1
|
Zhao Y, Hua X, Bian Q, Wang D. Nanoplastic Exposure at Predicted Environmental Concentrations Induces Activation of Germline Ephrin Signal Associated with Toxicity Formation in the Caenorhabditis elegans Offspring. TOXICS 2022; 10:toxics10110699. [PMID: 36422907 PMCID: PMC9696181 DOI: 10.3390/toxics10110699] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 11/15/2022] [Accepted: 11/16/2022] [Indexed: 05/04/2023]
Abstract
In nematode Caenorhabditis elegans, exposure to polystyrene nanoparticles (PS-NPs) at predicted environmental concentrations can cause induction of transgenerational toxicity. However, the underlying mechanisms for toxicity formation of PS-NP in the offspring remain largely unknown. In this study, based on high-throughput sequencing, Ephrin ligand EFN-3 was identified as a target of KSR-1/2 (two kinase suppressors of Ras) in the germline during the control of transgenerational PS-NP toxicity. At parental generation (P0-G), exposure to 0.1-10 μg/L PS-NP caused the increase in expression of germline efn-3, and this increase in germline efn-3 expression could be further detected in the offspring, such as F1-G and F2-G. Germline RNAi of efn-3 caused a resistance to transgenerational PS-NP toxicity, suggesting that the activation of germline EFN-3 at P0-G mediated transgenerational PS-NP toxicity. In the offspring, Ephrin receptor VAB-1 was further activated by the increased EFN-3 caused by PS-NP exposure at P0-G, and RNAi of vab-1 also resulted in resistance to transgenerational PS-NP toxicity. VAB-1 acted in both the neurons and the germline to control toxicity of PS-NP in the offspring. In the neurons, VAB-1 regulated PS-NP toxicity by suppressing expressions of DBL-1, JNK-1, MPK-1, and GLB-10. In the germline, VAB-1 regulated PS-NP toxicity by increasing NDK-1 and LIN-23 expressions and decreasing EGL-1 expression. Therefore, germline Ephrin ligand EFN-3 and its receptor VAB-1 acted together to mediate the formation of transgenerational PS-NP toxicity. Our data highlight the important role of activation in germline Ephrin signals in mediating transgenerational toxicity of nanoplastics at predicted environmental concentrations in organisms.
Collapse
Affiliation(s)
- Yue Zhao
- Key Laboratory of Environmental Medicine Engineering in Ministry of Education, Medical School, Southeast University, Nanjing 210009, China
- Institute of Toxicology and Risk Assessment, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing 210009, China
| | - Xin Hua
- Key Laboratory of Environmental Medicine Engineering in Ministry of Education, Medical School, Southeast University, Nanjing 210009, China
| | - Qian Bian
- Institute of Toxicology and Risk Assessment, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing 210009, China
- Correspondence: (Q.B.); (D.W.)
| | - Dayong Wang
- Key Laboratory of Environmental Medicine Engineering in Ministry of Education, Medical School, Southeast University, Nanjing 210009, China
- Shenzhen Ruipuxun Academy for Stem Cell & Regenerative Medicine, Shenzhen 518122, China
- Correspondence: (Q.B.); (D.W.)
| |
Collapse
|
2
|
Wang M, Rivenbark K, Gong J, Wright FA, Phillips TD. Application of Edible Montmorillonite Clays for the Adsorption and Detoxification of Microcystin. ACS APPLIED BIO MATERIALS 2021; 4:7254-7265. [PMID: 34746680 PMCID: PMC8570584 DOI: 10.1021/acsabm.1c00779] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Exposure to microcystins (MCs) in humans and animals commonly occurs through the consumption of drinking water and food contaminated with cyanobacteria. Although studies have focused on developing water filtration treatments for MCs using activated carbon, dietary sorbents to reduce the bioavailability of MCs from the stomach and intestines have not been reported. To address this need, edible calcium and sodium montmorillonite clays were characterized for their ability to bind MC containing leucine and arginine (MC-LR) under conditions simulating the gastrointestinal tract and compared with a medical-grade activated carbon. Results of in vitro adsorption isotherms and thermodynamics showed that binding plots for MC-LR on montmorillonites fit the Langmuir model with high binding capacity, affinity, Gibbs free energy, and enthalpy. The in silico results from molecular modeling predicted that the major binding mechanisms involved electrostatics and hydrogen bonds, and that interlayers were important binding sites. The safety and detoxification efficacy of the sorbents against MC-LR were validated in a battery of living organisms, including Hydra vulgaris, Lemna minor, and Caenorhabditis elegans. The inclusion of 0.05% and 0.1% montmorillonite clays in hydra media significantly reduced MC-LR toxicity and protected hydra by 60-80%, whereas only slight protection was shown with the heat-collapsed clay. In the Lemna minor assay, montmorillonites significantly enhanced the growth of lemna, as supported by the increase in frond number, surface area, chlorophyll content, and growth rate, as well as the decrease in inhibition rate. Similar results were shown in the C. elegans assay, where montmorillonite clays reduced MC-LR effects on body length and brood size. All 3 bioassays confirmed dose-dependent protection from MC-LR, validated the in vitro and in silico findings, and suggested that edible montmorillonites are safe and efficacious binders for MC-LR. Moreover, their inclusion in diets during algal blooming seasons could protect vulnerable populations of humans and animals.
Collapse
Affiliation(s)
- Meichen Wang
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas 77843, United States
| | - Kelly Rivenbark
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas 77843, United States
| | - Joonho Gong
- Departments of Biological Sciences and Statistics and Bioinformatics Research Center, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Fred A. Wright
- Departments of Biological Sciences and Statistics and Bioinformatics Research Center, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Timothy D. Phillips
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas 77843, United States
| |
Collapse
|
3
|
Wang H, Yang J, Schneider JA, De Jager PL, Bennett DA, Zhang HY. Genome-wide interaction analysis of pathological hallmarks in Alzheimer's disease. Neurobiol Aging 2020; 93:61-68. [PMID: 32450446 PMCID: PMC9795865 DOI: 10.1016/j.neurobiolaging.2020.04.025] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 04/21/2020] [Accepted: 04/22/2020] [Indexed: 12/31/2022]
Abstract
Genome-wide association studies have identified many loci associated with Alzheimer's dementia. However, these variants only explain part of the heritability of Alzheimer's disease (AD). As genetic epistasis can be a major contributor to the "missing heritability" of AD, we conducted genome-wide epistasis screening for AD pathologies in 2 independent cohorts. First, we performed a genome-wide epistasis study of AD-related brain pathologies (Nmax = 1318) in ROS/MAP. Candidate interactions were validated using cerebrospinal fluid biomarkers of AD in ADNI (Nmax = 1128). Further functional analysis tested the association of candidate interactions with neuroimaging phenotypes. For tau and amyloid-β pathology, we identified 2803 and 464 candidate SNP-SNP interactions, respectively. Associations of candidate SNP-SNP interactions with brain volume and white matter changes from neuroimages provides additional insights into their molecular functions. Transcriptional analysis supported possible gene-gene interactions identified by statistical screening through their co-expression in the brain. In summary, we outlined an exhaustive epistasis analysis to identify novel genetic interactions with potential roles in AD pathologies. We further delved into the functional relevance of candidate interactions by association with neuroimaging phenotypes and analysis of co-expression between corresponding gene pairs.
Collapse
Affiliation(s)
- Hui Wang
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Jingyun Yang
- Rush Alzheimer’s Disease Center, Rush University Medical Center, Chicago, Illinois, USA,Department of Neurological Sciences, Rush University Medical Center, Chicago, Illinois, USA
| | - Julie A. Schneider
- Rush Alzheimer’s Disease Center, Rush University Medical Center, Chicago, Illinois, USA,Department of Neurological Sciences, Rush University Medical Center, Chicago, Illinois, USA,Department of Pathology, Rush University Medical Center, Chicago, Illinois, USA
| | - Philip L De Jager
- Center for Translational and Computational Neuroimmunology, Columbia University Medical Center, New York, New York, USA,Cell Circuits Program, Broad Institute, Cambridge, Massachusetts, USA
| | - David A. Bennett
- Rush Alzheimer’s Disease Center, Rush University Medical Center, Chicago, Illinois, USA,Department of Neurological Sciences, Rush University Medical Center, Chicago, Illinois, USA,Corresponding to Hong-Yu Zhang, Huazhong Agricultural University, No.1 Shizishan Street, Hongshan District, Wuhan, Hubei 430070, China, Tel: +86-27-87285085, , David A. Bennett, Rush Medical College, 600 S Paulina St, Chicago, IL 60612, USA, Tel: +1-312-942-4463,
| | - Hong-Yu Zhang
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan, Hubei, China,Corresponding to Hong-Yu Zhang, Huazhong Agricultural University, No.1 Shizishan Street, Hongshan District, Wuhan, Hubei 430070, China, Tel: +86-27-87285085, , David A. Bennett, Rush Medical College, 600 S Paulina St, Chicago, IL 60612, USA, Tel: +1-312-942-4463,
| |
Collapse
|
4
|
Kamemura K, Chihara T. Multiple functions of the ER-resident VAP and its extracellular role in neural development and disease. J Biochem 2019; 165:391-400. [PMID: 30726905 DOI: 10.1093/jb/mvz011] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Accepted: 02/05/2019] [Indexed: 12/14/2022] Open
Abstract
VAP (VAMP-associated protein) is a type II integral membrane protein of the endoplasmic reticulum (ER), and its N-terminal major sperm protein (MSP) domain faces the cytoplasmic side. VAP functions as a tethering molecule at the membrane contact sites between the ER and intracellular organelles and regulates a wide variety of cellular functions, including lipid transport, membrane trafficking, microtubule reorganization and unfolded protein response. VAP-point mutations in human vapb are strongly associated with amyotrophic lateral sclerosis. Importantly, the MSP domain of VAP is cleaved, secreted and interacts with the axon growth cone guidance receptors (Eph, Robo, Lar), suggesting that VAP could function as a circulating hormone similar to the Caenorhabditis elegans MSP protein. In this review, we discuss not only the intracellular functions of VAP but also the recently discovered extracellular functions and their implications for neurodegenerative disease.
Collapse
Affiliation(s)
- Kosuke Kamemura
- Department of Biological Science, Graduate School of Science, Hiroshima University, Hiroshima, Japan
| | - Takahiro Chihara
- Department of Biological Science, Graduate School of Science, Hiroshima University, Hiroshima, Japan
| |
Collapse
|
5
|
Funk SD, Finney AC, Yurdagul A, Pattillo CB, Orr AW. EphA2 stimulates VCAM-1 expression through calcium-dependent NFAT1 activity. Cell Signal 2018; 49:30-38. [PMID: 29793020 DOI: 10.1016/j.cellsig.2018.05.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 05/08/2018] [Accepted: 05/18/2018] [Indexed: 01/01/2023]
Abstract
Endothelial cell activation by proinflammatory stimuli drives leukocyte recruitment through enhanced expression of counter-receptors such as vascular cell adhesion molecule-1 (VCAM-1). We previously demonstrated that activation of the receptor tyrosine kinase EphA2 with its ligand ephrin-A1 induces VCAM-1 expression. Here, we sought to characterize the proinflammatory signaling pathways involved. Analysis of over-represented transcription factors in ephrin-A1-induced genes identified multiple potential transcriptional regulators, including the Rel family members nuclear factor-κB (NF-κB/p65) and nuclear factor of activated T-cells (NFAT). While ephrin-A1 failed to induce endothelial NF-κB activation, NF-κB inhibitors prevented ephrin-A1-induced VCAM-1 expression, suggesting basal NF-κB activity is required. In contrast, ephrin-A1 induced a robust EphA2-dependent increase in NFAT activation, and mutation of the NF-κB/NFAT-binding sites in the VCAM-1 promoter blunted ephrin-A1-induced promoter activity. NFAT activation classically occurs through calcium-dependent calcineurin activation, and inhibiting NFAT signaling with calcineurin inhibitors (cyclosporine A, FK506) or direct NFAT inhibitors (A-285222) was sufficient to block ephrin-A1-induced VCAM-1 expression. Consistent with robust NFAT activation, ephrin-A1-induced an EphA2-dependent calcium influx in endothelial cells that was required for ephrin-A1-induced NFAT activation and VCAM-1 expression. This work provides the first data showing EphA2-dependent calcium influx and NFAT activation and identifies NFAT as a novel EphA2-dependent proinflammatory pathway in endothelial activation.
Collapse
Affiliation(s)
- Steven Daniel Funk
- Department of Cell Biology and Anatomy, Louisiana State University Health Sciences Center, Shreveport, LA 71130, United States; Department of Internal Medicine, Renal Division, Washington University, St. Louis, MO 63110, United States
| | - Alexandra C Finney
- Department of Cell Biology and Anatomy, Louisiana State University Health Sciences Center, Shreveport, LA 71130, United States
| | - Arif Yurdagul
- Department of Cell Biology and Anatomy, Louisiana State University Health Sciences Center, Shreveport, LA 71130, United States; Department of Medicine, Columbia University, New York, NY 10027, United States
| | - Christopher B Pattillo
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center, Shreveport, LA 71130, United States
| | - A Wayne Orr
- Department of Cell Biology and Anatomy, Louisiana State University Health Sciences Center, Shreveport, LA 71130, United States; Department of Pathology, Louisiana State University Health Sciences Center, Shreveport, LA 71130, United States; Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center, Shreveport, LA 71130, United States.
| |
Collapse
|
6
|
Agopiantz M, Xandre-Rodriguez L, Jin B, Urbistondoy G, Ialy-Radio C, Chalbi M, Wolf JP, Ziyyat A, Lefèvre B. Growth arrest specific 1 (Gas1) and glial cell line-derived neurotrophic factor receptor α1 (Gfrα1), two mouse oocyte glycosylphosphatidylinositol-anchored proteins, are involved in fertilisation. Reprod Fertil Dev 2018; 29:824-837. [PMID: 28442042 DOI: 10.1071/rd15367] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Accepted: 12/10/2015] [Indexed: 12/25/2022] Open
Abstract
Recently, Juno, the oocyte receptor for Izumo1, a male immunoglobulin, was discovered. Juno is an essential glycosylphosphatidylinositol (GIP)-anchored protein. This result did not exclude the participation of other GIP-anchored proteins in this process. After bibliographic and database searches we selected five GIP-anchored proteins (Cpm, Ephrin-A4, Gas1, Gfra1 and Rgmb) as potential oocyte candidates participating in fertilisation. Western blot and immunofluorescence analyses showed that only three were present on the mouse ovulated oocyte membrane and, of these, only two were clearly involved in the fertilisation process, namely growth arrest specific 1 (Gas1) and glial cell line-derived neurotrophic factor receptor α1 (Gfrα1). This was demonstrated by evaluating oocyte fertilisability after treatment of oocytes with antibodies against the selected proteins, with their respective short interference RNA or both. Gfrα1 and Gas1 seem to be neither redundant nor synergistic. In conclusion, oocyte Gas1 and Gfrα1 are both clearly involved in fertilisation.
Collapse
Affiliation(s)
- M Agopiantz
- Inserm, U1016, Institut Cochin, 24 rue du Faubourg Saint-Jacques, 75014, Paris, France
| | - L Xandre-Rodriguez
- Université Paris Descartes, Sorbonne Paris Cité, 24 rue du Faubourg Saint-Jacques, 75014, Paris, France
| | - B Jin
- Université Paris Descartes, Sorbonne Paris Cité, 24 rue du Faubourg Saint-Jacques, 75014, Paris, France
| | - G Urbistondoy
- Université Paris Descartes, Sorbonne Paris Cité, 24 rue du Faubourg Saint-Jacques, 75014, Paris, France
| | - C Ialy-Radio
- Inserm, U1016, Institut Cochin, 24 rue du Faubourg Saint-Jacques, 75014, Paris, France
| | - M Chalbi
- Inserm, U1016, Institut Cochin, 24 rue du Faubourg Saint-Jacques, 75014, Paris, France
| | - J-P Wolf
- Service d'Histologie Embryologie Biologie de la Reproduction - CECOS, Hôpital Cochin, AP-HP, F75014 Paris, France
| | - A Ziyyat
- Inserm, U1016, Institut Cochin, 24 rue du Faubourg Saint-Jacques, 75014, Paris, France
| | - B Lefèvre
- Inserm, U1016, Institut Cochin, 24 rue du Faubourg Saint-Jacques, 75014, Paris, France
| |
Collapse
|
7
|
Maternal MEMI Promotes Female Meiosis II in Response to Fertilization in Caenorhabditis elegans. Genetics 2016; 204:1461-1477. [PMID: 27729423 DOI: 10.1534/genetics.116.192997] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Accepted: 09/30/2016] [Indexed: 12/18/2022] Open
Abstract
In most animals, female meiosis completes only after fertilization. Sperm entry has been implicated in providing a signal for the initiation of the final meiotic processes; however, a maternal component required for this process has not been previously identified. We report the characterization of a novel family of three highly similar paralogs (memi-1, memi-2, memi-3) that encode oocyte-specific proteins. A hyper-morphic mutation memi-1(sb41) results in failure to exit female meiosis II properly; however, loss of all three paralogs results in a "skipped meiosis II" phenotype. Mutations that prevent fertilization, such as fer-1(hc1), also cause a skipped meiosis II phenotype, suggesting that the MEMI proteins represent a maternal component of a postfertilization signal that specifies the meiosis II program. MEMI proteins are degraded before mitosis and sensitive to ZYG-11, a substrate-specific adapter for cullin-based ubiquitin ligase activity, and the memi-1(sb41) mutation results in inappropriate persistence of the MEMI-1 protein into mitosis. Using an RNAi screen for suppressors of memi-1(sb41), we identified a sperm-specific PP1 phosphatase, GSP-3/4, as a putative sperm component of the MEMI pathway. We also found that MEMI and GSP-3/4 proteins can physically interact via co-immunoprecipitation. These results suggest that sperm-specific PP1 and maternal MEMI proteins act in the same pathway after fertilization to facilitate proper meiosis II and the transition into embryonic mitosis.
Collapse
|
8
|
Ballesteros C, Tritten L, O’Neill M, Burkman E, Zaky WI, Xia J, Moorhead A, Williams SA, Geary TG. The Effects of Ivermectin on Brugia malayi Females In Vitro: A Transcriptomic Approach. PLoS Negl Trop Dis 2016; 10:e0004929. [PMID: 27529747 PMCID: PMC4986938 DOI: 10.1371/journal.pntd.0004929] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Accepted: 07/26/2016] [Indexed: 01/28/2023] Open
Abstract
BACKGROUND Lymphatic filariasis and onchocerciasis are disabling and disfiguring neglected tropical diseases of major importance in developing countries. Ivermectin is the drug of choice for mass drug administration programs for the control of onchocerciasis and lymphatic filariasis in areas where the diseases are co-endemic. Although ivermectin paralyzes somatic and pharyngeal muscles in many nematodes, these actions are poorly characterized in adult filariae. We hypothesize that paralysis of pharyngeal pumping by ivermectin in filariae could result in deprivation of essential nutrients, especially iron, inducing a wide range of responses evidenced by altered gene expression, changes in metabolic pathways, and altered developmental states in embryos. Previous studies have shown that ivermectin treatment significantly reduces microfilariae release from females within four days of exposure in vivo, while not markedly affecting adult worms. However, the mechanisms responsible for reduced production of microfilariae are poorly understood. METHODOLOGY/PRINCIPAL FINDINGS We analyzed transcriptomic profiles from Brugia malayi adult females, an important model for other filariae, using RNAseq technology after exposure in culture to ivermectin at various concentrations (100 nM, 300 nM and 1 μM) and time points (24, 48, 72 h, and 5 days). Our analysis revealed drug-related changes in expression of genes involved in meiosis, as well as oxidative phosphorylation, which were significantly down-regulated as early as 24 h post-exposure. RNA interference phenotypes of the orthologs of these down-regulated genes in C. elegans include "maternal sterile", "embryonic lethal", "larval arrest", "larval lethal" and "sick". CONCLUSION/SIGNIFICANCE These changes provide insight into the mechanisms involved in ivermectin-induced reduction in microfilaria output and impaired fertility, embryogenesis, and larval development.
Collapse
Affiliation(s)
- Cristina Ballesteros
- Institute of Parasitology, Centre for Host-Parasite Interactions, McGill University, Sainte-Anne-de-Bellevue, Quebec, Canada
| | - Lucienne Tritten
- Institute of Parasitology, Centre for Host-Parasite Interactions, McGill University, Sainte-Anne-de-Bellevue, Quebec, Canada
| | - Maeghan O’Neill
- Institute of Parasitology, Centre for Host-Parasite Interactions, McGill University, Sainte-Anne-de-Bellevue, Quebec, Canada
| | - Erica Burkman
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, Georgia, United States of America
- Filariasis Research Reagent Resource Center, Smith College, Northampton, Massachusetts, United States of America
| | - Weam I. Zaky
- Filariasis Research Reagent Resource Center, Smith College, Northampton, Massachusetts, United States of America
- Department of Biological Sciences, Smith College, Northampton, Massachusetts, United States of America
| | - Jianguo Xia
- Institute of Parasitology, Centre for Host-Parasite Interactions, McGill University, Sainte-Anne-de-Bellevue, Quebec, Canada
| | - Andrew Moorhead
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, Georgia, United States of America
- Filariasis Research Reagent Resource Center, Smith College, Northampton, Massachusetts, United States of America
| | - Steven A. Williams
- Filariasis Research Reagent Resource Center, Smith College, Northampton, Massachusetts, United States of America
| | - Timothy G. Geary
- Institute of Parasitology, Centre for Host-Parasite Interactions, McGill University, Sainte-Anne-de-Bellevue, Quebec, Canada
| |
Collapse
|
9
|
Ellis RE, Stanfield GM. The regulation of spermatogenesis and sperm function in nematodes. Semin Cell Dev Biol 2014; 29:17-30. [PMID: 24718317 PMCID: PMC4082717 DOI: 10.1016/j.semcdb.2014.04.005] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Accepted: 04/01/2014] [Indexed: 12/12/2022]
Abstract
In the nematode C. elegans, both males and self-fertile hermaphrodites produce sperm. As a result, researchers have been able to use a broad range of genetic and genomic techniques to dissect all aspects of sperm development and function. Their results show that the early stages of spermatogenesis are controlled by transcriptional and translational processes, but later stages are dominated by protein kinases and phosphatases. Once spermatids are produced, they participate in many interactions with other cells - signals from the somatic gonad determine when sperm activate and begin to crawl, signals from the female reproductive tissues guide the sperm, and signals from sperm stimulate oocytes to mature and be ovulated. The sperm also show strong competitive interactions with other sperm and oocytes. Some of the molecules that mediate these processes have conserved functions in animal sperm, others are conserved proteins that have been adapted for new roles in nematode sperm, and some are novel proteins that provide insights into evolutionary change. The advent of new techniques should keep this system on the cutting edge of research in cellular and reproductive biology.
Collapse
Affiliation(s)
- Ronald E Ellis
- Department of Molecular Biology, Rowan University SOM, B303 Science Center, 2 Medical Center Drive, Stratford, NJ 08084, United States.
| | - Gillian M Stanfield
- Department of Human Genetics, University of Utah, Salt Lake City, UT 84112, United States
| |
Collapse
|
10
|
Rodriguez A, McKay K, Graham M, Dittrich J, Holgado AM. Analysis of differential gene expression profiles in Caenorhabditis elegans knockouts for the v-SNARE master protein 1. J Neurosci Res 2014; 92:772-82. [PMID: 24615917 DOI: 10.1002/jnr.23353] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2013] [Revised: 11/18/2013] [Accepted: 12/01/2013] [Indexed: 01/27/2023]
Abstract
At chemical synapses, neurons communicate information to other cells by secreting neurotransmitters or neuropeptides into the synaptic cleft, which then bind to receptors on the target cell. Preliminary work performed in our laboratory has shown that mutant nematodes lacking a protein called VSM-1 have increased synaptic density compared with the wild type. Consequently, we hypothesized that genes expressed in vsm-1 mutants mediate enhanced synaptogenesis. To identify these genes of interest, we utilized microarray technology and quantitative PCR. To this end, first we isolated the total RNA from young-adult wild-type and vsm-1 mutant Caenorhabditis elegans. Next, we synthesized cDNA from reverse transcription of the isolated RNA. Hybridization of the cDNA to a microarray was performed to facilitate gene expression profiling. Finally, fluorescently labeled microarrays were analyzed, and the identities of induced and repressed genes were uncovered in the open-source software Magic Tool. Analyses of microarray experiments performed using three independent biological samples per strain and three technical replicas and dye swaps showed induction of genes coding for major sperm proteins and repression of SPP-2 in vsm-1 mutants. Microarray results were also validated and quantified by using quantitative PCR.
Collapse
Affiliation(s)
- Ashley Rodriguez
- Department of Biological Sciences, Southwestern Oklahoma State University, Weatherford, Oklahoma
| | | | | | | | | |
Collapse
|
11
|
|
12
|
Zhang D, Liu X, Chan JD, Marchant JS. Characterization of a flatworm inositol (1,4,5) trisphosphate receptor (IP₃R) reveals a role in reproductive physiology. Cell Calcium 2013; 53:307-14. [PMID: 23481272 PMCID: PMC3665645 DOI: 10.1016/j.ceca.2013.01.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2012] [Revised: 01/22/2013] [Accepted: 01/29/2013] [Indexed: 11/15/2022]
Abstract
Inositol 1,4,5-trisphosphate receptors (IP₃Rs) are intracellular Ca²⁺ channels that elevate cytoplasmic Ca²⁺ in response to the second messenger IP3. Here, we describe the identification and in vivo functional characterization of the planarian IP₃R, the first intracellular Ca²⁺ channel to be defined in flatworms. A single IP₃R gene in Dugesia japonica encoded a 2666 amino acid protein (Dj.IP₃R) that shared well conserved structural features with vertebrate IP₃R counterparts. Expression of an NH₂-terminal Dj.IP₃R region (amino acid residues 223-585) recovered high affinity ³H-IP₃ binding (0.9±0.1 nM) which was abolished by a single point mutation of an arginine residue (R495L) important for IP₃ coordination. In situ hybridization revealed that Dj.IP₃R mRNA was most strongly expressed in the pharynx and optical nerve system as well as the reproductive system in sexualized planarians. Consistent with this observed tissue distribution, in vivo RNAi of Dj.IP₃R resulted in a decreased egg-laying behavior suggesting Dj.IP₃R plays an upstream role in planarian reproductive physiology.
Collapse
Affiliation(s)
- Dan Zhang
- Department of Pharmacology, University of Minnesota Medical School, MN 55455, USA
| | - Xiaolong Liu
- Department of Pharmacology, University of Minnesota Medical School, MN 55455, USA
| | - John D. Chan
- Department of Pharmacology, University of Minnesota Medical School, MN 55455, USA
| | - Jonathan S. Marchant
- Department of Pharmacology, University of Minnesota Medical School, MN 55455, USA
- The Stem Cell Institute, University of Minnesota Medical School, MN 55455, USA
| |
Collapse
|
13
|
Control of oocyte growth and meiotic maturation in Caenorhabditis elegans. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2013; 757:277-320. [PMID: 22872481 DOI: 10.1007/978-1-4614-4015-4_10] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
In sexually reproducing animals, oocytes arrest at diplotene or diakinesis and resume meiosis (meiotic maturation) in response to hormones. Chromosome segregation errors in female meiosis I are the leading cause of human birth defects, and age-related changes in the hormonal environment of the ovary are a suggested cause. Caenorhabditis elegans is emerging as a genetic paradigm for studying hormonal control of meiotic maturation. The meiotic maturation processes in C. elegans and mammals share a number of biological and molecular similarities. Major sperm protein (MSP) and luteinizing hormone (LH), though unrelated in sequence, both trigger meiotic resumption using somatic Gα(s)-adenylate cyclase pathways and soma-germline gap-junctional communication. At a molecular level, the oocyte responses apparently involve the control of conserved protein kinase pathways and post-transcriptional gene regulation in the oocyte. At a cellular level, the responses include cortical cytoskeletal rearrangement, nuclear envelope breakdown, assembly of the acentriolar meiotic spindle, chromosome segregation, and likely changes important for fertilization and the oocyte-to-embryo transition. This chapter focuses on signaling mechanisms required for oocyte growth and meiotic maturation in C. elegans and discusses how these mechanisms coordinate the completion of meiosis and the oocyte-to-embryo transition.
Collapse
|
14
|
Singaravelu G, Singson A. Calcium signaling surrounding fertilization in the nematode Caenorhabditis elegans. Cell Calcium 2012; 53:2-9. [PMID: 23218668 DOI: 10.1016/j.ceca.2012.11.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2012] [Revised: 11/02/2012] [Accepted: 11/03/2012] [Indexed: 01/17/2023]
Abstract
Calcium plays a prominent role during fertilization in many animals. This review focuses on roles of Ca(2+) during the events around fertilization in the model organism, Caenorhabditis elegans. Specifically, the role of Ca(2+) in sperm, oocytes and the surrounding somatic tissues during fertilization will be discussed, with the focus on sperm activation, meiotic maturation of oocytes, ovulation, sperm-egg interaction and fertilization.
Collapse
|
15
|
Miller MA, Chin-Sang ID. Eph receptor signaling in C. elegans. WORMBOOK : THE ONLINE REVIEW OF C. ELEGANS BIOLOGY 2012. [PMID: 23197476 DOI: 10.1895/wormbook.1.151.1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Eph receptor protein-tyrosine kinases are among the oldest known animal receptors and have greatly expanded in number during vertebrate evolution. Their complex transduction mechanisms are capable of bidirectional and bimodal (multi-response) signaling. Eph receptors are expressed in almost every cell type in the human body, yet their roles in development, physiology, and disease are incompletely understood. Studies in C. elegans have helped identify biological functions of these receptors, as well as transduction mechanisms. Here we review advances in our understanding of Eph receptor signaling made using the C. elegans model system.
Collapse
Affiliation(s)
- Michael A Miller
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham School of Medicine, Birmingham, AL, USA.
| | | |
Collapse
|
16
|
McMullen PD, Aprison EZ, Winter PB, Amaral LAN, Morimoto RI, Ruvinsky I. Macro-level modeling of the response of C. elegans reproduction to chronic heat stress. PLoS Comput Biol 2012; 8:e1002338. [PMID: 22291584 PMCID: PMC3266876 DOI: 10.1371/journal.pcbi.1002338] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2011] [Accepted: 11/17/2011] [Indexed: 11/19/2022] Open
Abstract
A major goal of systems biology is to understand how organism-level behavior arises from a myriad of molecular interactions. Often this involves complex sets of rules describing interactions among a large number of components. As an alternative, we have developed a simple, macro-level model to describe how chronic temperature stress affects reproduction in C. elegans. Our approach uses fundamental engineering principles, together with a limited set of experimentally derived facts, and provides quantitatively accurate predictions of performance under a range of physiologically relevant conditions. We generated detailed time-resolved experimental data to evaluate the ability of our model to describe the dynamics of C. elegans reproduction. We find considerable heterogeneity in responses of individual animals to heat stress, which can be understood as modulation of a few processes and may represent a strategy for coping with the ever-changing environment. Our experimental results and model provide quantitative insight into the breakdown of a robust biological system under stress and suggest, surprisingly, that the behavior of complex biological systems may be determined by a small number of key components.
Collapse
Affiliation(s)
- Patrick D. McMullen
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois, United States of America
| | - Erin Z. Aprison
- Department of Ecology and Evolution, Institute for Genomics and Systems Biology, The University of Chicago, Chicago, Illinois, United States of America
| | - Peter B. Winter
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois, United States of America
| | - Luis A. N. Amaral
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois, United States of America
- * E-mail: (LANA); (RIM); (IR)
| | - Richard I. Morimoto
- Department of Molecular Biosciences, Rice Institute for Biomedical Sciences, Northwestern University, Evanston, Illinois, United States of America
- * E-mail: (LANA); (RIM); (IR)
| | - Ilya Ruvinsky
- Department of Ecology and Evolution, Institute for Genomics and Systems Biology, The University of Chicago, Chicago, Illinois, United States of America
- * E-mail: (LANA); (RIM); (IR)
| |
Collapse
|
17
|
Baylis HA, Vázquez-Manrique RP. Genetic analysis of IP3 and calcium signalling pathways in C. elegans. Biochim Biophys Acta Gen Subj 2011; 1820:1253-68. [PMID: 22146231 DOI: 10.1016/j.bbagen.2011.11.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2011] [Revised: 11/15/2011] [Accepted: 11/16/2011] [Indexed: 01/02/2023]
Abstract
BACKGROUND The nematode, Caenorhabditis elegans is an established model system that is particularly well suited to genetic analysis. C. elegans is easily manipulated and we have an in depth knowledge of many aspects of its biology. Thus, it is an attractive system in which to pursue integrated studies of signalling pathways. C. elegans has a complement of calcium signalling molecules similar to that of other animals. SCOPE OF REVIEW We focus on IP3 signalling. We describe how forward and reverse genetic approaches, including RNAi, have resulted in a tool kit which enables the analysis of IP3/Ca2+ signalling pathways. The importance of cell and tissue specific manipulation of signalling pathways and the use of epistasis analysis are highlighted. We discuss how these tools have increased our understanding of IP3 signalling in specific developmental, physiological and behavioural roles. Approaches to imaging calcium signals in C. elegans are considered. MAJOR CONCLUSIONS A wide selection of tools is available for the analysis of IP3/Ca2+ signalling in C. elegans. This has resulted in detailed descriptions of the function of IP3/Ca2+ signalling in the animal's biology. Nevertheless many questions about how IP3 signalling regulates specific processes remain. GENERAL SIGNIFICANCE Many of the approaches described may be applied to other calcium signalling systems. C. elegans offers the opportunity to dissect pathways, perform integrated studies and to test the importance of the properties of calcium signalling molecules to whole animal function, thus illuminating the function of calcium signalling in animals. This article is part of a Special Issue entitled Biochemical, biophysical and genetic approaches to intracellular calcium signalling.
Collapse
Affiliation(s)
- Howard A Baylis
- Department of Zoology, University of Cambridge, Cambridge, UK.
| | | |
Collapse
|
18
|
Baluska F, Mancuso S. Deep evolutionary origins of neurobiology: Turning the essence of 'neural' upside-down. Commun Integr Biol 2011; 2:60-5. [PMID: 19513267 DOI: 10.4161/cib.2.1.7620] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2008] [Accepted: 12/15/2008] [Indexed: 01/17/2023] Open
Abstract
It is generally assumed, both in common-sense argumentations and scientific concepts, that brains and neurons represent late evolutionary achievements which are present only in more advanced animals. Here we overview recently published data clearly revealing that our understanding of bacteria, unicellular eukaryotic organisms, plants, brains and neurons, rooted in the Aristotelian philosophy is flawed. Neural aspects of biological systems are obvious already in bacteria and unicellular biological units such as sexual gametes and diverse unicellular eukaryotic organisms. Altogether, processes and activities thought to represent evolutionary 'recent' specializations of the nervous system emerge rather to represent ancient and fundamental cell survival processes.
Collapse
|
19
|
Gkogkas C, Wardrope C, Hannah M, Skehel P. The ALS8-associated mutant VAPB(P56S) is resistant to proteolysis in neurons. J Neurochem 2011; 117:286-94. [PMID: 21275991 DOI: 10.1111/j.1471-4159.2011.07201.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
VAMP/synaptobrevin associated proteins A and B (VAPA and VAPB), are type IV membrane proteins enriched on ER and Golgi membranes. Both VAPA and B interact with cytoplasmic lipid transport proteins and cytoskeletal elements to maintain the structure and composition of ER and Golgi membranes. Truncated forms of both proteins are present in some tissues but the functional significance of this is not clear. In rodents processing of VAPA occurs in most tissues, however, truncated forms of VAPB have only been reported in brain tissue. It is demonstrated here that the extent of VAPB processing in rat increases during postnatal development and that it is restricted to neurons. The C-terminal polypeptide generated by this cleavage reaction remains associated with cell membranes, but its subcellular distribution is distinct from the full-length protein. A mutant form of VAPB is associated with a familial form of neurodegenerative disease, amyotrophic lateral sclerosis type 8. The mutant protein, VAPB(P56S) , is resistant to truncation in primary neuronal cultures, although remains sensitive to some form of proteolysis when over-expressed in HEK293 cells. These data suggest that neuronal cells have a particular requirement for VAPB proteolysis and that reduced levels of processed polypeptides may contribute to the neurodegeneration associated with amyotrophic lateral sclerosis type 8.
Collapse
Affiliation(s)
- Christos Gkogkas
- Centre for Integrative Physiology, The University of Edinburgh, Edinburgh, UK
| | | | | | | |
Collapse
|
20
|
Han SM, Cottee PA, Miller MA. Sperm and oocyte communication mechanisms controlling C. elegans fertility. Dev Dyn 2010; 239:1265-81. [PMID: 20034089 DOI: 10.1002/dvdy.22202] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
During sexual reproduction in many species, sperm and oocyte secrete diffusible signaling molecules to help orchestrate the biological symphony of fertilization. In the Caenorhabditis elegans gonad, bidirectional signaling between sperm and oocyte is important for guiding sperm to the fertilization site and inducing oocyte maturation. The molecular mechanisms that regulate sperm guidance and oocyte maturation are being delineated. Unexpectedly, these mechanisms are providing insight into human diseases, such as amyotrophic lateral sclerosis, spinal muscular atrophy, and cancer. Here we review sperm and oocyte communication in C. elegans and discuss relationships to human disorders.
Collapse
Affiliation(s)
- Sung Min Han
- Department of Cell Biology, University of Alabama at Birmingham, Birmingham, Alabama 35294, USA
| | | | | |
Collapse
|
21
|
Yang Y, Han SM, Miller MA. MSP hormonal control of the oocyte MAP kinase cascade and reactive oxygen species signaling. Dev Biol 2010; 342:96-107. [PMID: 20380830 DOI: 10.1016/j.ydbio.2010.03.026] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2009] [Revised: 03/12/2010] [Accepted: 03/31/2010] [Indexed: 11/28/2022]
Abstract
The MSP domain is a conserved immunoglobulin-like structure that is important for C. elegans reproduction and human motor neuron survival. C. elegans MSPs are the most abundant proteins in sperm, where they function as intracellular cytoskeletal proteins and secreted hormones. Secreted MSPs bind to multiple receptors on oocyte and ovarian sheath cell surfaces to induce oocyte maturation and sheath contraction. MSP binding stimulates oocyte MPK-1 ERK MAP Kinase (MAPK) phosphorylation, but the function and mechanism are not well understood. Here we show that the Shp class protein-tyrosine phosphatase PTP-2 acts in oocytes downstream of sheath/oocyte gap junctions to promote MSP-induced MPK-1 phosphorylation. PTP-2 functions in the oocyte cytoplasm, not at the cell surface to inhibit multiple RasGAPs, resulting in sustained Ras activation. We also provide evidence that MSP promotes production of reactive oxygen species (ROS), which act as second messengers to augment MPK-1 phosphorylation. The Cu/Zn superoxide dismutase SOD-1, an enzyme that catalyzes ROS breakdown in the cytoplasm, inhibits MPK-1 phosphorylation downstream of or in parallel to ptp-2. Our results support the model that MSP triggers PTP-2/Ras activation and ROS production to stimulate MPK-1 activity essential for oocyte maturation. We propose that secreted MSP domains and Cu/Zn superoxide dismutases function antagonistically to control ROS and MAPK signaling.
Collapse
Affiliation(s)
- Youfeng Yang
- Department of Cell Biology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | | | | |
Collapse
|
22
|
Brisbin S, Liu J, Boudreau J, Peng J, Evangelista M, Chin-Sang I. A role for C. elegans Eph RTK signaling in PTEN regulation. Dev Cell 2009; 17:459-69. [PMID: 19853560 DOI: 10.1016/j.devcel.2009.08.009] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2009] [Revised: 07/15/2009] [Accepted: 08/21/2009] [Indexed: 10/20/2022]
Abstract
PTEN is one of the most commonly lost tumor suppressors in human cancer and is known to inhibit insulin signaling. Eph receptor tyrosine kinases (RTKs) have also been implicated in cancer formation and progression, and they have diverse functions, including nervous and vascular system development. We show that in C. elegans, the VAB-1 Eph kinase domain physically interacts with and phosphorylates PTEN (DAF-18), diminishing its protein levels and function. vab-1 mutants show increased longevity and sensitivity to dauer conditions, consistent with increased DAF-18/PTEN activity and decreased insulin-like signaling. Moreover, daf-18 mutations suppress vab-1 oocyte maturation phenotypes independent of PI3K signaling. We also present evidence that DAF-18 has protein phosphatase activity to antagonize VAB-1 action. Possible implications for human cancers are discussed, based on the idea that mutually inhibitory interactions between PTEN and Eph RTKs may be conserved.
Collapse
Affiliation(s)
- Sarah Brisbin
- Department of Biology, Queen's University, 116 Barrie Street, Kingston, Ontario K7L 3N6, Canada
| | | | | | | | | | | |
Collapse
|
23
|
Schouest KR, Kurasawa Y, Furuta T, Hisamoto N, Matsumoto K, Schumacher JM. The germinal center kinase GCK-1 is a negative regulator of MAP kinase activation and apoptosis in the C. elegans germline. PLoS One 2009; 4:e7450. [PMID: 19826475 PMCID: PMC2757678 DOI: 10.1371/journal.pone.0007450] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2009] [Accepted: 09/22/2009] [Indexed: 11/25/2022] Open
Abstract
The germinal center kinases (GCK) constitute a large, highly conserved family of proteins that has been implicated in a wide variety of cellular processes including cell growth and proliferation, polarity, migration, and stress responses. Although diverse, these functions have been attributed to an evolutionarily conserved role for GCKs in the activation of ERK, JNK, and p38 MAP kinase pathways. In addition, multiple GCKs from different species promote apoptotic cell death. In contrast to these paradigms, we found that a C. elegans GCK, GCK-1, functions to inhibit MAP kinase activation and apoptosis in the C. elegans germline. In the absence of GCK-1, a specific MAP kinase isoform is ectopically activated and oocytes undergo abnormal development. Moreover, GCK-1- deficient animals display a significant increase in germ cell death. Our results suggest that individual germinal center kinases act in mechanistically distinct ways and that these functions are likely to depend on organ- and developmental-specific contexts.
Collapse
Affiliation(s)
- Katherine R. Schouest
- Department of Genetics, The University of M.D. Anderson Cancer Center, Houston, Texas, United States of America
- Genes and Development Program, University of Texas Graduate School of Biomedical Sciences at Houston, Houston, Texas, United States of America
| | - Yasuhiro Kurasawa
- Department of Genetics, The University of M.D. Anderson Cancer Center, Houston, Texas, United States of America
| | - Tokiko Furuta
- Department of Genetics, The University of M.D. Anderson Cancer Center, Houston, Texas, United States of America
| | - Naoki Hisamoto
- Department of Molecular Biology, Graduate School of Science, Institute for Advanced Research, Nagoya University, Nagoya, Japan
- CREST, Japan Science and Technology Corporation, Chikusa-ku, Nagoya, Japan
| | - Kunihiro Matsumoto
- Department of Molecular Biology, Graduate School of Science, Institute for Advanced Research, Nagoya University, Nagoya, Japan
- CREST, Japan Science and Technology Corporation, Chikusa-ku, Nagoya, Japan
| | - Jill M. Schumacher
- Department of Genetics, The University of M.D. Anderson Cancer Center, Houston, Texas, United States of America
- Genes and Development Program, University of Texas Graduate School of Biomedical Sciences at Houston, Houston, Texas, United States of America
- * E-mail: .
| |
Collapse
|
24
|
Govindan JA, Nadarajan S, Kim S, Starich TA, Greenstein D. Somatic cAMP signaling regulates MSP-dependent oocyte growth and meiotic maturation in C. elegans. Development 2009; 136:2211-21. [PMID: 19502483 DOI: 10.1242/dev.034595] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Soma-germline interactions control fertility at many levels, including stem cell proliferation, meiosis and gametogenesis, yet the nature of these fundamental signaling mechanisms and their potential evolutionary conservation are incompletely understood. In C. elegans, a sperm-sensing mechanism regulates oocyte meiotic maturation and ovulation, tightly coordinating sperm availability and fertilization. Sperm release the major sperm protein (MSP) signal to trigger meiotic resumption (meiotic maturation) and to promote contraction of the follicle-like gonadal sheath cells that surround oocytes. Using genetic mosaic analysis, we show that all known MSP-dependent meiotic maturation events in the germline require Galpha(s)-adenylate cyclase signaling in the gonadal sheath cells. We show that the MSP hormone promotes the sustained actomyosin-dependent cytoplasmic streaming that drives oocyte growth. Furthermore, we demonstrate that efficient oocyte production and cytoplasmic streaming require Galpha(s)-adenylate cyclase signaling in the gonadal sheath cells, thereby providing a somatic mechanism that coordinates oocyte growth and meiotic maturation with sperm availability. We present genetic evidence that MSP and Galpha(s)-adenylate cyclase signaling regulate oocyte growth and meiotic maturation in part by antagonizing gap-junctional communication between sheath cells and oocytes. In the absence of MSP or Galpha(s)-adenylate cyclase signaling, MSP binding sites are enriched and appear clustered on sheath cells. We discuss these results in the context of a model in which the sheath cells function as the major initial sensor of MSP, potentially via multiple classes of G-protein-coupled receptors. Our findings highlight a remarkable similarity between the regulation of meiotic resumption by soma-germline interactions in C. elegans and mammals.
Collapse
Affiliation(s)
- J Amaranath Govindan
- Department of Genetics, Cell Biology and Development, University of Minnesota, 6-160 Jackson Hall, 321 Church Street SE, Minneapolis, MN 55455, USA
| | | | | | | | | |
Collapse
|
25
|
Inositol 1,4,5-trisphosphate signalling regulates the avoidance response to nose touch in Caenorhabditis elegans. PLoS Genet 2009; 5:e1000636. [PMID: 19730689 PMCID: PMC2729924 DOI: 10.1371/journal.pgen.1000636] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2008] [Accepted: 08/07/2009] [Indexed: 11/19/2022] Open
Abstract
When Caenorhabditis elegans encounters an unfavourable stimulus at its anterior, it responds by initiating an avoidance response, namely reversal of locomotion. The amphid neurons, ASHL and ASHR, are polymodal in function, with roles in the avoidance responses to high osmolarity, nose touch, and both volatile and non-volatile repellents. The mechanisms that underlie the ability of the ASH neurons to respond to such a wide range of stimuli are still unclear. We demonstrate that the inositol 1,4,5-trisphosphate receptor (IP3R), encoded by itr-1, functions in the reversal responses to nose touch and benzaldehyde, but not in other known ASH-mediated responses. We show that phospholipase Cβ (EGL-8) and phospholipase Cγ (PLC-3), which catalyse the production of IP3, both function upstream of ITR-1 in the response to nose touch. We use neuron-specific gene rescue and neuron-specific disruption of protein function to show that the site of ITR-1 function is the ASH neurons. By rescuing plc-3 and egl-8 in a neuron-specific manner, we show that both are acting in ASH. Imaging of nose touch–induced Ca2+ transients in ASH confirms these conclusions. In contrast, the response to benzaldehyde is independent of PLC function. Thus, we have identified distinct roles for the IP3R in two specific responses mediated by ASH. In order to avoid potential hazards, animals detect and discriminate between a wide range of aversive stimuli. To detect some of these stimuli, animals use polymodal sensory neurons, that is neurons of a single type that can detect a range of different stimuli and transmit an appropriate signal to the downstream nervous system. Pain-sensing nociceptors in humans and the ASH neurons in C. elegans are both polymodal. The ASH neurons mediate responses to high osmotic strength, nose touch, high ambient oxygen, and volatile and non-volatile compounds. It remains unclear how these cells detect and discriminate between these different stimuli. We show that signalling through the second messenger inositol 1,4,5-trisphosphate (IP3) and its receptor (IP3R) is required in ASH for animals to respond to nose touch. We also show that IP3Rs are required for the response to the volatile compound benzaldehyde. However, these signalling components are not required for a range of other ASH-mediated responses. Thus, we have identified a signalling mechanism that is specific to a small subset of ASH-mediated responses. These results add to our understanding of how ASH discriminates between a variety of stimuli and thus to our understanding of polymodal neurons in general.
Collapse
|
26
|
Mano I, Driscoll M. Caenorhabditis elegansglutamate transporter deletion induces AMPA-receptor/adenylyl cyclase 9-dependent excitotoxicity. J Neurochem 2009; 108:1373-84. [DOI: 10.1111/j.1471-4159.2008.05804.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
27
|
Chi W, Reinke V. DPL-1 (DP) acts in the germ line to coordinate ovulation and fertilization in C. elegans. Mech Dev 2009; 126:406-16. [PMID: 19368797 DOI: 10.1016/j.mod.2009.01.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2008] [Revised: 01/27/2009] [Accepted: 01/27/2009] [Indexed: 11/26/2022]
Abstract
Proper coordination of oogenesis, ovulation, and fertilization is essential for successful reproduction. In Caenorhabditis elegans, a strong loss-of-function mutation in dpl-1, which encodes a subunit of the E2F heterodimeric transcription factor EFL-1/DPL-1, causes severe defects during ovulation and fertilization. Here we demonstrate that the somatic gonad structure and sheath cell contraction rate appear normal in dpl-1 mutants, but that dilation of the spermatheca valve does not occur properly, causing oocytes to become trapped in the proximal gonad arm and enter endomitosis. This ovulation defect can be partially suppressed by increasing the activity of ITR-1, an inositol triphosphate receptor in the spermatheca that promotes dilation in response to IP(3) signaling. Tissue-specific rescue experiments demonstrate that expression of DPL-1 in germ cells but not the spermatheca can restore both ovulation and fertilization in dpl-1 mutants, indicating that the absence of DPL-1 likely disrupts a pro-ovulation signal originating in the oocyte that in turn stimulates the spermatheca. Moreover, we found that expression of a single EFL-1/DPL-1-responsive gene, rme-2, in the germ line of dpl-1 mutants significantly rescues ovulation, but not fertilization. Instead, other EFL-1/DPL-1-responsive genes function to promote successful fertilization. We propose that DPL-1 acts with EFL-1 in developing oocytes to directly regulate a transcriptional program that couples the critical events of ovulation and fertilization.
Collapse
Affiliation(s)
- Woo Chi
- Department of Genetics, Yale University School of Medicine, New Haven, CT 06510, USA
| | | |
Collapse
|
28
|
Poliakov A, Cotrina ML, Pasini A, Wilkinson DG. Regulation of EphB2 activation and cell repulsion by feedback control of the MAPK pathway. ACTA ACUST UNITED AC 2008; 183:933-47. [PMID: 19047466 PMCID: PMC2592822 DOI: 10.1083/jcb.200807151] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In this study, we investigated whether the ability of Eph receptor signaling to mediate cell repulsion is antagonized by fibroblast growth factor receptor (FGFR) activation that can promote cell invasion. We find that activation of FGFR1 in EphB2-expressing cells prevents segregation, repulsion, and collapse responses to ephrinB1 ligand. FGFR1 activation leads to increased phosphorylation of unstimulated EphB2, which we show is caused by down-regulation of the leukocyte common antigen–related tyrosine phosphatase receptor that dephosphorylates EphB2. In addition, FGFR1 signaling inhibits further phosphorylation of EphB2 upon stimulation with ephrinB1, and we show that this involves a requirement for the mitogen-activated protein kinase (MAPK) pathway. In the absence of activated FGFR1, EphB2 activates the MAPK pathway, which in turn promotes EphB2 activation in a positive feedback loop. However, after FGFR1 activation, the induction of Sprouty genes inhibits the MAPK pathway downstream of EphB2 and decreases cell repulsion and segregation. These findings reveal a novel feedback loop that promotes EphB2 activation and cell repulsion that is blocked by transcriptional targets of FGFR1.
Collapse
Affiliation(s)
- Alexei Poliakov
- Division of Developmental Neurobiology, Medical Research Council National Institute for Medical Research, London NW7 1AA, England, UK
| | | | | | | |
Collapse
|
29
|
The amyotrophic lateral sclerosis 8 protein VAPB is cleaved, secreted, and acts as a ligand for Eph receptors. Cell 2008; 133:963-77. [PMID: 18555774 PMCID: PMC2494862 DOI: 10.1016/j.cell.2008.04.039] [Citation(s) in RCA: 171] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2007] [Revised: 02/04/2008] [Accepted: 04/20/2008] [Indexed: 11/22/2022]
Abstract
VAP proteins (human VAPB/ALS8, Drosophila VAP33, and C. elegans VPR-1) are homologous proteins with an amino-terminal major sperm protein (MSP) domain and a transmembrane domain. The MSP domain is named for its similarity to the C. elegans MSP protein, a sperm-derived hormone that binds to the Eph receptor and induces oocyte maturation. A point mutation (P56S) in the MSP domain of human VAPB is associated with Amyotrophic lateral sclerosis (ALS), but the mechanisms underlying the pathogenesis are poorly understood. Here we show that the MSP domains of VAP proteins are cleaved and secreted ligands for Eph receptors. The P58S mutation in VAP33 leads to a failure to secrete the MSP domain as well as ubiquitination, accumulation of inclusions in the endoplasmic reticulum, and an unfolded protein response. We propose that VAP MSP domains are secreted and act as diffusible hormones for Eph receptors. This work provides insight into mechanisms that may impact the pathogenesis of ALS.
Collapse
|
30
|
Wang B. [Recent advances in the study of spermatogenesis and fertilization in Caenorhabditis elegans]. YI CHUAN = HEREDITAS 2008; 30:677-86. [PMID: 18550488 DOI: 10.3724/sp.j.1005.2008.00677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Spermatogenesis in Caenorhabditis elegans, mainly consisting of meiosis and spermiogenesis (or sperm activation), is a complicated cell differentiation process. The germ cells develop into matured motile spermatozoa after the expression of specific genes during meiosis and protein posttranslational modification during spermiogenesis. The spermatozoa compete with each other, communicate with and finally fertilize the oocytes such that new individuals are generated. A group of mutants related to spermatogenesis, sperm motility and fertilization are obtained through the sterile screen. Some specific genes in spermatogenesis and fertilization have been cloned and their functions have been studied. C. elegans is an attractive model to dissect the complexities of spermatogenesis and fertilization. The advances in the study of C. elegans may give insights to important targets for the study of male infertility and contraceptives in humans.
Collapse
Affiliation(s)
- Bin Wang
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China.
| |
Collapse
|
31
|
Jud MC, Czerwinski MJ, Wood MP, Young RA, Gallo CM, Bickel JS, Petty EL, Mason JM, Little BA, Padilla PA, Schisa JA. Large P body-like RNPs form in C. elegans oocytes in response to arrested ovulation, heat shock, osmotic stress, and anoxia and are regulated by the major sperm protein pathway. Dev Biol 2008; 318:38-51. [PMID: 18439994 PMCID: PMC2442018 DOI: 10.1016/j.ydbio.2008.02.059] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2007] [Revised: 02/16/2008] [Accepted: 02/29/2008] [Indexed: 11/29/2022]
Abstract
As Caenorhabditis elegans hermaphrodites age, sperm become depleted, ovulation arrests, and oocytes accumulate in the gonad arm. Large ribonucleoprotein (RNP) foci form in these arrested oocytes that contain RNA-binding proteins and translationally masked maternal mRNAs. Within 65 min of mating, the RNP foci dissociate and fertilization proceeds. The majority of arrested oocytes with foci result in viable embryos upon fertilization, suggesting that foci are not deleterious to oocyte function. We have determined that foci formation is not strictly a function of aging, and the somatic, ceh-18, branch of the major sperm protein pathway regulates the formation and dissociation of oocyte foci. Our hypothesis for the function of oocyte RNP foci is similar to the RNA-related functions of processing bodies (P bodies) and stress granules; here, we show three orthologs of P body proteins, DCP-2, CAR-1 and CGH-1, and two markers of stress granules, poly (A) binding protein (PABP) and TIA-1, appear to be present in the oocyte RNP foci. Our results are the first in vivo demonstration linking components of P bodies and stress granules in the germ line of a metazoan. Furthermore, our data demonstrate that formation of oocyte RNP foci is inducible in non-arrested oocytes by heat shock, osmotic stress, or anoxia, similar to the induction of stress granules in mammalian cells and P bodies in yeast. These data suggest commonalities between oocytes undergoing delayed fertilization and cells that are stressed environmentally, as to how they modulate mRNAs and regulate translation.
Collapse
Affiliation(s)
- Molly C. Jud
- Central Michigan University, Department of Biology, Mount Pleasant, MI 48859
| | | | - Megan P. Wood
- Central Michigan University, Department of Biology, Mount Pleasant, MI 48859
| | - Rachel A. Young
- Central Michigan University, Department of Biology, Mount Pleasant, MI 48859
| | | | - Jeremy S. Bickel
- Central Michigan University, Department of Biology, Mount Pleasant, MI 48859
| | - Emily L. Petty
- Central Michigan University, Department of Biology, Mount Pleasant, MI 48859
| | - Jennifer M. Mason
- Central Michigan University, Department of Biology, Mount Pleasant, MI 48859
| | - Brent A. Little
- University of North Texas, Department of Biological Sciences, P.O. Box 305220, Denton TX, 76203
| | - Pamela A. Padilla
- University of North Texas, Department of Biological Sciences, P.O. Box 305220, Denton TX, 76203
| | - Jennifer A. Schisa
- Central Michigan University, Department of Biology, Mount Pleasant, MI 48859
| |
Collapse
|
32
|
Cheng H, Govindan JA, Greenstein D. Regulated trafficking of the MSP/Eph receptor during oocyte meiotic maturation in C. elegans. Curr Biol 2008; 18:705-714. [PMID: 18472420 DOI: 10.1016/j.cub.2008.04.043] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2008] [Revised: 04/18/2008] [Accepted: 04/21/2008] [Indexed: 01/15/2023]
Abstract
BACKGROUND In C. elegans, a sperm-sensing mechanism regulates oocyte meiotic maturation and ovulation, tightly coordinating sperm availability and embryo production; sperm release the major sperm protein (MSP) signal to trigger meiotic resumption. Meiotic arrest depends on the parallel function of the oocyte VAB-1 MSP/Eph receptor and somatic G protein signaling. MSP promotes meiotic maturation by antagonizing Eph receptor signaling and counteracting inhibitory inputs from the gonadal sheath cells. RESULTS Here, we present evidence suggesting that in the absence of the MSP ligand, the VAB-1 Eph receptor inhibits meiotic maturation while either in or in transit to the endocytic-recycling compartment. VAB-1::GFP localization to the RAB-11-positive endocytic-recycling compartment is independent of ephrins but is antagonized by MSP signaling. Two negative regulators of oocyte meiotic maturation, DAB-1/Disabled and RAN-1, interact with the VAB-1 receptor and are required for its accumulation in the endocytic-recycling compartment in the absence of MSP or sperm (hereafter referred to as MSP/sperm). Inactivation of the endosomal recycling regulators rme-1 or rab-11.1 causes a vab-1-dependent reduction in the meiotic-maturation rate in the presence of MSP/sperm. Further, we show that Galpha(s) signaling in the gonadal sheath cells, which is required for meiotic maturation in the presence of MSP/sperm, affects VAB-1::GFP trafficking in oocytes. CONCLUSIONS Regulated endocytic trafficking of the VAB-1 MSP/Eph receptor contributes to the control of oocyte meiotic maturation in C. elegans. Eph receptor trafficking in other systems may be influenced by the conserved proteins DAB-1/Disabled and RAN-1 and by crosstalk with G protein signaling in neighboring cells.
Collapse
Affiliation(s)
- Hua Cheng
- Department of Genetics, Cell Biology and Development, University of Minnesota, 6-160 Jackson Hall, 321 Church Street SE, Minneapolis, Minnesota 55455; Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232
| | - J Amaranath Govindan
- Department of Genetics, Cell Biology and Development, University of Minnesota, 6-160 Jackson Hall, 321 Church Street SE, Minneapolis, Minnesota 55455; Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232
| | - David Greenstein
- Department of Genetics, Cell Biology and Development, University of Minnesota, 6-160 Jackson Hall, 321 Church Street SE, Minneapolis, Minnesota 55455.
| |
Collapse
|
33
|
Lackmann M, Boyd AW. Eph, a protein family coming of age: more confusion, insight, or complexity? Sci Signal 2008; 1:re2. [PMID: 18413883 DOI: 10.1126/stke.115re2] [Citation(s) in RCA: 122] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Since the mid-1980s, Eph receptors have evolved from being regarded as orphan receptors with unknown functions and ligands to becoming one of the most complex "global positioning systems" that regulates cell traffic in multicellular organisms. During this time, there has been an exponentially growing interest in Ephs and ephrin ligands, coinciding with important advances in the way biological function is interrogated through mapping of genomes and manipulation of genes. As a result, many of the original concepts that used to define Eph signaling and function went overboard. Clearly, the need for progress in understanding Eph-ephrin biology and the underlying molecular principles involved has been compelling. Many cell-positioning programs during normal and oncogenic development-in particular, the patterning of skeletal, vascular, and nervous systems-are modulated in some way by Eph-ephrin function. Undeniably, the complexity of the underlying signaling networks is considerable, and it seems probable that systems biology approaches are required to further improve our understanding of Eph function.
Collapse
Affiliation(s)
- Martin Lackmann
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria 3800, Australia.
| | | |
Collapse
|
34
|
Abstract
Bidirectional signaling has emerged as an important signature by which Ephs and ephrins control biological functions. Eph/ephrin signaling participates in a wide spectrum of developmental processes, and cross-regulation with other communication pathways lies at the heart of the complexity underlying their function in vivo. Here, we review in vitro and in vivo data describing molecular, functional, and genetic interactions between Eph/ephrin and other cell surface signaling pathways. The complexity of Eph/ephrin function is discussed in terms of the pathways that regulate Eph/ephrin signaling and also the pathways that are regulated by Eph/ephrin signaling.
Collapse
Affiliation(s)
- Dina Arvanitis
- Université de Toulouse, Centre de Biologie du Développement, 31062 Toulouse cedex 9, France
| | | |
Collapse
|
35
|
Lee MH, Ohmachi M, Arur S, Nayak S, Francis R, Church D, Lambie E, Schedl T. Multiple functions and dynamic activation of MPK-1 extracellular signal-regulated kinase signaling in Caenorhabditis elegans germline development. Genetics 2007; 177:2039-62. [PMID: 18073423 PMCID: PMC2219468 DOI: 10.1534/genetics.107.081356] [Citation(s) in RCA: 151] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2007] [Accepted: 09/20/2007] [Indexed: 11/18/2022] Open
Abstract
The raison d'etre of the germline is to produce oocytes and sperm that pass genetic material and cytoplasmic constituents to the next generation. To achieve this goal, many developmental processes must be executed and coordinated. ERK, the terminal MAP kinase of a number of signaling pathways, controls many aspects of development. Here we present a comprehensive analysis of MPK-1 ERK in Caenorhabditis elegans germline development. MPK-1 functions in four developmental switches: progression through pachytene, oocyte meiotic maturation/ovulation, male germ cell fate specification, and a nonessential function of promoting the proliferative fate. MPK-1 also regulates multiple aspects of cell biology during oogenesis, including membrane organization and morphogenesis: organization of pachytene cells on the surface of the gonadal tube, oocyte organization and differentiation, oocyte growth control, and oocyte nuclear migration. MPK-1 activation is temporally/spatially dynamic and most processes appear to be controlled through sustained activation. MPK-1 thus may act not only in the control of individual processes but also in the coordination of contemporaneous processes and the integration of sequential processes. Knowledge of the dynamic activation and diverse functions of MPK-1 provides the foundation for identification of upstream signaling cascades responsible for region-specific activation and the downstream substrates that mediate the various processes.
Collapse
Affiliation(s)
- Min-Ho Lee
- Department of Genetics, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Ono K, Yu R, Ono S. Structural components of the nonstriated contractile apparatuses in the Caenorhabditis elegans gonadal myoepithelial sheath and their essential roles for ovulation. Dev Dyn 2007; 236:1093-105. [PMID: 17326220 PMCID: PMC1994093 DOI: 10.1002/dvdy.21091] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Ovulation in the nematode Caenorhabditis elegans is regulated by complex signal transduction pathways and cell-cell interactions. Myoepithelial sheath cells of the proximal ovary are smooth muscle-like cells that provide contractile forces to push a mature oocyte into the spermatheca for fertilization. Although several genes that regulate sheath contraction have been characterized, basic components of the contractile apparatuses of the myoepithelial sheath have not been extensively studied. We identified major structural proteins of the contractile apparatuses of the myoepithelial sheath and characterized their nonstriated arrangement. Of interest, integrin and perlecan were found only at the dense bodies, whereas they localized to both dense bodies and M-lines in the striated body wall muscle. RNA interference of most of the myofibrillar components impaired ovulation in a soma-specific manner. Our results provide basic information that helps understanding the mechanism of sheath contraction during ovulation and establishing a new model to study morphogenesis of nonstriated muscle.
Collapse
Affiliation(s)
| | | | - Shoichiro Ono
- Correspondence to: Shoichiro Ono, Department of Pathology, Emory University, 615 Michael Street, Whitehead Research Building, Room 105N, Atlanta, GA 30322. E-mail:
| |
Collapse
|
37
|
Govindan JA, Cheng H, Harris JE, Greenstein D. Galphao/i and Galphas signaling function in parallel with the MSP/Eph receptor to control meiotic diapause in C. elegans. Curr Biol 2006; 16:1257-68. [PMID: 16824915 DOI: 10.1016/j.cub.2006.05.020] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2006] [Revised: 04/18/2006] [Accepted: 05/03/2006] [Indexed: 10/24/2022]
Abstract
BACKGROUND A conserved biological feature of sexual reproduction in animals is that oocytes arrest in meiotic prophase and resume meiosis in response to extraovarian signals. In C. elegans, sperm trigger meiotic resumption by means of the major sperm protein (MSP) signal. MSP promotes meiotic resumption by functioning as an ephrin-signaling antagonist and by counteracting inhibitory inputs from the somatic gonadal sheath cells. RESULTS By using a genome-wide RNAi screen in a female-sterile genetic background, we identified 17 conserved genes that maintain meiotic arrest in the absence of the MSP signal. In vitro binding experiments show that MSP promotes oocyte mitogen-activated protein kinase activation and meiotic maturation in part through direct interaction with the VAB-1 Eph receptor. Four conserved proteins, including a disabled protein (DAB-1), a vav family GEF (VAV-1), a protein kinase C (PKC-1), and a STAM homolog (PQN-19), function with the VAB-1 Eph/MSP receptor in oocytes. We show that antagonistic Galphao/i and Galphas signaling pathways function in the soma to regulate meiotic maturation in parallel to the VAB-1 pathway. Galphas activity is necessary and sufficient to promote meiotic maturation, which it does in part by antagonizing inhibitory sheath/oocyte gap-junctional communication. CONCLUSIONS Our findings show that oocyte Eph receptor and somatic cell G protein signaling pathways control meiotic diapause in C. elegans, highlighting contrasts and parallels between MSP signaling in C. elegans and luteinizing hormone signaling in mammals.
Collapse
Affiliation(s)
- J Amaranath Govindan
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, 465 21st Avenue South, Nashville, Tennessee 37232, USA
| | | | | | | |
Collapse
|
38
|
Whitten SJ, Miller MA. The role of gap junctions in Caenorhabditis elegans oocyte maturation and fertilization. Dev Biol 2006; 301:432-46. [PMID: 16982048 DOI: 10.1016/j.ydbio.2006.08.038] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2006] [Revised: 08/03/2006] [Accepted: 08/17/2006] [Indexed: 10/24/2022]
Abstract
We have investigated the role of gap junctions in Caenorhabditis elegans oocyte maturation and fertilization. Gap junctions are observed between oocytes and the surrounding ovarian sheath cells in wild-type gonads. The sheath transcription factor CEH-18 is required to negatively regulate oocyte maturation, mitogen-activated protein kinase (MAPK) activation, and ovulation. Transmission electron microscopy (TEM) indicates that sheath/oocyte gap junctions are rare or absent in ceh-18(mg57) null mutant gonads. To test the hypothesis that gap junctions negatively regulate oocyte maturation, we performed an RNAi screen of innexin genes, which encode channel-forming proteins. Here we show that INX-14 and INX-22 are required in the female germ line to inhibit oocyte maturation, MAPK activation, and ovulation. Genetic analysis and TEM are consistent with INX-14 and INX-22 being components of sheath/oocyte gap junctions. Our results support the hypothesis that gap junctions maintain oocytes in meiotic prophase I when sperm are absent. We also implicate these channels in regulating sheath cell contractile activity and sperm recruitment to the spermatheca, the site of sperm storage and fertilization. Together with previous studies, our results help establish the C. elegans gonad as a model system for investigating the molecular mechanism(s) by which gap junctions regulate meiosis and fertilization.
Collapse
Affiliation(s)
- Scott J Whitten
- Division of Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynecology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | | |
Collapse
|
39
|
Harris JE, Govindan JA, Yamamoto I, Schwartz J, Kaverina I, Greenstein D. Major sperm protein signaling promotes oocyte microtubule reorganization prior to fertilization in Caenorhabditis elegans. Dev Biol 2006; 299:105-21. [PMID: 16919258 DOI: 10.1016/j.ydbio.2006.07.013] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2006] [Revised: 07/10/2006] [Accepted: 07/11/2006] [Indexed: 11/18/2022]
Abstract
In most animals, female meiotic spindles assemble in the absence of centrosomes; instead, microtubule nucleation by chromatin, motor activity, and microtubule dynamics drive the self-organization of a bipolar meiotic spindle. Meiotic spindle assembly commences when microtubules gain access to chromatin after nuclear envelope breakdown (NEBD) during meiotic maturation. Although many studies have addressed the chromatin-based mechanism of female meiotic spindle assembly, it is less clear how signaling influences microtubule localization and dynamics prior to NEBD. Here we analyze microtubule behavior in Caenorhabditis elegans oocytes at early stages of the meiotic maturation process using confocal microscopy and live-cell imaging. In C. elegans, sperm trigger oocyte meiotic maturation and ovulation using the major sperm protein (MSP) as an extracellular signaling molecule. We show that MSP signaling reorganizes oocyte microtubules prior to NEBD and fertilization by affecting their localization and dynamics. We present evidence that MSP signaling reorganizes oocyte microtubules through a signaling network involving antagonistic G alpha(o/i) and G alpha(s) pathways and gap-junctional communication with somatic cells of the gonad. We propose that MSP-dependent microtubule reorganization promotes meiotic spindle assembly by facilitating the search and capture of microtubules by meiotic chromatin following NEBD.
Collapse
Affiliation(s)
- Jana E Harris
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | | | | | | | | | | |
Collapse
|
40
|
Chatterjee I, Kadandale P, Singson A. Meiotic diapause: how a sperm signal sets you free. Curr Biol 2006; 16:R496-9. [PMID: 16824908 DOI: 10.1016/j.cub.2006.06.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Major sperm protein, a cytoskeletal molecule required for the amoeboid motility of sperm in Caenorhabditis elegans, also functions as a signaling molecule that regulates the rates of meiotic maturation and ovulation. Recent work has begun to uncover new genes required for the response to this signal in both somatic and germ line cells.
Collapse
Affiliation(s)
- Indrani Chatterjee
- Waksman Institute and Department of Genetics, Rutgers University, 190 Frelinghuysen Road, Piscataway, New Jersey 08854, USA
| | | | | |
Collapse
|
41
|
Yamamoto I, Kosinski ME, Greenstein D. Start me up: Cell signaling and the journey from oocyte to embryo inC. elegans. Dev Dyn 2006; 235:571-85. [PMID: 16372336 DOI: 10.1002/dvdy.20662] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Intercellular communication plays a pivotal role in regulating and coordinating oocyte meiosis and fertilization, key triggers for embryonic development. The nematode Caenorhabaditis elegans has emerged as an important experimental paradigm for exploring these fundamental reproductive processes and their regulation. The oocytes of most animal species arrest during meiotic prophase and complete meiosis in response to intercellular signaling in the process of meiotic maturation. Oocyte meiotic maturation is defined by the transition between diakinesis and metaphase of meiosis I and is accompanied by nuclear envelope breakdown and meiotic spindle assembly. As such, the meiotic maturation process is essential for completing meiosis and a prerequisite for successful fertilization. In C. elegans, the processes of meiotic maturation, ovulation, and fertilization are temporally coupled: sperm utilize the major sperm protein as a hormone to trigger oocyte meiotic maturation, and, in turn, the maturing oocyte signals its own ovulation, leading to fertilization. The powerful genetic screens possible in C. elegans have led to the identification of several sperm cell surface proteins that are required for the interaction and fusion of gametes at fertilization. The study of these proteins provides fundamental insights into fertilization mechanisms, their role in speciation, and their potential conservation across phyla. Signaling processes sparked by fertilization are required for meiotic chromosome segregation and initiating the embryonic program. Here we review recent advances in understanding how signaling mechanisms contribute to the oocyte-to-embryo transition in C. elegans.
Collapse
Affiliation(s)
- Ikuko Yamamoto
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-8240, USA
| | | | | |
Collapse
|