1
|
Zheng T, Nakamoto A, Kumano G. H3K27me3 suppresses sister-lineage somatic gene expression in late embryonic germline cells of the ascidian, Halocynthia roretzi. Dev Biol 2020; 460:200-214. [PMID: 31904374 DOI: 10.1016/j.ydbio.2019.12.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 11/21/2019] [Accepted: 12/29/2019] [Indexed: 10/25/2022]
Abstract
Protection of the germline from somatic differentiation programs is crucial for germ cell development. In many animals, whose germline development relies on the maternally inherited germ plasm, such protection in particular at early stages of embryogenesis is achieved by maternally localized global transcriptional repressors, such as PIE-1 of Caenorhabditis elegans, Pgc of Drosophila melanogaster and Pem of ascidians. However, zygotic gene expression starts in later germline cells eventually and mechanisms by which somatic gene expression is selectively kept under repression in the transcriptionally active cells are poorly understood. By using the ascidian species Halocynthia roretzi, we found that H3K27me3, a repressive transcription-related chromatin mark, became enriched in germline cells starting at the 64-cell stage when Pem protein level and its contribution to transcriptional repression decrease. Interestingly, inhibition of H3K27me3 together with Pem knockdown resulted in ectopic expression in germline cells of muscle developmental genes Muscle actin (MA4) and Snail, and of Clone 22 (which is expressed in all somatic but not germline cells), but not of other tissue-specific genes such as the notochord gene Brachyury, the nerve cord marker ETR-1 and a heart precursor gene Mesp, at the 110-cell stage. Importantly, these ectopically expressed genes are normally expressed in the germline sister cells (B7.5), the last somatic lineage separated from the germline. Also, the ectopic expression of MA4 was dependent on a maternally localized muscle determinant Macho-1. Taken together, we propose that H3K27me3 may be responsible for selective transcriptional repression for somatic genes in later germline cells in Halocynthia embryos and that the preferential repression of germline sister-lineage genes may be related to the mechanism of germline segregation in ascidian embryos, where the germline is segregated progressively by successive asymmetric cell divisions during cell cleavage stages. Together with findings from C. elegans and D. melanogaster, our data for this urochordate animal support the proposal for a mechanism, conserved widely throughout the animal kingdom, where germline transcriptional repression is mediated initially by maternally localized factors and subsequently by a chromatin-based mechanism.
Collapse
Affiliation(s)
- Tao Zheng
- Asamushi Research Center for Marine Biology, Graduate School of Life Sciences, Tohoku University, Japan.
| | - Ayaki Nakamoto
- Asamushi Research Center for Marine Biology, Graduate School of Life Sciences, Tohoku University, Japan
| | - Gaku Kumano
- Asamushi Research Center for Marine Biology, Graduate School of Life Sciences, Tohoku University, Japan
| |
Collapse
|
2
|
Control of Pem protein level by localized maternal factors for transcriptional regulation in the germline of the ascidian, Halocynthia roretzi. PLoS One 2018; 13:e0196500. [PMID: 29709000 PMCID: PMC5927453 DOI: 10.1371/journal.pone.0196500] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Accepted: 04/13/2018] [Indexed: 12/04/2022] Open
Abstract
Localized maternal mRNAs play important roles in embryogenesis, e.g. the establishment of embryonic axes and the developmental cell fate specification, in various animal species. In ascidians, a group of maternal mRNAs, called postplasmic/PEM RNAs, is localized to a subcellular structure, called the Centrosome-Attracting Body (CAB), which contains the ascidian germ plasm, and is inherited by the germline cells during embryogenesis. Posterior end mark (Pem), a postplasmic/PEM RNAs member, represses somatic gene expression in the germline during cleavage stages by inhibition of RNA polymerase II activity. However, the functions of other postplasmic/ PEM RNAs members in germline formation are largely unknown. In this study, we analyzed the functions of two postplasmic/PEM RNAs, Popk-1 and Zf-1, in transcriptional regulation in the germline cells. We show that Popk-1 contributes to transcriptional quiescence by controlling the size of the CAB and amount of Pem protein translated at the CAB. Our studies also indicated that zygotic expression of a germline gene starts around the onset of gastrulation and that the decrease of Pem protein is necessary and sufficient for the zygotic germline gene expression. Finally, further studies showed that the decrease of the Pem protein level is facilitated by Zf-1. Taken together, we propose that postplasmic/PEM RNAs such as Popk-1 and Zf-1 control the protein level of the transcriptional repressor Pem and regulate its transcriptional state in the ascidian germline.
Collapse
|
3
|
piRNA-like small RNAs are responsible for the maternal-specific knockdown in the ascidian Ciona intestinalis Type A. Sci Rep 2018; 8:5869. [PMID: 29651003 PMCID: PMC5897368 DOI: 10.1038/s41598-018-24319-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Accepted: 03/12/2018] [Indexed: 01/11/2023] Open
Abstract
The mRNAs stored in eggs are crucial for embryogenesis. To address functions of maternal mRNAs, we recently reported the novel method MASK (maternal mRNA-specific knockdown), which we used to specifically knockdown maternal transcripts in the ascidian Ciona intestinalis Type A. In MASK, the cis element of a maternal gene is fused with eGFP or Kaede reporter gene, and the cassette is introduced into Ciona genome by transposon-mediated transgenesis. In eggs of the transgenic lines, the maternal expression of the gene whose cis element is used for driving the reporter gene is suppressed. The zygotic expression of the gene is not suppressed, suggesting that the MASK method can distinguish between maternal and zygotic functions of a gene. Here we investigated the cis and trans factors responsible for MASK results. In the ovaries in which knockdown of a maternal gene occurs, a number of antisense small RNAs are expressed that are complementary to the sequence of the knocked-down genes. We suspect that these antisense small RNAs are the factor responsible for MASK results. The antisense small RNAs have several features that are seen in PIWI-interacting RNAs (piRNAs), suggesting that MASK is likely to use a piRNA-mediated mechanism to knock down maternal mRNAs.
Collapse
|
4
|
Ogura Y, Sasakura Y. Emerging mechanisms regulating mitotic synchrony during animal embryogenesis. Dev Growth Differ 2017; 59:565-579. [DOI: 10.1111/dgd.12391] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2017] [Revised: 07/20/2017] [Accepted: 07/23/2017] [Indexed: 01/21/2023]
Affiliation(s)
- Yosuke Ogura
- Laboratory for Morphogenetic Signaling; RIKEN Center for Developmental Biology; Kobe Japan
| | - Yasunori Sasakura
- Shimoda Marine Research Center; University of Tsukuba; Shizuoka Japan
| |
Collapse
|
5
|
Eritano AS, Altamirano A, Beyeler S, Gaytan N, Velasquez M, Riggs B. The endoplasmic reticulum is partitioned asymmetrically during mitosis before cell fate selection in proneuronal cells in the early Drosophila embryo. Mol Biol Cell 2017; 28:1530-1538. [PMID: 28381427 PMCID: PMC5449151 DOI: 10.1091/mbc.e16-09-0690] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Revised: 03/28/2017] [Accepted: 03/28/2017] [Indexed: 11/19/2022] Open
Abstract
In the early Drosophila embryo, epithelial cells begin to adopt a cell fate. At gastrulation, there is an asymmetric partitioning of the endoplasmic reticulum in a symmetrically dividing cell population before cell fate selection. These results highlight the changes in organelle distribution before asymmetric divisions. Asymmetric cell division is the primary mechanism to generate cellular diversity, and it relies on the correct partitioning of cell fate determinants. However, the mechanism by which these determinants are delivered and positioned is poorly understood, and the upstream signal to initiate asymmetric cell division is unknown. Here we report that the endoplasmic reticulum (ER) is asymmetrically partitioned during mitosis in epithelial cells just before delamination and selection of a proneural cell fate in the early Drosophila embryo. At the start of gastrulation, the ER divides asymmetrically into a population of asynchronously dividing cells at the anterior end of the embryo. We found that this asymmetric division of the ER depends on the highly conserved ER membrane protein Jagunal (Jagn). RNA inhibition of jagn just before the start of gastrulation disrupts this asymmetric division of the ER. In addition, jagn-deficient embryos display defects in apical-basal spindle orientation in delaminated embryonic neuroblasts. Our results describe a model in which an organelle is partitioned asymmetrically in an otherwise symmetrically dividing cell population just upstream of cell fate determination and updates previous models of spindle-based selection of cell fate during mitosis.
Collapse
Affiliation(s)
- Anthony S Eritano
- Department of Biology, San Francisco State University, San Francisco, CA 94132
| | - Arturo Altamirano
- Department of Biology, San Francisco State University, San Francisco, CA 94132
| | - Sarah Beyeler
- Department of Biology, San Francisco State University, San Francisco, CA 94132
| | - Norma Gaytan
- Department of Biology, San Francisco State University, San Francisco, CA 94132
| | - Mark Velasquez
- Department of Biology, San Francisco State University, San Francisco, CA 94132
| | - Blake Riggs
- Department of Biology, San Francisco State University, San Francisco, CA 94132
| |
Collapse
|
6
|
Negishi T, Miyazaki N, Murata K, Yasuo H, Ueno N. Physical association between a novel plasma-membrane structure and centrosome orients cell division. eLife 2016; 5:e16550. [PMID: 27502556 PMCID: PMC4978527 DOI: 10.7554/elife.16550] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Accepted: 06/20/2016] [Indexed: 01/16/2023] Open
Abstract
In the last mitotic division of the epidermal lineage in the ascidian embryo, the cells divide stereotypically along the anterior-posterior axis. During interphase, we found that a unique membrane structure invaginates from the posterior to the centre of the cell, in a microtubule-dependent manner. The invagination projects toward centrioles on the apical side of the nucleus and associates with one of them. Further, a cilium forms on the posterior side of the cell and its basal body remains associated with the invagination. A laser ablation experiment suggests that the invagination is under tensile force and promotes the posterior positioning of the centrosome. Finally, we showed that the orientation of the invaginations is coupled with the polarized dynamics of centrosome movements and the orientation of cell division. Based on these findings, we propose a model whereby this novel membrane structure orchestrates centrosome positioning and thus the orientation of cell division axis.
Collapse
Affiliation(s)
- Takefumi Negishi
- Division of Morphogenesis, National Institute for Basic Biology, National Institutes of Natural Sciences, Okazaki, Japan
- Laboratoire de Biologie du Développement de Villefranche-sur-mer UMR7009, Observatoire Océanologique, Sorbonne Universités, UPMC Université Paris 06, CNRS, Villefranche-sur-Mer, France
| | - Naoyuki Miyazaki
- National Institute for Physiological Sciences, National Institutes of Natural Sciences, Okazaki, Japan
| | - Kazuyoshi Murata
- National Institute for Physiological Sciences, National Institutes of Natural Sciences, Okazaki, Japan
| | - Hitoyoshi Yasuo
- Laboratoire de Biologie du Développement de Villefranche-sur-mer UMR7009, Observatoire Océanologique, Sorbonne Universités, UPMC Université Paris 06, CNRS, Villefranche-sur-Mer, France
| | - Naoto Ueno
- Division of Morphogenesis, National Institute for Basic Biology, National Institutes of Natural Sciences, Okazaki, Japan
- Department of Basic Biology, School of Life Science, The Graduate University for Advanced Studies, Okazaki, Japan
| |
Collapse
|
7
|
Ogura Y, Sasakura Y. Ascidians as excellent models for studying cellular events in the chordate body plan. THE BIOLOGICAL BULLETIN 2013; 224:227-236. [PMID: 23995746 DOI: 10.1086/bblv224n3p227] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
The larvae of non-vertebrate chordate ascidians consist of countable numbers of cells. With this feature, ascidians provide us with excellent models for studying cellular events in the construction of the chordate body. This review discusses the recent observations of morphogenetic movements and cell cycles and divisions along with tissue specifications during ascidian embryogenesis. Unequal cleavages take place at the posterior blastomeres during the early cleavage stages of ascidians, and the structure named the centrosome-attracting body restricts the position of the nuclei near the posterior pole to achieve the unequal cleavages. The most-posterior cells differentiate into the primordial germ cells. The gastrulation of ascidians starts as early as the 110-cell stage. During gastrulation, the endodermal cells show two-step changes in cell shape that are crucial for gastrulation. The ascidian notochord is composed of only 40 cells. The 40 cells align to form a single row by an event named the convergent extension, and then the notochord cells undergo vacuolation to transform the notochord into a single hollowed tube. The strictly restricted number of notochord cells is achieved by the regulated number of cell divisions coupled with the differentiation of the cells conducted by a key transcription factor, Brachyury. The dorsally located neural tube is a characteristic of chordates. During the closure of the ascidian neural tube, the epidermis surrounding the neural plate moves toward the midline to close the neural fold. This morphogenetic movement is allowed by an elongation of interphase in the epidermal cell cycles.
Collapse
Affiliation(s)
- Yosuke Ogura
- Shimoda Marine Research Center, University of Tsukuba, Shizuoka, Japan
| | | |
Collapse
|
8
|
Makabe KW, Nishida H. Cytoplasmic localization and reorganization in ascidian eggs: role of postplasmic/PEM RNAs in axis formation and fate determination. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2012; 1:501-18. [PMID: 23801532 DOI: 10.1002/wdev.54] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Localization of maternal molecules in eggs and embryos and cytoplasmic movements to relocalize them are fundamental for the orderly cellular and genetic processes during early embryogenesis. Ascidian embryos have been known as 'mosaic eggs' because of their autonomous differentiation abilities based on localized cell fate determinants. This review gives a historical overview of the concept of cytoplasmic localization, and then explains the key features such as ooplasmic movements and cell lineages that are essential to grasp the process of ascidian development mediated by localized determinant activities. These activities are partly executed by localized molecules named postplasmic/PEM RNAs, originating from approximately 50 genes, of which the muscle determinant, macho-1, is an example. The cortical domain containing these RNAs is relocalized to the posterior-vegetal region of the egg by cytoskeletal movements after fertilization, and plays crucial roles in axis formation and cell fate determination. The cortical domain contains endoplasmic reticulum and characteristic granules, and gives rise to a subcellular structure called the centrosome-attracting body (CAB), in which postplasmic/PEM RNAs are highly concentrated. The CAB is responsible for a series of unequal partitionings of the posterior-vegetal cytoplasmic domain and the postplasmic/PEM RNAs at the posterior pole during cleavage. Some components of this domain, which is rich in granules, are eventually inherited by prospective germline cells with particular postplasmic/PEM RNAs such as vasa. The postplasmic/PEM RNAs are classified into two groups according to their final cellular destinations and localization pathways. Localization of these RNAs is regulated by specific nucleotide sequences in the 3' untranslated regions (3'UTRs).
Collapse
Affiliation(s)
- Kazuhiro W Makabe
- Institute of Socio-Arts and Sciences, University of Tokushima, Tokushima, Japan
| | | |
Collapse
|
9
|
Abstract
The Peutz-Jeghers syndrome (PJS) culprit kinase LKB1 phosphorylates and activates multiple intracellular kinases regulating cell metabolism and polarity. The relevance of each of these pathways is highly variable depending on the tissue type, but typically represents functions of differentiated cells. These include formation and maintenance of specialized cell compartments in nerve axons, swift refunneling of metabolites and restructuring of cell architecture in response to environmental cues in committed lymphocytes, and ensuring energy-efficient oxygen-based energy expenditure. Such features are often lost or reduced in cancer cells, and indeed LKB1 defects in PJS-associated and sporadic cancers and even the benign PJS polyps lead to differentiation defects, including expansion of partially differentiated epithelial cells in PJS polyps and epithelial-to-mesenchymal transition in carcinomas. This review focuses on the involvement of LKB1 in the differentiation of epithelial, mesenchymal, hematopoietic and germinal lineages.
Collapse
Affiliation(s)
- Lina Udd
- Institute of Biotechnology and Genome-Scale Biology Research Program, University of Helsinki, P.O. Box 56 (Biocenter 1), 00014, Helsinki, Finland
| | | |
Collapse
|
10
|
Abstract
The localization of mRNAs in developing animal cells is essential for establishing cellular polarity and setting up the body plan for subsequent development. Cellular and molecular mechanisms by which maternal mRNAs are localized during oogenesis have been extensively studied in Drosophila and Xenopus. In contrast, evidence for mechanisms used in the localization of mRNAs encoded by developmentally important genes has also been accumulating in several other organisms. This offers the opportunity to unravel the fundamental mechanisms of mRNA localization shared among many species, as well as unique mechanisms specifically acquired or retained by animals based on their developmental needs. In addition to maternal mRNAs, the localization of zygotically expressed mRNAs in the cells of cleaving embryos is also important for early development. In this review, mRNA localization dynamics in the oocytes/eggs of Drosophila and Xenopus are first summarized, and evidence for localized mRNAs in the oocytes/eggs and cleaving embryos of other organisms is then presented.
Collapse
Affiliation(s)
- Gaku Kumano
- Department of Biological Sciences, Graduate School of Science, Osaka University, 1-1 Machikaneyama-cho, Toyonaka, Osaka 560-0043, Japan.
| |
Collapse
|
11
|
Paix A, Le Nguyen PN, Sardet C. Bi-polarized translation of ascidian maternal mRNA determinant pem-1 associated with regulators of the translation machinery on cortical Endoplasmic Reticulum (cER). Dev Biol 2011; 357:211-26. [PMID: 21723275 DOI: 10.1016/j.ydbio.2011.06.019] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2011] [Revised: 06/10/2011] [Accepted: 06/16/2011] [Indexed: 01/07/2023]
Abstract
Polarized cortical mRNA determinants such as maternal macho-1 and pem-1 in ascidians, like budding yeast mating factor ASH1 reside on the cER-mRNA domain a subdomain of cortical Endoplasmic Reticulum(ER) and are translated in its vicinity. Using high resolution imaging and isolated cortical fragments prepared from eggs and embryos we now find that macho-1 and pem-1 RNAs co-localize with phospho-protein regulators of translation initiation (MnK/4EBP/S6K). Translation of cortical pem-1 RNA follows its bi-polarized relocalization. About 10 min after fertilization or artificial activation with a calcium ionophore, PEM1 protein is detected in the vegetal cortex in the vicinity of pem-1 RNA. About 40 min after fertilization-when pem-1 RNA and P-MnK move to the posterior pole-PEM1 protein remains in place forming a network of cortical patches anchored at the level of the zygote plasma membrane before disappearing. Cortical PEM1 protein is detected again at the 4 cell stage in the posterior centrosome attracting body (CAB) region where the cER-mRNA domain harboring pem-1/P-MnK/P-4EBP/P-S6K is concentrated. Bi-polarized PEM1 protein signals are not detected when pem-1 morpholinos are injected into eggs or zygotes or when MnK is inhibited. We propose that localized translation of the pem-1 RNA determinant is triggered by the fertilization/calcium wave and that the process is controlled by phospho-protein regulators of translation initiation co-localized with the RNA determinant on a sub-domain of the cortical Endoplasmic Reticulum.
Collapse
Affiliation(s)
- Alexandre Paix
- Université Pierre et Marie Curie and Centre National de la Recherche Scientifique, BioMarCell, UMR BioDev, Observatoire Océanologique, Villefranche-sur-mer, France
| | | | | |
Collapse
|
12
|
Negishi T, Kumano G, Nishida H. Polo-like kinase 1 is required for localization of Posterior End Mark protein to the centrosome-attracting body and unequal cleavages in ascidian embryos. Dev Growth Differ 2011; 53:76-87. [PMID: 21261613 DOI: 10.1111/j.1440-169x.2010.01231.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In ascidian embryos, the posterior-localized maternal factor Posterior End Mark (PEM) is responsible for patterning embryos along the anterior-posterior axis with regard to both cleavage pattern involving unequal cell divisions and gene expression. Although PEM plays important roles in embryogenesis, its mechanism of action is still unclear because PEM has no known functional domain. In the present study, we explored the candidate of PEM partner proteins in Halocynthia roretzi using yeast two-hybrid screening. We isolated a homologue of Polo-like kinase 1 (Plk1), a key regulator of cell division and highly conserved in eukaryotes, as the first potential binding partner of PEM. We biochemically confirmed that interaction occurred between the Plk1 and PEM proteins. Immunostaining showed that Plk1 protein concentrates in the centrosome-attracting body (CAB) at the posterior pole, where PEM protein is also localized. The CAB is a subcellular structure that plays an important role in generating the posterior cleavage pattern. Plk1 localization to the CAB was dependent on the cell cycle phases during unequal cleavage. Inhibition of Plk1 with specific drugs resulted in failure of the nucleus to migrate towards the posterior pole and formation of a microtubule bundle between the CAB and a centrosome, similarly to inhibition of PEM function, suggesting that both proteins are involved in the same process of unequal cleavages. This interrupted nuclear migration was rescued by overexpression of PEM. In Plk1-inhibited embryos, the localization of PEM protein to the CAB was impaired, indicating that Plk1 is required for appropriate localization of PEM.
Collapse
Affiliation(s)
- Takefumi Negishi
- Department of Biological Sciences, Osaka University, Toyonaka, Japan.
| | | | | |
Collapse
|
13
|
Kumano G, Kawai N, Nishida H. Macho-1 regulates unequal cell divisions independently of its function as a muscle determinant. Dev Biol 2010; 344:284-92. [PMID: 20478299 DOI: 10.1016/j.ydbio.2010.05.013] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2010] [Revised: 03/30/2010] [Accepted: 05/08/2010] [Indexed: 02/05/2023]
Abstract
The anterior-posterior (A-P) axis in ascidian embryos is established through the posteriorizing activities of a localized egg region known as the posterior vegetal cortex/cytoplasm (PVC). Here we describe a novel function of macho-1, a maternally-localized muscle determinant, in establishment of the A-P axis in the Halocynthia roretzi embryo. Macho-1, in addition to its known function in the formation of posterior tissue such as muscle and mesenchyme, and suppression of the anterior-derived notochord fate, acts independently of its transcriptional activity as a regulator of posterior-specific unequal cell divisions, in cooperation with beta-catenin. Our results suggest that macho-1 and beta-catenin regulate the formation of a microtubule bundle that shortens and pulls the centrosome toward a sub-cellular cortical structure known as centrosome-attracting body (CAB), which is located at the posterior pole of the embryo during unequal cell divisions, and act upstream of PEM, a recently-identified regulator of unequal cell divisions. We also present data that suggest that PEM localization to the CAB may not be required for unequal cleavage regulation. The present study provides an important and novel insight into the role of the zinc-finger-containing transcription factor and indicates that it constitutes a major part of the PVC activity.
Collapse
Affiliation(s)
- Gaku Kumano
- Department of Biological Sciences, Graduate School of Science, Osaka University, 1-1 Machikaneyama-cho, Toyonaka, Osaka 560-0043, Japan.
| | | | | |
Collapse
|
14
|
Unfolding a chordate developmental program, one cell at a time: Invariant cell lineages, short-range inductions and evolutionary plasticity in ascidians. Dev Biol 2009; 332:48-60. [DOI: 10.1016/j.ydbio.2009.05.540] [Citation(s) in RCA: 104] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2009] [Revised: 04/27/2009] [Accepted: 05/03/2009] [Indexed: 12/25/2022]
|
15
|
Actin microfilaments guide the polarized transport of nuclear pore complexes and the cytoplasmic dispersal of Vasa mRNA during GVBD in the ascidian Halocynthia roretzi. Dev Biol 2009; 330:377-88. [PMID: 19362546 DOI: 10.1016/j.ydbio.2009.04.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2008] [Revised: 03/30/2009] [Accepted: 04/03/2009] [Indexed: 12/16/2022]
Abstract
Meiosis reinitiation starts with the germinal vesicle breakdown (GVBD) within the gonad before spawning. Here, we have extended our previous observations and identified the formation of conspicuous actin bundles emanating from the germinal vesicle (GV) during its breakdown in the ascidian Halocynthia roretzi. Time-lapse video recordings and fluorescent labelling of microfilaments (MFs) indicate that these microfilamentous structures invariantly elongate towards the vegetal hemisphere at the estimated speed of 20 mum/min. Interestingly, the nuclear pore complex protein Nup153 accumulates at the vegetal tip of actin bundles. To determine if these structures play a role in the formation of the germ plasm, we have analyzed the localization pattern of Vasa transcript in maturing oocytes and early embryos. We found that Hr-Vasa mRNA, one of Type II postplasmic/PEM mRNAs, changes from a granular and perinuclear localization to an apparent uniform cytoplasmic distribution during oocyte maturation, and then concentrate in the centrosome-attracting body (CAB) by the eight-cell stage. In addition, treatments with Latrunculin B, but not with Nocodazole, blocked the redistribution of Nup153 and Hr-Vasa mRNA, suggesting that these mechanisms are both actin-dependant. We discuss the pleiotropic role played by MFs, and the relationship between nuclear pores, maternal Vasa mRNA and germ plasm in maturing ascidian oocytes.
Collapse
|
16
|
Abstract
Little is known about the ancient chordates that gave rise to the first vertebrates, but the descendants of other invertebrate chordates extant at the time still flourish in the ocean. These invertebrates include the cephalochordates and tunicates, whose larvae share with vertebrate embryos a common body plan with a central notochord and a dorsal nerve cord. Tunicates are now thought to be the sister group of vertebrates. However, research based on several species of ascidians, a diverse and wide-spread class of tunicates, revealed that the molecular strategies underlying their development appear to diverge greatly from those found in vertebrates. Furthermore, the adult body plan of most tunicates, which arises following an extensive post-larval metamorphosis, shows little resemblance to the body plan of any other chordate. In this review, we compare the developmental strategies of ascidians and vertebrates and argue that the very divergence of these strategies reveals the surprising level of plasticity of the chordate developmental program and is a rich resource to identify core regulatory mechanisms that are evolutionarily conserved in chordates. Further, we propose that the comparative analysis of the architecture of ascidian and vertebrate gene regulatory networks may provide critical insight into the origin of the chordate body plan.
Collapse
Affiliation(s)
- Patrick Lemaire
- Institut de Biologie du Développement de Marseille-Luminy (IBDML), UMR6216, CNRS-Université de la Méditerranée, case 907, Campus de Luminy, F-13288 Marseille cedex 9, France
| | - William C Smith
- Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, CA 93106. USA
| | - Hiroki Nishida
- Department of Biological Sciences, Graduate School of Science, Osaka University, 1-1 Machikaneyama-cho, Toyonaka, Osaka 560-0043, Japan
| |
Collapse
|
17
|
Cortical and cytoplasmic flows driven by actin microfilaments polarize the cortical ER-mRNA domain along the a–v axis in ascidian oocytes. Dev Biol 2008; 313:682-99. [DOI: 10.1016/j.ydbio.2007.11.001] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2007] [Revised: 10/23/2007] [Accepted: 11/02/2007] [Indexed: 11/22/2022]
|
18
|
Kishi M. Axon or dendrite? cell biology and molecular pathways for neuronal cell asymmetry. J Neurosci Res 2008; 86:490-5. [PMID: 17680674 DOI: 10.1002/jnr.21457] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Young neurons polarize by specializing axons and dendrites from immature neurites. After synapse formations, they transmit electrical activity along the axon-dendrite axis, thereby working as functional units of the neural circuits. This axon-dendrite asymmetry is referred to as neuronal polarity. Although a great number of cell biological studies in vitro had been performed, little was known about the molecular events that establish the polarity. In the last several years, rapid advancement in molecular and genetic studies has unraveled the multiple signaling pathways. This paper summarizes current perspectives on the cell and molecular biological mechanisms of the neuronal polarization, to clarify future directions in this growing research field.
Collapse
Affiliation(s)
- Masashi Kishi
- Department of Genetics, Washington University School of Medicine, St. Louis, Missouri 63110, USA.
| |
Collapse
|
19
|
Prodon F, Yamada L, Shirae-Kurabayashi M, Nakamura Y, Sasakura Y. Postplasmic/PEM RNAs: a class of localized maternal mRNAs with multiple roles in cell polarity and development in ascidian embryos. Dev Dyn 2007; 236:1698-715. [PMID: 17366574 DOI: 10.1002/dvdy.21109] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Ascidian is a good model to understand the cellular and molecular mechanisms responsible for mRNA localization with the discovery of a large family of localized maternal mRNAs, called postplasmic/PEM RNAs, which includes more than 40 members in three different ascidian species (Halocynthia roretzi, Ciona intestinalis, and C. savignyi). Among these mRNAs, two types (Type I and Type II) have been identified and show two different localization patterns from fertilization to the eight-cell stage. At the eight-cell stage, both types concentrate to a macromolecular cortical structure called CAB (for Centrosome Attracting Body) in the posterior-vegetal B4.1 blastomeres. The CAB is responsible for unequal cleavages and the partitioning of postplasmic/PEM RNAs at the posterior pole of embryos during cleavage stages. It has also been suggested that the CAB region could contain putative germ granules. In this review, we discuss recent data obtained on the distribution of Type I postplasmic/PEM RNAs from oogenesis to late development, in relation to their localization and translational control. We have first regrouped localization patterns for Type I and Type II into a comparative diagram and included all important definitions in the field. We also have made an exhaustive classification of their embryonic expression profiles (Type I or Type II), and analyzed their functions after knockdown and/or overexpression experiments and the role of the 3'-untranslated region (3'UTR) controlling both their localization and translation. Finally, we propose a speculative model integrating recent data, and we also discuss the relationship between postplasmic/PEM RNAs, posterior specification, and germ cell formation in ascidians.
Collapse
Affiliation(s)
- François Prodon
- Department of Biology, Graduate School of Science, Osaka University, Osaka, Japan.
| | | | | | | | | |
Collapse
|
20
|
Negishi T, Takada T, Kawai N, Nishida H. Localized PEM mRNA and protein are involved in cleavage-plane orientation and unequal cell divisions in ascidians. Curr Biol 2007; 17:1014-25. [PMID: 17570671 DOI: 10.1016/j.cub.2007.05.047] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2007] [Revised: 05/17/2007] [Accepted: 05/17/2007] [Indexed: 01/01/2023]
Abstract
BACKGROUND Orientation and positioning of the cell division plane are essential for generation of invariant cleavage patterns and for unequal cell divisions during development. Precise control of the division plane is important for appropriate partitioning of localized factors, spatial arrangement of cells for proper intercellular interactions, and size control of daughter cells. Ascidian embryos show complex but invariant cleavage patterns mainly due to three rounds of unequal cleavage at the posterior pole. RESULTS The ascidian embryo is an emerging model for studies of developmental and cellular processes. The maternal Posterior End Mark (PEM) mRNA is localized within the egg and embryo to the posterior region. PEM is a novel protein that has no known domain. Immunostaining showed that the protein is also present in the posterior cortex and the in centrosome-attracting body (CAB) and that the localization is extraction-resistant. Here we show that PEM of Halocynthia roretzi is required for correct orientation of early-cleavage planes and subsequent unequal cell divisions because it repeatedly pulls a centrosome toward the posterior cortex and the CAB, respectively, where PEM mRNA and protein are localized. When PEM activity is suppressed, formation of the microtubule bundle linking the centrosome and the posterior cortex did not occur. PEM possibly plays a role in anchoring microtubule ends to the cortex. In our model of orientation of the early-cleavage planes, we also amend the allocation of the conventional animal-vegetal axis in ascidian embryos, and discuss how the newly proposed A-V axis provides the rationale for various developmental events and the fate map of this animal. CONCLUSIONS The complex cleavage pattern in ascidian embryos can be explained by a simple rule of centrosome attraction mediated by localized PEM activity. PEM is the first gene identified in ascidians that is required for multiple spindle-positioning events.
Collapse
Affiliation(s)
- Takefumi Negishi
- Department of Biological Sciences, Graduate School of Science, Osaka University, 1-1 Machikaneyama-cho, Toyonaka, Osaka 560-0043, Japan
| | | | | | | |
Collapse
|
21
|
Sardet C, Paix A, Prodon F, Dru P, Chenevert J. From oocyte to 16-cell stage: Cytoplasmic and cortical reorganizations that pattern the ascidian embryo. Dev Dyn 2007; 236:1716-31. [PMID: 17420986 DOI: 10.1002/dvdy.21136] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The dorsoventral and anteroposterior axes of the ascidian embryo are defined before first cleavage by means of a series of reorganizations that reposition cytoplasmic and cortical domains established during oogenesis. These domains situated in the periphery of the oocyte contain developmental determinants and a population of maternal postplasmic/PEM RNAs. One of these RNAs (macho-1) is a determinant for the muscle cells of the tadpole embryo. Oocytes acquire a primary animal-vegetal (a-v) axis during meiotic maturation, when a subcortical mitochondria-rich domain (myoplasm) and a domain rich in cortical endoplasmic reticulum (cER) and maternal postplasmic/PEM RNAs (cER-mRNA domain) become polarized and asymmetrically enriched in the vegetal hemisphere. Fertilization at metaphase of meiosis I initiates a series of dramatic cytoplasmic and cortical reorganizations of the zygote, which occur in two major phases. The first major phase depends on sperm entry which triggers a calcium wave leading in turn to an actomyosin-driven contraction wave. The contraction concentrates the cER-mRNA domain and myoplasm in and around a vegetal/contraction pole. The precise localization of the vegetal/contraction pole depends on both the a-v axis and the location of sperm entry and prefigures the future site of gastrulation and dorsal side of the embryo. The second major phase of reorganization occurs between meiosis completion and first cleavage. Sperm aster microtubules and then cortical microfilaments cause the cER-mRNA domain and myoplasm to reposition toward the posterior of the zygote. The location of the posterior pole depends on the localization of the sperm centrosome/aster attained during the first major phase of reorganization. Both cER-mRNA and myoplasm domains localized in the posterior region are partitioned equally between the first two blastomeres and then asymmetrically over the next two cleavages. At the eight-cell stage the cER-mRNA domain compacts and gives rise to a macroscopic cortical structure called the Centrosome Attracting Body (CAB). The CAB is responsible for a series of unequal divisions in posterior-vegetal blastomeres, and the postplasmic/PEM RNAs it contains are involved in patterning the posterior region of the embryo. In this review, we discuss these multiple events and phases of reorganizations in detail and their relationship to physiological, cell cycle, and cytoskeletal events. We also examine the role of the reorganizations in localizing determinants, postplasmic/PEM RNAs, and PAR polarity proteins in the cortex. Finally, we summarize some of the remaining questions concerning polarization of the ascidian embryo and provide comparisons to a few other species. A large collection of films illustrating the reorganizations can be consulted by clicking on "Film archive: ascidian eggs and embryos" at http://biodev.obs-vlfr.fr/recherche/biomarcell/.
Collapse
Affiliation(s)
- Christian Sardet
- BioMarCell group, UMR 7009 Biodev CNRS/ Université Pierre et Marie Curie (Paris VI), Observatoire Océanologique, Villefranche-sur-Mer, France.
| | | | | | | | | |
Collapse
|
22
|
Kumano G, Nishida H. Ascidian embryonic development: An emerging model system for the study of cell fate specification in chordates. Dev Dyn 2007; 236:1732-47. [PMID: 17366575 DOI: 10.1002/dvdy.21108] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
The ascidian tadpole larva represents the basic body plan of all chordates in a relatively small number of cells and tissue types. Although it had been considered that ascidians develop largely in a determinative way, whereas vertebrates develop in an inductive way, recent studies at the molecular and cellular levels have uncovered several similarities in the way developmental fates are specified. In this review, we describe ascidian embryogenesis and its cell lineages, introduce several characteristics of ascidian embryos, describe recent advances in understanding of the mechanisms of cell fate specification, and discuss them in the context of what is known in vertebrates and other organisms.
Collapse
Affiliation(s)
- Gaku Kumano
- Department of Biological Sciences, Graduate School of Science, Osaka University, Toyonaka, Osaka, Japan.
| | | |
Collapse
|
23
|
Hung W, Hwang C, Po MD, Zhen M. Neuronal polarity is regulated by a direct interaction between a scaffolding protein, Neurabin, and a presynaptic SAD-1 kinase in Caenorhabditis elegans. Development 2006; 134:237-49. [PMID: 17151015 DOI: 10.1242/dev.02725] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The establishment of axon-dendrite identity in developing neurites is essential for the development of a functional nervous system. The SAD serine-threonine kinases have been implicated in regulating neuronal polarization and synapse formation. Here, we show that the C. elegans SAD-1 kinase regulates axonal identity and synapse formation through distinct mechanisms. We identified a scaffolding protein, Neurabin (NAB-1), as a physiological binding partner of SAD-1. Both sad-1 and nab-1 loss-of-function mutants display polarity defects in which synaptic vesicles accumulate in both axons and dendrites. We show that sad-1 and nab-1 function in the same genetic pathway to restrict axonal fate. Unlike sad-1, nab-1 mutants display normal morphology of vesicle clusters. Strikingly, although the physical interaction of NAB-1 with SAD-1 is necessary for polarity, it is dispensable for synapse morphology. We propose that Neurabin functions as a scaffold to facilitate SAD-1-mediated phosphorylation for substrates specific for restricting axonal fate during neuronal polarization.
Collapse
Affiliation(s)
- Wesley Hung
- Samuel Lunenfeld Research Institute, Mount Sinai Hospital and Department of Microbiology and Medical Genetics, University of Toronto, Ontario, M5G 1X5, Canada
| | | | | | | |
Collapse
|
24
|
Shirae-Kurabayashi M, Nishikata T, Takamura K, Tanaka KJ, Nakamoto C, Nakamura A. Dynamic redistribution of vasa homolog and exclusion of somatic cell determinants during germ cell specification in Ciona intestinalis. Development 2006; 133:2683-93. [PMID: 16794033 DOI: 10.1242/dev.02446] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Ascidian embryos sequester a specific cytoplasm, called the postplasm, at the posterior pole, where many maternal RNAs and proteins accumulate. Although the postplasm is thought to act as the germ plasm, it is also highly enriched in several factors essential for somatic cell development, and how the postplasm components regulate both germ and somatic cell differentiation remains elusive. Using a vasa homolog, CiVH, and other postplasmic components as markers, we found that the postplasm-containing blastomeres, the B7.6 cells, undergo an asymmetric cell division during gastrulation to produce two distinct daughter cells: B8.11 and B8.12. Most of the postplasmic components segregate only into the B8.11 cells, which never coalesce into the gonad. By contrast, the maternal CiVH RNA and protein are specifically distributed into the B8.12 cells, which divide further and are incorporated into the gonad in juveniles. In the B8.12 cells, CiVH production is upregulated from the maternal RNA source, resulting in the formation of perinuclear CiVH granules, which may be the nuage, a hallmark of germ cells in many animal species. We propose that the redistribution of specific maternal molecules into the B8.12 cells is essential for germ-cell specification in ascidians.
Collapse
Affiliation(s)
- Maki Shirae-Kurabayashi
- Laboratory for Germline Development, RIKEN Center for Developmental Biology, Kobe, Hyogo 650-0047, Japan.
| | | | | | | | | | | |
Collapse
|
25
|
Yamada L. Embryonic expression profiles and conserved localization mechanisms of pem/postplasmic mRNAs of two species of ascidian, Ciona intestinalis and Ciona savignyi. Dev Biol 2006; 296:524-36. [PMID: 16797000 DOI: 10.1016/j.ydbio.2006.05.018] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2006] [Revised: 05/12/2006] [Accepted: 05/13/2006] [Indexed: 11/17/2022]
Abstract
In many animals, the first cue for development is transcripts and/or proteins that are provided maternally and are localized at specific regions of fertilized eggs and early embryos. The ascidian is known to exhibit a mosaic mode of development, which is largely dependent on localized maternal factors. In early Ciona intestinalis embryos, the posterior-most localization appears to be the major specialized pattern of maternal transcripts. The present study examined the temporal and spatial expression pattern of 40 genes known as pem/postplasmic genes, for which maternal mRNAs are localized at the posterior-most region during early Ciona embryogenesis. Ten of these genes showed redistribution to B8.12-line cells, which are known to give rise to germ cells in ascidians. In addition 23 orthologues were newly identified in a related ascidian species, Ciona savignyi, and 16 of them showed the mRNA localization pattern at the posterior-most region. Furthermore, the localized pattern of exogenous mRNA, which comprised the 3' UTR of C. intestinalis pem/postplasmic genes conjugated with the LacZ ORF, showed the localization at the posterior-most region in C. savignyi embryos. Likewise, the 3' UTR of C. savignyi pem/postplasmic genes conjugated with the LacZ ORF showed localization at the posterior most region in C. intestinalis embryos, suggesting that localization mechanisms are conserved between the two species. The present study therefore provides basic information for future functional analyses of these pem/postplasmic genes and for exploring the mechanisms of localization of mRNAs.
Collapse
Affiliation(s)
- Lixy Yamada
- Department of Zoology, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan.
| |
Collapse
|
26
|
Patalano S, Prulière G, Prodon F, Paix A, Dru P, Sardet C, Chenevert J. The aPKC-PAR-6-PAR-3 cell polarity complex localizes to the centrosome attracting body, a macroscopic cortical structure responsible for asymmetric divisions in the early ascidian embryo. J Cell Sci 2006; 119:1592-603. [PMID: 16569661 DOI: 10.1242/jcs.02873] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Posterior blastomeres of 8-cell stage ascidian embryos undergo a series of asymmetric divisions that generate cells of unequal sizes and segregate muscle from germ cell fates. These divisions are orchestrated by a macroscopic cortical structure, the ;centrosome attracting body' (CAB) which controls spindle positioning and distribution of mRNA determinants. The CAB is composed of a mass of cortical endoplasmic reticulum containing mRNAs (the cER-mRNA domain) and an electron dense matrix, but little is known about its precise structure and functions. We have examined the ascidian homologues of PAR proteins, known to regulate polarity in many cell types. We found that aPKC, PAR-6 and PAR-3 proteins, but not their mRNAs, localize to the CAB during the series of asymmetric divisions. Surface particles rich in aPKC concentrate in the CAB at the level of cortical actin microfilaments and form a localized patch sandwiched between the plasma membrane and the cER-mRNA domain. Localization of aPKC to the CAB is dependent on actin but not microtubules. Both the aPKC layer and cER-mRNA domain adhere to cortical fragments prepared from 8-cell stage embryos. Astral microtubules emanating from the proximal centrosome contact the aPKC-rich cortical domain. Our observations indicate that asymmetric division involves the accumulation of the aPKC-PAR-6-PAR-3 complex at the cortical position beneath the pre-existing cER-mRNA domain.
Collapse
Affiliation(s)
- Solenn Patalano
- BioMarCell, Laboratoire de Biologie de Developpement, UMR 7009 CNRS, University Pierre and Marie Curie, Observatoire, Villefranche-sur-mer 06230, France
| | | | | | | | | | | | | |
Collapse
|
27
|
Abstract
Embryos of simple chordates called ascidians (sea squirts) have few cells, develop rapidly, and are transparent, enabling the in vivo fluorescent imaging of labeled cell lineages. Ascidians are also simple genetically, with limited redundancy and compact regulatory regions. This cellular and genetic simplicity is now being exploited to link comprehensive gene networks to the cellular events underlying morphogenesis.
Collapse
Affiliation(s)
- Brad Davidson
- Department of Molecular and Cellular Biology, Division of Genetics & Development, University of California, Berkeley, 94720, USA.
| | | |
Collapse
|