1
|
Umargamwala R, Manning J, Dorstyn L, Denton D, Kumar S. Understanding Developmental Cell Death Using Drosophila as a Model System. Cells 2024; 13:347. [PMID: 38391960 PMCID: PMC10886741 DOI: 10.3390/cells13040347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 02/09/2024] [Accepted: 02/13/2024] [Indexed: 02/24/2024] Open
Abstract
Cell death plays an essential function in organismal development, wellbeing, and ageing. Many types of cell deaths have been described in the past 30 years. Among these, apoptosis remains the most conserved type of cell death in metazoans and the most common mechanism for deleting unwanted cells. Other types of cell deaths that often play roles in specific contexts or upon pathological insults can be classed under variant forms of cell death and programmed necrosis. Studies in Drosophila have contributed significantly to the understanding and regulation of apoptosis pathways. In addition to this, Drosophila has also served as an essential model to study the genetic basis of autophagy-dependent cell death (ADCD) and other relatively rare types of context-dependent cell deaths. Here, we summarise what is known about apoptosis, ADCD, and other context-specific variant cell death pathways in Drosophila, with a focus on developmental cell death.
Collapse
Affiliation(s)
- Ruchi Umargamwala
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, SA 5001, Australia; (J.M.); (L.D.)
| | - Jantina Manning
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, SA 5001, Australia; (J.M.); (L.D.)
| | - Loretta Dorstyn
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, SA 5001, Australia; (J.M.); (L.D.)
| | - Donna Denton
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, SA 5001, Australia; (J.M.); (L.D.)
| | - Sharad Kumar
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, SA 5001, Australia; (J.M.); (L.D.)
- Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, SA 5005, Australia
| |
Collapse
|
2
|
Takahashi H, Ito R, Matsumura Y, Sakai J. Environmental factor reversibly determines cellular identity through opposing Integrators that unify epigenetic and transcriptional pathways. Bioessays 2024; 46:e2300084. [PMID: 38013256 DOI: 10.1002/bies.202300084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 09/29/2023] [Accepted: 11/13/2023] [Indexed: 11/29/2023]
Abstract
Organisms must adapt to environmental stresses to ensure their survival and prosperity. Different types of stresses, including thermal, mechanical, and hypoxic stresses, can alter the cellular state that accompanies changes in gene expression but not the cellular identity determined by a chromatin state that remains stable throughout life. Some tissues, such as adipose tissue, demonstrate remarkable plasticity and adaptability in response to environmental cues, enabling reversible cellular identity changes; however, the mechanisms underlying these changes are not well understood. We hypothesized that positive and/or negative "Integrators" sense environmental cues and coordinate the epigenetic and transcriptional pathways required for changes in cellular identity. Adverse environmental factors such as pollution disrupt the coordinated control contributing to disease development. Further research based on this hypothesis will reveal how organisms adapt to fluctuating environmental conditions, such as temperature, extracellular matrix stiffness, oxygen, cytokines, and hormonal cues by changing their cellular identities.
Collapse
Grants
- JP20gm1310007 Japan Agency for Medical Research and Development
- JP16H06390 Ministry of Education, Culture, Sports, Science and Technology
- JP21H04826 Ministry of Education, Culture, Sports, Science and Technology
- JP20H04835 Ministry of Education, Culture, Sports, Science and Technology
- JP20K21747 Ministry of Education, Culture, Sports, Science and Technology
- JP22K18411 Ministry of Education, Culture, Sports, Science and Technology
- JP21K21211 Ministry of Education, Culture, Sports, Science and Technology
- JP19J11909 Ministry of Education, Culture, Sports, Science and Technology
- JPMJPF2013 Japan Science and Technology Agency
Collapse
Affiliation(s)
- Hiroki Takahashi
- Division of Molecular Physiology and Metabolism, Tohoku University Graduate School of Medicine, Sendai, Japan
- Division of Metabolic Medicine, Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo, Japan
| | - Ryo Ito
- Division of Molecular Physiology and Metabolism, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yoshihiro Matsumura
- Division of Molecular Physiology and Metabolism, Tohoku University Graduate School of Medicine, Sendai, Japan
- Division of Metabolic Medicine, Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo, Japan
| | - Juro Sakai
- Division of Molecular Physiology and Metabolism, Tohoku University Graduate School of Medicine, Sendai, Japan
- Division of Metabolic Medicine, Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
3
|
Yang T, Yuan X, Xue Q, Sun L, Xu T, Chen Y, Shi D, Li X. Comparison of symmetrical and asymmetrical cleavage 2-cell embryos of porcine by Smart-seq2. Theriogenology 2023; 210:221-226. [PMID: 37540954 DOI: 10.1016/j.theriogenology.2023.07.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 07/22/2023] [Accepted: 07/22/2023] [Indexed: 08/06/2023]
Abstract
Early cleavage (EC) influences the development of the pre-implantation and post-implantation embryo. Symmetric cleavage (Sym) and asymmetric cleavage (Asy) have been observed in EC, but its molecular mechanism remains unclear. This study was designed to pick out the key candidate genes and signaling pathway between Sym and Asy embryos by applying Smart-seq2 technique. In in-vitro fertilization (IVF) 2-cell embryos, Sym embryos and Asy embryos accounted for 62.55% and 37.45%, respectively. The 2-cell rate, blastocyst rate and total blastocyst cells of Sym group were significantly higher than those of Asy group (31.38% vs 18.79%, 47.55% vs 29.5%, 71.33 vs 33.67, P < 0.05). The 2-cell rate, blastocyst rate and total blastocyst cell number in parthenogenetic activation (PA) embryos in Sym group were significantly higher than those in Asy group (40.61% vs 23.64%, 63.15% vs 30.11%, 50.75 vs 40.5, P < 0.05). A total of 216 differentially expressed genes (DEGs) incorporating 147 genes up-regulated and 69 genes down-regulated genes were screened under the p-value <0.05 and |log2 (fold change)| ≥ 1 when compared with Sym group. Further Gene Ontology (GO) analysis showed that these DEGs were related to the regulation of metabolic process, cell cycle, chromosome segregation, centromeric region and microtubule cytoskeleton. Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis revealed that the DEGs were mainly enriched to oocyte meiosis, cell cycle, p53 and Hippo signaling pathways. We concluded that asymmetric cleavage is a consequence of altered gene expression. Atg4c, Sesn2, Stk11ip, Slc25a6, Cep19 and Cep55 associated with mitochondrial function and cytoskeletal structure were probably the key candidate genesto determine the zygote cleavage pattern.
Collapse
Affiliation(s)
- Ting Yang
- Guangxi Key Laboratory of Animal Breeding and Disease Control, Guangxi University, Nanning, 530005, China
| | - Xi Yuan
- Guangxi Key Laboratory of Animal Breeding and Disease Control, Guangxi University, Nanning, 530005, China
| | - Qingsong Xue
- Guangxi Key Laboratory of Animal Breeding and Disease Control, Guangxi University, Nanning, 530005, China
| | - Le Sun
- Guangxi Key Laboratory of Animal Breeding and Disease Control, Guangxi University, Nanning, 530005, China
| | - Tairan Xu
- Guangxi Key Laboratory of Animal Breeding and Disease Control, Guangxi University, Nanning, 530005, China
| | - Yuan Chen
- Guangxi Key Laboratory of Animal Breeding and Disease Control, Guangxi University, Nanning, 530005, China
| | - Deshun Shi
- Guangxi Key Laboratory of Animal Breeding and Disease Control, Guangxi University, Nanning, 530005, China
| | - Xiangping Li
- Guangxi Key Laboratory of Animal Breeding and Disease Control, Guangxi University, Nanning, 530005, China.
| |
Collapse
|
4
|
Burgon PG, Weldrick JJ, Talab OMSA, Nadeer M, Nomikos M, Megeney LA. Regulatory Mechanisms That Guide the Fetal to Postnatal Transition of Cardiomyocytes. Cells 2023; 12:2324. [PMID: 37759546 PMCID: PMC10528641 DOI: 10.3390/cells12182324] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 09/16/2023] [Accepted: 09/19/2023] [Indexed: 09/29/2023] Open
Abstract
Heart disease remains a global leading cause of death and disability, necessitating a comprehensive understanding of the heart's development, repair, and dysfunction. This review surveys recent discoveries that explore the developmental transition of proliferative fetal cardiomyocytes into hypertrophic postnatal cardiomyocytes, a process yet to be well-defined. This transition is key to the heart's growth and has promising therapeutic potential, particularly for congenital or acquired heart damage, such as myocardial infarctions. Although significant progress has been made, much work is needed to unravel the complex interplay of signaling pathways that regulate cardiomyocyte proliferation and hypertrophy. This review provides a detailed perspective for future research directions aimed at the potential therapeutic harnessing of the perinatal heart transitions.
Collapse
Affiliation(s)
- Patrick G. Burgon
- Department of Chemistry and Earth Sciences, College of Arts and Sciences, Qatar University, Doha P.O. Box 2713, Qatar
| | - Jonathan J. Weldrick
- Department of Medicine, Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada; (J.J.W.); (L.A.M.)
| | | | - Muhammad Nadeer
- College of Medicine, QU Health, Qatar University, Doha P.O. Box 2713, Qatar; (O.M.S.A.T.)
| | - Michail Nomikos
- College of Medicine, QU Health, Qatar University, Doha P.O. Box 2713, Qatar; (O.M.S.A.T.)
| | - Lynn A. Megeney
- Department of Medicine, Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada; (J.J.W.); (L.A.M.)
- Sprott Centre for Stem Cell Research, Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada
| |
Collapse
|
5
|
Wang FF, Wang MH, Zhang MK, Qin P, Cuthbertson AGS, Lei CL, Qiu BL, Yu L, Sang W. Blue light stimulates light stress and phototactic behavior when received in the brain of Diaphorina citri. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 251:114519. [PMID: 36634478 DOI: 10.1016/j.ecoenv.2023.114519] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 12/31/2022] [Accepted: 01/05/2023] [Indexed: 06/17/2023]
Abstract
Blue light with a wavelength of 400-470 nm is the composition of the visible light. However, in recent years, blue light contributed the most significance to light pollution due to the artificial light at night. Previously, we have demonstrated that the Asian citrus psyllid (ACP), Diaphorina citri, an important pest in citrus production, has significant positive phototaxis with a light-emitting diode light of 400 nm. In this study, ACP with positive phototactic behavior to 400 nm light (PH) and non-phototactic behavior to 400 nm light (NP) were collected, individually. Transcriptome dynamics of head tissues of PH and NP groups were captured by using RNA-sequencing technology, respectively. Forty-three to 46 million clean reads with high-quality values were obtained, and 1773 differential expressed genes (DEGs) were detected. Compared with the NP group, there were 841 up-regulated DEGs and 932 down-regulated DEGs in the PH group. Eight pathways were significantly enriched in the PH group in the KEGG database, while 43 up-regulated pathways and 25 down-regulated pathways were significantly enriched in the PH group in the GO database. The DGE approach was reliable validated by real time quantitative PCR. Results indicated that the blue light acted as an abiotic stress causing physiological and biochemical responses such as oxidative stress, protein denaturation, inflammation and tumor development in ACPs. Additionally, the light was absorbed by photoreceptors of ACPs, and converted into electrical signal to regulate neuromodulation. This study provides basic information for understanding the molecular mechanisms of ACP in response to blue light and provides a reference for further studies to elucidate phototactic behavior.
Collapse
Affiliation(s)
- Fei-Feng Wang
- South China Agricultural University, Guangzhou 510640, China
| | - Ming-Hui Wang
- South China Agricultural University, Guangzhou 510640, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510640, China
| | - Meng-Ke Zhang
- South China Agricultural University, Guangzhou 510640, China
| | - Peng Qin
- South China Agricultural University, Guangzhou 510640, China
| | | | - Chao-Liang Lei
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Bao-Li Qiu
- South China Agricultural University, Guangzhou 510640, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510640, China
| | - Lin Yu
- Institute of Plant Protection, Guangdong Academy of Agricultural Sciences, Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Guangzhou 510640, China.
| | - Wen Sang
- South China Agricultural University, Guangzhou 510640, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510640, China.
| |
Collapse
|
6
|
Ahmad US, Uttagomol J, Wan H. The Regulation of the Hippo Pathway by Intercellular Junction Proteins. Life (Basel) 2022; 12:1792. [PMID: 36362947 PMCID: PMC9696951 DOI: 10.3390/life12111792] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 10/23/2022] [Accepted: 11/03/2022] [Indexed: 08/24/2023] Open
Abstract
The Hippo pathway is an evolutionarily conserved pathway that serves to promote cell death and differentiation while inhibiting cellular proliferation across species. The downstream effectors of this pathway, yes-associated protein (YAP) and transcriptional co-activator with PDZ-binding motif (TAZ), are considered vital in promoting the output of the Hippo pathway, with activation of upstream kinases negatively regulating YAP/TAZ activity. The upstream regulation of the Hippo pathway is not entirely understood on a molecular level. However, several studies have shown that numerous cellular and non-cellular mechanisms such as cell polarity, contact inhibition, soluble factors, mechanical forces, and metabolism can convey external stimuli to the intracellular kinase cascade, promoting the activation of key components of the Hippo pathway and therefore regulating the subcellular localisation and protein activity of YAP/TAZ. This review will summarise what we have learnt about the role of intercellular junction-associated proteins in the activation of this pathway, including adherens junctions and tight junctions, and in particular our latest findings about the desmosomal components, including desmoglein-3 (DSG3), in the regulation of YAP signalling, phosphorylation, and subcellular translocation.
Collapse
Affiliation(s)
- Usama Sharif Ahmad
- Centre for Oral Immunobiology and Regenerative Medicine, Institute of Dentistry, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London E1 2AT, UK
| | - Jutamas Uttagomol
- Oral Diagnosis Department, Faculty of Dentistry, Naresuan University, Phitsanulok 65000, Thailand
| | - Hong Wan
- Centre for Oral Immunobiology and Regenerative Medicine, Institute of Dentistry, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London E1 2AT, UK
| |
Collapse
|
7
|
Ibar C, Irvine KD. Integration of Hippo-YAP Signaling with Metabolism. Dev Cell 2021; 54:256-267. [PMID: 32693058 DOI: 10.1016/j.devcel.2020.06.025] [Citation(s) in RCA: 103] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 05/27/2020] [Accepted: 06/21/2020] [Indexed: 12/12/2022]
Abstract
The Hippo-Yes-associated protein (YAP) signaling network plays a central role as an integrator of signals that control cellular proliferation and differentiation. The past several years have provided an increasing appreciation and understanding of the diverse mechanisms through which metabolites and metabolic signals influence Hippo-YAP signaling, and how Hippo-YAP signaling, in turn, controls genes that direct cellular and organismal metabolism. These connections enable Hippo-YAP signaling to coordinate organ growth and homeostasis with nutrition and metabolism. In this review, we discuss the current understanding of some of the many interconnections between Hippo-YAP signaling and metabolism and how they are affected in disease conditions.
Collapse
Affiliation(s)
- Consuelo Ibar
- Waksman Institute and Department of Molecular Biology and Biochemistry, Rutgers University, Piscataway, NJ 08854, USA
| | - Kenneth D Irvine
- Waksman Institute and Department of Molecular Biology and Biochemistry, Rutgers University, Piscataway, NJ 08854, USA.
| |
Collapse
|
8
|
Park J, Jun K, Choi Y, Yoon E, Kim W, Jang YG, Chung J. CORO7 functions as a scaffold protein for the core kinase complex assembly of the Hippo pathway. J Biol Chem 2021; 296:100040. [PMID: 33162394 PMCID: PMC7949047 DOI: 10.1074/jbc.ra120.013297] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 10/26/2020] [Accepted: 11/08/2020] [Indexed: 12/25/2022] Open
Abstract
The Hippo pathway controls organ size and tissue homeostasis through the regulation of cell proliferation and apoptosis. However, the exact molecular mechanisms underpinning Hippo pathway regulation are not fully understood. Here, we identify a new component of the Hippo pathway: coronin 7 (CORO7), a coronin protein family member that is involved in organization of the actin cytoskeleton. pod1, the Drosophila ortholog of CORO7, genetically interacts with key Hippo pathway genes in Drosophila. In mammalian cells, CORO7 is required for the activation of the Hippo pathway in response to cell-cell contact, serum deprivation, and cytoskeleton damage. CORO7 forms a complex with the core components of the pathway and functions as a scaffold for the Hippo core kinase complex. Collectively, these results demonstrate that CORO7 is a key scaffold controlling the Hippo pathway via modulating protein-protein interactions.
Collapse
Affiliation(s)
- Jina Park
- School of Biological Sciences, Seoul National University, Seoul, Republic of Korea; Institute of Molecular Biology and Genetics, Seoul National University, Seoul, Republic of Korea
| | - Kyoungho Jun
- School of Biological Sciences, Seoul National University, Seoul, Republic of Korea; Institute of Molecular Biology and Genetics, Seoul National University, Seoul, Republic of Korea
| | - Yujin Choi
- School of Biological Sciences, Seoul National University, Seoul, Republic of Korea; Institute of Molecular Biology and Genetics, Seoul National University, Seoul, Republic of Korea
| | - Eunju Yoon
- School of Biological Sciences, Seoul National University, Seoul, Republic of Korea; Institute of Molecular Biology and Genetics, Seoul National University, Seoul, Republic of Korea
| | - Wonho Kim
- Institute of Molecular Biology and Genetics, Seoul National University, Seoul, Republic of Korea
| | - Yoon-Gu Jang
- School of Biological Sciences, Seoul National University, Seoul, Republic of Korea; Institute of Molecular Biology and Genetics, Seoul National University, Seoul, Republic of Korea
| | - Jongkyeong Chung
- School of Biological Sciences, Seoul National University, Seoul, Republic of Korea; Institute of Molecular Biology and Genetics, Seoul National University, Seoul, Republic of Korea.
| |
Collapse
|
9
|
Yatsenko AS, Kucherenko MM, Xie Y, Aweida D, Urlaub H, Scheibe RJ, Cohen S, Shcherbata HR. Profiling of the muscle-specific dystroglycan interactome reveals the role of Hippo signaling in muscular dystrophy and age-dependent muscle atrophy. BMC Med 2020; 18:8. [PMID: 31959160 PMCID: PMC6971923 DOI: 10.1186/s12916-019-1478-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Accepted: 12/05/2019] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Dystroglycanopathies are a group of inherited disorders characterized by vast clinical and genetic heterogeneity and caused by abnormal functioning of the ECM receptor dystroglycan (Dg). Remarkably, among many cases of diagnosed dystroglycanopathies, only a small fraction can be linked directly to mutations in Dg or its regulatory enzymes, implying the involvement of other, not-yet-characterized, Dg-regulating factors. To advance disease diagnostics and develop new treatment strategies, new approaches to find dystroglycanopathy-related factors should be considered. The Dg complex is highly evolutionarily conserved; therefore, model genetic organisms provide excellent systems to address this challenge. In particular, Drosophila is amenable to experiments not feasible in any other system, allowing original insights about the functional interactors of the Dg complex. METHODS To identify new players contributing to dystroglycanopathies, we used Drosophila as a genetic muscular dystrophy model. Using mass spectrometry, we searched for muscle-specific Dg interactors. Next, in silico analyses allowed us to determine their association with diseases and pathological conditions in humans. Using immunohistochemical, biochemical, and genetic interaction approaches followed by the detailed analysis of the muscle tissue architecture, we verified Dg interaction with some of the discovered factors. Analyses of mouse muscles and myocytes were used to test if interactions are conserved in vertebrates. RESULTS The muscle-specific Dg complexome revealed novel components that influence the efficiency of Dg function in the muscles. We identified the closest human homologs for Dg-interacting partners, determined their significant enrichment in disease-associations, and verified some of the newly identified Dg interactions. We found that Dg associates with two components of the mechanosignaling Hippo pathway: the WW domain-containing proteins Kibra and Yorkie. Importantly, this conserved interaction manages adult muscle size and integrity. CONCLUSIONS The results presented in this study provide a new list of muscle-specific Dg interactors, further analysis of which could aid not only in the diagnosis of muscular dystrophies, but also in the development of new therapeutics. To regulate muscle fitness during aging and disease, Dg associates with Kibra and Yorkie and acts as a transmembrane Hippo signaling receptor that transmits extracellular information to intracellular signaling cascades, regulating muscle gene expression.
Collapse
Affiliation(s)
- Andriy S Yatsenko
- Gene Expression and Signaling Group, Institute of Cell Biochemistry, Hannover Medical School, Carl-Neuberg-Strasse 1, 30625, Hannover, Germany
| | - Mariya M Kucherenko
- Max Planck Research Group of Gene Expression and Signaling, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077, Göttingen, Germany.,Present Address: Department of Cardiothoracic and Vascular Surgery, German Heart Center Berlin, Augustenburger Platz 1, 13353, Berlin, Germany.,Institute of Physiology, Charité - University Medicine Berlin, Charitéplatz 1, 10117, Berlin, Germany
| | - Yuanbin Xie
- Max Planck Research Group of Gene Expression and Signaling, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077, Göttingen, Germany.,Present Address: University Medical Center, Centre for Anatomy, Institute of Neuroanatomy, Georg-August-University Göttingen, Kreuzbergring 36, 37075, Göttingen, Germany
| | - Dina Aweida
- Faculty of Biology, Technion, 32000, Haifa, Israel
| | - Henning Urlaub
- Bioanalytical Mass Spectrometry Research Group, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077, Göttingen, Germany.,Bioanalytics Institute for Clinical Chemistry, University Medical Center Goettingen, Robert Koch Strasse 40, 37075, Göttingen, Germany
| | - Renate J Scheibe
- Gene Expression and Signaling Group, Institute of Cell Biochemistry, Hannover Medical School, Carl-Neuberg-Strasse 1, 30625, Hannover, Germany
| | | | - Halyna R Shcherbata
- Gene Expression and Signaling Group, Institute of Cell Biochemistry, Hannover Medical School, Carl-Neuberg-Strasse 1, 30625, Hannover, Germany. .,Max Planck Research Group of Gene Expression and Signaling, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077, Göttingen, Germany.
| |
Collapse
|
10
|
Nie P, Li Y, Suo H, Jiang N, Yu D, Fang B. Dasatinib Promotes Chondrogenic Differentiation of Human Mesenchymal Stem Cells via the Src/Hippo-YAP Signaling Pathway. ACS Biomater Sci Eng 2019; 5:5255-5265. [PMID: 33455230 DOI: 10.1021/acsbiomaterials.9b00618] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Mesenchymal stem cells (MSCs) are progenitors of chondrocytes and could be used as a potential therapy for cartilage defects in diarthrodial joints. However, promoting chondrogenic differentiation of MSCs remains a daunting challenge. As a small molecular drug, dasatinib can promote MSC differentiation, although the exact mechanisms of chondrogenic differentiation are unclear. In this study, the differentiation of MSCs into osteoblasts, adipocytes, and chondrocytes was assessed by the protein and mRNA levels of osteoblast- and chondrocyte-related proteins using western blotting and real-time polymerase chain reaction, respectively. MSCs were induced to differentiate into chondrocytes or osteoblasts with or without dasatinib in vitro. The effects of dasatinib on cartilage regeneration were also assessed in vivo in a rabbit model of full-thickness cartilage defects using methacrylate gelatin hydrogel as scaffolds. Dasatinib promoted chondrogenic differentiation and inhibited osteogenic differentiation of MSCs. Furthermore, dasatinib significantly inhibited the expression of YAP and TAZ and the phosphorylation of Src, but it enhanced serine phosphorylation of YAP during the chondrogenic differentiation of MSCs in vitro. Inhibition of the Hippo pathway using XMU-MP-1 dramatically suppressed the serine phosphorylation of YAP and chondrogenic differentiation of MSCs. Moreover, we confirmed that the sustained release of dasatinib from the hydrogel promoted rabbit cartilage repair. The results demonstrated that dasatinib might promote chondrogenic differentiation of MSCs via the Src/Hippo-YAP signaling pathway and that hydrogel sustained-release dasatinib had a certain effect on the repair of cartilage defects.
Collapse
Affiliation(s)
- Ping Nie
- Center of Cranio-facial Orthodontics, Department of Oral and Cranio-maxillofacial Surgery, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China.,National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai 200011, China
| | - Yao Li
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Hairui Suo
- School of Automation, Hangzhou Dianzi University, Zhejiang 310018, China
| | - Ning Jiang
- Center of Cranio-facial Orthodontics, Department of Oral and Cranio-maxillofacial Surgery, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China.,National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai 200011, China
| | - Dedong Yu
- 2nd Dental Center, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai 201999, China.,National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai 200011, China
| | - Bing Fang
- Department of Orthodontics, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China.,National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai 200011, China
| |
Collapse
|
11
|
Formica C, Happé H, Veraar KA, Vortkamp A, Scharpfenecker M, McNeill H, Peters DJ. Four-jointed knock-out delays renal failure in an ADPKD model with kidney injury. J Pathol 2019; 249:114-125. [PMID: 31038742 PMCID: PMC6772084 DOI: 10.1002/path.5286] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 04/19/2019] [Accepted: 04/26/2019] [Indexed: 12/28/2022]
Abstract
Autosomal Dominant Polycystic Kidney Disease is characterised by the development of fluid‐filled cysts in the kidneys which lead to end‐stage renal disease (ESRD). In the majority of cases, the disease is caused by a mutation in the Pkd1 gene. In a previous study, we demonstrated that renal injury can accelerate cyst formation in Pkd1 knock‐out (KO) mice. In that study, we found that after injury four‐jointed (Fjx1), an upstream regulator of planar cell polarity and the Hippo pathway, was aberrantly expressed in Pkd1 KO mice compared to WT. Therefore, we hypothesised a role for Fjx1 in injury/repair and cyst formation. We generated single and double deletion mice for Pkd1 and Fjx1, and we induced toxic renal injury using the nephrotoxic compound 1,2‐dichlorovinyl‐cysteine. We confirmed that nephrotoxic injury can accelerate cyst formation in Pkd1 mutant mice. This caused Pkd1 KO mice to reach ESRD significantly faster; unexpectedly, double KO mice survived significantly longer. Cyst formation was comparable in both models, but we found significantly less fibrosis and macrophage infiltration in double KO mice. Taken together, these data suggest that Fjx1 disruption protects the cystic kidneys against kidney failure by reducing inflammation and fibrosis. Moreover, we describe, for the first time, an interesting (yet unidentified) mechanism that partially discriminates cyst growth from fibrogenesis. © 2019 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Chiara Formica
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Hester Happé
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Kimberley Am Veraar
- Department of Pathology, Leiden University Medical Center, Leiden, The Netherlands
| | - Andrea Vortkamp
- Department of Developmental Biology, Centre of Medical Biotechnology, Faculty of Biology, University of Duisburg-Essen, Essen, Germany
| | | | - Helen McNeill
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO, USA.,Department of Molecular Genetics, University of Toronto, Toronto, Canada.,Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, Canada
| | - Dorien Jm Peters
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
12
|
Arbouzova NI, Fulford AD, Zhang H, McNeill H. Fat regulates expression of four-jointed reporters in vivo through a 20 bp element independently of the Hippo pathway. Dev Biol 2019; 450:23-33. [DOI: 10.1016/j.ydbio.2019.03.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 03/07/2019] [Accepted: 03/07/2019] [Indexed: 01/15/2023]
|
13
|
McKenna KZ, Tao D, Nijhout HF. Exploring the Role of Insulin Signaling in Relative Growth: A Case Study on Wing-Body Scaling in Lepidoptera. Integr Comp Biol 2019; 59:1324-1337. [DOI: 10.1093/icb/icz080] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Abstract
Adult forms emerge from the relative growth of the body and its parts. Each appendage and organ has a unique pattern of growth that influences the size and shape it attains. This produces adult size relationships referred to as static allometries, which have received a great amount of attention in evolutionary and developmental biology. However, many questions remain unanswered, for example: What sorts of developmental processes coordinate growth? And how do these processes change given variation in body size? It has become increasingly clear that nutrition is one of the strongest influences on size relationships. In insects, nutrition acts via insulin/TOR signaling to facilitate inter- and intra-specific variation in body size and appendage size. Yet, the mechanism by which insulin signaling influences the scaling of growth remains unclear. Here we will discuss the potential roles of insulin signaling in wing-body scaling in Lepidoptera. We analyzed the growth of wings in animals reared on different diet qualities that induce a range of body sizes not normally present in our laboratory populations. By growing wings in tissue culture, we survey how perturbation and stimulation of insulin/TOR signaling influences wing growth. To conclude, we will discuss the implications of our findings for the development and evolution of organismal form.
Collapse
Affiliation(s)
| | - Della Tao
- Department of Biology, Duke University, Durham, NC 27708, USA
| | | |
Collapse
|
14
|
Adachi H, Matsuda K, Niimi T, Inoue Y, Kondo S, Gotoh H. Anisotropy of cell division and epithelial sheet bending via apical constriction shape the complex folding pattern of beetle horn primordia. Mech Dev 2018; 152:32-37. [DOI: 10.1016/j.mod.2018.06.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 06/15/2018] [Accepted: 06/15/2018] [Indexed: 11/29/2022]
|
15
|
Hu X, Zhai Y, Shi R, Qian Y, Cui H, Yang J, Bi Y, Yan T, Yang J, Ma Y, Zhang L, Liu Y, Li G, Zhang M, Cui Y, Kong P, Cheng X. FAT1 inhibits cell migration and invasion by affecting cellular mechanical properties in esophageal squamous cell carcinoma. Oncol Rep 2018; 39:2136-2146. [PMID: 29565465 PMCID: PMC5928768 DOI: 10.3892/or.2018.6328] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Accepted: 03/08/2018] [Indexed: 12/14/2022] Open
Abstract
FAT atypical cadherin 1 (FAT1) belongs to the cadherin superfamily and has been reported to regulate cell-cell adhesion and other cell behaviors, suggesting its pivotal roles in human cancers. We previously identified FAT1 as one of the significant mutant genes in esophageal squamous cell carcinoma (ESCC). In the present study, the knockdown of FAT1 expression in YSE2 and Colo680N cell lines was carried out by lentivirus, and we found that knockdown of FAT1 led to acceleration of cell migration and invasion. Furthermore, we detected the cell adhesive force and cell elasticity force by atomic force microscopy (AFM) and found that the suppression of endogenous expression of FAT1 led to a decrease in the cell adhesive force and increase in the cell elasticity force compared with the control groups. In conclusion, our study demonstrated that FAT1 altered cellular mechanical properties leading to deregulation of cell migration and invasion of ESCC, which may be a novel target for ESCC therapy.
Collapse
Affiliation(s)
- Xiaoling Hu
- Translational Medicine Research Center, Shanxi Medical University, Taiyuan, Shanxi 030001, P.R. China
| | - Yuanfang Zhai
- Translational Medicine Research Center, Shanxi Medical University, Taiyuan, Shanxi 030001, P.R. China
| | - Ruyi Shi
- Translational Medicine Research Center, Shanxi Medical University, Taiyuan, Shanxi 030001, P.R. China
| | - Yu Qian
- Translational Medicine Research Center, Shanxi Medical University, Taiyuan, Shanxi 030001, P.R. China
| | - Heyang Cui
- Translational Medicine Research Center, Shanxi Medical University, Taiyuan, Shanxi 030001, P.R. China
| | - Jie Yang
- Translational Medicine Research Center, Shanxi Medical University, Taiyuan, Shanxi 030001, P.R. China
| | - Yanghui Bi
- Translational Medicine Research Center, Shanxi Medical University, Taiyuan, Shanxi 030001, P.R. China
| | - Ting Yan
- Translational Medicine Research Center, Shanxi Medical University, Taiyuan, Shanxi 030001, P.R. China
| | - Jian Yang
- Translational Medicine Research Center, Shanxi Medical University, Taiyuan, Shanxi 030001, P.R. China
| | - Yanchun Ma
- Translational Medicine Research Center, Shanxi Medical University, Taiyuan, Shanxi 030001, P.R. China
| | - Ling Zhang
- Translational Medicine Research Center, Shanxi Medical University, Taiyuan, Shanxi 030001, P.R. China
| | - Yiqian Liu
- Translational Medicine Research Center, Shanxi Medical University, Taiyuan, Shanxi 030001, P.R. China
| | - Guodong Li
- Department of Otorhinolaryngology, Shanxi Provincial People's Hospital, Taiyuan, Shanxi 030001, P.R. China
| | - Mingsheng Zhang
- Department of Pharmacology, Shanxi Medical University, Taiyuan, Shanxi 030001, P.R. China
| | - Yongping Cui
- Translational Medicine Research Center, Shanxi Medical University, Taiyuan, Shanxi 030001, P.R. China
| | - Pengzhou Kong
- Translational Medicine Research Center, Shanxi Medical University, Taiyuan, Shanxi 030001, P.R. China
| | - Xiaolong Cheng
- Translational Medicine Research Center, Shanxi Medical University, Taiyuan, Shanxi 030001, P.R. China
| |
Collapse
|
16
|
Drosophila as a Model System to Study Cell Signaling in Organ Regeneration. BIOMED RESEARCH INTERNATIONAL 2018; 2018:7359267. [PMID: 29750169 PMCID: PMC5884440 DOI: 10.1155/2018/7359267] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Accepted: 02/06/2018] [Indexed: 12/22/2022]
Abstract
Regeneration is a fascinating phenomenon that allows organisms to replace or repair damaged organs or tissues. This ability occurs to varying extents among metazoans. The rebuilding of the damaged structure depends on regenerative proliferation that must be accompanied by proper cell fate respecification and patterning. These cellular processes are regulated by the action of different signaling pathways that are activated in response to the damage. The imaginal discs of Drosophila melanogaster have the ability to regenerate and have been extensively used as a model system to study regeneration. Drosophila provides an opportunity to use powerful genetic tools to address fundamental problems about the genetic mechanisms involved in organ regeneration. Different studies in Drosophila have helped to elucidate the genes and signaling pathways that initiate regeneration, promote regenerative growth, and induce cell fate respecification. Here we review the signaling networks involved in regulating the variety of cellular responses that are required for discs regeneration.
Collapse
|
17
|
Ibar C, Kirichenko E, Keepers B, Enners E, Fleisch K, Irvine KD. Tension-dependent regulation of mammalian Hippo signaling through LIMD1. J Cell Sci 2018; 131:jcs214700. [PMID: 29440237 PMCID: PMC5897721 DOI: 10.1242/jcs.214700] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Accepted: 01/31/2018] [Indexed: 12/26/2022] Open
Abstract
Hippo signaling is regulated by biochemical and biomechanical cues that influence the cytoskeleton, but the mechanisms that mediate this have remained unclear. We show that all three mammalian Ajuba family proteins - AJUBA, LIMD1 and WTIP - exhibit tension-dependent localization to adherens junctions, and that both LATS family proteins, LATS1 and LATS2, exhibit an overlapping tension-dependent junctional localization. This localization of Ajuba and LATS family proteins is also influenced by cell density, and by Rho activation. We establish that junctional localization of LATS kinases requires LIMD1, and that LIMD1 is also specifically required for the regulation of LATS kinases and YAP1 by Rho. Our results identify a biomechanical pathway that contributes to regulation of mammalian Hippo signaling, establish that this occurs through tension-dependent LIMD1-mediated recruitment and inhibition of LATS kinases in junctional complexes, and identify roles for this pathway in both Rho-mediated and density-dependent regulation of Hippo signaling.
Collapse
Affiliation(s)
- Consuelo Ibar
- Waksman Institute and Department of Molecular Biology and Biochemistry, Rutgers University, Piscataway NJ 08854, USA
| | - Elmira Kirichenko
- Waksman Institute and Department of Molecular Biology and Biochemistry, Rutgers University, Piscataway NJ 08854, USA
| | - Benjamin Keepers
- Waksman Institute and Department of Molecular Biology and Biochemistry, Rutgers University, Piscataway NJ 08854, USA
| | - Edward Enners
- Waksman Institute and Department of Molecular Biology and Biochemistry, Rutgers University, Piscataway NJ 08854, USA
| | - Katelyn Fleisch
- Waksman Institute and Department of Molecular Biology and Biochemistry, Rutgers University, Piscataway NJ 08854, USA
| | - Kenneth D Irvine
- Waksman Institute and Department of Molecular Biology and Biochemistry, Rutgers University, Piscataway NJ 08854, USA
| |
Collapse
|
18
|
BmYki is transcribed into four functional splicing isoforms in the silk glands of the silkworm Bombyx mori. Gene 2018; 646:39-46. [DOI: 10.1016/j.gene.2017.12.047] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 12/19/2017] [Accepted: 12/22/2017] [Indexed: 02/06/2023]
|
19
|
Hust J, Lavine MD, Worthington AM, Zinna R, Gotoh H, Niimi T, Lavine L. The Fat-Dachsous signaling pathway regulates growth of horns in Trypoxylus dichotomus, but does not affect horn allometry. JOURNAL OF INSECT PHYSIOLOGY 2018; 105:85-94. [PMID: 29366850 DOI: 10.1016/j.jinsphys.2018.01.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Revised: 01/19/2018] [Accepted: 01/19/2018] [Indexed: 06/07/2023]
Abstract
Males of the Asian rhinoceros beetle, Trypoxylus dichotomus, possess exaggerated head and thoracic horns that scale dramatically out of proportion to body size. While studies of insulin signaling suggest that this pathway regulates nutrition-dependent growth including exaggerated horns, what regulates disproportionate growth has yet to be identified. The Fat signaling pathway is a potential candidate for regulating disproportionate growth of sexually-selected traits, a hypothesis we advanced in a previous paper (Gotoh et al., 2015). To investigate the role of Fat signaling in the growth and scaling of the sexually dimorphic, condition-dependent traits of the in the Asian rhinoceros beetle T. dichotomus, we used RNA interference to knock down expression of fat and its co-receptor dachsous. Knockdown of fat, and to a lesser degree dachsous, caused shortening and widening of appendages, including the head and thoracic horns. However, scaling of horns to body size was not affected. Our results show that Fat signaling regulates horn growth in T. dichotomus as it does in appendage growth in other insects. However, we provide evidence that Fat signaling does not mediate the disproportionate, positive allometric growth of horns in T. dichotomus.
Collapse
Affiliation(s)
- James Hust
- Department of Entomology, Washington State University, Pullman, WA 99164, United States
| | - Mark D Lavine
- Department of Entomology, Washington State University, Pullman, WA 99164, United States
| | - Amy M Worthington
- Department of Entomology, Washington State University, Pullman, WA 99164, United States
| | - Robert Zinna
- Department of Entomology, Washington State University, Pullman, WA 99164, United States
| | - Hiroki Gotoh
- Department of Entomology, Washington State University, Pullman, WA 99164, United States; Lab of Sericulture and Entomoresources, Graduate School of Bioagricultural Sciences, Nagoya University, Chikusa, Nagoya 464-8601, Japan
| | - T Niimi
- Lab of Sericulture and Entomoresources, Graduate School of Bioagricultural Sciences, Nagoya University, Chikusa, Nagoya 464-8601, Japan; Division of Evolutionary Developmental Biology, National Institute for Basic Biology, Okazaki, Aichi 444-8585, Japan
| | - Laura Lavine
- Department of Entomology, Washington State University, Pullman, WA 99164, United States.
| |
Collapse
|
20
|
English SG, Hadj-Moussa H, Storey KB. MicroRNAs regulate survival in oxygen-deprived environments. J Exp Biol 2018; 221:jeb.190579. [DOI: 10.1242/jeb.190579] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Accepted: 10/07/2018] [Indexed: 12/13/2022]
Abstract
Some animals must endure prolonged periods of oxygen deprivation to survive. One such extreme model is the Northern Crayfish (Orconectes virilis), that regularly survives year-round hypoxic and anoxic stresses in its warm stagnant summer waters and in its cold, ice-locked winter waters. To elucidate the molecular underpinnings of anoxia-resistance in this natural model, we surveyed the expression profiles of 76 highly-conserved microRNAs in crayfish hepatopancreas and tail muscle from normoxic, acute 2hr anoxia, and chronic 20hr anoxia exposures. MicroRNAs are known to regulate a diverse array of cellular functions required for environmental stress adaptations, and here we explore their role in anoxia tolerance. The tissue-specific anoxia responses observed herein, with 22 anoxia-responsive microRNAs in hepatopancreas and only 4 changing microRNAs in muscle, suggest that microRNAs facilitate a reprioritization of resources to preserve crucial organ functions. Bioinformatic microRNA target enrichment analysis predicted that the anoxia-downregulated microRNAs in hepatopancreas targeted hippo-signalling, suggesting that cell proliferation and apoptotic signalling are highly regulated in this liver-like organ during anoxia. Compellingly, miR-125-5p, miR-33-5p, and miR-190-5p, all known to target the master regulator of oxygen deprivation responses HIF1 (Hypoxia Inducible Factor-1), were anoxia-downregulated in hepatopancreas. The anoxia-increased transcript levels of the oxygen dependent subunit HIF1α, highlight a potential critical role for miRNA-HIF targeting in facilitating a successful anoxia response. Studying the cytoprotective mechanisms in place to protect against the challenges associated with surviving in oxygen-poor environments is critical to elucidating microRNAs’ vast and substantial role in the regulation of metabolism and stress in aquatic invertebrates.
Collapse
Affiliation(s)
- Simon G. English
- Institute of Biochemistry and Department of Biology, Carleton University, 1125 Colonel By Drive, Ottawa, ON, K1S 5B6, Canada
| | - Hanane Hadj-Moussa
- Institute of Biochemistry and Department of Biology, Carleton University, 1125 Colonel By Drive, Ottawa, ON, K1S 5B6, Canada
| | - Kenneth B. Storey
- Institute of Biochemistry and Department of Biology, Carleton University, 1125 Colonel By Drive, Ottawa, ON, K1S 5B6, Canada
| |
Collapse
|
21
|
Kuta A, Mao Y, Martin T, Ferreira de Sousa C, Whiting D, Zakaria S, Crespo-Enriquez I, Evans P, Balczerski B, Mankoo B, Irvine KD, Francis-West PH. Fat4-Dchs1 signalling controls cell proliferation in developing vertebrae. Development 2017; 143:2367-75. [PMID: 27381226 DOI: 10.1242/dev.131037] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Accepted: 05/11/2016] [Indexed: 01/15/2023]
Abstract
The protocadherins Fat4 and Dchs1 act as a receptor-ligand pair to regulate many developmental processes in mice and humans, including development of the vertebrae. Based on conservation of function between Drosophila and mammals, Fat4-Dchs1 signalling has been proposed to regulate planar cell polarity (PCP) and activity of the Hippo effectors Yap and Taz, which regulate cell proliferation, survival and differentiation. There is strong evidence for Fat regulation of PCP in mammals but the link with the Hippo pathway is unclear. In Fat4(-/-) and Dchs1(-/-) mice, many vertebrae are split along the midline and fused across the anterior-posterior axis, suggesting that these defects might arise due to altered cell polarity and/or changes in cell proliferation/differentiation. We show that the somite and sclerotome are specified appropriately, the transcriptional network that drives early chondrogenesis is intact, and that cell polarity within the sclerotome is unperturbed. We find that the key defect in Fat4 and Dchs1 mutant mice is decreased proliferation in the early sclerotome. This results in fewer chondrogenic cells within the developing vertebral body, which fail to condense appropriately along the midline. Analysis of Fat4;Yap and Fat4;Taz double mutants, and expression of their transcriptional target Ctgf, indicates that Fat4-Dchs1 regulates vertebral development independently of Yap and Taz. Thus, we have identified a new pathway crucial for the development of the vertebrae and our data indicate that novel mechanisms of Fat4-Dchs1 signalling have evolved to control cell proliferation within the developing vertebrae.
Collapse
Affiliation(s)
- Anna Kuta
- Department of Craniofacial Development and Stem Cell Biology, King's College London, Dental Institute, Guy's Tower, Floor 27, London SE1 9RT, UK
| | - Yaopan Mao
- Howard Hughes Medical Institute, Waksman Institute and Department of Molecular Biology and Biochemistry, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Tina Martin
- Department of Craniofacial Development and Stem Cell Biology, King's College London, Dental Institute, Guy's Tower, Floor 27, London SE1 9RT, UK
| | - Catia Ferreira de Sousa
- Department of Craniofacial Development and Stem Cell Biology, King's College London, Dental Institute, Guy's Tower, Floor 27, London SE1 9RT, UK
| | - Danielle Whiting
- Department of Craniofacial Development and Stem Cell Biology, King's College London, Dental Institute, Guy's Tower, Floor 27, London SE1 9RT, UK
| | - Sana Zakaria
- Department of Craniofacial Development and Stem Cell Biology, King's College London, Dental Institute, Guy's Tower, Floor 27, London SE1 9RT, UK
| | - Ivan Crespo-Enriquez
- Department of Craniofacial Development and Stem Cell Biology, King's College London, Dental Institute, Guy's Tower, Floor 27, London SE1 9RT, UK
| | - Philippa Evans
- Department of Craniofacial Development and Stem Cell Biology, King's College London, Dental Institute, Guy's Tower, Floor 27, London SE1 9RT, UK
| | - Bartosz Balczerski
- Department of Craniofacial Development and Stem Cell Biology, King's College London, Dental Institute, Guy's Tower, Floor 27, London SE1 9RT, UK
| | - Baljinder Mankoo
- Randall Division of Cell and Molecular Biophysics, Faculty of Life Sciences & Medicine, King's College London, Guy's Campus, London SE1 1UL, UK
| | - Kenneth D Irvine
- Howard Hughes Medical Institute, Waksman Institute and Department of Molecular Biology and Biochemistry, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Philippa H Francis-West
- Department of Craniofacial Development and Stem Cell Biology, King's College London, Dental Institute, Guy's Tower, Floor 27, London SE1 9RT, UK
| |
Collapse
|
22
|
Wortman JC, Nahmad M, Zhang PC, Lander AD, Yu CC. Expanding signaling-molecule wavefront model of cell polarization in the Drosophila wing primordium. PLoS Comput Biol 2017; 13:e1005610. [PMID: 28671940 PMCID: PMC5515495 DOI: 10.1371/journal.pcbi.1005610] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Revised: 07/18/2017] [Accepted: 05/26/2017] [Indexed: 01/08/2023] Open
Abstract
In developing tissues, cell polarization and proliferation are regulated by morphogens and signaling pathways. Cells throughout the Drosophila wing primordium typically show subcellular localization of the unconventional myosin Dachs on the distal side of cells (nearest the center of the disc). Dachs localization depends on the spatial distribution of bonds between the protocadherins Fat (Ft) and Dachsous (Ds), which form heterodimers between adjacent cells; and the Golgi kinase Four-jointed (Fj), which affects the binding affinities of Ft and Ds. The Fj concentration forms a linear gradient while the Ds concentration is roughly uniform throughout most of the wing pouch with a steep transition region that propagates from the center to the edge of the pouch during the third larval instar. Although the Fj gradient is an important cue for polarization, it is unclear how the polarization is affected by cell division and the expanding Ds transition region, both of which can alter the distribution of Ft-Ds heterodimers around the cell periphery. We have developed a computational model to address these questions. In our model, the binding affinity of Ft and Ds depends on phosphorylation by Fj. We assume that the asymmetry of the Ft-Ds bond distribution around the cell periphery defines the polarization, with greater asymmetry promoting cell proliferation. Our model predicts that this asymmetry is greatest in the radially-expanding transition region that leaves polarized cells in its wake. These cells naturally retain their bond distribution asymmetry after division by rapidly replenishing Ft-Ds bonds at new cell-cell interfaces. Thus we predict that the distal localization of Dachs in cells throughout the pouch requires the movement of the Ds transition region and the simple presence, rather than any specific spatial pattern, of Fj. In the tissues of a developing organism, specialized proteins can control cell growth and give cells a sense of direction, e.g., which way is the head or the tail, by having their concentration vary throughout the tissue. In cells of the developing fruit fly wing, a protein called Dachs localizes on the side of the cell closest to the center of the tissue, indicating a directionality. The localization of Dachs is determined by the spatial distribution, around the periphery of a cell, of intercellular bonds of the proteins Fat and Dachsous between adjacent cells. Here we asked how this cell directionality is affected when cells divide and when the concentration of Dachsous changes over time. We use a computational model to show that as the circular step-up region of the Dachsous concentration profile sweeps radially outward, like rings radiating outward from where a pebble was dropped in a pond, it leaves polarized cells in its wake. Our model also shows how cells can naturally recover their directionality after cell division.
Collapse
Affiliation(s)
- Juliana C. Wortman
- Department of Physics and Astronomy, University of California, Irvine, Irvine, California, United States of America
- Center for Complex Biological Systems, University of California, Irvine, Irvine, California, United States of America
| | - Marcos Nahmad
- Center for Complex Biological Systems, University of California, Irvine, Irvine, California, United States of America
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, California, United States of America
| | - Peng Cheng Zhang
- Center for Complex Biological Systems, University of California, Irvine, Irvine, California, United States of America
- Department of Biomedical Engineering, University of California, Irvine, Irvine, California, United States of America
| | - Arthur D. Lander
- Center for Complex Biological Systems, University of California, Irvine, Irvine, California, United States of America
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, California, United States of America
- Department of Biomedical Engineering, University of California, Irvine, Irvine, California, United States of America
| | - Clare C. Yu
- Department of Physics and Astronomy, University of California, Irvine, Irvine, California, United States of America
- Center for Complex Biological Systems, University of California, Irvine, Irvine, California, United States of America
- * E-mail:
| |
Collapse
|
23
|
Hu X, Zhai Y, Kong P, Cui H, Yan T, Yang J, Qian Y, Ma Y, Wang F, Li H, Cheng C, Zhang L, Jia Z, Li Y, Yang B, Xu E, Wang J, Yang J, Bi Y, Chang L, Wang Y, Zhang Y, Song B, Li G, Shi R, Liu J, Zhang M, Cheng X, Cui Y. FAT1 prevents epithelial mesenchymal transition (EMT) via MAPK/ERK signaling pathway in esophageal squamous cell cancer. Cancer Lett 2017; 397:83-93. [DOI: 10.1016/j.canlet.2017.03.033] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2016] [Revised: 03/07/2017] [Accepted: 03/25/2017] [Indexed: 02/06/2023]
|
24
|
de Jonge J, Olthoff KM. Liver regeneration. BLUMGART'S SURGERY OF THE LIVER, BILIARY TRACT AND PANCREAS, 2-VOLUME SET 2017:93-109.e7. [DOI: 10.1016/b978-0-323-34062-5.00006-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
25
|
AJUBA LIM Proteins Limit Hippo Activity in Proliferating Cells by Sequestering the Hippo Core Kinase Complex in the Cytosol. Mol Cell Biol 2016; 36:2526-42. [PMID: 27457617 PMCID: PMC5038147 DOI: 10.1128/mcb.00136-16] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Accepted: 06/27/2016] [Indexed: 12/31/2022] Open
Abstract
The Hippo pathway controls organ growth and is implicated in cancer development. Whether and how Hippo pathway activity is limited to sustain or initiate cell growth when needed is not understood. The members of the AJUBA family of LIM proteins are negative regulators of the Hippo pathway. In mammalian epithelial cells, we found that AJUBA LIM proteins limit Hippo regulation of YAP, in proliferating cells only, by sequestering a cytosolic Hippo kinase complex in which LATS kinase is inhibited. At the plasma membranes of growth-arrested cells, AJUBA LIM proteins do not inhibit or associate with the Hippo kinase complex. The ability of AJUBA LIM proteins to inhibit YAP regulation by Hippo and to associate with the kinase complex directly correlate with their capacity to limit Hippo signaling during Drosophila wing development. AJUBA LIM proteins did not influence YAP activity in response to cell-extrinsic or cell-intrinsic mechanical signals. Thus, AJUBA LIM proteins limit Hippo pathway activity in contexts where cell proliferation is needed.
Collapse
|
26
|
Huang D, Li X, Sun L, Huang P, Ying H, Wang H, Wu J, Song H. Regulation of Hippo signalling by p38 signalling. J Mol Cell Biol 2016; 8:328-37. [PMID: 27402810 PMCID: PMC4991669 DOI: 10.1093/jmcb/mjw036] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Accepted: 05/05/2016] [Indexed: 11/17/2022] Open
Abstract
The Hippo signalling pathway has a crucial role in growth control during development, and its dysregulation contributes to tumorigenesis. Recent studies uncover multiple upstream regulatory inputs into Hippo signalling, which affects phosphorylation of the transcriptional coactivator Yki/YAP/TAZ by Wts/Lats. Here we identify the p38 mitogen-activated protein kinase (MAPK) pathway as a new upstream branch of the Hippo pathway. In Drosophila, overexpression of MAPKK gene licorne (lic), or MAPKKK gene Mekk1, promotes Yki activity and induces Hippo target gene expression. Loss-of-function studies show that lic regulates Hippo signalling in ovary follicle cells and in the wing disc. Epistasis analysis indicates that Mekk1 and lic affect Hippo signalling via p38b and wts. We further demonstrate that the Mekk1-Lic-p38b cascade inhibits Hippo signalling by promoting F-actin accumulation and Jub phosphorylation. In addition, p38 signalling modulates actin filaments and Hippo signalling in parallel to small GTPases Ras, Rac1, and Rho1. Lastly, we show that p38 signalling regulates Hippo signalling in mammalian cell lines. The Lic homologue MKK3 promotes nuclear localization of YAP via the actin cytoskeleton. Upregulation or downregulation of the p38 pathway regulates YAP-mediated transcription. Our work thus reveals a conserved crosstalk between the p38 MAPK pathway and the Hippo pathway in growth regulation.
Collapse
Affiliation(s)
- Dashun Huang
- Hefei National Laboratory for Physical Sciences at Microscale and School of Life Sciences, University of Science & Technology of China, 96 Jin Zhai Road, Hefei 230031, China Key Laboratory of Food Safety Research, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yue Yang Road, Shanghai 200031, China Key Laboratory of Food Safety Risk Assessment, Ministry of Health, 37 Guang Qu Road, Beijing 100021, China
| | - Xiaojiao Li
- Key Laboratory of Food Safety Research, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yue Yang Road, Shanghai 200031, China Key Laboratory of Food Safety Risk Assessment, Ministry of Health, 37 Guang Qu Road, Beijing 100021, China
| | - Li Sun
- Key Laboratory of Food Safety Research, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yue Yang Road, Shanghai 200031, China Key Laboratory of Food Safety Risk Assessment, Ministry of Health, 37 Guang Qu Road, Beijing 100021, China
| | - Ping Huang
- Key Laboratory of Food Safety Research, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yue Yang Road, Shanghai 200031, China Key Laboratory of Food Safety Risk Assessment, Ministry of Health, 37 Guang Qu Road, Beijing 100021, China
| | - Hao Ying
- Key Laboratory of Food Safety Research, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yue Yang Road, Shanghai 200031, China Key Laboratory of Food Safety Risk Assessment, Ministry of Health, 37 Guang Qu Road, Beijing 100021, China
| | - Hui Wang
- Key Laboratory of Food Safety Research, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yue Yang Road, Shanghai 200031, China Key Laboratory of Food Safety Risk Assessment, Ministry of Health, 37 Guang Qu Road, Beijing 100021, China
| | - Jiarui Wu
- Hefei National Laboratory for Physical Sciences at Microscale and School of Life Sciences, University of Science & Technology of China, 96 Jin Zhai Road, Hefei 230031, China
| | - Haiyun Song
- Key Laboratory of Food Safety Research, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yue Yang Road, Shanghai 200031, China Key Laboratory of Food Safety Risk Assessment, Ministry of Health, 37 Guang Qu Road, Beijing 100021, China
| |
Collapse
|
27
|
Sun S, Irvine KD. Cellular Organization and Cytoskeletal Regulation of the Hippo Signaling Network. Trends Cell Biol 2016; 26:694-704. [PMID: 27268910 DOI: 10.1016/j.tcb.2016.05.003] [Citation(s) in RCA: 98] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Revised: 04/29/2016] [Accepted: 05/10/2016] [Indexed: 01/12/2023]
Abstract
The Hippo signaling network integrates diverse upstream signals to control cell fate decisions and regulate organ growth. Recent studies have provided new insights into the cellular organization of Hippo signaling, its relationship to cell-cell junctions, and how the cytoskeleton modulates Hippo signaling. Cell-cell junctions serve as platforms for Hippo signaling by localizing scaffolding proteins that interact with core components of the pathway. Interactions of Hippo pathway components with cell-cell junctions and the cytoskeleton also suggest potential mechanisms for the regulation of the pathway by cell contact and cell polarity. As our understanding of the complexity of Hippo signaling increases, a future challenge will be to understand how the diverse inputs into the pathway are integrated and to define their respective contributions in vivo.
Collapse
Affiliation(s)
- Shuguo Sun
- Howard Hughes Medical Institute, Waksman Institute, and Department of Molecular Biology and Biochemistry, Rutgers University, Piscataway, NJ 08854, USA
| | - Kenneth D Irvine
- Howard Hughes Medical Institute, Waksman Institute, and Department of Molecular Biology and Biochemistry, Rutgers University, Piscataway, NJ 08854, USA.
| |
Collapse
|
28
|
Saavedra P, Brittle A, Palacios IM, Strutt D, Casal J, Lawrence PA. Planar cell polarity: the Dachsous/Fat system contributes differently to the embryonic and larval stages of Drosophila. Biol Open 2016; 5:397-408. [PMID: 26935392 PMCID: PMC4890672 DOI: 10.1242/bio.017152] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Accepted: 02/01/2016] [Indexed: 11/20/2022] Open
Abstract
The epidermal patterns of all three larval instars (L1-L3) ofDrosophilaare made by one unchanging set of cells. The seven rows of cuticular denticles of all larval stages are consistently planar polarised, some pointing forwards, others backwards. In L1 all the predenticles originate at the back of the cells but, in L2 and L3, they form at the front or the back of the cell depending on the polarity of the forthcoming denticles. We find that, to polarise all rows, the Dachsous/Fat system is differentially utilised; in L1 it is active in the placement of the actin-based predenticles but is not crucial for the final orientation of the cuticular denticles, in L2 and L3 it is needed for placement and polarity. We find Four-jointed to be strongly expressed in the tendon cells and show how this might explain the orientation of all seven rows. Unexpectedly, we find that L3 that lack Dachsous differ from larvae lacking Fat and we present evidence that this is due to differently mislocalised Dachs. We make some progress in understanding how Dachs contributes to phenotypes of wildtype and mutant larvae and adults.
Collapse
Affiliation(s)
- Pedro Saavedra
- Department of Zoology, University of Cambridge, Downing Street, Cambridge CB2 2EJ, UK
| | - Amy Brittle
- Department of Biomedical Science, The University of Sheffield, Sheffield S10 2TN, UK
| | - Isabel M Palacios
- Department of Zoology, University of Cambridge, Downing Street, Cambridge CB2 2EJ, UK
| | - David Strutt
- Department of Biomedical Science, The University of Sheffield, Sheffield S10 2TN, UK
| | - José Casal
- Department of Zoology, University of Cambridge, Downing Street, Cambridge CB2 2EJ, UK
| | - Peter A Lawrence
- Department of Zoology, University of Cambridge, Downing Street, Cambridge CB2 2EJ, UK
| |
Collapse
|
29
|
Twinstar/cofilin is required for regulation of epithelial integrity and tissue growth in Drosophila. Oncogene 2016; 35:5144-54. [DOI: 10.1038/onc.2016.46] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Revised: 01/12/2016] [Accepted: 02/08/2016] [Indexed: 12/14/2022]
|
30
|
Wang L, Lyu S, Wang S, Shen H, Niu F, Liu X, Liu J, Niu Y. Loss of FAT1 during the progression from DCIS to IDC and predict poor clinical outcome in breast cancer. Exp Mol Pathol 2016; 100:177-83. [DOI: 10.1016/j.yexmp.2015.12.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Revised: 12/20/2015] [Accepted: 12/20/2015] [Indexed: 12/21/2022]
|
31
|
Das S. Morphological, Molecular, and Hormonal Basis of Limb Regeneration across Pancrustacea: Table 1. Integr Comp Biol 2015; 55:869-77. [DOI: 10.1093/icb/icv101] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
|
32
|
Gotoh H, Hust JA, Miura T, Niimi T, Emlen DJ, Lavine LC. The Fat/Hippo signaling pathway links within-disc morphogen patterning to whole-animal signals during phenotypically plastic growth in insects. Dev Dyn 2015; 244:1039-1045. [DOI: 10.1002/dvdy.24296] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Revised: 05/13/2015] [Accepted: 05/15/2015] [Indexed: 12/11/2022] Open
Affiliation(s)
- Hiroki Gotoh
- Graduate School of Bioagricultural Sciences, Nagoya University; Chikusa Nagoya Japan
| | - James A. Hust
- Department of Entomology; Washington State University; Pullman Washington
| | - Toru Miura
- Graduate School of Environmental Science, Hokkaido University; Sapporo Hokkaido Japan
| | - Teruyuki Niimi
- Graduate School of Bioagricultural Sciences, Nagoya University; Chikusa Nagoya Japan
| | - Douglas J. Emlen
- Division of Biological Sciences; University of Montana-Missoula; Montana
| | - Laura C. Lavine
- Department of Entomology; Washington State University; Pullman Washington
| |
Collapse
|
33
|
Mao Y, Francis-West P, Irvine KD. Fat4/Dchs1 signaling between stromal and cap mesenchyme cells influences nephrogenesis and ureteric bud branching. Development 2015; 142:2574-85. [PMID: 26116666 DOI: 10.1242/dev.122630] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Accepted: 06/18/2015] [Indexed: 12/25/2022]
Abstract
Formation of the kidney requires reciprocal signaling among the ureteric tubules, cap mesenchyme and surrounding stromal mesenchyme to orchestrate complex morphogenetic events. The protocadherin Fat4 influences signaling from stromal to cap mesenchyme cells to regulate their differentiation into nephrons. Here, we characterize the role of a putative binding partner of Fat4, the protocadherin Dchs1. Mutation of Dchs1 in mice leads to increased numbers of cap mesenchyme cells, which are abnormally arranged around the ureteric bud tips, and impairment of nephron morphogenesis. Mutation of Dchs1 also reduces branching of the ureteric bud and impairs differentiation of ureteric bud tip cells into trunk cells. Genetically, Dchs1 is required specifically within cap mesenchyme cells. The similarity of Dchs1 phenotypes to stromal-less kidneys and to those of Fat4 mutants implicates Dchs1 in Fat4-dependent stroma-to-cap mesenchyme signaling. Antibody staining of genetic mosaics reveals that Dchs1 protein localization is polarized within cap mesenchyme cells, where it accumulates at the interface with stromal cells, implying that it interacts directly with a stromal protein. Our observations identify a role for Fat4 and Dchs1 in signaling between cell layers, implicate Dchs1 as a Fat4 receptor for stromal signaling that is essential for kidney development, and establish that vertebrate Dchs1 can be molecularly polarized in vivo.
Collapse
Affiliation(s)
- Yaopan Mao
- Howard Hughes Medical Institute, Waksman Institute and Department of Molecular Biology and Biochemistry, Rutgers University, Piscataway, NJ 08854, USA
| | - Philippa Francis-West
- Department of Craniofacial Development and Stem Cell Biology, King's College London, Floor 27, Guy's Tower, London SE1 9RT, UK
| | - Kenneth D Irvine
- Howard Hughes Medical Institute, Waksman Institute and Department of Molecular Biology and Biochemistry, Rutgers University, Piscataway, NJ 08854, USA
| |
Collapse
|
34
|
He L, Xu W, Jing Y, Wu M, Song S, Cao Y, Mei C. Yes-associated protein (Yap) is necessary for ciliogenesis and morphogenesis during pronephros development in zebrafish (Danio Rerio). Int J Biol Sci 2015; 11:935-47. [PMID: 26157348 PMCID: PMC4495411 DOI: 10.7150/ijbs.11346] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2014] [Accepted: 04/23/2015] [Indexed: 12/31/2022] Open
Abstract
The Hippo signaling pathway and its transcriptional co-activator Yap are known as essential regulators for cell proliferation and organ size. However, little is known about their roles in kidney development and ciliogenesis. We examined expression of Yap during zebrafish embryogenesis, and its transcripts were detected in pronephric duct, while Yap protein was found to be localized in the cytoplasm and apical membrane in kidney epithelium cells. By morpholino (MO) knockdown of yap expression in zebrafish, the injected larve exhibits pronephic cysts and many aspects of ciliopathy, which can be rescued by full-length yap mRNA, but not yapS127A mRNA. With transgenic Tg(Na+/K+ ATPase:EGFP), we found that lacking Yap led to expansion and discontinuities of pronephric duct, as well as disorganization of cloaca during pronephros morphogenesis. Mis-located Na+/K+ ATPase and ciliary abnormalities are also detected in pronephric duct of yap morphants. In addition, genetic analysis suggests that yap interacts with ift20, ift88 and arl13b in pronephric cyst formation. Taken together, our data reveals that Yap is required for pronephric duct integrity, maintenance of baso-lateral cell polarity, and ciliogenesis during zebrafish kidney development.
Collapse
Affiliation(s)
- Liangliang He
- 1. Kidney Institute of CPLA, Division of Nephrology, Changzheng Hospital, Second Military Medical University, NO.415 Fengyang Road, Shanghai 200003, China
| | - Wenyan Xu
- 2. School of life science and technology, Tongji University ,1239 Siping Road, Shanghai 200092, China
| | - Ying Jing
- 1. Kidney Institute of CPLA, Division of Nephrology, Changzheng Hospital, Second Military Medical University, NO.415 Fengyang Road, Shanghai 200003, China
| | - Ming Wu
- 1. Kidney Institute of CPLA, Division of Nephrology, Changzheng Hospital, Second Military Medical University, NO.415 Fengyang Road, Shanghai 200003, China
| | - Shuwei Song
- 1. Kidney Institute of CPLA, Division of Nephrology, Changzheng Hospital, Second Military Medical University, NO.415 Fengyang Road, Shanghai 200003, China
| | - Ying Cao
- 2. School of life science and technology, Tongji University ,1239 Siping Road, Shanghai 200092, China
| | - Changlin Mei
- 1. Kidney Institute of CPLA, Division of Nephrology, Changzheng Hospital, Second Military Medical University, NO.415 Fengyang Road, Shanghai 200003, China
| |
Collapse
|
35
|
Karystinou A, Roelofs AJ, Neve A, Cantatore FP, Wackerhage H, De Bari C. Yes-associated protein (YAP) is a negative regulator of chondrogenesis in mesenchymal stem cells. Arthritis Res Ther 2015; 17:147. [PMID: 26025096 PMCID: PMC4449558 DOI: 10.1186/s13075-015-0639-9] [Citation(s) in RCA: 101] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2014] [Accepted: 04/24/2015] [Indexed: 11/10/2022] Open
Abstract
Introduction The control of differentiation of mesenchymal stromal/stem cells (MSCs) is crucial for tissue engineering strategies employing MSCs. The purpose of this study was to investigate whether the transcriptional co-factor Yes-associated protein (YAP) regulates chondrogenic differentiation of MSCs. Methods Expression of total YAP, its paralogue transcriptional co-activator with PDZ-binding motif (TAZ), and individual YAP transcript variants during in vitro chondrogenesis of human MSCs was determined by quantitative reverse transcription polymerase chain reaction (RT-PCR). YAP expression was confirmed by western blotting. To determine the effect of high YAP activity on chondrogenesis, C3H10T1/2 MSC-like cells were transduced with human (h)YAP and treated in micromass with bone morphogenetic protein-2 (BMP-2). Chondrogenic differentiation was assessed by alcian blue staining and expression of chondrocyte-lineage genes. BMP signalling was determined by detection of pSmad1,5,8 by western blotting and expression of BMP target genes by quantitative RT-PCR. Finally, YAP and pYAP were detected in mouse embryo hindlimbs by immunohistochemistry. Results YAP, but not TAZ, was downregulated during in vitro chondrogenesis of human MSCs. One of the YAP transcript variants, however, was upregulated in high-density micromass culture. Overexpression of hYAP in murine C3H10T1/2 MSCs inhibited chondrogenic differentiation. High YAP activity in these cells decreased Smad1,5,8 phosphorylation and expression of the BMP target genes Inhibitor of DNA binding/differentiation (Id)1, Id2 and Id3 in response to BMP-2. In developing mouse limbs, Yap was nuclear in the perichondrium while mostly phosphorylated and cytosolic in cells of the cartilage anlage, suggesting downregulation of Yap co-transcriptional activity during physiological chondrogenesis in vivo. Conclusions Our findings indicate that YAP is a negative regulator of chondrogenic differentiation of MSCs. Downregulation of YAP is required for chondrogenesis through derepression of chondrogenic signalling. Therapeutic targeting of YAP to promote cartilage repair and prevent secondary osteoarthritis is an exciting prospect in rheumatology. Electronic supplementary material The online version of this article (doi:10.1186/s13075-015-0639-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Alexandra Karystinou
- Musculoskeletal Research Programme, Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen, AB25 2ZD, UK.
| | - Anke J Roelofs
- Musculoskeletal Research Programme, Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen, AB25 2ZD, UK.
| | - Anna Neve
- Musculoskeletal Research Programme, Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen, AB25 2ZD, UK. .,Rheumatology Clinic, Department of Medical and Surgical Sciences, University of Foggia, Via Napoli 25, 71122, Foggia, Italy.
| | - Francesco P Cantatore
- Rheumatology Clinic, Department of Medical and Surgical Sciences, University of Foggia, Via Napoli 25, 71122, Foggia, Italy.
| | - Henning Wackerhage
- Musculoskeletal Research Programme, Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen, AB25 2ZD, UK.
| | - Cosimo De Bari
- Musculoskeletal Research Programme, Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen, AB25 2ZD, UK.
| |
Collapse
|
36
|
Gokhale RH, Shingleton AW. Size control: the developmental physiology of body and organ size regulation. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2015; 4:335-56. [PMID: 25808999 DOI: 10.1002/wdev.181] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Revised: 01/08/2015] [Accepted: 01/29/2015] [Indexed: 01/04/2023]
Abstract
The developmental regulation of final body and organ size is fundamental to generating a functional and correctly proportioned adult. Research over the last two decades has identified a long list of genes and signaling pathways that, when perturbed, influence final body size. However, body and organ size are ultimately a characteristic of the whole organism, and how these myriad genes and pathways function within a physiological context to control size remains largely unknown. In this review, we first describe the major size-regulatory signaling pathways: the Insulin/IGF-, RAS/RAF/MAPK-, TOR-, Hippo-, and JNK-signaling pathways. We then explore what is known of how these pathways regulate five major aspects of size regulation: growth rate, growth duration, target size, negative growth and growth coordination. While this review is by no means exhaustive, our goal is to provide a conceptual framework for integrating the mechanisms of size control at a molecular-genetic level with the mechanisms of size control at a physiological level.
Collapse
Affiliation(s)
- Rewatee H Gokhale
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, USA
| | - Alexander W Shingleton
- Department of Biology, Lake Forest College, Lake Forest, IL, USA.,Department of Zoology, Michigan State University, East Lansing, MI, USA
| |
Collapse
|
37
|
|
38
|
Bae SJ, Kim M, Kim SH, Kwon YE, Lee JH, Kim J, Chung CH, Lee WJ, Seol JH. NEDD4 controls intestinal stem cell homeostasis by regulating the Hippo signalling pathway. Nat Commun 2015; 6:6314. [PMID: 25692647 DOI: 10.1038/ncomms7314] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Accepted: 01/16/2015] [Indexed: 01/06/2023] Open
Abstract
The Hippo pathway plays crucial roles in regulating organ size and stem cell homeostasis. Although the signalling cascade of the core Hippo kinases is relatively well understood, little is known about the mechanisms that modulate the activity of the Hippo pathway. Here, we report identification of NEDD4, a HECT-type E3 ubiquitin ligase, as a regulatory component of the Hippo pathway. We demonstrate that NEDD4 ubiquitylates and destabilizes WW45 and LATS kinase, both of which are required for active Hippo signalling. Interestingly, MST1 protects WW45, but not LATS2, against NEDD4. We also provide evidence indicating that NEDD4 inactivation at high cell density is a prerequisite for the elevated Hippo activity linked to contact inhibition. Moreover, NEDD4 promotes intestinal stem cell renewal in Drosophila by suppressing Hippo signalling. Collectively, we present a regulatory mechanism by which NEDD4 controls the Hippo pathway leading to coordinated cell proliferation and apoptosis.
Collapse
Affiliation(s)
- Sung Jun Bae
- School of Biological Sciences, Seoul National University, Seoul 151-742, Korea
| | - Myungjin Kim
- School of Biological Sciences, Seoul National University, Seoul 151-742, Korea
| | - Sung-Hee Kim
- School of Biological Sciences, Seoul National University, Seoul 151-742, Korea
| | - Young Eun Kwon
- School of Biological Sciences, Seoul National University, Seoul 151-742, Korea
| | - Ji-Hoon Lee
- School of Biological Sciences, Seoul National University, Seoul 151-742, Korea
| | - Jaesang Kim
- Department of Life Sciences, Ewha Womans University, Seoul 120-750, Korea
| | - Chin Ha Chung
- School of Biological Sciences, Seoul National University, Seoul 151-742, Korea
| | - Won-Jae Lee
- School of Biological Sciences, Seoul National University, Seoul 151-742, Korea
| | - Jae Hong Seol
- School of Biological Sciences, Seoul National University, Seoul 151-742, Korea
| |
Collapse
|
39
|
Ito T, Taniguchi H, Fukagai K, Okamuro S, Kobayashi A. Inhibitory mechanism of FAT4 gene expression in response to actin dynamics during Src-induced carcinogenesis. PLoS One 2015; 10:e0118336. [PMID: 25679223 PMCID: PMC4334522 DOI: 10.1371/journal.pone.0118336] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2014] [Accepted: 01/13/2015] [Indexed: 01/13/2023] Open
Abstract
Oncogenic transformation is characterized by morphological changes resulting from alterations in actin dynamics and adhesive activities. Emerging evidence suggests that the protocadherin FAT4 acts as a tumor suppressor in humans, and reduced FAT4 gene expression has been reported in breast and lung cancers and melanoma. However, the mechanism controlling FAT4 gene expression is poorly understood. In this study, we show that transient activation of the Src oncoprotein represses FAT4 mRNA expression through actin depolymerization in the immortalized normal human mammary epithelial cell line MCF-10A. Src activation causes actin depolymerization via the MEK/Erk/Cofilin cascade. The MEK inhibitor U0126 blocks the inhibitory effect of Src on FAT4 mRNA expression and Src-induced actin depolymerization. To determine whether actin dynamics act on the regulation of FAT4 mRNA expression, we treated MCF-10A cells with the ROCK inhibitor Y-27632. Y-27632 treatment decreased FAT4 mRNA expression. This suppressive effect was blocked by siRNA-mediated knockdown of Cofilin1. Furthermore, simultaneous administration of Latrunculin A (an actin depolymerizing agent), Y-27632, and Cofilin1 siRNA to the cells resulted in a marked reduction of FAT4 mRNA expression. Intriguingly, we also found that FAT4 mRNA expression was reduced under both low cell density and low stiffness conditions, which suggests that mechanotransduction affects FAT4 mRNA expression. Additionally, we show that siRNA-mediated FAT4 knockdown induced the activity of the Hippo effector YAP/TAZ in MCF-10A cells. Taken together, our results reveal a novel inhibitory mechanism of FAT4 gene expression through actin depolymerization during Src-induced carcinogenesis in human breast cells.
Collapse
Affiliation(s)
- Takao Ito
- Laboratory for Genetic Code, Graduate School of Life and Medical Sciences, Doshisha University, Kyotanabe, Kyoto, Japan
| | - Hiroaki Taniguchi
- Laboratory for Genetic Code, Graduate School of Life and Medical Sciences, Doshisha University, Kyotanabe, Kyoto, Japan
| | - Kousuke Fukagai
- Laboratory for Genetic Code, Graduate School of Life and Medical Sciences, Doshisha University, Kyotanabe, Kyoto, Japan
| | - Shota Okamuro
- Laboratory for Genetic Code, Graduate School of Life and Medical Sciences, Doshisha University, Kyotanabe, Kyoto, Japan
| | - Akira Kobayashi
- Laboratory for Genetic Code, Graduate School of Life and Medical Sciences, Doshisha University, Kyotanabe, Kyoto, Japan
- * E-mail:
| |
Collapse
|
40
|
Fernández-Martínez P, Zahonero C, Sánchez-Gómez P. DYRK1A: the double-edged kinase as a protagonist in cell growth and tumorigenesis. Mol Cell Oncol 2015; 2:e970048. [PMID: 27308401 PMCID: PMC4905233 DOI: 10.4161/23723548.2014.970048] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Revised: 09/03/2014] [Accepted: 09/03/2014] [Indexed: 01/12/2023]
Abstract
DYRK1A (dual-specificity tyrosine-regulated kinase 1A) is a kinase with multiple implications for embryonic development, especially in the nervous system where it regulates the balance between proliferation and differentiation of neural progenitors. The DYRK1A gene is located in the Down syndrome critical region and may play a significant role in the developmental brain defects, early neurodegeneration, and cancer susceptibility of individuals with this syndrome. DYRK1A is also expressed in adults, where it might participate in the regulation of cell cycle, survival, and tumorigenesis, thus representing a potential therapeutic target for certain types of cancer. However, the final readout of DYRK1A overexpression or inhibition depends strongly on the cellular context, as it has both tumor suppressor and oncogenic activities. Here, we will discuss the functions and substrates of DYRK1A associated with the control of cell growth and tumorigenesis with a focus on the potential use of DYRK1A inhibitors in cancer therapy.
Collapse
Affiliation(s)
- P Fernández-Martínez
- Instituto de Medicina Molecular Aplicada; Universidad CEU-San Pablo ; Madrid, Spain
| | - C Zahonero
- Neuro-oncology Unit; Instituto de Salud Carlos III-UFIEC ; Madrid, Spain
| | - P Sánchez-Gómez
- Neuro-oncology Unit; Instituto de Salud Carlos III-UFIEC ; Madrid, Spain
| |
Collapse
|
41
|
Dineen A, Gaudet J. TGF-β signaling can act from multiple tissues to regulate C. elegans body size. BMC DEVELOPMENTAL BIOLOGY 2014; 14:43. [PMID: 25480452 PMCID: PMC4278669 DOI: 10.1186/s12861-014-0043-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2014] [Accepted: 11/25/2014] [Indexed: 11/23/2022]
Abstract
Background Regulation of organ and body size is a fundamental biological phenomenon, requiring tight coordination between multiple tissues to ensure accurate proportional growth. In C. elegans, a TGF-β pathway is the major regulator of body size and also plays a role in the development of the male tail, and is thus referred to as the TGF-β/Sma/Mab (for small and male abnormal) pathway. Mutations in components of this pathway result in decreased growth of animals during larval stages, with Sma mutant adults of the core pathway as small as ~60-70% the length of normal animals. The currently accepted model suggests that TGF-β/Sma/Mab pathway signaling in the C. elegans hypodermis is both necessary and sufficient to control body length. However, components of this signaling pathway are expressed in other organs, such as the intestine and pharynx, raising the question of what the function of the pathway is in these organs. Results Here we show that TGF-β/Sma/Mab signaling is required for the normal growth of the pharynx. We further extend the current model and show that the TGF-β/Sma/Mab pathway can function in multiple tissues to regulate body and organ length. Specifically, we find that pharyngeal expression of the SMAD protein SMA-3 partially rescues both pharynx length and body length of sma-3 mutants. Conclusions Overall, our results support a model in which the TGF-β/Sma/Mab signaling pathway can act in multiple tissues, activating one or more downstream secreted signals that act non cell-autonomously to regulate overall body length in C. elegans. Electronic supplementary material The online version of this article (doi:10.1186/s12861-014-0043-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Aidan Dineen
- Department of Biochemistry and Molecular Biology, Alberta Children's Hospital Research Institute, University of Calgary, Calgary, T2N 4 N1, Alberta, Canada.
| | - Jeb Gaudet
- Department of Biochemistry and Molecular Biology, Alberta Children's Hospital Research Institute, University of Calgary, Calgary, T2N 4 N1, Alberta, Canada.
| |
Collapse
|
42
|
The Hippo pathway as a target of the Drosophila DRE/DREF transcriptional regulatory pathway. Sci Rep 2014; 4:7196. [PMID: 25424907 PMCID: PMC4244634 DOI: 10.1038/srep07196] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Accepted: 11/04/2014] [Indexed: 01/08/2023] Open
Abstract
The DRE/DREF transcriptional regulatory system has been demonstrated to activate a wide variety of genes with various functions. In Drosophila, the Hippo pathway is known to suppress cell proliferation by inducing apoptosis and cell cycle arrest through inactivation of Yorkie, a transcription co-activator. In the present study, we found that half dose reduction of the hippo (hpo) gene induces ectopic DNA synthesis in eye discs that is suppressed by overexpression of DREF. Half reduction of the hpo gene dose reduced apoptosis in DREF-overexpressing flies. Consistent with these observations, overexpression of DREF increased the levels of hpo and phosphorylated Yorkie in eye discs. Interestingly, the diap1-lacZ reporter was seen to be significantly decreased by overexpression of DREF. Luciferase reporter assays in cultured S2 cells revealed that one of two DREs identified in the hpo gene promoter region was responsible for promoter activity in S2 cells. Furthermore, endogenous hpo mRNA was reduced in DREF knockdown S2 cells, and chromatin immnunoprecipitation assays with anti-DREF antibodies proved that DREF binds specifically to the hpo gene promoter region containing DREs in vivo. Together, these results indicate that the DRE/DREF pathway is required for transcriptional activation of the hpo gene to positively control Hippo pathways.
Collapse
|
43
|
Rodrigues-Campos M, Thompson BJ. The ubiquitin ligase FbxL7 regulates the Dachsous-Fat-Dachs system in Drosophila. Development 2014; 141:4098-103. [PMID: 25256343 PMCID: PMC4302899 DOI: 10.1242/dev.113498] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2014] [Accepted: 08/22/2014] [Indexed: 11/20/2022]
Abstract
The atypical cadherins Dachsous (Ds) and Fat (Ft) are required to control the size and shape of tissues and organs in animals. In Drosophila, a key effector of Ds and Ft is the atypical myosin Dachs, which becomes planar polarised along the proximal-distal axis in developing epithelia to regulate tissue size via the Hippo pathway and tissue shape via modulating tension at junctions. How Ds and Ft control Dachs polarisation remains unclear. Here, we identify a ubiquitin ligase, FbxL7, as a novel component of the Ds-Ft-Dachs system that is required to control the level and localisation of Dachs. Loss of FbxL7 results in accumulation of Dachs, similar to loss of Ft. Overexpression of FbxL7 causes downregulation of Dachs, similar to overexpression of the Ft intracellular domain. In addition to regulating Dachs, FbxL7 also influences Ds in a similar manner. GFP-tagged FbxL7 localises to the plasma membrane in a Ft-dependent manner and is planar polarised. We propose that Ft recruits FbxL7 to the proximal side of the cell to help restrict Ds and Dachs to the distal side of the cell.
Collapse
Affiliation(s)
- Mariana Rodrigues-Campos
- Cancer Research UK - London Research Institute, Lincoln's Inn Fields, London WC2A 3LY, UK GABBA, ICBAS, Universidade do Porto, 4050-313 Porto, Portugal
| | - Barry J Thompson
- Cancer Research UK - London Research Institute, Lincoln's Inn Fields, London WC2A 3LY, UK
| |
Collapse
|
44
|
Brás-Pereira C, Zhang T, Pignoni F, Janody F. Homeostasis of theDrosophilaadult retina by Actin-Capping Protein and the Hippo pathway. Commun Integr Biol 2014. [DOI: 10.4161/cib.16853] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
45
|
Lush ME, Piotrowski T. Sensory hair cell regeneration in the zebrafish lateral line. Dev Dyn 2014; 243:1187-202. [PMID: 25045019 DOI: 10.1002/dvdy.24167] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2014] [Revised: 07/12/2014] [Accepted: 07/14/2014] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Damage or destruction of sensory hair cells in the inner ear leads to hearing or balance deficits that can be debilitating, especially in older adults. Unfortunately, the damage is permanent, as regeneration of the inner ear sensory epithelia does not occur in mammals. RESULTS Zebrafish and other non-mammalian vertebrates have the remarkable ability to regenerate sensory hair cells and understanding the molecular and cellular basis for this regenerative ability will hopefully aid us in designing therapies to induce regeneration in mammals. Zebrafish not only possess hair cells in the ear but also in the sensory lateral line system. Hair cells in both organs are functionally analogous to hair cells in the inner ear of mammals. The lateral line is a mechanosensory system found in most aquatic vertebrates that detects water motion and aids in predator avoidance, prey capture, schooling, and mating. Although hair cell regeneration occurs in both the ear and lateral line, most research to date has focused on the lateral line due to its relatively simple structure and accessibility. CONCLUSIONS Here we review the recent discoveries made during the characterization of hair cell regeneration in zebrafish.
Collapse
Affiliation(s)
- Mark E Lush
- Stowers Institute for Medical Research, Kansas City, Missouri
| | | |
Collapse
|
46
|
Gold KS, Brand AH. Optix defines a neuroepithelial compartment in the optic lobe of the Drosophila brain. Neural Dev 2014; 9:18. [PMID: 25074684 PMCID: PMC4127074 DOI: 10.1186/1749-8104-9-18] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2014] [Accepted: 06/25/2014] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND During early brain development, the organisation of neural progenitors into a neuroepithelial sheet maintains tissue integrity during growth. Neuroepithelial cohesion and patterning is essential for orderly proliferation and neural fate specification. Neuroepithelia are regionalised by the expression of transcription factors and signalling molecules, resulting in the formation of distinct developmental, and ultimately functional, domains. RESULTS We have discovered that the Six3/6 family orthologue Optix is an essential regulator of neuroepithelial maintenance and patterning in the Drosophila brain. Six3 and Six6 are required for mammalian eye and forebrain development, and mutations in humans are associated with severe eye and brain malformation. In Drosophila, Optix is expressed in a sharply defined region of the larval optic lobe, and its expression is reciprocal to that of the transcription factor Vsx1. Optix gain- and loss-of-function affects neuroepithelial adhesion, integrity and polarity. We find restricted cell lineage boundaries that correspond to transcription factor expression domains. CONCLUSION We propose that the optic lobe is compartmentalised by expression of Optix and Vsx1. Our findings provide insight into the spatial patterning of a complex region of the brain, and suggest an evolutionarily conserved principle of visual system development.
Collapse
Affiliation(s)
| | - Andrea H Brand
- The Gurdon Institute and Department of Physiology, Development & Neuroscience, University of Cambridge, Tennis Court Road, Cambridge CB2 1QN, UK.
| |
Collapse
|
47
|
Oh H, Slattery M, Ma L, White KP, Mann RS, Irvine KD. Yorkie promotes transcription by recruiting a histone methyltransferase complex. Cell Rep 2014; 8:449-59. [PMID: 25017066 DOI: 10.1016/j.celrep.2014.06.017] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2013] [Revised: 04/28/2014] [Accepted: 06/11/2014] [Indexed: 12/19/2022] Open
Abstract
Hippo signaling limits organ growth by inhibiting the transcriptional coactivator Yorkie. Despite the key role of Yorkie in both normal and oncogenic growth, the mechanism by which it activates transcription has not been defined. We report that Yorkie binding to chromatin correlates with histone H3K4 methylation and is sufficient to locally increase it. We show that Yorkie can recruit a histone methyltransferase complex through binding between WW domains of Yorkie and PPxY sequence motifs of NcoA6, a subunit of the Trithorax-related (Trr) methyltransferase complex. Cell culture and in vivo assays establish that this recruitment of NcoA6 contributes to Yorkie's ability to activate transcription. Mammalian NcoA6, a subunit of Trr-homologous methyltransferase complexes, can similarly interact with Yorkie's mammalian homolog YAP. Our results implicate direct recruitment of a histone methyltransferase complex as central to transcriptional activation by Yorkie, linking the control of cell proliferation by Hippo signaling to chromatin modification.
Collapse
Affiliation(s)
- Hyangyee Oh
- Howard Hughes Medical Institute, Waksman Institute and Department of Molecular Biology and Biochemistry, Rutgers University, Piscataway, NJ 08854, USA
| | - Matthew Slattery
- Department of Biochemistry and Molecular Biophysics, Columbia University, 701 West 168th Street, HHSC 1104, New York, NY 10032, USA; Institute for Genomics and Systems Biology and Department of Human Genetics, University of Chicago, 900 East 57th Street, KCBD 10115, Chicago, IL 60637, USA
| | - Lijia Ma
- Institute for Genomics and Systems Biology and Department of Human Genetics, University of Chicago, 900 East 57th Street, KCBD 10115, Chicago, IL 60637, USA
| | - Kevin P White
- Institute for Genomics and Systems Biology and Department of Human Genetics, University of Chicago, 900 East 57th Street, KCBD 10115, Chicago, IL 60637, USA
| | - Richard S Mann
- Department of Biochemistry and Molecular Biophysics, Columbia University, 701 West 168th Street, HHSC 1104, New York, NY 10032, USA
| | - Kenneth D Irvine
- Howard Hughes Medical Institute, Waksman Institute and Department of Molecular Biology and Biochemistry, Rutgers University, Piscataway, NJ 08854, USA.
| |
Collapse
|
48
|
Yoshida H, Bando T, Mito T, Ohuchi H, Noji S. An extended steepness model for leg-size determination based on Dachsous/Fat trans-dimer system. Sci Rep 2014; 4:4335. [PMID: 24613915 PMCID: PMC3949298 DOI: 10.1038/srep04335] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2013] [Accepted: 02/18/2014] [Indexed: 11/21/2022] Open
Abstract
What determines organ size has been a long-standing biological question. Lawrence et al. (2008) proposed the steepness hypothesis suggesting that the protocadherin Dachsous/Fat (Ds/Ft) system may provide some measure of dimension to the cells in relation to the gradient. In this paper we extended the model as a means of interpreting experimental results in cricket leg regeneration. We assumed that (1) Ds/Ft trans-heterodimers or trans-homodimers are redistributed during cell division, and (2) growth would cease when a differential of the dimer across each cell decreases to a certain threshold. We applied our model to simulate the results obtained by leg regeneration experiments in a cricket model. The results were qualitatively consistent with the experimental data obtained for cricket legs by RNA interference methodology. Using our extended steepness model, we provided a molecular-based explanation for leg size determination even in intercalary regeneration and for organ size determination.
Collapse
Affiliation(s)
- Hiroshi Yoshida
- Faculty of Mathematics, Kyushu University, Motooka 744, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Tetsuya Bando
- Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata-cho, Kita-ku, Okayama city, Okayama, 700-8530, Japan
| | - Taro Mito
- Department of Life Systems, Institute of Technology and Science, The University of Tokushima, Jyosanjima-cho, Tokushima City, 770-8506, Japan
| | - Hideyo Ohuchi
- Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata-cho, Kita-ku, Okayama city, Okayama, 700-8530, Japan
| | - Sumihare Noji
- Department of Life Systems, Institute of Technology and Science, The University of Tokushima, Jyosanjima-cho, Tokushima City, 770-8506, Japan
| |
Collapse
|
49
|
Abstract
In many animals, regenerative processes can replace lost body parts. Organ and tissue regeneration consequently also hold great medical promise. The regulation of regenerative processes is achieved through concerted actions of multiple organizational levels of the organism, from diffusing molecules and cellular gene expression patterns up to tissue mechanics. Our intuition is usually not adapted well to this degree of complexity and the quantitative aspects of the regulation of regenerative processes remain poorly understood. One way out of this dilemma lies in the combination of experimentation and mathematical modeling within an iterative process of model development/refinement, model predictions for novel experimental conditions, quantitative experiments testing these predictions, and subsequent model refinement. This interdisciplinary approach has already provided key insights into smaller scale processes during embryonic development and a so-far limited number of more complex regeneration processes. This review discusses selected theoretical and interdisciplinary studies and is structured along the three phases of regeneration: (1) initiation of a regeneration response, (2) tissue patterning during regenerate growth, (3) arresting the regeneration response. Moreover, we highlight the opportunities provided by extensions of mathematical models from developmental processes toward the study of related regenerative processes.
Collapse
Affiliation(s)
- Osvaldo Chara
- Center for Information Services and High Performance Computing (ZIH), Technische Universität Dresden, Dresden, Germany
| | - Elly M Tanaka
- Center for Regenerative Therapies Dresden (CRTD), Dresden, Germany
| | - Lutz Brusch
- Center for Information Services and High Performance Computing (ZIH), Technische Universität Dresden, Dresden, Germany.
| |
Collapse
|
50
|
Abstract
Regeneration is a process by which organisms replace damaged or amputated organs to restore normal body parts. Regeneration of many tissues or organs requires proliferation of stem cells or stem cell-like blastema cells. This regenerative growth is often initiated by cell death pathways induced by damage. The executors of regenerative growth are a group of growth-promoting signaling pathways, including JAK/STAT, EGFR, Hippo/YAP, and Wnt/β-catenin. These pathways are also essential to developmental growth, but in regeneration, they are activated in distinct ways and often at higher strengths, under the regulation by certain stress-responsive signaling pathways, including JNK signaling. Growth suppressors are important in termination of regeneration to prevent unlimited growth and also contribute to the loss of regenerative capacity in nonregenerative organs. Here, we review cellular and molecular growth regulation mechanisms induced by organ damage in several models with different regenerative capacities.
Collapse
Affiliation(s)
- Gongping Sun
- Howard Hughes Medical Institute, Waksman Institute and Department of Molecular Biology and Biochemistry, Rutgers The State University of New Jersey, Piscataway, New Jersey, USA
| | - Kenneth D Irvine
- Howard Hughes Medical Institute, Waksman Institute and Department of Molecular Biology and Biochemistry, Rutgers The State University of New Jersey, Piscataway, New Jersey, USA.
| |
Collapse
|