulatory signaling molecule involved in multiple aspects of mammalian central nervous system (CNS) development, including hindbrain formation/patterning and neuronal differentiation, and imbalances in RA signaling pathways are linked with DNT. While the mechanisms remain unresolved, environmental chemicals can cause DNT by disrupting the RA signaling pathway. First, we reviewed literature evidence of RA and other retinoid exposures and DNT to define a provisional AOP related to imbalances in RA embryonic bioavailability and hindbrain development. Next, by integrating toxicogenomic datasets, we defined a relevant transcriptomic signature associated with RA-induced developmental neurotoxicity (RA-DNT) in human and rodent models that was tested against zebrafish model data, demonstrating potential for integration into an AOP framework. Finally, we demonstrated how these approaches may be systematically utilized to identify chemical hazards by testing the RA-DNT signature against azoles, a proposed class of compounds that alters RA-signaling. The provisional AOP from this study can be expanded in the future to better define DNT biomarkers relevant to RA signaling and toxicity.
Collapse
|
20
|
Koth ML, Garcia-Moreno SA, Novak A, Holthusen KA, Kothandapani A, Jiang K, Taketo MM, Nicol B, Yao HHC, Futtner CR, Maatouk DM, Jorgensen JS. Canonical Wnt/β-catenin activity and differential epigenetic marks direct sexually dimorphic regulation of Irx3 and Irx5 in developing mouse gonads. Development 2020; 147:dev183814. [PMID: 32108023 PMCID: PMC7132837 DOI: 10.1242/dev.183814] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2019] [Accepted: 02/14/2020] [Indexed: 11/20/2022]
Abstract
Members of the Iroquois B (IrxB) homeodomain cluster genes, specifically Irx3 and Irx5, are crucial for heart, limb and bone development. Recently, we reported their importance for oocyte and follicle survival within the developing ovary. Irx3 and Irx5 expression begins after sex determination in the ovary but remains absent in the fetal testis. Mutually antagonistic molecular signals ensure ovary versus testis differentiation with canonical Wnt/β-catenin signals paramount for promoting the ovary pathway. Notably, few direct downstream targets have been identified. We report that Wnt/β-catenin signaling directly stimulates Irx3 and Irx5 transcription in the developing ovary. Using in silico analysis of ATAC- and ChIP-Seq databases in conjunction with mouse gonad explant transfection assays, we identified TCF/LEF-binding sequences within two distal enhancers of the IrxB locus that promote β-catenin-responsive ovary expression. Meanwhile, Irx3 and Irx5 transcription is suppressed within the developing testis by the presence of H3K27me3 on these same sites. Thus, we resolved sexually dimorphic regulation of Irx3 and Irx5 via epigenetic and β-catenin transcriptional control where their ovarian presence promotes oocyte and follicle survival vital for future ovarian health.
Collapse
Affiliation(s)
- Megan L Koth
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin - Madison, Madison, WI 53706, USA
| | | | - Annie Novak
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin - Madison, Madison, WI 53706, USA
| | - Kirsten A Holthusen
- Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois, Urbana, IL 61802, USA
| | - Anbarasi Kothandapani
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin - Madison, Madison, WI 53706, USA
| | - Keer Jiang
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin - Madison, Madison, WI 53706, USA
| | - Makoto Mark Taketo
- Department of Pharmacology, Kyoto University Graduate School of Medicine, Kyoto 606-8501, Japan
| | - Barbara Nicol
- Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA
| | - Humphrey H-C Yao
- Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA
| | - Christopher R Futtner
- Department of Obstetrics and Gynecology, Northwestern University, Chicago, IL 60611, USA
| | - Danielle M Maatouk
- Department of Obstetrics and Gynecology, Northwestern University, Chicago, IL 60611, USA
| | - Joan S Jorgensen
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin - Madison, Madison, WI 53706, USA
| |
Collapse
|
21
|
Roberts C. Regulating Retinoic Acid Availability during Development and Regeneration: The Role of the CYP26 Enzymes. J Dev Biol 2020; 8:jdb8010006. [PMID: 32151018 PMCID: PMC7151129 DOI: 10.3390/jdb8010006] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 02/17/2020] [Accepted: 02/17/2020] [Indexed: 12/16/2022] Open
Abstract
This review focuses on the role of the Cytochrome p450 subfamily 26 (CYP26) retinoic acid (RA) degrading enzymes during development and regeneration. Cyp26 enzymes, along with retinoic acid synthesising enzymes, are absolutely required for RA homeostasis in these processes by regulating availability of RA for receptor binding and signalling. Cyp26 enzymes are necessary to generate RA gradients and to protect specific tissues from RA signalling. Disruption of RA homeostasis leads to a wide variety of embryonic defects affecting many tissues. Here, the function of CYP26 enzymes is discussed in the context of the RA signalling pathway, enzymatic structure and biochemistry, human genetic disease, and function in development and regeneration as elucidated from animal model studies.
Collapse
Affiliation(s)
- Catherine Roberts
- Developmental Biology of Birth Defects, UCL-GOS Institute of Child Health, 30 Guilford St, London WC1N 1EH, UK;
- Institute of Medical and Biomedical Education St George’s, University of London, Cranmer Terrace, Tooting, London SW17 0RE, UK
| |
Collapse
|
22
|
Maguire M, Larsen MC, Vezina CM, Quadro L, Kim YK, Tanumihardjo SA, Jefcoate CR. Cyp1b1 directs Srebp-mediated cholesterol and retinoid synthesis in perinatal liver; Association with retinoic acid activity during fetal development. PLoS One 2020; 15:e0228436. [PMID: 32027669 PMCID: PMC7004353 DOI: 10.1371/journal.pone.0228436] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Accepted: 01/16/2020] [Indexed: 12/13/2022] Open
Abstract
Background Cytochrome P450 1b1 (Cyp1b1) deletion and dietary retinol deficiency during pregnancy (GVAD) affect perinatal liver functions regulated by Srebp. Cyp1b1 is not expressed in perinatal liver but appears in the E9.5 embryo, close to sites of retinoic acid (RA) signaling. Hypothesis Parallel effects of Cyp1b1 and retinol on postnatal Srebp derive from effects in the developing liver or systemic signaling. Approach Cluster postnatal increases in hepatic genes in relation to effects of GVAD or Cyp1b1 deletion. Sort expression changes in relation to genes regulated by Srebp1 and Srebp2.Test these treatments on embryos at E9.5, examining changes at the site of liver initiation. Use in situ hybridization to resolve effects on mRNA distributions of Aldh1a2 and Cyp26a1 (RA homeostasis); Hoxb1 and Pax6 (RA targets). Assess mice lacking Lrat and Rbp4 (DKO mice) that severely limits retinol supply to embryos. Results At birth, GVAD and Cyp1b1 deletion stimulate gene markers of hepatic stellate cell (HSC) activation but also suppress Hamp. These treatments then selectively prevent the postnatal onset of genes that synthesize cholesterol (Hmgcr, Sqle) and fatty acids (Fasn, Scd1), but also direct cholesterol transport (Ldlr, Pcsk9, Stard4) and retinoid synthesis (Aldh1a1, Rdh11). Extensive support by Cyp1b1 is implicated, but with distinct GVAD interventions for Srebp1 and Srebp2. At E9.5, Cyp1b1 is expressed in the septum transversum mesenchyme (STM) with β-carotene oxygenase (Bco1) that generates retinaldehyde. STM provides progenitors for the HSC and supports liver expansion. GVAD and Cyp1b1-/- do not affect RA-dependent Hoxb1 and Pax6. In DKO embryos, RA-dependent Cyp26a1 is lost but Hoxb1 is sustained with Cyp1b1 at multiple sites. Conclusion Cyp1b1-/- suppresses genes supported by Srebp. GVAD effects distinguish Srebp1 and Srebp2 mediation. Srebp regulation overlaps appreciably in cholesterol and retinoid homeostasis. Bco1/Cyp1b1 partnership in the STM may contribute to this later liver regulation.
Collapse
Affiliation(s)
- Meghan Maguire
- Endocrinology and Reproductive Physiology Program, University of Wisconsin-Madison, Madison, WI
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, WI
| | | | - Chad M. Vezina
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, WI
| | - Loredana Quadro
- Department of Food Science and Rutgers Center for Lipid Research, Rutgers University, New Brunswick, New Jersey
| | - Youn-Kyung Kim
- Department of Food Science and Rutgers Center for Lipid Research, Rutgers University, New Brunswick, New Jersey
| | | | - Colin R. Jefcoate
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, WI
- * E-mail:
| |
Collapse
|
23
|
Sirbu IO, Chiş AR, Moise AR. Role of carotenoids and retinoids during heart development. Biochim Biophys Acta Mol Cell Biol Lipids 2020; 1865:158636. [PMID: 31978553 DOI: 10.1016/j.bbalip.2020.158636] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 01/15/2020] [Accepted: 01/16/2020] [Indexed: 02/08/2023]
Abstract
The nutritional requirements of the developing embryo are complex. In the case of dietary vitamin A (retinol, retinyl esters and provitamin A carotenoids), maternal derived nutrients serve as precursors to signaling molecules such as retinoic acid, which is required for embryonic patterning and organogenesis. Despite variations in the composition and levels of maternal vitamin A, embryonic tissues need to generate a precise amount of retinoic acid to avoid congenital malformations. Here, we summarize recent findings regarding the role and metabolism of vitamin A during heart development and we survey the association of genes known to affect retinoid metabolism or signaling with various inherited disorders. A better understanding of the roles of vitamin A in the heart and of the factors that affect retinoid metabolism and signaling can help design strategies to meet nutritional needs and to prevent birth defects and disorders associated with altered retinoid metabolism. This article is part of a Special Issue entitled Carotenoids recent advances in cell and molecular biology edited by Johannes von Lintig and Loredana Quadro.
Collapse
Affiliation(s)
- Ioan Ovidiu Sirbu
- Biochemistry Department, Victor Babes University of Medicine and Pharmacy, Eftimie Murgu Nr. 2, 300041 Timisoara, Romania; Timisoara Institute of Complex Systems, V. Lucaciu 18, 300044 Timisoara, Romania.
| | - Aimée Rodica Chiş
- Biochemistry Department, Victor Babes University of Medicine and Pharmacy, Eftimie Murgu Nr. 2, 300041 Timisoara, Romania
| | - Alexander Radu Moise
- Medical Sciences Division, Northern Ontario School of Medicine, Sudbury, ON P3E 2C6, Canada; Department of Chemistry and Biochemistry, Biology and Biomolecular Sciences Program, Laurentian University, Sudbury, ON P3E 2C6, Canada.
| |
Collapse
|
24
|
Parker HJ, Krumlauf R. A Hox gene regulatory network for hindbrain segmentation. Curr Top Dev Biol 2020; 139:169-203. [DOI: 10.1016/bs.ctdb.2020.03.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
25
|
Cambronero F, Ariza‐McNaughton L, Wiedemann LM, Krumlauf R. Inter‐rhombomeric interactions reveal roles for fibroblast growth factors signaling in segmental regulation of
EphA4
expression. Dev Dyn 2019; 249:354-368. [DOI: 10.1002/dvdy.101] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 08/08/2019] [Accepted: 08/09/2019] [Indexed: 12/15/2022] Open
Affiliation(s)
| | | | - Leanne M. Wiedemann
- Stowers Institute for Medical Research Kansas City Missouri
- Department of Pathology and Laboratory MedicineKansas University Medical Center Kansas City Kansas
| | - Robb Krumlauf
- Stowers Institute for Medical Research Kansas City Missouri
- Division of Developmental NeurobiologyNational Institute for Medical Research London UK
- Department of Anatomy and Cell BiologyKansas University Medical School Kansas City Kansas
| |
Collapse
|
26
|
Battistoni M, Di Renzo F, Menegola E, Bois FY. Quantitative AOP based teratogenicity prediction for mixtures of azole fungicides. ACTA ACUST UNITED AC 2019. [DOI: 10.1016/j.comtox.2019.03.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
27
|
Abstract
Retinoic acid (RA), a metabolite of retinol (vitamin A), functions as a ligand for nuclear RA receptors (RARs) that regulate development of chordate animals. RA-RARs can activate or repress transcription of key developmental genes. Genetic studies in mouse and zebrafish embryos that are deficient in RA-generating enzymes or RARs have been instrumental in identifying RA functions, revealing that RA signaling regulates development of many organs and tissues, including the body axis, spinal cord, forelimbs, heart, eye and reproductive tract. An understanding of the normal functions of RA signaling during development will guide efforts for use of RA as a therapeutic agent to improve human health. Here, we provide an overview of RA signaling and highlight its key functions during development.
Collapse
Affiliation(s)
- Norbert B Ghyselinck
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Département de Génétique Fonctionnelle et Cancer, Centre National de la Recherche Scientifique (CNRS UMR7104), Institut National de la Santé et de la Recherche Médicale (INSERM U1258), Université de Strasbourg (UNISTRA), 1 rue Laurent Fries, F-67404 Illkirch Cedex, France
| | - Gregg Duester
- Development, Aging, and Regeneration Program, Sanford Burnham Prebys Medical Discovery Institute, 10901 N. Torrey Pines Road, La Jolla, CA 92037, USA
| |
Collapse
|
28
|
Friedl RM, Raja S, Metzler MA, Patel ND, Brittian KR, Jones SP, Sandell LL. RDH10 function is necessary for spontaneous fetal mouth movement that facilitates palate shelf elevation. Dis Model Mech 2019; 12:12/7/dmm039073. [PMID: 31300413 PMCID: PMC6679383 DOI: 10.1242/dmm.039073] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Accepted: 06/06/2019] [Indexed: 12/15/2022] Open
Abstract
Cleft palate is a common birth defect, occurring in approximately 1 in 1000 live births worldwide. Known etiological mechanisms of cleft palate include defects within developing palate shelf tissues, defects in mandibular growth and defects in spontaneous fetal mouth movement. Until now, experimental studies directly documenting fetal mouth immobility as an underlying cause of cleft palate have been limited to models lacking neurotransmission. This study extends the range of anomalies directly demonstrated to have fetal mouth movement defects correlated with cleft palate. Here, we show that mouse embryos deficient in retinoic acid (RA) have mispatterned pharyngeal nerves and skeletal elements that block spontaneous fetal mouth movement in utero. Using X-ray microtomography, in utero ultrasound video, ex vivo culture and tissue staining, we demonstrate that proper retinoid signaling and pharyngeal patterning are crucial for the fetal mouth movement needed for palate formation. Embryos with deficient retinoid signaling were generated by stage-specific inactivation of retinol dehydrogenase 10 (Rdh10), a gene crucial for the production of RA during embryogenesis. The finding that cleft palate in retinoid deficiency results from a lack of fetal mouth movement might help elucidate cleft palate etiology and improve early diagnosis in human disorders involving defects of pharyngeal development. Summary: Fetal mouth immobility and defects in pharyngeal patterning underlie cleft palate in retinoid-deficient Rdh10 mutant mouse embryos.
Collapse
Affiliation(s)
- Regina M Friedl
- Department of Oral Immunology and Infectious Diseases, University of Louisville School of Dentistry, Louisville, KY 40202, USA
| | - Swetha Raja
- Department of Oral Immunology and Infectious Diseases, University of Louisville School of Dentistry, Louisville, KY 40202, USA
| | - Melissa A Metzler
- Department of Oral Immunology and Infectious Diseases, University of Louisville School of Dentistry, Louisville, KY 40202, USA
| | - Niti D Patel
- Department of Oral Immunology and Infectious Diseases, University of Louisville School of Dentistry, Louisville, KY 40202, USA
| | - Kenneth R Brittian
- Department of Medicine, Diabetes and Obesity Center, University of Louisville, Louisville, KY 40202, USA
| | - Steven P Jones
- Department of Medicine, Diabetes and Obesity Center, University of Louisville, Louisville, KY 40202, USA
| | - Lisa L Sandell
- Department of Oral Immunology and Infectious Diseases, University of Louisville School of Dentistry, Louisville, KY 40202, USA
| |
Collapse
|
29
|
Nolte C, De Kumar B, Krumlauf R. Hox genes: Downstream "effectors" of retinoic acid signaling in vertebrate embryogenesis. Genesis 2019; 57:e23306. [PMID: 31111645 DOI: 10.1002/dvg.23306] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 05/09/2019] [Accepted: 05/10/2019] [Indexed: 12/31/2022]
Abstract
One of the major regulatory challenges of animal development is to precisely coordinate in space and time the formation, specification, and patterning of cells that underlie elaboration of the basic body plan. How does the vertebrate plan for the nervous and hematopoietic systems, heart, limbs, digestive, and reproductive organs derive from seemingly similar population of cells? These systems are initially established and patterned along the anteroposterior axis (AP) by opposing signaling gradients that lead to the activation of gene regulatory networks involved in axial specification, including the Hox genes. The retinoid signaling pathway is one of the key signaling gradients coupled to the establishment of axial patterning. The nested domains of Hox gene expression, which provide a combinatorial code for axial patterning, arise in part through a differential response to retinoic acid (RA) diffusing from anabolic centers established within the embryo during development. Hence, Hox genes are important direct effectors of retinoid signaling in embryogenesis. This review focuses on describing current knowledge on the complex mechanisms and regulatory processes, which govern the response of Hox genes to RA in several tissue contexts including the nervous system during vertebrate development.
Collapse
Affiliation(s)
- Christof Nolte
- Stowers Institute for Medical Research, Kansas City, Missouri
| | - Bony De Kumar
- Stowers Institute for Medical Research, Kansas City, Missouri
| | - Robb Krumlauf
- Stowers Institute for Medical Research, Kansas City, Missouri.,Department of Anatomy and Cell Biology, Kansas University Medical Center, Kansas City, Kansas
| |
Collapse
|
30
|
Edri S, Hayward P, Baillie-Johnson P, Steventon BJ, Martinez Arias A. An epiblast stem cell-derived multipotent progenitor population for axial extension. Development 2019; 146:dev.168187. [PMID: 31023877 DOI: 10.1242/dev.168187] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Accepted: 04/10/2019] [Indexed: 12/21/2022]
Abstract
The caudal lateral epiblast of mammalian embryos harbours bipotent progenitors that contribute to the spinal cord and the paraxial mesoderm in concert with the body axis elongation. These progenitors, called neural mesodermal progenitors (NMPs), are identified as cells that co-express Sox2 and T/brachyury, a criterion used to derive NMP-like cells from embryonic stem cells in vitro However, unlike embryonic NMPs, these progenitors do not self-renew. Here, we find that the protocols that yield NMP-like cells in vitro initially produce a multipotent population that, in addition to NMPs, generates progenitors for the lateral plate and intermediate mesoderm. We show that epiblast stem cells (EpiSCs) are an effective source of these multipotent progenitors, which are further differentiated by a balance between BMP and Nodal signalling. Importantly, we show that NMP-like cells derived from EpiSCs exhibit limited self-renewal in vitro and a gene expression signature like their embryonic counterparts.
Collapse
Affiliation(s)
- Shlomit Edri
- Department of Genetics, Downing Site, University of Cambridge, Cambridge CB2 3EH, UK
| | - Penny Hayward
- Department of Genetics, Downing Site, University of Cambridge, Cambridge CB2 3EH, UK
| | - Peter Baillie-Johnson
- Department of Genetics, Downing Site, University of Cambridge, Cambridge CB2 3EH, UK
| | - Benjamin J Steventon
- Department of Genetics, Downing Site, University of Cambridge, Cambridge CB2 3EH, UK
| | | |
Collapse
|
31
|
Frank D, Sela-Donenfeld D. Hindbrain induction and patterning during early vertebrate development. Cell Mol Life Sci 2019; 76:941-960. [PMID: 30519881 PMCID: PMC11105337 DOI: 10.1007/s00018-018-2974-x] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Revised: 11/19/2018] [Accepted: 11/21/2018] [Indexed: 12/28/2022]
Abstract
The hindbrain is a key relay hub of the central nervous system (CNS), linking the bilaterally symmetric half-sides of lower and upper CNS centers via an extensive network of neural pathways. Dedicated neural assemblies within the hindbrain control many physiological processes, including respiration, blood pressure, motor coordination and different sensations. During early development, the hindbrain forms metameric segmented units known as rhombomeres along the antero-posterior (AP) axis of the nervous system. These compartmentalized units are highly conserved during vertebrate evolution and act as the template for adult brainstem structure and function. TALE and HOX homeodomain family transcription factors play a key role in the initial induction of the hindbrain and its specification into rhombomeric cell fate identities along the AP axis. Signaling pathways, such as canonical-Wnt, FGF and retinoic acid, play multiple roles to initially induce the hindbrain and regulate Hox gene-family expression to control rhombomeric identity. Additional transcription factors including Krox20, Kreisler and others act both upstream and downstream to Hox genes, modulating their expression and protein activity. In this review, we will examine the earliest embryonic signaling pathways that induce the hindbrain and subsequent rhombomeric segmentation via Hox and other gene expression. We will examine how these signaling pathways and transcription factors interact to activate downstream targets that organize the segmented AP pattern of the embryonic vertebrate hindbrain.
Collapse
Affiliation(s)
- Dale Frank
- Department of Biochemistry, Faculty of Medicine, The Rappaport Family Institute for Research in the Medical Sciences, Technion-Israel Institute of Technology, 31096, Haifa, Israel.
| | - Dalit Sela-Donenfeld
- Koret School of Veterinary Medicine, The Robert H Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, 76100, Rehovot, Israel.
| |
Collapse
|
32
|
Abstract
Studies of the vertebrate hindbrain have revealed parallel mechanisms that establish sharp segments with a distinct and homogeneous regional identity. Recent work has revealed roles of cell identity regulation and its relationships with cell segregation. At early stages, there is overlapping expression at segment borders of the Egr2 and Hoxb1 transcription factors that specify distinct identities, which is resolved by reciprocal repression. Computer simulations show that this dynamic regulation of cell identity synergises with cell segregation to generate sharp borders. Some intermingling between segments occurs at early stages, and ectopic egr2-expressing cells switch identity to match their new neighbours. This switching is mediated by coupling between egr2 expression and the level of retinoic acid signalling, which acts in a community effect to maintain homogeneous segmental identity. These findings reveal an interplay between cell segregation and the dynamic regulation of cell identity in the formation of sharp patterns in the hindbrain and raise the question of whether similar mechanisms occur in other tissues.
Collapse
|
33
|
Addison M, Xu Q, Cayuso J, Wilkinson DG. Cell Identity Switching Regulated by Retinoic Acid Signaling Maintains Homogeneous Segments in the Hindbrain. Dev Cell 2018; 45:606-620.e3. [PMID: 29731343 PMCID: PMC5988564 DOI: 10.1016/j.devcel.2018.04.003] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 03/16/2018] [Accepted: 04/04/2018] [Indexed: 10/25/2022]
Abstract
The patterning of tissues to form subdivisions with distinct and homogeneous regional identity is potentially disrupted by cell intermingling. Transplantation studies suggest that homogeneous segmental identity in the hindbrain is maintained by identity switching of cells that intermingle into another segment. We show that switching occurs during normal development and is mediated by feedback between segment identity and the retinoic acid degrading enzymes, cyp26b1 and cyp26c1. egr2, which specifies the segmental identity of rhombomeres r3 and r5, underlies the lower expression level of cyp26b1 and cyp26c1 in r3 and r5 compared with r2, r4, and r6. Consequently, r3 or r5 cells that intermingle into adjacent segments encounter cells with higher cyp26b1/c1 expression, which we find is required for downregulation of egr2b expression. Furthermore, egr2b expression is regulated in r2, r4, and r6 by non-autonomous mechanisms that depend upon the number of neighbors that express egr2b. These findings reveal that a community regulation of retinoid signaling maintains homogeneous segmental identity.
Collapse
Affiliation(s)
- Megan Addison
- Neural Development Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Qiling Xu
- Neural Development Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Jordi Cayuso
- Neural Development Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - David G Wilkinson
- Neural Development Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK.
| |
Collapse
|
34
|
Mean-Independent Noise Control of Cell Fates via Intermediate States. iScience 2018; 3:11-20. [PMID: 30428314 PMCID: PMC6137274 DOI: 10.1016/j.isci.2018.04.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Revised: 02/21/2018] [Accepted: 03/09/2018] [Indexed: 11/24/2022] Open
Abstract
Stochasticity affects accurate signal detection and robust generation of correct cell fates. Although many known regulatory mechanisms may reduce fluctuations in signals, most simultaneously influence their mean dynamics, leading to unfaithful cell fates. Through analysis and computation, we demonstrate that a reversible signaling mechanism acting through intermediate states can reduce noise while maintaining the mean. This mean-independent noise control (MINC) mechanism is investigated in the context of an intracellular binding protein that regulates retinoic acid (RA) signaling during zebrafish hindbrain development. By comparing our models with experimental data, we find that the MINC mechanism allows for sharp boundaries of gene expression without sacrificing boundary accuracy. In addition, this MINC mechanism can modulate noise to levels that we show are beneficial to spatial patterning through noise-induced cell fate switching. These results reveal a design principle that may be important for noise regulation in many systems that control cell fate determination. Mean-independent noise control allows noise attenuation without affecting the mean Intermediate states enable such control through proportional coupling This controls spatial gene expression noise without shifting boundary locations Specific noise levels are required for successful downstream boundary sharpening
Collapse
|
35
|
Selland LG, Koch S, Laraque M, Waskiewicz AJ. Coordinate regulation of retinoic acid synthesis by pbx genes and fibroblast growth factor signaling by hoxb1b is required for hindbrain patterning and development. Mech Dev 2018; 150:28-41. [PMID: 29496480 DOI: 10.1016/j.mod.2018.02.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2017] [Revised: 02/23/2018] [Accepted: 02/23/2018] [Indexed: 10/17/2022]
Abstract
The vertebrate hindbrain is composed of a series of lineage-restricted segments termed rhombomeres. Segment-specific gene expression drives unique programs of neuronal differentiation. Two critical embryonic signaling pathways, Fibroblast Growth Factor (FGF) and Retinoic Acid (RA), regulate early embryonic rhombomere patterning. The earliest expressed hox genes, hoxb1b and hoxb1a in zebrafish, are logical candidates for establishing signaling networks that specify segmental identity. We sought to determine the mechanism by which hox genes regulate hindbrain patterning in zebrafish. We demonstrate that hoxb1a regulates r4-specific patterning, while hoxb1b regulates rhombomere segmentation and size. Hoxb1a and hoxb1b redundantly regulate vhnf1 expression. Loss of hoxb1b together with pbx4 reverts the hindbrain to a groundstate identity, demonstrating the importance of hox genes in patterning nearly the entire hindbrain, and a key requirement for Pbx in this process. Additionally, we provide evidence that while pbx genes regulate RA signaling, hoxb1b regulates hindbrain identity through complex regulation of FGF signaling.
Collapse
Affiliation(s)
- Lyndsay G Selland
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Sophie Koch
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Malcolm Laraque
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Andrew J Waskiewicz
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada.
| |
Collapse
|
36
|
Dubey A, Rose RE, Jones DR, Saint-Jeannet JP. Generating retinoic acid gradients by local degradation during craniofacial development: One cell's cue is another cell's poison. Genesis 2018; 56:10.1002/dvg.23091. [PMID: 29330906 PMCID: PMC5818312 DOI: 10.1002/dvg.23091] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 01/08/2018] [Accepted: 01/09/2018] [Indexed: 01/02/2023]
Abstract
Retinoic acid (RA) is a vital morphogen for early patterning and organogenesis in the developing embryo. RA is a diffusible, lipophilic molecule that signals via nuclear RA receptor heterodimeric units that regulate gene expression by interacting with RA response elements in promoters of a significant number of genes. For precise RA signaling, a robust gradient of the morphogen is required. The developing embryo contains regions that produce RA, and specific intracellular concentrations of RA are created through local degradation mediated by Cyp26 enzymes. In order to elucidate the mechanisms by which RA executes precise developmental programs, the kinetics of RA metabolism must be clearly understood. Recent advances in techniques for endogenous RA detection and quantification have paved the way for mechanistic studies to shed light on downstream gene expression regulation coordinated by RA. It is increasingly coming to light that RA signaling operates not only at precise concentrations but also employs mechanisms of degradation and feedback inhibition to self-regulate its levels. A global gradient of RA throughout the embryo is often found concurrently with several local gradients, created by juxtaposed domains of RA synthesis and degradation. The existence of such local gradients has been found especially critical for the proper development of craniofacial structures that arise from the neural crest and the cranial placode populations. In this review, we summarize the current understanding of how local gradients of RA are established in the embryo and their impact on craniofacial development.
Collapse
Affiliation(s)
- Aditi Dubey
- Department of Basic Science and Craniofacial Biology, New York University College of Dentistry
| | - Rebecca E. Rose
- Department of Biochemistry and Molecular Pharmacology, New York University Langone Health, New York, NY, USA
| | - Drew R. Jones
- Department of Biochemistry and Molecular Pharmacology, New York University Langone Health, New York, NY, USA
| | | |
Collapse
|
37
|
Acetaldehyde inhibits retinoic acid biosynthesis to mediate alcohol teratogenicity. Sci Rep 2018; 8:347. [PMID: 29321611 PMCID: PMC5762763 DOI: 10.1038/s41598-017-18719-7] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Accepted: 12/15/2017] [Indexed: 12/20/2022] Open
Abstract
Alcohol consumption during pregnancy induces Fetal Alcohol Spectrum Disorder (FASD), which has been proposed to arise from competitive inhibition of retinoic acid (RA) biosynthesis. We provide biochemical and developmental evidence identifying acetaldehyde as responsible for this inhibition. In the embryo, RA production by RALDH2 (ALDH1A2), the main retinaldehyde dehydrogenase expressed at that stage, is inhibited by ethanol exposure. Pharmacological inhibition of the embryonic alcohol dehydrogenase activity, prevents the oxidation of ethanol to acetaldehyde that in turn functions as a RALDH2 inhibitor. Acetaldehyde-mediated reduction of RA can be rescued by RALDH2 or retinaldehyde supplementation. Enzymatic kinetic analysis of human RALDH2 shows a preference for acetaldehyde as a substrate over retinaldehyde. RA production by hRALDH2 is efficiently inhibited by acetaldehyde but not by ethanol itself. We conclude that acetaldehyde is the teratogenic derivative of ethanol responsible for the reduction in RA signaling and induction of the developmental malformations characteristic of FASD. This competitive mechanism will affect tissues requiring RA signaling when exposed to ethanol throughout life.
Collapse
|
38
|
Parker HJ, Krumlauf R. Segmental arithmetic: summing up the Hox gene regulatory network for hindbrain development in chordates. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2017; 6. [PMID: 28771970 DOI: 10.1002/wdev.286] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2017] [Revised: 06/13/2017] [Accepted: 06/15/2017] [Indexed: 11/10/2022]
Abstract
Organization and development of the early vertebrate hindbrain are controlled by a cascade of regulatory interactions that govern the process of segmentation and patterning along the anterior-posterior axis via Hox genes. These interactions can be assembled into a gene regulatory network that provides a framework to interpret experimental data, generate hypotheses, and identify gaps in our understanding of the progressive process of hindbrain segmentation. The network can be broadly separated into a series of interconnected programs that govern early signaling, segmental subdivision, secondary signaling, segmentation, and ultimately specification of segmental identity. Hox genes play crucial roles in multiple programs within this network. Furthermore, the network reveals properties and principles that are likely to be general to other complex developmental systems. Data from vertebrate and invertebrate chordate models are shedding light on the origin and diversification of the network. Comprehensive cis-regulatory analyses of vertebrate Hox gene regulation have enabled powerful cross-species gene regulatory comparisons. Such an approach in the sea lamprey has revealed that the network mediating segmental Hox expression was present in ancestral vertebrates and has been maintained across diverse vertebrate lineages. Invertebrate chordates lack hindbrain segmentation but exhibit conservation of some aspects of the network, such as a role for retinoic acid in establishing nested Hox expression domains. These comparisons lead to a model in which early vertebrates underwent an elaboration of the network between anterior-posterior patterning and Hox gene expression, leading to the gene-regulatory programs for segmental subdivision and rhombomeric segmentation. WIREs Dev Biol 2017, 6:e286. doi: 10.1002/wdev.286 For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
- Hugo J Parker
- Stowers Institute for Medical Research, Kansas City, MO, USA
| | - Robb Krumlauf
- Stowers Institute for Medical Research, Kansas City, MO, USA.,Department of Anatomy and Cell Biology, Kansas University Medical Center, Kansas City, Kansas 66160, USA
| |
Collapse
|
39
|
Bakalenko NI, Poznyak AV, Novikova EL, Kulakova MA. Effect of retinoids on Post2 Нох gene expression in nereid polychaetes. Russ J Dev Biol 2017. [DOI: 10.1134/s106236041703002x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
40
|
Gouti M, Delile J, Stamataki D, Wymeersch FJ, Huang Y, Kleinjung J, Wilson V, Briscoe J. A Gene Regulatory Network Balances Neural and Mesoderm Specification during Vertebrate Trunk Development. Dev Cell 2017; 41:243-261.e7. [PMID: 28457792 PMCID: PMC5425255 DOI: 10.1016/j.devcel.2017.04.002] [Citation(s) in RCA: 160] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Revised: 02/20/2017] [Accepted: 04/03/2017] [Indexed: 01/02/2023]
Abstract
Transcriptional networks, regulated by extracellular signals, control cell fate decisions and determine the size and composition of developing tissues. One example is the network controlling bipotent neuromesodermal progenitors (NMPs) that fuel embryo elongation by generating spinal cord and trunk mesoderm tissue. Here, we use single-cell transcriptomics to identify the molecular signature of NMPs and reverse engineer the mechanism that regulates their differentiation. Together with genetic perturbations, this reveals a transcriptional network that integrates opposing retinoic acid (RA) and Wnt signals to determine the rate at which cells enter and exit the NMP state. RA, produced by newly generated mesodermal cells, provides feedback that initiates NMP generation and induces neural differentiation, thereby coordinating the production of neural and mesodermal tissue. Together, the data define a regulatory network architecture that balances the generation of different cell types from bipotential progenitors in order to facilitate orderly axis elongation. Single-cell RNA-seq reveals a signature of neuromesodermal progenitors In vitro NMPs resemble and differentiate similar to their in vivo counterparts Dual role for retinoic acid signaling in NMP induction and neural differentiation A transcriptional network regulates neural versus mesodermal allocation
Collapse
Affiliation(s)
- Mina Gouti
- The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK; Max Delbrück Center for Molecular Medicine, Robert-Rössle-Strasse 10, 13125 Berlin, Germany.
| | - Julien Delile
- The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | | | - Filip J Wymeersch
- MRC Centre for Regenerative Medicine, Institute for Stem Cell Research, School of Biological Sciences, University of Edinburgh, 5 Little France Drive, Edinburgh EH16 4UU, UK
| | - Yali Huang
- MRC Centre for Regenerative Medicine, Institute for Stem Cell Research, School of Biological Sciences, University of Edinburgh, 5 Little France Drive, Edinburgh EH16 4UU, UK
| | - Jens Kleinjung
- The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Valerie Wilson
- MRC Centre for Regenerative Medicine, Institute for Stem Cell Research, School of Biological Sciences, University of Edinburgh, 5 Little France Drive, Edinburgh EH16 4UU, UK
| | - James Briscoe
- The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK.
| |
Collapse
|
41
|
Cunningham TJ, Colas A, Duester G. Early molecular events during retinoic acid induced differentiation of neuromesodermal progenitors. Biol Open 2016; 5:1821-1833. [PMID: 27793834 PMCID: PMC5200905 DOI: 10.1242/bio.020891] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Bipotent neuromesodermal progenitors (NMPs) residing in the caudal epiblast drive coordinated body axis extension by generating both posterior neuroectoderm and presomitic mesoderm. Retinoic acid (RA) is required for body axis extension, however the early molecular response to RA signaling is poorly defined, as is its relationship to NMP biology. As endogenous RA is first seen near the time when NMPs appear, we used WNT/FGF agonists to differentiate embryonic stem cells to NMPs which were then treated with a short 2-h pulse of 25 nM RA or 1 µM RA followed by RNA-seq transcriptome analysis. Differential expression analysis of this dataset indicated that treatment with 25 nM RA, but not 1 µM RA, provided physiologically relevant findings. The 25 nM RA dataset yielded a cohort of previously known caudal RA target genes including Fgf8 (repressed) and Sox2 (activated), plus novel early RA signaling targets with nearby conserved RA response elements. Importantly, validation of top-ranked genes in vivo using RA-deficient Raldh2-/- embryos identified novel examples of RA activation (Nkx1-2, Zfp503, Zfp703, Gbx2, Fgf15, Nt5e) or RA repression (Id1) of genes expressed in the NMP niche or progeny. These findings provide evidence for early instructive and permissive roles of RA in controlling differentiation of NMPs to neural and mesodermal lineages.
Collapse
Affiliation(s)
- Thomas J Cunningham
- Development, Aging, and Regeneration Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Alexandre Colas
- Development, Aging, and Regeneration Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Gregg Duester
- Development, Aging, and Regeneration Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| |
Collapse
|
42
|
New Insights Into the Roles of Retinoic Acid Signaling in Nervous System Development and the Establishment of Neurotransmitter Systems. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2016; 330:1-84. [PMID: 28215529 DOI: 10.1016/bs.ircmb.2016.09.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Secreted chiefly from the underlying mesoderm, the morphogen retinoic acid (RA) is well known to contribute to the specification, patterning, and differentiation of neural progenitors in the developing vertebrate nervous system. Furthermore, RA influences the subtype identity and neurotransmitter phenotype of subsets of maturing neurons, although relatively little is known about how these functions are mediated. This review provides a comprehensive overview of the roles played by RA signaling during the formation of the central and peripheral nervous systems of vertebrates and highlights its effects on the differentiation of several neurotransmitter systems. In addition, the evolutionary history of the RA signaling system is discussed, revealing both conserved properties and alternate modes of RA action. It is proposed that comparative approaches should be employed systematically to expand our knowledge of the context-dependent cellular mechanisms controlled by the multifunctional signaling molecule RA.
Collapse
|
43
|
Montalbano A, Juergensen L, Roeth R, Weiss B, Fukami M, Fricke-Otto S, Binder G, Ogata T, Decker E, Nuernberg G, Hassel D, Rappold GA. Retinoic acid catabolizing enzyme CYP26C1 is a genetic modifier in SHOX deficiency. EMBO Mol Med 2016; 8:1455-1469. [PMID: 27861128 PMCID: PMC5167135 DOI: 10.15252/emmm.201606623] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2016] [Revised: 09/28/2016] [Accepted: 10/10/2016] [Indexed: 12/17/2022] Open
Abstract
Mutations in the homeobox gene SHOX cause SHOX deficiency, a condition with clinical manifestations ranging from short stature without dysmorphic signs to severe mesomelic skeletal dysplasia. In rare cases, individuals with SHOX deficiency are asymptomatic. To elucidate the factors that modify disease severity/penetrance, we studied a three-generation family with SHOX deficiency. The variant p.Phe508Cys of the retinoic acid catabolizing enzyme CYP26C1 co-segregated with the SHOX variant p.Val161Ala in the affected individuals, while the SHOX mutant alone was present in asymptomatic individuals. Two further cases with SHOX deficiency and damaging CYP26C1 variants were identified in a cohort of 68 individuals with LWD The identified CYP26C1 variants affected its catabolic activity, leading to an increased level of retinoic acid. High levels of retinoic acid significantly decrease SHOX expression in human primary chondrocytes and zebrafish embryos. Individual morpholino knockdown of either gene shortens the pectoral fins, whereas depletion of both genes leads to a more severe phenotype. Together, our findings describe CYP26C1 as the first genetic modifier for SHOX deficiency.
Collapse
Affiliation(s)
- Antonino Montalbano
- Department of Human Molecular Genetics, Heidelberg University, Heidelberg, Germany
| | - Lonny Juergensen
- Department of Internal Medicine III - Cardiology, Heidelberg University Hospital, Heidelberg, Germany
| | - Ralph Roeth
- Department of Human Molecular Genetics, Heidelberg University, Heidelberg, Germany
| | - Birgit Weiss
- Department of Human Molecular Genetics, Heidelberg University, Heidelberg, Germany
| | - Maki Fukami
- Department of Molecular Endocrinology, National Research Institute for Child Health and Development, Tokyo, Japan
| | | | - Gerhard Binder
- Children's Hospital, University of Tübingen, Tübingen, Germany
| | - Tsutomu Ogata
- Department of Pediatrics, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Eva Decker
- Bioscientia Center for Human Genetics, Ingelheim, Germany
| | - Gudrun Nuernberg
- Center for Molecular Medicine, Cologne, Germany
- Cologne Center for Genomics, Cologne, Germany
| | - David Hassel
- Department of Internal Medicine III - Cardiology, Heidelberg University Hospital, Heidelberg, Germany
| | - Gudrun A Rappold
- Department of Human Molecular Genetics, Heidelberg University, Heidelberg, Germany
- Interdisciplinary Centre for Neurosciences (IZN), University of Heidelberg, Heidelberg, Germany
| |
Collapse
|
44
|
Kumar S, Cunningham TJ, Duester G. Nuclear receptor corepressors Ncor1 and Ncor2 (Smrt) are required for retinoic acid-dependent repression of Fgf8 during somitogenesis. Dev Biol 2016; 418:204-215. [PMID: 27506116 PMCID: PMC5031541 DOI: 10.1016/j.ydbio.2016.08.005] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Revised: 06/30/2016] [Accepted: 08/05/2016] [Indexed: 10/21/2022]
Abstract
Retinoic acid (RA) repression of Fgf8 is required for many different aspects of organogenesis, however relatively little is known about how endogenous RA controls gene repression as opposed to gene activation. Here, we show that nuclear receptor corepressors NCOR1 and NCOR2 (SMRT) redundantly mediate the ability of RA to repress Fgf8. Ncor1;Ncor2 double mutants generated by CRISPR/Cas9 gene editing exhibited a small somite and distended heart phenotype similar to that of RA-deficient Raldh2-/- embryos, associated with increased Fgf8 expression and FGF signaling in caudal progenitors and heart progenitors. Embryo chromatin immunoprecipitation studies revealed that NCOR1/2 but not coactivators are recruited to the Fgf8 RA response element (RARE) in an RA-dependent manner, whereas coactivators but not NCOR1/2 are recruited RA-dependently to a RARE near Rarb that is activated by RA. CRISPR/Cas9-mediated genomic deletion of the Fgf8 RARE in mouse embryos often resulted in a small somite defect with Fgf8 derepression caudally, but no defect was observed in heart development or heart Fgf8 expression. This suggests the existence of another DNA element whose function overlaps with the Fgf8 RARE to mediate Fgf8 repression by RA and NCOR1/2. Our studies support a model in which NCOR1/2 mediates direct RA-dependent repression of Fgf8 in caudal progenitors in order to control somitogenesis.
Collapse
Affiliation(s)
- Sandeep Kumar
- Development, Aging, and Regeneration Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Thomas J Cunningham
- Development, Aging, and Regeneration Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Gregg Duester
- Development, Aging, and Regeneration Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA.
| |
Collapse
|
45
|
BMP and retinoic acid regulate anterior-posterior patterning of the non-axial mesoderm across the dorsal-ventral axis. Nat Commun 2016; 7:12197. [PMID: 27406002 PMCID: PMC4947171 DOI: 10.1038/ncomms12197] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Accepted: 06/09/2016] [Indexed: 11/23/2022] Open
Abstract
Despite the fundamental importance of patterning along the dorsal–ventral (DV) and anterior–posterior (AP) axes during embryogenesis, uncertainty exists in the orientation of these axes for the mesoderm. Here we examine the origin and formation of the zebrafish kidney, a ventrolateral mesoderm derivative, and show that AP patterning of the non-axial mesoderm occurs across the classic gastrula stage DV axis while DV patterning aligns along the animal–vegetal pole. We find that BMP signalling acts early to establish broad anterior and posterior territories in the non-axial mesoderm while retinoic acid (RA) functions later, but also across the classic DV axis. Our data support a model in which RA on the dorsal side of the embryo induces anterior kidney fates while posterior kidney progenitors are protected ventrally by the RA-catabolizing enzyme Cyp26a1. This work clarifies our understanding of vertebrate axis orientation and establishes a new paradigm for how the kidney and other mesodermal derivatives arise during embryogenesis. It is unclear how the dorsal-ventral (DV) and anterior-posterior (AP) axes established in the gastrula affect tissues. Here, the authors show that in zebrafish kidney development, with regard to non-axial mesoderm, the classic DV axis corresponds to the AP axis, and is regulated by BMP and retinoic acid.
Collapse
|
46
|
Yu SB, Umair Z, Kumar S, Lee U, Lee SH, Kim JI, Kim S, Park JB, Lee JY, Kim J. xCyp26c Induced by Inhibition of BMP Signaling Is Involved in Anterior-Posterior Neural Patterning of Xenopus laevis. Mol Cells 2016; 39:352-7. [PMID: 26923193 PMCID: PMC4844943 DOI: 10.14348/molcells.2016.0006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Revised: 01/15/2016] [Accepted: 01/18/2016] [Indexed: 01/08/2023] Open
Abstract
Vertebrate neurogenesis requires inhibition of endogenous bone morphogenetic protein (BMP) signals in the ectoderm. Blocking of BMPs in animal cap explants causes the formation of anterior neural tissues as a default fate. To identify genes involved in the anterior neural specification, we analyzed gene expression profiles using a Xenopus Affymetrix Gene Chip after BMP-4 inhibition in animal cap explants. We found that the xCyp26c gene, encoding a retinoic acid (RA) degradation enzyme, was upregulated following inhibition of BMP signaling in early neuroectodermal cells. Whole-mount in situ hybridization analysis showed that xCyp26c expression started in the anterior region during the early neurula stage. Overexpression of xCyp26c weakly induced neural genes in animal cap explants. xCyp26c abolished the expression of all trans-/cis-RA-induced posterior genes, but not basic FGF-induced posterior genes. Depletion of xCyp26c by morpholino-oligonucleotides suppressed the normal formation of the axis and head, indicating that xCyp26c plays a critical role in the specification of anterior neural tissue in whole embryos. In animal cap explants, however, xCyp26c morpholinos did not alter anterior-to-posterior neural tissue formation. Together, these results suggest that xCyp26c plays a specific role in anterior-posterior (A-P) neural patterning of Xenopus embryos.
Collapse
Affiliation(s)
- Saet-Byeol Yu
- Department of Biochemistry, Institute of Cell Differentiation and Aging, College of Medicine, Hallym University, Kangwon 200-702,
Korea
| | - Zobia Umair
- Department of Biochemistry, Institute of Cell Differentiation and Aging, College of Medicine, Hallym University, Kangwon 200-702,
Korea
| | - Shiv Kumar
- Department of Biochemistry, Institute of Cell Differentiation and Aging, College of Medicine, Hallym University, Kangwon 200-702,
Korea
| | - Unjoo Lee
- Department of Electrical Engineering, Hallym University, Kangwon200-702,
Korea
| | - Seung-Hwan Lee
- Department of Biochemistry, Institute of Cell Differentiation and Aging, College of Medicine, Hallym University, Kangwon 200-702,
Korea
| | - Jong-Il Kim
- Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine, Seoul 110-799,
Korea
| | - SungChan Kim
- Department of Biochemistry, Institute of Cell Differentiation and Aging, College of Medicine, Hallym University, Kangwon 200-702,
Korea
| | - Jae-Bong Park
- Department of Biochemistry, Institute of Cell Differentiation and Aging, College of Medicine, Hallym University, Kangwon 200-702,
Korea
| | - Jae-Yong Lee
- Department of Biochemistry, Institute of Cell Differentiation and Aging, College of Medicine, Hallym University, Kangwon 200-702,
Korea
| | - Jaebong Kim
- Department of Biochemistry, Institute of Cell Differentiation and Aging, College of Medicine, Hallym University, Kangwon 200-702,
Korea
| |
Collapse
|
47
|
Abstract
Morphogens were originally defined as secreted signaling molecules that diffuse from local sources to form concentration gradients, which specify multiple cell fates. More recently morphogen gradients have been shown to incorporate a range of mechanisms including short-range signal activation, transcriptional/translational feedback, and temporal windows of target gene induction. Many critical cell-cell signals implicated in both embryonic development and disease, such as Wnt, fibroblast growth factor (Fgf), hedgehog (Hh), transforming growth factor beta (TGFb), and retinoic acid (RA), are thought to act as morphogens, but key information on signal propagation and ligand distribution has been lacking for most. The zebrafish provides unique advantages for genetics and imaging to address gradients during early embryonic stages when morphogens help establish major body axes. This has been particularly informative for RA, where RA response elements (RAREs) driving fluorescent reporters as well as Fluorescence Resonance Energy Transfer (FRET) reporters of receptor binding have provided evidence for gradients, as well as regulatory mechanisms that attenuate noise and enhance gradient robustness in vivo. Here we summarize available tools in zebrafish and discuss their utility for studying dynamic regulation of RA morphogen gradients, through combined experimental and computational approaches.
Collapse
Affiliation(s)
| | - J Sosnik
- University of California, Irvine, CA, United States
| | - Q Nie
- University of California, Irvine, CA, United States
| |
Collapse
|
48
|
Sosnik J, Zheng L, Rackauckas CV, Digman M, Gratton E, Nie Q, Schilling TF. Noise modulation in retinoic acid signaling sharpens segmental boundaries of gene expression in the embryonic zebrafish hindbrain. eLife 2016; 5:e14034. [PMID: 27067377 PMCID: PMC4829421 DOI: 10.7554/elife.14034] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2015] [Accepted: 03/11/2016] [Indexed: 11/13/2022] Open
Abstract
Morphogen gradients induce sharply defined domains of gene expression in a concentration-dependent manner, yet how cells interpret these signals in the face of spatial and temporal noise remains unclear. Using fluorescence lifetime imaging microscopy (FLIM) and phasor analysis to measure endogenous retinoic acid (RA) directly in vivo, we have investigated the amplitude of noise in RA signaling, and how modulation of this noise affects patterning of hindbrain segments (rhombomeres) in the zebrafish embryo. We demonstrate that RA forms a noisy gradient during critical stages of hindbrain patterning and that cells use distinct intracellular binding proteins to attenuate noise in RA levels. Increasing noise disrupts sharpening of rhombomere boundaries and proper patterning of the hindbrain. These findings reveal novel cellular mechanisms of noise regulation, which are likely to play important roles in other aspects of physiology and disease. DOI:http://dx.doi.org/10.7554/eLife.14034.001 Animal cells need to be able to communicate with each other so that they can work together in tissues and organs. To do so, cells release signaling molecules that can move around within a tissue and be detected by receptors on other cells. We tend to assume that the signaling molecules are evenly distributed across a tissue and affect all the receiving cells in the same way. However, random variations (noise) that affect how many of these molecules are produced, how they move through the space between cells and how they bind to receptors makes the reality much more complex. Cells responding to the signal somehow can ignore this noise and establish sharp boundaries between different cell types so that neighboring cells have distinct roles in the tissue. Few studies have attempted to measure such noise or address how cells manage to respond to noisy signals in a consistent manner. Retinoic acid is a signaling molecule that plays an important role in the development of the brain in animal embryos. It forms a gradient along the body of the embryo from the head end to the tail end, but it has proved difficult to measure this gradient directly. Sosnik et al. exploited the fact that this molecule is weakly fluorescent and used microscopy to directly detect it in zebrafish embryos. The experiments show that retinoic acid forms a gradient in the embryos, with high levels at the tail end and lower levels at the head end. Sosnik et al. also found that there is a large amount of noise in the retinoic acid gradient. Two cells in the same position can have very different retinoic acid levels, and the levels in a particular cell can vary from one minute to the next. The experiments also show that proteins that interact with retinoic acid help to reduce noise within a cell. This noise reduction is important for sharpening the boundaries between different brain regions in the embryo to allow the brain to develop normally. A future challenge will be to see if similar retinoic acid gradients and noise control occur in other tissues, and if the noise has any positive role to play in development. DOI:http://dx.doi.org/10.7554/eLife.14034.002
Collapse
Affiliation(s)
- Julian Sosnik
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, United States.,Center for Complex Biological Systems, University of California, Irvine, Irvine, United States.,Department of Interdisciplinary Engineering, Wentworth Institute of Technology, Boston, United States
| | - Likun Zheng
- Center for Complex Biological Systems, University of California, Irvine, Irvine, United States.,Department of Mathematics, University of California, Irvine, Irvine, United States
| | - Christopher V Rackauckas
- Center for Complex Biological Systems, University of California, Irvine, Irvine, United States.,Department of Mathematics, University of California, Irvine, Irvine, United States
| | - Michelle Digman
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, United States.,Center for Complex Biological Systems, University of California, Irvine, Irvine, United States.,Department of Biomedical Engineering, University of California, Irvine, Irvine, United States
| | - Enrico Gratton
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, United States.,Center for Complex Biological Systems, University of California, Irvine, Irvine, United States.,Department of Biomedical Engineering, University of California, Irvine, Irvine, United States
| | - Qing Nie
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, United States.,Center for Complex Biological Systems, University of California, Irvine, Irvine, United States.,Department of Mathematics, University of California, Irvine, Irvine, United States
| | - Thomas F Schilling
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, United States.,Center for Complex Biological Systems, University of California, Irvine, Irvine, United States
| |
Collapse
|
49
|
Parker HJ, Bronner ME, Krumlauf R. The vertebrate Hox gene regulatory network for hindbrain segmentation: Evolution and diversification: Coupling of a Hox gene regulatory network to hindbrain segmentation is an ancient trait originating at the base of vertebrates. Bioessays 2016; 38:526-38. [PMID: 27027928 DOI: 10.1002/bies.201600010] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Hindbrain development is orchestrated by a vertebrate gene regulatory network that generates segmental patterning along the anterior-posterior axis via Hox genes. Here, we review analyses of vertebrate and invertebrate chordate models that inform upon the evolutionary origin and diversification of this network. Evidence from the sea lamprey reveals that the hindbrain regulatory network generates rhombomeric compartments with segmental Hox expression and an underlying Hox code. We infer that this basal feature was present in ancestral vertebrates and, as an evolutionarily constrained developmental state, is fundamentally important for patterning of the vertebrate hindbrain across diverse lineages. Despite the common ground plan, vertebrates exhibit neuroanatomical diversity in lineage-specific patterns, with different vertebrates revealing variations of Hox expression in the hindbrain that could underlie this diversification. Invertebrate chordates lack hindbrain segmentation but exhibit some conserved aspects of this network, with retinoic acid signaling playing a role in establishing nested domains of Hox expression.
Collapse
Affiliation(s)
- Hugo J Parker
- Stowers Institute for Medical Research, Kansas City, MO, USA
| | - Marianne E Bronner
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Robb Krumlauf
- Stowers Institute for Medical Research, Kansas City, MO, USA.,Department of Anatomy and Cell Biology, Kansas University Medical Center, Kansas City, KS, USA
| |
Collapse
|
50
|
Chen C, Stedman A, Havis E, Anselme I, Onichtchouk D, Giudicelli F, Schneider-Maunoury S. Initiation of cyp26a1 Expression in the Zebrafish Anterior Neural Plate by a Novel Cis-Acting Element. PLoS One 2016; 11:e0150639. [PMID: 26959238 PMCID: PMC4784732 DOI: 10.1371/journal.pone.0150639] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2014] [Accepted: 02/17/2016] [Indexed: 11/24/2022] Open
Abstract
Early patterning of the vertebrate neural plate involves a complex hierarchy of inductive interactions orchestrated by signalling molecules and their antagonists. The morphogen retinoic acid, together with the Cyp26 enzymes which degrade it, play a central role in this process. The cyp26a1 gene expressed in the anterior neural plate thus contributes to the fine modulation of the rostrocaudal retinoic acid gradient. Despite this important role of cyp26a1 in early brain formation, the mechanisms that control its expression in the anterior neural plate are totally unknown. Here, we present the isolation of a 310-base-pair DNA element adjacent to cyp26a1 promoter, displaying enhancer activity restricted to the anterior neural plate of the zebrafish gastrula. We show that unlike that of cyp26a1, expression driven by this cyp26a1 anterior neural plate element (cANE) is independent of retinoic acid. Through deletion analysis, we identify a 12-nucleotide motif essential for cANE activity. A consensus bipartite binding site for SoxB:Oct transcription factors overlaps with this motif. Mutational analysis suggests that SoxB binding is essential for its activity. We discuss the contribution of this study to the elucidation of the regulatory hierarchy involved in early neural plate patterning.
Collapse
Affiliation(s)
- Chunhong Chen
- CNRS, UMR 7622, Paris, France
- Sorbonne Universités, Université Pierre et Marie Curie, Institut de Biologie Paris-Seine (IBPS), Developmental Biology Laboratory, Paris, France
- Inserm, U1156, Paris, France
| | - Aline Stedman
- CNRS, UMR 7622, Paris, France
- Sorbonne Universités, Université Pierre et Marie Curie, Institut de Biologie Paris-Seine (IBPS), Developmental Biology Laboratory, Paris, France
- Inserm, U1156, Paris, France
| | - Emmanuelle Havis
- CNRS, UMR 7622, Paris, France
- Sorbonne Universités, Université Pierre et Marie Curie, Institut de Biologie Paris-Seine (IBPS), Developmental Biology Laboratory, Paris, France
- Inserm, U1156, Paris, France
| | - Isabelle Anselme
- CNRS, UMR 7622, Paris, France
- Sorbonne Universités, Université Pierre et Marie Curie, Institut de Biologie Paris-Seine (IBPS), Developmental Biology Laboratory, Paris, France
- Inserm, U1156, Paris, France
| | - Daria Onichtchouk
- Developmental Biology, Institute Biology I, Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - François Giudicelli
- CNRS, UMR 7622, Paris, France
- Sorbonne Universités, Université Pierre et Marie Curie, Institut de Biologie Paris-Seine (IBPS), Developmental Biology Laboratory, Paris, France
- Inserm, U1156, Paris, France
- * E-mail: (FG); (SSM)
| | - Sylvie Schneider-Maunoury
- CNRS, UMR 7622, Paris, France
- Sorbonne Universités, Université Pierre et Marie Curie, Institut de Biologie Paris-Seine (IBPS), Developmental Biology Laboratory, Paris, France
- Inserm, U1156, Paris, France
- * E-mail: (FG); (SSM)
| |
Collapse
|