1
|
Giri J, Modi D. Endometrial and placental stem cells in successful and pathological pregnancies. J Assist Reprod Genet 2023; 40:1509-1522. [PMID: 37338750 PMCID: PMC10352206 DOI: 10.1007/s10815-023-02856-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 06/03/2023] [Indexed: 06/21/2023] Open
Abstract
The endometrium is a dynamic tissue that undergoes extensive remodeling during the menstrual cycle and further gets modified during pregnancy. Different kinds of stem cells are reported in the endometrium. These include epithelial stem cells, endometrial mesenchymal stem cells, side population stem cells, and very small embryonic-like stem cells. Stem cells are also reported in the placenta which includes trophoblast stem cells, side population trophoblast stem cells, and placental mesenchymal stem cells. The endometrial and placental stem cells play a pivotal role in endometrial remodeling and placental vasculogenesis during pregnancy. The dysregulation of stem cell function is reported in various pregnancy complications like preeclampsia, fetal growth restriction, and preterm birth. However, the mechanisms by which it does so are yet elusive. Herein, we review the current knowledge of the different type of stem cells involved in pregnancy initiation and also highlight how their improper functionality leads to pathological pregnancy.
Collapse
Affiliation(s)
- Jayeeta Giri
- Molecular and Cellular Biology Laboratory, ICMR-National Institute for Research in Reproductive and child Health, Indian Council of Medical Research (ICMR), JM Street, Parel, Mumbai, 400012, India.
| | - Deepak Modi
- Molecular and Cellular Biology Laboratory, ICMR-National Institute for Research in Reproductive and child Health, Indian Council of Medical Research (ICMR), JM Street, Parel, Mumbai, 400012, India.
| |
Collapse
|
2
|
Mayshar Y, Raz O, Cheng S, Ben-Yair R, Hadas R, Reines N, Mittnenzweig M, Ben-Kiki O, Lifshitz A, Tanay A, Stelzer Y. Time-aligned hourglass gastrulation models in rabbit and mouse. Cell 2023; 186:2610-2627.e18. [PMID: 37209682 DOI: 10.1016/j.cell.2023.04.037] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 03/07/2023] [Accepted: 04/26/2023] [Indexed: 05/22/2023]
Abstract
The hourglass model describes the convergence of species within the same phylum to a similar body plan during development; however, the molecular mechanisms underlying this phenomenon in mammals remain poorly described. Here, we compare rabbit and mouse time-resolved differentiation trajectories to revisit this model at single-cell resolution. We modeled gastrulation dynamics using hundreds of embryos sampled between gestation days 6.0 and 8.5 and compared the species using a framework for time-resolved single-cell differentiation-flows analysis. We find convergence toward similar cell-state compositions at E7.5, supported by the quantitatively conserved expression of 76 transcription factors, despite divergence in surrounding trophoblast and hypoblast signaling. However, we observed noticeable changes in specification timing of some lineages and divergence of primordial germ cell programs, which in the rabbit do not activate mesoderm genes. Comparative analysis of temporal differentiation models provides a basis for studying the evolution of gastrulation dynamics across mammals.
Collapse
Affiliation(s)
- Yoav Mayshar
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Ofir Raz
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel; Department of Computer Science and Applied Mathematics, Weizmann Institute of Science, Rehovot, Israel
| | - Saifeng Cheng
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Raz Ben-Yair
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Ron Hadas
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Netta Reines
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Markus Mittnenzweig
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel; Department of Computer Science and Applied Mathematics, Weizmann Institute of Science, Rehovot, Israel
| | - Oren Ben-Kiki
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel; Department of Computer Science and Applied Mathematics, Weizmann Institute of Science, Rehovot, Israel
| | - Aviezer Lifshitz
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel; Department of Computer Science and Applied Mathematics, Weizmann Institute of Science, Rehovot, Israel
| | - Amos Tanay
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel; Department of Computer Science and Applied Mathematics, Weizmann Institute of Science, Rehovot, Israel.
| | - Yonatan Stelzer
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
3
|
Li W, Li K, He X, Jiang Y, Lan R, Hong Q, Liu Y, Chu M. ALAS1 associated with goat kidding number trait was regulated by the transcription factor ASCL2 to affect granulosa cell proliferation. Anim Genet 2023; 54:189-198. [PMID: 36632647 DOI: 10.1111/age.13287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/08/2022] [Accepted: 12/09/2022] [Indexed: 01/13/2023]
Abstract
ALAS1 is a member of the α-oxoamine synthase family, which is the first rate-limiting enzyme for heme synthesis and is important for maintaining intracellular heme levels. In the ovary, ALAS1 is associated with the regulation of ovulation-related mitochondrial P450 cytochromes, steroid metabolism, and steroid hormone production. However, there are few studies on the relationship between ALAS1 and reproductive traits in goats. In this study, a mutation located in the promoter region of ALAS1 (g.48791372C>A) was found to be significantly (p < 0.05) associated with the kidding number of Yunshang black goats. Specifically, the mean kidding number in the first three litters and the kidding numbers of all three litters were significantly (p < 0.05) higher in individuals with the CA genotype or AA genotype than in those with the CC genotype. To further investigate the regulatory mechanism of ALAS1, the expression of ALAS1 in goat ovarian tissues with different genotypes was verified by real-time quantitative PCR. The results showed that the expression of ALAS1 was significantly higher in the ovaries of individuals with AA genotype than those with AC and CC genotypes (p < 0.01), and the expression trend of transcription factor ASCL2 was consistent with ALAS1. Additionally, the ALAS1 g.48791372C>A mutation created a new binding site for the transcription factor ASCL2. The luciferase activity assay indicated that the mutation increased the promoter activity of ALAS1. Overexpression of the transcription factor ASCL2 induced increased expression of ALAS1 in goat granulosa cells (p < 0.05). The opposite trend was shown for the inhibition of ASCL2 expression. The results of real-time quantitative PCR, EdU and Cell Counting Kit-8 assays indicated that the transcription factor ASCL2 increased the proliferation of goat granulosa cells by mediating the expression of ALAS1. In conclusion, the transcription factor ASCL2 positively regulated the transcriptional activity and expression levels of ALAS1, altering granulosa cell proliferation and the kidding number in goats.
Collapse
Affiliation(s)
- Wentao Li
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Kunyu Li
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xiaoyun He
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yanting Jiang
- Yunnan Animal Science and Veterinary Institute, Kunming, China
| | - Rong Lan
- Yunnan Animal Science and Veterinary Institute, Kunming, China
| | - Qionghua Hong
- Yunnan Animal Science and Veterinary Institute, Kunming, China
| | - Yufang Liu
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Mingxing Chu
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
4
|
Huang HL, Liu HL, Cheng YS. Development of innovative marker detection methods for high-fertility ducks (Anas plastyrhynchos). Theriogenology 2023; 197:275-282. [PMID: 36527864 DOI: 10.1016/j.theriogenology.2022.12.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 11/27/2022] [Accepted: 12/04/2022] [Indexed: 12/12/2022]
Abstract
We previously analyzed the genome-wide gene expression at the transcription level in pre-hierarchical ovarian follicles (approximate 5 mm in diameter) between two groups of ducks representing high and low fertility. Orthodenticle homeobox 2 (otx2) was identified with significantly differential expression in the high-fertility group versus the low-fertility group. To identify the relationships between genotypes and phenotypes, we recorded the reproductive performance in advance, including fertility, hatchability, and fertile period of female ducks. To ensure coverage of the entire duration of the fertile period, we extended the egg collection period after artificial insemination. Naturally, sperm cannot survive after a certain period of time in the female reproductive tract (sperm is not immortal); therefore, lower average values for fertility were observed in this study than that observed after a normal egg collection period, i.e., the lower average values of fertility (18 days after artificial insemination), were not due to the effect of otx2. The otx2 genomic sequence of Tsaiya ducks was firstly amplified with a primer pair of i3F and i3R for polymerase chain reaction based on Pekin duck sequence and a resultant 444-base pair fragment was obtained for DNA sequencing. Using multiple sequence alignment, new single-nucleotide polymorphisms g.366T > C and g.182G > T were discovered in the otx2 gene. With respect to g.366T > C, ducks were classified into CC, CT, and TT genotypes. For g.182G > T, three genotypes (GG, GT, and TT) were identified. Ducks were genotyped using novel specific primers and probes to rapidly screen their single-nucleotide polymorphisms. The results indicated that ducks with the CC genotype of g.366T > C exhibited the highest fertility among the CC, CT, and TT genotypes (p < 0.05). No significant difference was found in the fertile period and hatchability among three genotypes of g.366T > C. Moreover, no association was found between g.182G > T genotypes and the three reproductive phenotypes examined in this study. Collectively, the otx2 g.366T > C genotype is associated with duck females, and can be used as a marker for farming a flock of ducks with high fertility, as well as for genetic selection of breeders.
Collapse
Affiliation(s)
- Hsiu-Lin Huang
- Department of Animal Science, National Chung Hsing University, Taichung, 402, Taiwan.
| | - Hsiao-Lung Liu
- Livestock Research Institute, Council of Agriculture, Hsin-Hua, Tainan, 712, Taiwan
| | - Yu-Shin Cheng
- Livestock Research Institute, Council of Agriculture, Hsin-Hua, Tainan, 712, Taiwan
| |
Collapse
|
5
|
Mice lacking DCAF2 in placenta die at the gastrulation stage. Cell Tissue Res 2022; 389:559-572. [PMID: 35711069 DOI: 10.1007/s00441-022-03655-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 06/10/2022] [Indexed: 11/02/2022]
Abstract
UV-damaged DNA-binding protein 1 (DDB1) and cullin 4-associated factor 2 (DCAF2, also known as DTL or CDT2) is an evolutionarily highly conserved substrate recognition factor in the cullin 4 RING E3 ubiquitin ligase (CRL4) complex. This complex degrades multiple DNA replication and cell cycle-associated proteins to maintain genome stability. To clarify the function of DCAF2 in vivo, we used Cre recombinase driven by the Elf5 promoter to generate knockout mouse model that was specifically deleted Dcaf2 in the trophoblast lineage (Elf5-Cre; Dcaf2fl/fl, Dcaf2 cKO). Here, we show that mice with the genotype Elf5-Cre; Dcaf2fl/+ are normal and fertile. However, after mating of Elf5-Cre; Dcaf2fl/+ mice with Dcaf2fl/fl, no Dcaf2 cKO pups were born. Timed pregnancy studies have shown that Dcaf2 cKO mice developed abnormally on embryonic day 5.5 and died at gastrulation stage. It is worth noting that the extraembryonic ectoderm of Dcaf2 cKO mice is severely reduced or missing and leading to embryonic death. We also proved that stronger DNA damage accumulated in the trophoblastic cells of Dcaf2 cKO mice at E8.5. In addition, higher expression of Caspase-3 was found in the embryonic and trophoblastic cells of these cKO mice. In general, our research shows that the placental DCAF2 is crucial to the formation of gastrula.
Collapse
|
6
|
Haridhasapavalan KK, Sundaravadivelu PK, Thummer RP. Codon Optimization, Cloning, Expression, Purification, and Secondary Structure Determination of Human ETS2 Transcription Factor. Mol Biotechnol 2020; 62:485-494. [PMID: 32808171 DOI: 10.1007/s12033-020-00266-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/07/2020] [Indexed: 02/08/2023]
Abstract
Transcription factor ETS2 regulates genes involved in development, differentiation, angiogenesis, proliferation, and apoptosis. In addition, it is one of the core reprogramming factors responsible for the generation of human cardiomyocytes from adult somatic cells. In this study, we report the heterologous expression of human ETS2 in E. coli to produce a highly pure recombinant protein. To accomplish this, the codon-optimized 1507 bp coding sequence of the human ETS2 gene in fusion with a His-tag, a cell-penetrating peptide, and a nuclear localization sequence was cloned in the protein expression vector and transformed into E. coli strain BL21(DE3) for expression. The recombinant protein was purified to homogeneity under native conditions using immobilized metal ion affinity chromatography, and its identity was confirmed by Western blotting with an ETS2 antibody. Using far-UV circular dichroism spectroscopy, we have demonstrated that the recombinant protein has retained its secondary structure, predominantly comprising of random coils and β-sheets. Prospectively, this biological recombinant ETS2 protein can substitute viral and genetic forms of ETS2 in a cell reprogramming process to facilitate the generation of clinical-grade cells. It can also be used to investigate its molecular role in various biological processes and diseases and for biochemical and structural studies.
Collapse
Affiliation(s)
- Krishna Kumar Haridhasapavalan
- Laboratory for Stem Cell Engineering and Regenerative Medicine, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, 781039, India
| | - Pradeep Kumar Sundaravadivelu
- Laboratory for Stem Cell Engineering and Regenerative Medicine, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, 781039, India
| | - Rajkumar P Thummer
- Laboratory for Stem Cell Engineering and Regenerative Medicine, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, 781039, India.
| |
Collapse
|
7
|
Gao H, Gao R, Zhang L, Xiu W, Zang R, Wang H, Zhang Y, Chen J, Gao Y, Gao S. Esrrb plays important roles in maintaining self-renewal of trophoblast stem cells (TSCs) and reprogramming somatic cells to induced TSCs. J Mol Cell Biol 2020; 11:463-473. [PMID: 30299501 DOI: 10.1093/jmcb/mjy054] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 08/19/2018] [Accepted: 10/09/2018] [Indexed: 11/14/2022] Open
Abstract
Trophoblast stem cells (TSCs), which can be derived from the trophoectoderm of a blastocyst, have the ability to sustain self-renewal and differentiate into various placental trophoblast cell types. Meanwhile, essential insights into the molecular mechanisms controlling the placental development can be gained by using TSCs as the cell model. Esrrb is a transcription factor that has been shown to play pivotal roles in both embryonic stem cell (ESC) and TSC, but the precise mechanism whereby Esrrb regulates TSC-specific transcriptome during differentiation and reprogramming is still largely unknown. In the present study, we elucidate the function of Esrrb in self-renewal and differentiation of TSCs, as well as during the induced TSC (iTSC) reprogramming. We demonstrate that the precise level of Esrrb is critical for stem state maintenance and further trophoblast differentiation of TSCs, as ectopically expressed Esrrb can partially block the rapid differentiation of TSCs in the absence of fibroblast growth factor 4. However, Esrrb depletion results in downregulation of certain key TSC-specific transcription factors, consequently causing a rapid differentiation of TSCs and these Esrrb-deficient TSCs lose the ability of hemorrhagic lesion formation in vivo. This function of Esrrb is exerted by directly binding and activating a core set of TSC-specific target genes including Cdx2, Eomes, Sox2, Fgfr4, and Bmp4. Furthermore, we show that Esrrb overexpression can facilitate the MEF-to-iTSC conversion. Moreover, Esrrb can substitute for Eomes to generate GEsTM-iTSCs. Thus, our findings provide a better understanding of the molecular mechanism of Esrrb in maintaining TSC self-renewal and during iTSC reprogramming.
Collapse
Affiliation(s)
- Haibo Gao
- Peking University-Tsinghua University-National Institute of Biological Sciences Joint Graduate Program, School of Life Sciences, Tsinghua University, Beijing, China
| | - Rui Gao
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Linfeng Zhang
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Wenchao Xiu
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Ruge Zang
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Hong Wang
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Yong Zhang
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Jiayu Chen
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Yawei Gao
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Shaorong Gao
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
| |
Collapse
|
8
|
Abstract
Early embryogenesis is characterized by the segregation of cell lineages that fulfill critical roles in the establishment of pregnancy and development of the fetus. The formation of the blastocyst marks the emergence of extraembryonic precursors, needed for implantation, and of pluripotent cells, which differentiate toward the major lineages of the adult organism. The coordinated emergence of these cell types shows that these processes are broadly conserved in mammals. However, developmental heterochrony and changes in gene regulatory networks highlight unique evolutionary adaptations that may explain the diversity in placentation and in the mechanisms controlling pluripotency in mammals. The incorporation of new technologies, including single-cell omics, imaging, and gene editing, is instrumental for comparative embryology. Broadening the knowledge of mammalian embryology will provide new insights into the mechanisms driving evolution and development. This knowledge can be readily translated into biomedical and biotechnological applications in humans and livestock, respectively.
Collapse
Affiliation(s)
- Ramiro Alberio
- School of Biosciences, University of Nottingham, Nottingham NG7 2RD, United Kingdom;
| |
Collapse
|
9
|
Yang L, Zhu Y, Kong D, Gong J, Yu W, Liang Y, Nie Y, Teng CB. EGF suppresses the expression of miR-124a in pancreatic β cell lines via ETS2 activation through the MEK and PI3K signaling pathways. Int J Biol Sci 2019; 15:2561-2575. [PMID: 31754329 PMCID: PMC6854373 DOI: 10.7150/ijbs.34985] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Accepted: 08/11/2019] [Indexed: 12/11/2022] Open
Abstract
Diabetes mellitus is characterized by pancreatic β cell dysfunction. Previous studies have indicated that epidermal growth factor (EGF) and microRNA-124a (miR-124a) play opposite roles in insulin biosynthesis and secretion by beta cells. However, the underlying mechanisms remain poorly understood. In the present study, we demonstrated that EGF could inhibit miR-124a expression in beta cell lines through downstream signaling pathways, including mitogen-activated protein kinase kinase (MEK) and phosphatidylinositol 3-kinase (PI3K) cascades. Further, the transcription factor ETS2, a member of the ETS (E26 transformation-specific) family, was identified to be responsible for the EGF-mediated suppression of miR-124a expression, which was dependent on ETS2 phosphorylation at threonine 72. Activation of ETS2 decreased miR-124a promoter transcriptional activity through the putative conserved binding sites AGGAANA/TN in three miR-124a promoters located in different chromosomes. Of note, ETS2 played a positive role in regulating beta cell function-related genes, including miR-124a targets, Forkhead box a2 (FOXA2) and Neurogenic differentiation 1 (NEUROD1), which may have partly been through the inhibition of miR-124 expression. Knockdown and overexpression of ETS2 led to the prevention and promotion of insulin biosynthesis respectively, while barely affecting the secretion ability. These results suggest that EGF may induce the activation of ETS2 to inhibit miR-124a expression to maintain proper beta cell functions and that ETS2, as a novel regulator of insulin production, is a potential therapeutic target for diabetes mellitus treatment.
Collapse
Affiliation(s)
- Lin Yang
- College of Life Science, Northeast Forestry University, Harbin, China
| | - Yuansen Zhu
- College of Life Science, Northeast Forestry University, Harbin, China
| | - Delin Kong
- College of Life Science, Northeast Forestry University, Harbin, China
| | - Jiawei Gong
- College of Life Science, Northeast Forestry University, Harbin, China
| | - Wen Yu
- College of Life Science, Northeast Forestry University, Harbin, China
| | - Yang Liang
- College of Life Science, Northeast Forestry University, Harbin, China
| | - Yuzhe Nie
- College of Life Science, Northeast Forestry University, Harbin, China
| | - Chun-Bo Teng
- College of Life Science, Northeast Forestry University, Harbin, China
| |
Collapse
|
10
|
Sanchez-Ribas I, Diaz-Gimeno P, Sebastián-León P, Mercader A, Quiñonero A, Ballesteros A, Pellicer A, Domínguez F. Transcriptomic behavior of genes associated with chromosome 21 aneuploidies in early embryo development. Fertil Steril 2019; 111:991-1001.e2. [PMID: 30922649 DOI: 10.1016/j.fertnstert.2019.01.023] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 12/13/2018] [Accepted: 01/14/2019] [Indexed: 10/27/2022]
Abstract
OBJECTIVE To analyze how chromosome 21 (HSA21) ploidy affects global gene expression of early human blastocysts. DESIGN Prospective study. SETTING University-affiliated in vitro fertilization clinic. PATIENT(S) A total of 26 high-quality donated embryos from in vitro fertilization (IVF) patients: trisomy 21 (n = 8), monosomy 21 (n = 10), and euploid (n = 8) blastocysts. INTERVENTION(S) None. MAIN OUTCOME MEASURE(S) Blastocyst transcriptome changes and its associated functions. RESULT(S) Trisomy 21, monosomy 21, and euploid blastocysts were classified by comparative genomic hybridization. The global transcriptome of whole blastocysts was analyzed with small cell number RNA sequencing, and they were compared to understand the gene expression behavior at early development and its implications for embryo implantation. We identified 1,232 differentially expressed genes (false discovery rate <0.05) in monosomy 21 compared with euploid blastocysts associated with dysregulated functions in embryo development as the Rap1 signaling pathway. Curiously, Down syndrome in early development revealed fewer transcriptomic changes than expected. In addition, Down syndrome gene expression in neonates, children, and adults revealed that the number of deregulated genes increases across life stages from blastocysts to adults, suggesting a potential dosage-compensation mechanism for human chromosome 21. CONCLUSION(S) At the transcriptomic level, early development in Down syndrome is mainly dosage compensated. However, monosomy 21 is strongly transcriptionally affected because early development involving main functions is associated with embryo implantation.
Collapse
Affiliation(s)
- Imma Sanchez-Ribas
- IVI-RMA Fundación IVI, Universidad de Valencia, Valencia, Spain; IVI-RMA Barcelona, Barcelona, Spain
| | - Patricia Diaz-Gimeno
- IVI-RMA Fundación IVI, Universidad de Valencia, Valencia, Spain; Instituto de Investigación Sanitaria INCLIVA, Valencia University, Valencia, Spain.
| | - Patricia Sebastián-León
- IVI-RMA Fundación IVI, Universidad de Valencia, Valencia, Spain; Instituto de Investigación Sanitaria INCLIVA, Valencia University, Valencia, Spain
| | - Amparo Mercader
- Instituto de Investigación Sanitaria INCLIVA, Valencia University, Valencia, Spain; IVI-RMA Valencia, Valencia, Spain
| | | | | | - Antonio Pellicer
- IVI-RMA Fundación IVI, Universidad de Valencia, Valencia, Spain; Department of Pediatrics, Obstetrics, and Gynecology, Universidad de Valencia, Valencia, Spain; Instituto de Investigación Sanitaria Hospital Universitario y Politécnico La Fe, Valencia, Spain
| | - Francisco Domínguez
- IVI-RMA Fundación IVI, Universidad de Valencia, Valencia, Spain; Instituto de Investigación Sanitaria INCLIVA, Valencia University, Valencia, Spain
| |
Collapse
|
11
|
Abstract
Establishing the different lineages of the early mammalian embryo takes place over several days and several rounds of cell divisions from the fertilized egg. The resulting blastocyst contains the pluripotent cells of the epiblast, from which embryonic stem cells can be derived, as well as the extraembryonic lineages required for a mammalian embryo to survive in the uterine environment. The dynamics of the cellular and genetic interactions controlling the initiation and maintenance of these lineages in the mouse embryo are increasingly well understood through application of the tools of single-cell genomics, gene editing, and in vivo imaging. Exploring the similarities and differences between mouse and human development will be essential for translation of these findings into new insights into human biology, derivation of stem cells, and improvements in fertility treatments.
Collapse
Affiliation(s)
- Janet Rossant
- Program in Stem Cell and Developmental Biology, Hospital for Sick Children, Toronto, Ontario M5G 0A4, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| |
Collapse
|
12
|
Bogutz AB, Oh-McGinnis R, Jacob KJ, Ho-Lau R, Gu T, Gertsenstein M, Nagy A, Lefebvre L. Transcription factor ASCL2 is required for development of the glycogen trophoblast cell lineage. PLoS Genet 2018; 14:e1007587. [PMID: 30096149 PMCID: PMC6105033 DOI: 10.1371/journal.pgen.1007587] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Revised: 08/22/2018] [Accepted: 07/24/2018] [Indexed: 12/22/2022] Open
Abstract
The basic helix-loop-helix (bHLH) transcription factor ASCL2 plays essential roles in diploid multipotent trophoblast progenitors, intestinal stem cells, follicular T-helper cells, as well as during epidermal development and myogenesis. During early development, Ascl2 expression is regulated by genomic imprinting and only the maternally inherited allele is transcriptionally active in trophoblast. The paternal allele-specific silencing of Ascl2 requires expression of the long non-coding RNA Kcnq1ot1 in cis and the deposition of repressive histone marks. Here we show that Del7AI, a 280-kb deletion allele neighboring Ascl2, interferes with this process in cis and leads to a partial loss of silencing at Ascl2. Genetic rescue experiments show that the low level of Ascl2 expression from the paternal Del7AI allele can rescue the embryonic lethality associated with maternally inherited Ascl2 mutations, in a level-dependent manner. Despite their ability to support development to term, the rescued placentae have a pronounced phenotype characterized by severe hypoplasia of the junctional zone, expansion of the parietal trophoblast giant cell layer, and complete absence of invasive glycogen trophoblast cells. Transcriptome analysis of ectoplacental cones at E7.5 and differentiation assays of Ascl2 mutant trophoblast stem cells show that ASCL2 is required for the emergence or early maintenance of glycogen trophoblast cells during development. Our work identifies a new cis-acting mutation interfering with Kcnq1ot1 silencing function and establishes a novel critical developmental role for the transcription factor ASCL2. By controlling precise networks of target genes, transcription factors play important roles in cell fate determination during development. The Ascl2 gene codes for a transcription factor essential for the maintenance of progenitor cell populations able to differentiate into specialized cell types in the intestine and in the extra-embryonic trophoblast lineage. The trophoblast is an essential component of the placenta, an organ required for development of the embryo in placental mammals. Ascl2 belongs to a group of unusual genes, called imprinted genes, which are expressed from only a single parental copy. Ascl2 is only expressed from the maternally inherited copy in the trophoblast, the paternal copy being kept silent. Here, we describe an engineered deletion neighboring Ascl2 that interferes with the complete silencing of the paternal copy of the gene. We show that the low amount of ASCL2 produced from this deletion can rescue the embryonic lethality associated with non-functional maternal copies of Ascl2. Although the rescued embryos can often survive to term, their placenta is highly disorganized and lacks members of a specific cell lineage, the trophoblast glycogen cells. By analyzing the transcriptional profile of mutant trophoblast progenitors in vivo and of differentiated trophoblast stem cells, we show that ASCL2 plays a very early role in the formation of this cell lineage.
Collapse
Affiliation(s)
- Aaron B. Bogutz
- Department of Medical Genetics, Molecular Epigenetics Group, University of British Columbia, Vancouver, BC, Canada
| | - Rosemary Oh-McGinnis
- Department of Medical Genetics, Molecular Epigenetics Group, University of British Columbia, Vancouver, BC, Canada
| | - Karen J. Jacob
- Department of Medical Genetics, Molecular Epigenetics Group, University of British Columbia, Vancouver, BC, Canada
| | - Rita Ho-Lau
- Department of Medical Genetics, Molecular Epigenetics Group, University of British Columbia, Vancouver, BC, Canada
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada
| | - Ting Gu
- Department of Medical Genetics, Molecular Epigenetics Group, University of British Columbia, Vancouver, BC, Canada
| | - Marina Gertsenstein
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada
| | - Andras Nagy
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada
| | - Louis Lefebvre
- Department of Medical Genetics, Molecular Epigenetics Group, University of British Columbia, Vancouver, BC, Canada
- * E-mail:
| |
Collapse
|
13
|
Fry EA, Inoue K. Aberrant expression of ETS1 and ETS2 proteins in cancer. CANCER REPORTS AND REVIEWS 2018; 2:10.15761/CRR.1000151. [PMID: 29974077 PMCID: PMC6027756 DOI: 10.15761/crr.1000151] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The ETS transcription factors regulate expression of genes involved in normal cell development, proliferation, differentiation, angiogenesis, and apoptosis, consisting of 28 family members in humans. Dysregulation of these transcription factors facilitates cell proliferation in cancers, and several members participate in invasion and metastasis by activating gene transcription. ETS1 and ETS2 are the founding members of the ETS family and regulate transcription by binding to ETS sequences. They are both involved in oncogenesis and tumor suppression depending on the biological situations used. The essential roles of ETS proteins in human telomere maintenance have been suggested, which have been linked to creation of new Ets binding sites. Recently, preferential binding of ETS2 to gain-of-function mutant p53 and ETS1 to wild type p53 (WTp53) has been suggested, raising the tumor promoting role for the former and tumor suppressive role for the latter. The oncogenic and tumor suppressive functions of ETS1 and 2 proteins have been discussed.
Collapse
Affiliation(s)
- Elizabeth A. Fry
- The Dept. of Pathology, Wake Forest University School of Medicine, Medical Center Blvd., Winston-Salem, NC 27157 USA
| | - Kazushi Inoue
- The Dept. of Pathology, Wake Forest University School of Medicine, Medical Center Blvd., Winston-Salem, NC 27157 USA
| |
Collapse
|
14
|
Wang L, Koutelou E, Hirsch C, McCarthy R, Schibler A, Lin K, Lu Y, Jeter C, Shen J, Barton MC, Dent SYR. GCN5 Regulates FGF Signaling and Activates Selective MYC Target Genes during Early Embryoid Body Differentiation. Stem Cell Reports 2017; 10:287-299. [PMID: 29249668 PMCID: PMC5768892 DOI: 10.1016/j.stemcr.2017.11.009] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Revised: 11/14/2017] [Accepted: 11/14/2017] [Indexed: 12/12/2022] Open
Abstract
Precise control of gene expression during development is orchestrated by transcription factors and co-regulators including chromatin modifiers. How particular chromatin-modifying enzymes affect specific developmental processes is not well defined. Here, we report that GCN5, a histone acetyltransferase essential for embryonic development, is required for proper expression of multiple genes encoding components of the fibroblast growth factor (FGF) signaling pathway in early embryoid bodies (EBs). Gcn5-/- EBs display deficient activation of ERK and p38, mislocalization of cytoskeletal components, and compromised capacity to differentiate toward mesodermal lineage. Genomic analyses identified seven genes as putative direct targets of GCN5 during early differentiation, four of which are cMYC targets. These findings established a link between GCN5 and the FGF signaling pathway and highlighted specific GCN5-MYC partnerships in gene regulation during early differentiation.
Collapse
Affiliation(s)
- Li Wang
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Smithville, TX 78957, USA; Center for Cancer Epigenetics, The University of Texas MD Anderson Cancer Center, Smithville, TX 78957, USA; Program in Epigenetics and Molecular Carcinogenesis, The Graduate School of Biomedical Sciences (GSBS) of the University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Evangelia Koutelou
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Smithville, TX 78957, USA; Center for Cancer Epigenetics, The University of Texas MD Anderson Cancer Center, Smithville, TX 78957, USA
| | - Calley Hirsch
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Smithville, TX 78957, USA; Center for Cancer Epigenetics, The University of Texas MD Anderson Cancer Center, Smithville, TX 78957, USA
| | - Ryan McCarthy
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Smithville, TX 78957, USA; Center for Cancer Epigenetics, The University of Texas MD Anderson Cancer Center, Smithville, TX 78957, USA
| | - Andria Schibler
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Smithville, TX 78957, USA; Center for Cancer Epigenetics, The University of Texas MD Anderson Cancer Center, Smithville, TX 78957, USA; Program in Genes and Development, The Graduate School of Biomedical Sciences (GSBS) of the University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Kevin Lin
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Smithville, TX 78957, USA; Center for Cancer Epigenetics, The University of Texas MD Anderson Cancer Center, Smithville, TX 78957, USA
| | - Yue Lu
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Smithville, TX 78957, USA; Center for Cancer Epigenetics, The University of Texas MD Anderson Cancer Center, Smithville, TX 78957, USA
| | - Collene Jeter
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Smithville, TX 78957, USA
| | - Jianjun Shen
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Smithville, TX 78957, USA
| | - Michelle C Barton
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Smithville, TX 78957, USA; Center for Cancer Epigenetics, The University of Texas MD Anderson Cancer Center, Smithville, TX 78957, USA; Program in Epigenetics and Molecular Carcinogenesis, The Graduate School of Biomedical Sciences (GSBS) of the University of Texas Health Science Center at Houston, Houston, TX 77030, USA; Program in Genes and Development, The Graduate School of Biomedical Sciences (GSBS) of the University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Sharon Y R Dent
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Smithville, TX 78957, USA; Center for Cancer Epigenetics, The University of Texas MD Anderson Cancer Center, Smithville, TX 78957, USA; Program in Epigenetics and Molecular Carcinogenesis, The Graduate School of Biomedical Sciences (GSBS) of the University of Texas Health Science Center at Houston, Houston, TX 77030, USA; Program in Genes and Development, The Graduate School of Biomedical Sciences (GSBS) of the University of Texas Health Science Center at Houston, Houston, TX 77030, USA.
| |
Collapse
|
15
|
Ahi EP, Sefc KM. Anterior-posterior gene expression differences in three Lake Malawi cichlid fishes with variation in body stripe orientation. PeerJ 2017; 5:e4080. [PMID: 29158996 PMCID: PMC5695249 DOI: 10.7717/peerj.4080] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Accepted: 11/01/2017] [Indexed: 01/04/2023] Open
Abstract
Morphological differentiation among closely related species provides opportunities to study mechanisms shaping natural phenotypic variation. Here, we address variation in the orientation of melanin-colored body stripes in three cichlid species of the tribe Haplochromini. Melanochromis auratus displays a common pattern of dark, straight horizontal body stripes, whereas in Aristochromis christyi and Buccochromis rhoadesii, oblique stripes extend from the anterior dorsal to the posterior mid-lateral trunk. We first validated a stably reference gene, and then, investigated the chromatophore distribution in the skin by assessing the expression levels of the iridophore and melanophore marker genes, ltk and slc24a5, respectively, as well as pmel, a melanophore pigmentation marker gene. We found anterior-posterior differences in the expression levels of the three genes in the oblique-striped species. The higher anterior expression of ltk, indicates increased iridophore density in the anterior region, i.e., uneven horizontal distribution of iridophores, which coincides with the anterior dorsalization of melanophore stripe in these species. The obliqueness of the horizontal body stripes might be a result of distinct migratory or patterning abilities of melanophores in anterior and posterior stripe regions which could be reflected by variation in the expression of genes involved in melanophore patterning. To address this, we investigated anterior-posterior expression levels of a primary set of candidate target genes with known functions in melanophore migration and stripe patterning in the adult zebrafish, and their related gene regulatory network. Among these genes, those with differences in anterior-posterior expression showed only species-specific differential expression, e.g., sdf1a, col14a1a, ifitm5, and agpat3, with the exception of fbxw4/hagoromo (differentially expressed in an oblique-and the straight-striped species). In summary, distinct anterior-posterior gradients in iridophore density found to be more similar characteristic between the two oblique-striped species. Furthermore, the species-specific differential expression of genes involved in stripe patterning might also implicate distinct molecular processes underlying the obliqueness of body stripe in two closely related cichlid species.
Collapse
Affiliation(s)
- Ehsan Pashay Ahi
- Institute of Zoology, Universitätsplatz 2, Universität Graz, Graz, Austria
| | - Kristina M Sefc
- Institute of Zoology, Universitätsplatz 2, Universität Graz, Graz, Austria
| |
Collapse
|
16
|
Ezashi T, Imakawa K. Transcriptional control of IFNT expression. Reproduction 2017; 154:F21-F31. [PMID: 28982936 PMCID: PMC5687277 DOI: 10.1530/rep-17-0330] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Revised: 08/01/2017] [Accepted: 08/29/2017] [Indexed: 12/24/2022]
Abstract
Once interferon-tau (IFNT) had been identified as a type I IFN in sheep and cattle and its functions were characterized, numerous studies were conducted to elucidate the transcriptional regulation of this gene family. Transfection studies performed largely with human choriocarcinoma cell lines identified regulatory regions of the IFNT gene that appeared responsible for trophoblast-specific expression. The key finding was the recognition that the transcription factor ETS2 bound to a proximal region within the 5'UTR of a bovine IFNT and acted as a strong transactivator. Soon after other transcription factors were identified as cooperative partners. The ETS2-binding site and the nearby AP1 site enable response to intracellular signaling from maternal uterine factors. The AP1 site also serves as a GATA-binding site in one of the bovine IFNT genes. The homeobox-containing transcription factor, DLX3, augments IFNT expression combinatorially with ETS2. CDX2 has also been identified as transactivator that binds to a separate site upstream of the main ETS2 enhancer site. CDX2 participates in IFNT epigenetic regulation by modifying histone acetylation status of the gene. The IFNT downregulation at the time of the conceptus attachment to the uterine endometrium appears correlated with the increased EOMES expression and the loss of other transcription coactivators. Altogether, the studies of transcriptional control of IFNT have provided mechanistic evidence of the regulatory framework of trophoblast-specific expression and critical expression pattern for maternal recognition of pregnancy.
Collapse
Affiliation(s)
- Toshihiko Ezashi
- Bond Life Sciences Center and Division of Animal Sciences, University of Missouri, Columbia, Missouri 65211 USA
| | - Kazuhiko Imakawa
- Laboratory of Animal Breeding, Veterinary Medical Sciences and Animal Resource Science Center, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
17
|
Home P, Kumar RP, Ganguly A, Saha B, Milano-Foster J, Bhattacharya B, Ray S, Gunewardena S, Paul A, Camper SA, Fields PE, Paul S. Genetic redundancy of GATA factors in the extraembryonic trophoblast lineage ensures the progression of preimplantation and postimplantation mammalian development. Development 2017; 144:876-888. [PMID: 28232602 PMCID: PMC5374352 DOI: 10.1242/dev.145318] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2016] [Accepted: 01/10/2017] [Indexed: 12/16/2022]
Abstract
GATA transcription factors are implicated in establishing cell fate during mammalian development. In early mammalian embryos, GATA3 is selectively expressed in the extraembryonic trophoblast lineage and regulates gene expression to promote trophoblast fate. However, trophoblast-specific GATA3 function is dispensable for early mammalian development. Here, using dual conditional knockout mice, we show that genetic redundancy of Gata3 with paralog Gata2 in trophoblast progenitors ensures the successful progression of both pre- and postimplantation mammalian development. Stage-specific gene deletion in trophoblasts reveals that loss of both GATA genes, but not either alone, leads to embryonic lethality prior to the onset of their expression within the embryo proper. Using ChIP-seq and RNA-seq analyses, we define the global targets of GATA2/GATA3 and show that they directly regulate a large number of common genes to orchestrate stem versus differentiated trophoblast fate. In trophoblast progenitors, GATA factors directly regulate BMP4, Nodal and Wnt signaling components that promote embryonic-extraembryonic signaling cross-talk, which is essential for the development of the embryo proper. Our study provides genetic evidence that impairment of trophoblast-specific GATA2/GATA3 function could lead to early pregnancy failure. Summary: During trophoblast development in mice, GATA2 and GATA3 act synergistically by directly regulating a large number of common genes, and together are important to ensure trophoblast lineage progression.
Collapse
Affiliation(s)
- Pratik Home
- Department of Pathology and Laboratory Medicine and Institute for Reproductive Health and Regenerative Medicine, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Ram Parikshan Kumar
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Avishek Ganguly
- North Texas Eye Research Institute, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| | - Biswarup Saha
- Department of Pathology and Laboratory Medicine and Institute for Reproductive Health and Regenerative Medicine, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Jessica Milano-Foster
- Department of Pathology and Laboratory Medicine and Institute for Reproductive Health and Regenerative Medicine, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Bhaswati Bhattacharya
- Department of Pathology and Laboratory Medicine and Institute for Reproductive Health and Regenerative Medicine, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Soma Ray
- Department of Pathology and Laboratory Medicine and Institute for Reproductive Health and Regenerative Medicine, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Sumedha Gunewardena
- Department of Molecular and Integrative Physiology, Department of Biostatistics, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Arindam Paul
- Department of Pathology and Laboratory Medicine and Institute for Reproductive Health and Regenerative Medicine, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Sally A Camper
- Department of Human Genetics, University of Michigan, Ann Arbor, MI 48109, USA
| | - Patrick E Fields
- Department of Pathology and Laboratory Medicine and Institute for Reproductive Health and Regenerative Medicine, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Soumen Paul
- Department of Pathology and Laboratory Medicine and Institute for Reproductive Health and Regenerative Medicine, University of Kansas Medical Center, Kansas City, KS 66160, USA
| |
Collapse
|
18
|
Bhargava S, Cox B, Polydorou C, Gresakova V, Korinek V, Strnad H, Sedlacek R, Epp TA, Chawengsaksophak K. The epigenetic modifier Fam208a is required to maintain epiblast cell fitness. Sci Rep 2017; 7:9322. [PMID: 28839193 PMCID: PMC5570896 DOI: 10.1038/s41598-017-09490-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Accepted: 07/26/2017] [Indexed: 12/12/2022] Open
Abstract
Gastrulation initiates with the formation of the primitive streak, during which, cells of the epiblast delaminate to form the mesoderm and definitive endoderm. At this stage, the pluripotent cell population of the epiblast undergoes very rapid proliferation and extensive epigenetic programming. Here we show that Fam208a, a new epigenetic modifier, is essential for early post-implantation development. We show that Fam208a mutation leads to impaired primitive streak elongation and delayed epithelial-to-mesenchymal transition. Fam208a mutant epiblasts had increased expression of p53 pathway genes as well as several pluripotency-associated long non-coding RNAs. Fam208a mutants exhibited an increase in p53-driven apoptosis and complete removal of p53 could partially rescue their gastrulation block. This data demonstrates a new in vivo function of Fam208a in maintaining epiblast fitness, establishing it as an important factor at the onset of gastrulation when cells are exiting pluripotency.
Collapse
Affiliation(s)
- Shohag Bhargava
- Laboratory of Transgenic Models of Diseases, Division, BIOCEV, Institute of Molecular Genetics of the CAS, v.v.i., Vestec, Czech Republic.,Faculty of Science, Charles University, Prague, Czech Republic
| | - Brian Cox
- Department of Physiology, Faculty of Medicine, University of Toronto, Ontario, Canada
| | - Christiana Polydorou
- Laboratory of Transgenic Models of Diseases, Division, BIOCEV, Institute of Molecular Genetics of the CAS, v.v.i., Vestec, Czech Republic
| | - Veronika Gresakova
- Laboratory of Transgenic Models of Diseases, Division, BIOCEV, Institute of Molecular Genetics of the CAS, v.v.i., Vestec, Czech Republic
| | - Vladimir Korinek
- Laboratory of Cell and Developmental Biology, Institute of Molecular Genetics of the CAS, v.v.i., Krc, Czech Republic
| | - Hynek Strnad
- Laboratory of Genomics and Bioinformatics, Institute of Molecular Genetics of the CAS, v.v.i., Krc, Czech Republic
| | - Radislav Sedlacek
- Laboratory of Transgenic Models of Diseases, Division, BIOCEV, Institute of Molecular Genetics of the CAS, v.v.i., Vestec, Czech Republic.,Czech Centre for Phenogenomics, Division BIOCEV, Institute of Molecular Genetics of the CAS, v.v.i., Vestec, Czech Republic
| | - Trevor Allan Epp
- Laboratory of Transgenic Models of Diseases, Division, BIOCEV, Institute of Molecular Genetics of the CAS, v.v.i., Vestec, Czech Republic. .,Czech Centre for Phenogenomics, Division BIOCEV, Institute of Molecular Genetics of the CAS, v.v.i., Vestec, Czech Republic.
| | - Kallayanee Chawengsaksophak
- Laboratory of Transgenic Models of Diseases, Division, BIOCEV, Institute of Molecular Genetics of the CAS, v.v.i., Vestec, Czech Republic. .,Czech Centre for Phenogenomics, Division BIOCEV, Institute of Molecular Genetics of the CAS, v.v.i., Vestec, Czech Republic.
| |
Collapse
|
19
|
|
20
|
Baines K, Renaud S. Transcription Factors That Regulate Trophoblast Development and Function. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2017; 145:39-88. [DOI: 10.1016/bs.pmbts.2016.12.003] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
21
|
A Resource for the Transcriptional Signature of Bona Fide Trophoblast Stem Cells and Analysis of Their Embryonic Persistence. Stem Cells Int 2016; 2015:218518. [PMID: 26783396 PMCID: PMC4691490 DOI: 10.1155/2015/218518] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2015] [Accepted: 07/22/2015] [Indexed: 11/18/2022] Open
Abstract
Trophoblast stem cells (TSCs) represent the multipotent progenitors that give rise to the different cells of the embryonic portion of the placenta. Here, we analysed the expression of key TSC transcription factors Cdx2, Eomes, and Elf5 in the early developing placenta of mouse embryos and in cultured TSCs and reveal surprising heterogeneity in protein levels. We analysed persistence of TSCs in the early placenta and find that TSCs remain in the chorionic hinge until E9.5 and are lost shortly afterwards. To define the transcriptional signature of bona fide TSCs, we used inducible gain- and loss-of-function alleles of Eomes or Cdx2, and EomesGFP, to manipulate and monitor the core maintenance factors of TSCs, followed by genome-wide expression profiling. Combinatorial analysis of resulting expression profiles allowed for defining novel TSC marker genes that might functionally contribute to the maintenance of the TSC state. Analyses by qRT-PCR and in situ hybridisation validated novel TSC- and chorion-specific marker genes, such as Bok/Mtd, Cldn26, Duox2, Duoxa2, Nr0b1, and Sox21. Thus, these expression data provide a valuable resource for the transcriptional signature of bona fide and early differentiating TSCs and may contribute to an increased understanding of the transcriptional circuitries that maintain and/or establish stemness of TSCs.
Collapse
|
22
|
A serum-free and defined medium for the culture of mammalian postimplantation embryos. Biochem Biophys Res Commun 2015; 468:813-9. [DOI: 10.1016/j.bbrc.2015.11.037] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2015] [Accepted: 11/06/2015] [Indexed: 11/20/2022]
|
23
|
Kubaczka C, Senner C, Cierlitza M, Araúzo-Bravo M, Kuckenberg P, Peitz M, Hemberger M, Schorle H. Direct Induction of Trophoblast Stem Cells from Murine Fibroblasts. Cell Stem Cell 2015; 17:557-68. [DOI: 10.1016/j.stem.2015.08.005] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Revised: 05/27/2015] [Accepted: 08/06/2015] [Indexed: 01/24/2023]
|
24
|
Abstract
The placenta sits at the interface between the maternal and fetal vascular beds where it mediates nutrient and waste exchange to enable in utero existence. Placental cells (trophoblasts) accomplish this via invading and remodeling the uterine vasculature. Amazingly, despite being of fetal origin, trophoblasts do not trigger a significant maternal immune response. Additionally, they maintain a highly reliable hemostasis in this extremely vascular interface. Decades of research into how the placenta differentiates itself from embryonic tissues to accomplish these and other feats have revealed a previously unappreciated level of complexity with respect to the placenta's cellular composition. Additionally, novel insights with respect to roles played by the placenta in guiding fetal development and metabolism have sparked a renewed interest in understanding the interrelationship between fetal and placental well-being. Here, we present an overview of emerging research in placental biology that highlights these themes and the importance of the placenta to fetal and adult health.
Collapse
|
25
|
Petersen HO, Höger SK, Looso M, Lengfeld T, Kuhn A, Warnken U, Nishimiya-Fujisawa C, Schnölzer M, Krüger M, Özbek S, Simakov O, Holstein TW. A Comprehensive Transcriptomic and Proteomic Analysis of Hydra Head Regeneration. Mol Biol Evol 2015; 32:1928-47. [PMID: 25841488 PMCID: PMC4833066 DOI: 10.1093/molbev/msv079] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The cnidarian freshwater polyp Hydra sp. exhibits an unparalleled regeneration capacity in the animal kingdom. Using an integrative transcriptomic and stable isotope labeling by amino acids in cell culture proteomic/phosphoproteomic approach, we studied stem cell-based regeneration in Hydra polyps. As major contributors to head regeneration, we identified diverse signaling pathways adopted for the regeneration response as well as enriched novel genes. Our global analysis reveals two distinct molecular cascades: an early injury response and a subsequent, signaling driven patterning of the regenerating tissue. A key factor of the initial injury response is a general stabilization of proteins and a net upregulation of transcripts, which is followed by a subsequent activation cascade of signaling molecules including Wnts and transforming growth factor (TGF) beta-related factors. We observed moderate overlap between the factors contributing to proteomic and transcriptomic responses suggesting a decoupled regulation between the transcriptional and translational levels. Our data also indicate that interstitial stem cells and their derivatives (e.g., neurons) have no major role in Hydra head regeneration. Remarkably, we found an enrichment of evolutionarily more recent genes in the early regeneration response, whereas conserved genes are more enriched in the late phase. In addition, genes specific to the early injury response were enriched in transposon insertions. Genetic dynamicity and taxon-specific factors might therefore play a hitherto underestimated role in Hydra regeneration.
Collapse
Affiliation(s)
- Hendrik O Petersen
- Centre for Organismal Studies (COS), Heidelberg University, Heidelberg, Germany
| | - Stefanie K Höger
- Centre for Organismal Studies (COS), Heidelberg University, Heidelberg, Germany
| | - Mario Looso
- Max Planck Institute (MPI) for Heart and Lung Research, Bad Nauheim, Germany
| | - Tobias Lengfeld
- Centre for Organismal Studies (COS), Heidelberg University, Heidelberg, Germany
| | - Anne Kuhn
- Centre for Organismal Studies (COS), Heidelberg University, Heidelberg, Germany
| | - Uwe Warnken
- Functional Proteome Analysis Unit, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Chiemi Nishimiya-Fujisawa
- Okazaki Institute for Integrative Bioscience, National Institute for Basic Biology, Myodaiji, Okazaki, Japan
| | - Martina Schnölzer
- Functional Proteome Analysis Unit, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Marcus Krüger
- Max Planck Institute (MPI) for Heart and Lung Research, Bad Nauheim, Germany CECAD, University of Cologne, Germany
| | - Suat Özbek
- Centre for Organismal Studies (COS), Heidelberg University, Heidelberg, Germany
| | - Oleg Simakov
- Centre for Organismal Studies (COS), Heidelberg University, Heidelberg, Germany Molecular Genetics Unit, Okinawa Institute of Science and Technology, Okinawa, Japan
| | - Thomas W Holstein
- Centre for Organismal Studies (COS), Heidelberg University, Heidelberg, Germany
| |
Collapse
|
26
|
Stower MJ, Srinivas S. Heading forwards: anterior visceral endoderm migration in patterning the mouse embryo. Philos Trans R Soc Lond B Biol Sci 2015; 369:rstb.2013.0546. [PMID: 25349454 PMCID: PMC4216468 DOI: 10.1098/rstb.2013.0546] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The elaboration of anterior–posterior (A–P) pattern is one of the earliest events during development and requires the precisely coordinated action of several players at the level of molecules, cells and tissues. In mammals, it is controlled by a specialized population of migratory extraembryonic epithelial cells, the anterior visceral endoderm (AVE). The AVE is a signalling centre that is responsible for several important patterning events during early development, including specifying the orientation of the A–P axis and the position of the heart with respect to the brain. AVE cells undergo a characteristic stereotypical migration which is crucial to their functions.
Collapse
Affiliation(s)
- Matthew J Stower
- Department of Physiology, Anatomy and Genetics, University of Oxford, South Parks Road, Oxford OX1 3QX, UK
| | - Shankar Srinivas
- Department of Physiology, Anatomy and Genetics, University of Oxford, South Parks Road, Oxford OX1 3QX, UK
| |
Collapse
|
27
|
Bedzhov I, Graham SJL, Leung CY, Zernicka-Goetz M. Developmental plasticity, cell fate specification and morphogenesis in the early mouse embryo. Philos Trans R Soc Lond B Biol Sci 2015; 369:rstb.2013.0538. [PMID: 25349447 PMCID: PMC4216461 DOI: 10.1098/rstb.2013.0538] [Citation(s) in RCA: 86] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
A critical point in mammalian development is when the early embryo implants into its mother's uterus. This event has historically been difficult to study due to the fact that it occurs within the maternal tissue and therefore is hidden from view. In this review, we discuss how the mouse embryo is prepared for implantation and the molecular mechanisms involved in directing and coordinating this crucial event. Prior to implantation, the cells of the embryo are specified as precursors of future embryonic and extra-embryonic lineages. These preimplantation cell fate decisions rely on a combination of factors including cell polarity, position and cell–cell signalling and are influenced by the heterogeneity between early embryo cells. At the point of implantation, signalling events between the embryo and mother, and between the embryonic and extraembryonic compartments of the embryo itself, orchestrate a total reorganization of the embryo, coupled with a burst of cell proliferation. New developments in embryo culture and imaging techniques have recently revealed the growth and morphogenesis of the embryo at the time of implantation, leading to a new model for the blastocyst to egg cylinder transition. In this model, pluripotent cells that will give rise to the fetus self-organize into a polarized three-dimensional rosette-like structure that initiates egg cylinder formation.
Collapse
Affiliation(s)
- Ivan Bedzhov
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge CB2 3DY, UK
| | - Sarah J L Graham
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge CB2 3DY, UK
| | - Chuen Yan Leung
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge CB2 3DY, UK
| | - Magdalena Zernicka-Goetz
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge CB2 3DY, UK
| |
Collapse
|
28
|
Donnison M, Broadhurst R, Pfeffer PL. Elf5 and Ets2 maintain the mouse extraembryonic ectoderm in a dosage dependent synergistic manner. Dev Biol 2014; 397:77-88. [PMID: 25446535 DOI: 10.1016/j.ydbio.2014.10.011] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2014] [Revised: 10/08/2014] [Accepted: 10/14/2014] [Indexed: 01/14/2023]
Abstract
The ETS superfamily transcription factors Elf5 and Ets2 have both been implicated in the maintenance of the extraembryonic ectoderm (ExE) of the mouse embryo. While homozygous mutants of either gene result in various degrees of ExE tissue loss, heterozygotes are without phenotype. We show here that compound heterozygous mutants exhibit a phenotype intermediate to that of the more severe Elf5-/- and the milder Ets2-/- mutants. Functional redundancy is shown via commonalities in expression patterns, in target gene expression, and by partial rescue of Elf5-/- mutants through overexpressing Ets2 in an Elf5-like fashion. A model is presented suggesting the functional division of the ExE region into a proximal and distal domain based on gene expression patterns and the proximal to distal increasing sensitivity to threshold levels of combined Elf5 and Ets2 activity.
Collapse
Affiliation(s)
- Martyn Donnison
- AgResearch Ruakura, 10 Bisley Road, Hamilton 3214, New Zealand
| | - Ric Broadhurst
- AgResearch Ruakura, 10 Bisley Road, Hamilton 3214, New Zealand
| | - Peter L Pfeffer
- AgResearch Ruakura, 10 Bisley Road, Hamilton 3214, New Zealand; School of Biological Sciences, Victoria University of Wellington, PO Box 600, Wellington 6140, New Zealand.
| |
Collapse
|
29
|
Knott JG, Paul S. Transcriptional regulators of the trophoblast lineage in mammals with hemochorial placentation. Reproduction 2014; 148:R121-36. [PMID: 25190503 DOI: 10.1530/rep-14-0072] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Mammalian reproduction is critically dependent on the trophoblast cell lineage, which assures proper establishment of maternal-fetal interactions during pregnancy. Specification of trophoblast cell lineage begins with the development of the trophectoderm (TE) in preimplantation embryos. Subsequently, other trophoblast cell types arise with the progression of pregnancy. Studies with transgenic animal models as well as trophoblast stem/progenitor cells have implicated distinct transcriptional and epigenetic regulators in trophoblast lineage development. This review focuses on our current understanding of transcriptional and epigenetic mechanisms regulating specification, determination, maintenance and differentiation of trophoblast cells.
Collapse
Affiliation(s)
- Jason G Knott
- Developmental Epigenetics LaboratoryDepartment of Animal Science, Michigan State University, East Lansing, Michigan 48824, USADepartment of Pathology and Laboratory MedicineInstitute of Reproductive Health and Regenerative Medicine, University of Kansas Medical Center, Kansas City, Kansas 66160, USA
| | - Soumen Paul
- Developmental Epigenetics LaboratoryDepartment of Animal Science, Michigan State University, East Lansing, Michigan 48824, USADepartment of Pathology and Laboratory MedicineInstitute of Reproductive Health and Regenerative Medicine, University of Kansas Medical Center, Kansas City, Kansas 66160, USA
| |
Collapse
|
30
|
Rivera-Pérez JA, Hadjantonakis AK. The Dynamics of Morphogenesis in the Early Mouse Embryo. Cold Spring Harb Perspect Biol 2014; 7:cshperspect.a015867. [PMID: 24968703 DOI: 10.1101/cshperspect.a015867] [Citation(s) in RCA: 82] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
SUMMARYOver the past two decades, our understanding of mouse development from implantation to gastrulation has grown exponentially with an upsurge of genetic, molecular, cellular, and morphogenetic information. New discoveries have exalted the role of extraembryonic tissues in orchestrating embryonic patterning and axial specification. At the same time, the identification of unexpected morphogenetic processes occurring during mouse gastrulation has challenged established dogmas and brought new insights into the mechanisms driving germ layer formation. In this article, we summarize the key findings that have reinvigorated the contemporary view of early postimplantation mammalian development.
Collapse
Affiliation(s)
- Jaime A Rivera-Pérez
- Department of Cell and Developmental Biology, University of Massachusetts Medical School, Worcester, Massachusetts 01655
| | - Anna-Katerina Hadjantonakis
- Developmental Biology Program, Sloan-Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, New York 10065
| |
Collapse
|
31
|
Latos P, Hemberger M. Review: The transcriptional and signalling networks of mouse trophoblast stem cells. Placenta 2014; 35 Suppl:S81-5. [DOI: 10.1016/j.placenta.2013.10.013] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2013] [Revised: 10/22/2013] [Accepted: 10/23/2013] [Indexed: 02/02/2023]
|
32
|
Ets2-dependent trophoblast signalling is required for gastrulation progression after primitive streak initiation. Nat Commun 2013; 4:1658. [DOI: 10.1038/ncomms2646] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2012] [Accepted: 02/25/2013] [Indexed: 11/09/2022] Open
|
33
|
Transcription factors ETS2 and MESP1 transdifferentiate human dermal fibroblasts into cardiac progenitors. Proc Natl Acad Sci U S A 2012; 109:13016-21. [PMID: 22826236 DOI: 10.1073/pnas.1120299109] [Citation(s) in RCA: 160] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Unique insights for the reprograming of cell lineages have come from embryonic development in the ascidian Ciona, which is dependent upon the transcription factors Ci-ets1/2 and Ci-mesp to generate cardiac progenitors. We tested the idea that mammalian v-ets erythroblastosis virus E26 oncogene homolog 2 (ETS2) and mesoderm posterior (MESP) homolog may be used to convert human dermal fibroblasts into cardiac progenitors. Here we show that murine ETS2 has a critical role in directing cardiac progenitors during cardiopoiesis in embryonic stem cells. We then use lentivirus-mediated forced expression of human ETS2 to convert normal human dermal fibroblasts into replicative cells expressing the cardiac mesoderm marker KDR(+). However, although neither ETS2 nor the purported cardiac master regulator MESP1 can by themselves generate cardiac progenitors de novo from fibroblasts, forced coexpression of ETS2 and MESP1 or cell treatment with purified proteins reprograms fibroblasts into cardiac progenitors, as shown by the de novo appearance of core cardiac transcription factors, Ca(2+) transients, and sarcomeres. Our data indicate that ETS2 and MESP1 play important roles in a genetic network that governs cardiopoiesis.
Collapse
|
34
|
Gupta R, Ezashi T, Roberts RM. Squelching of ETS2 transactivation by POU5F1 silences the human chorionic gonadotropin CGA subunit gene in human choriocarcinoma and embryonic stem cells. Mol Endocrinol 2012; 26:859-72. [PMID: 22446105 DOI: 10.1210/me.2011-1146] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The subunit genes encoding human chorionic gonadotropin, CGA, and CGB, are up-regulated in human trophoblast. However, they are effectively silenced in choriocarcinoma cells by ectopically expressed POU domain class 5 transcription factor 1 (POU5F1). Here we show that POU5F1 represses activity of the CGA promoter through its interactions with ETS2, a transcription factor required for both placental development and human chorionic gonadotropin subunit gene expression, by forming a complex that precludes ETS2 from interacting with the CGA promoter. Mutation of a POU5F1 binding site proximal to the ETS2 binding site does not alter the ability of POU5F1 to act as a repressor but causes a drop in basal promoter activity due to overlap with the binding site for DLX3. DLX3 has only a modest ability to raise basal CGA promoter activity, but its coexpression with ETS2 can up-regulate it 100-fold or more. The two factors form a complex, and both must bind to the promoter for the combination to be transcriptionally effective, a synergy compromised by POU5F1. Similarly, in human embryonic stem cells, which express ETS2 but not CGA, ETS2 does not occupy its binding site on the CGA promoter but is found instead as a soluble complex with POU5F1. When human embryonic stem cells differentiate in response to bone morphogenetic protein-4 and concentrations of POU5F1 fall and hCG and DLX3 rise, ETS2 then occupies its binding site on the CGA promoter. Hence, a squelching mechanism underpins the transcriptional silencing of CGA by POU5F1 and could have general relevance to how pluripotency is maintained and how the trophoblast lineage emerges from pluripotent precursor cells.
Collapse
Affiliation(s)
- Rangan Gupta
- Department of Veterinary Pathobiology, Bond Life Sciences Center, University of Missouri, Columbia, Missouri 65211, USA
| | | | | |
Collapse
|
35
|
Abstract
This review summarises current knowledge about the specification, commitment and maintenance of the trophoblast lineage in mice and cattle. Results from gene expression studies, in vivo loss-of-function models and in vitro systems using trophoblast and embryonic stem cells have been assimilated into a model seeking to explain trophoblast ontogeny via gene regulatory networks. While trophoblast differentiation is quite distinct between cattle and mice, as would be expected from their different modes of implantation, recent studies have demonstrated that differences arise much earlier during trophoblast development.
Collapse
|
36
|
Williams M, Burdsal C, Periasamy A, Lewandoski M, Sutherland A. Mouse primitive streak forms in situ by initiation of epithelial to mesenchymal transition without migration of a cell population. Dev Dyn 2011; 241:270-83. [PMID: 22170865 DOI: 10.1002/dvdy.23711] [Citation(s) in RCA: 102] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/20/2011] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND During gastrulation, an embryo acquires the three primordial germ layers that will give rise to all of the tissues in the body. In amniote embryos, this process occurs via an epithelial to mesenchymal transition (EMT) of epiblast cells at the primitive streak. Although the primitive streak is vital to development, many aspects of how it forms and functions remain poorly understood. RESULTS Using live, 4 dimensional imaging and immunohistochemistry, we have shown that the posterior epiblast of the pre-streak murine embryo does not display convergence and extension behavior or large scale migration or rearrangement of a cell population. Instead, the primitive streak develops in situ and elongates by progressive initiation EMT in the posterior epiblast. Loss of basal lamina (BL) is the first step of this EMT, and is strictly correlated with ingression of nascent mesoderm. Once the BL is lost in a given region, cells leave the epiblast by apical constriction in order to enter the primitive streak. CONCLUSIONS This is the first description of dynamic cell behavior during primitive streak formation in the mouse embryo, and reveals mechanisms that are quite distinct from those observed in other amniote model systems. Unlike chick and rabbit, the murine primitive streak arises in situ by progressive initiation of EMT beginning in the posterior epiblast, without large-scale movement or convergence and extension of epiblast cells.
Collapse
Affiliation(s)
- Margot Williams
- Department of Cell Biology, University of Virginia, Charlottesville, Virginia 22908, USA
| | | | | | | | | |
Collapse
|
37
|
Asanoma K, Kubota K, Chakraborty D, Renaud SJ, Wake N, Fukushima K, Soares MJ, Rumi MAK. SATB homeobox proteins regulate trophoblast stem cell renewal and differentiation. J Biol Chem 2011; 287:2257-68. [PMID: 22123820 DOI: 10.1074/jbc.m111.287128] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The morphogenesis of the hemochorial placenta is dependent upon the precise expansion and differentiation of trophoblast stem (TS) cells. SATB homeobox 1 (SATB1) and SATB2 are related proteins that have been implicated as regulators of some stem cell populations. SATB1 is highly expressed in TS cells, which prompted an investigation of SATB1 and the related SATB2 as regulators of TS cells. SATB1 and SATB2 were highly expressed in rat TS cells maintained in the stem state and rapidly declined following induction of differentiation. SATB proteins were also present within the rat placenta during early stages of its morphogenesis and disappeared as gestation advanced. Silencing Satb1 or Satb2 expression decreased TS cell self-renewal and increased differentiation, whereas ectopic expression of SATB proteins promoted TS cell expansion and blunted differentiation. Eomes, a key transcriptional regulator of TS cells, was identified as a target for SATB proteins. SATB knockdown decreased Eomes transcript levels and promoter activity, whereas SATB ectopic expression increased Eomes transcript levels and promoter activity. Electrophoretic mobility shift assay as well as chromatin immunoprecipitation analyses demonstrated that SATB proteins physically associate with a regulatory site within the Eomes promoter. We conclude that SATB proteins promote TS cell renewal and inhibit differentiation. These actions are mediated in part by regulating the expression of the TS cell stem-associated transcription factor, EOMES.
Collapse
Affiliation(s)
- Kazuo Asanoma
- Institute for Reproductive Health and Regenerative Medicine, Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, Kansas 66160, USA
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Abstract
Etv2 (Ets Variant 2) has been shown to be an indispensable gene for the development of hematopoietic cells (HPCs)/endothelial cells (ECs). However, how Etv2 specifies the mesoderm-generating HPCs/ECs remains incompletely understood. In embryonic stem cell (ESC) differentiation culture and Etv2-null embryos, we show that Etv2 is dispensable for generating primitive Flk-1(+)/PDGFRα(+) mesoderm but is required for the progression of Flk-1(+)/PDGFRα(+) cells into vascular/hematopoietic mesoderm. Etv2-null ESCs and embryonic cells were arrested as Flk-1(+)/PDGFRα(+) and failed to generate Flk-1(+)/PDGFRα(-) mesoderm. Flk-1(+)/Etv2(+) early embryonic cells showed significantly higher hemato-endothelial potential than the Flk-1(+)/Etv2(-) population, suggesting that Etv2 specifies a hemato-endothelial subset of Flk-1(+) mesoderm. Critical hemato-endothelial genes were severely down-regulated in Etv2-null Flk-1(+) cells. Among those genes Scl, Fli1, and GATA2 were expressed simultaneously with Etv2 in early embryos and seemed to be critical targets. Etv2 reexpression in Etv2-null cells restored the development of CD41(+), CD45(+), and VE-cadherin(+) cells. Expression of Scl or Fli1 alone could also restore HPCs/ECs in the Etv2-null background, indicating that these 2 genes are critical downstream targets. Furthermore, VEGF induced Etv2 potently and rapidly in Flk-1(+) mesoderm. We propose that Flk-1(+)/PDGFRα(+) primitive mesoderm is committed into Flk-1(+)/PDGFRα(-) vascular mesoderm through Etv2 and that up-regulation of Etv2 by VEGF promotes this commitment.
Collapse
|
39
|
Berg DK, Smith CS, Pearton DJ, Wells DN, Broadhurst R, Donnison M, Pfeffer PL. Trophectoderm lineage determination in cattle. Dev Cell 2011; 20:244-55. [PMID: 21316591 DOI: 10.1016/j.devcel.2011.01.003] [Citation(s) in RCA: 238] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2010] [Revised: 11/30/2010] [Accepted: 01/03/2011] [Indexed: 12/21/2022]
Abstract
The trophectoderm (TE) and inner cell mass (ICM) are committed and marked by reciprocal expression of Cdx2 and Oct4 in mouse late blastocysts. We find that the TE is not committed at equivalent stages in cattle, and that bovine Cdx2 is required later, for TE maintenance, but does not repress Oct4 expression. A mouse Oct4 (mOct4) reporter, repressed in mouse TE, remained active in the cattle TE; bovine Oct4 constructs were not repressed in the mouse TE. mOct4 has acquired Tcfap2 binding sites mediating Cdx2-independent repression-cattle, humans, and rabbits do not contain these sites and maintain high Oct4 levels in the TE. Our data suggest that the regulatory circuitry determining ICM/TE identity has been rewired in mice, to allow rapid TE differentiation and early blastocyst implantation. These findings thus emphasize ways in which mice may not be representative of the earliest stages of mammalian development and stem cell biology.
Collapse
Affiliation(s)
- Debra K Berg
- Reproductive Technologies, AgResearch Crown Research Institute, Hamilton 3214, New Zealand
| | | | | | | | | | | | | |
Collapse
|
40
|
Abstract
Trophoblast stem cells (TSC) are the precursors of the differentiated cells of the placenta. In the mouse, TSC can be derived from outgrowths of either blastocyst polar trophectoderm (TE) or extraembryonic ectoderm (ExE), which originates from polar TE after implantation. The mouse TSC niche appears to be located within the ExE adjacent to the epiblast, on which it depends for essential growth factors, but whether this cellular architecture is the same in other species remains to be determined. Mouse TSC self-renewal can be sustained by culture on mitotically inactivated feeder cells, which provide one or more factors related to the NODAL pathway, and a medium supplemented with FGF4, heparin, and fetal bovine serum. Repression of the gene network that maintains pluripotency and emergence of the transcription factor pathways that specify a trophoblast (TR) fate enables TSC derivation in vitro and placental formation in vivo. Disrupting the pluripotent network of embryonic stem cells (ESC) causes them to default to a TR ground state. Pluripotent cells that have acquired sublethal chromosomal alterations may be sequestered into TR for similar reasons. The transition from ESC to TSC, which appears to be unidirectional, reveals important aspects of initial fate decisions in mice. TSC have yet to be derived from domestic species in which remarkable TR growth precedes embryogenesis. Recent derivation of TSC from blastocysts of the rhesus monkey suggests that isolation of the human equivalents may be possible and will reveal the extent to which mechanisms uncovered by using animal models are true in our own species.
Collapse
Affiliation(s)
- R Michael Roberts
- Division of Animal Sciences, Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA.
| | | |
Collapse
|
41
|
Senner CE, Hemberger M. Regulation of early trophoblast differentiation - lessons from the mouse. Placenta 2010; 31:944-50. [PMID: 20797785 DOI: 10.1016/j.placenta.2010.07.013] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2010] [Revised: 07/23/2010] [Accepted: 07/26/2010] [Indexed: 11/22/2022]
Abstract
The earliest stages of trophoblast differentiation are of tremendous importance to mediate implantation and to lay the anatomical foundations for normal placental development and function throughout gestation. Yet our molecular insights into these early developmental processes in humans have been limited by the inaccessibility of material and the unavailability of trophoblast cell lines that fully recapitulate the behaviour of early placental trophoblast. In this review we highlight recent advances that have come from the study of distinct stem cell types representative of the embryonic and extraembryonic lineages in the mouse, and from the study of mouse mutants. These models have revealed the presence of intricate transcriptional networks that are set up by signalling pathways, translating extracellular growth factor and cell positional information into distinct lineage-specific transcriptional programmes. The trophoblast specificity of these networks is ensured by epigenetic mechanisms including DNA methylation and histone modifications that complement each other to define trophoblast cell fate and differentiation. Despite the anatomical differences between mouse and human placentas, it seems that important aspects of early trophoblast specification are conserved between both species. Thus we may be able to build on our insights from the mouse to better understand early trophoblast differentiation in the human conceptus which is important for improving assisted reproductive technologies and may enable us in the future to derive human trophoblast stem cell lines. These advances will facilitate the investigation of genetic, epigenetic and environmental influences on early trophoblast differentiation in normal as well as in pathological conditions.
Collapse
Affiliation(s)
- C E Senner
- Laboratory for Developmental Genetics & Imprinting, The Babraham Institute, Babraham Research Campus, Cambridge CB22 3AT, UK
| | | |
Collapse
|
42
|
Odiatis C, Georgiades P. New insights for Ets2 function in trophoblast using lentivirus-mediated gene knockdown in trophoblast stem cells. Placenta 2010; 31:630-40. [PMID: 20569982 DOI: 10.1016/j.placenta.2010.05.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2010] [Revised: 04/30/2010] [Accepted: 05/04/2010] [Indexed: 11/26/2022]
Abstract
Mouse trophoblast stem (TS) cells represent a unique in vitro system that provides an unlimited supply of TS cells for the study of trophoblast differentiation and TS cell self-renewal. Although the mouse transcription factor Ets2 is required for TS cell self-renewal, its role in this and in TS cell differentiation has not been explored fully, partly due to the early lethality of Ets2 null mice. To address this, we developed a novel lentivirus-based system that resulted in efficient Ets2 knockdown in the overwhelming majority of TS cells. This system enables functional studies in TS cells, especially for genes required for TS cell self-renewal because TS cell derivation using gene-knockout embryos for such genes depends on TS cell self-renewal. Using morphological/morphometric criteria and gene expression analysis, we show that the requirement for Ets2 in self-renewal of TS cells cultured in 'stem cell medium' (SCM) involves maintenance of the expression of genes that inhibit TS cell differentiation in SCM, such as Cdx2 and Esrrb, and preservation of the undifferentiated TS cell morphology. During TS cell differentiation caused by Cdx2/Esrrb downregulation, due to either Ets2 knockdown in SCM or culture in differentiation medium (DM), Ets2 is also required for the promotion of trophoblast giant cell (TGC) and junctional zone trophoblast (JZT) differentiation. This TGC differentiation involves Ets2-dependent expression of Hand1, a gene required for the differentiation of all TGC types. This study uncovers new roles for Ets2 in TS cell self-renewal and differentiation and demonstrates the usefulness of this lentivirus system for gene function studies in TS cells.
Collapse
Affiliation(s)
- C Odiatis
- Department of Biological Sciences, University of Cyprus, University Campus, Nicosia, Cyprus
| | | |
Collapse
|
43
|
Villegas SN, Canham M, Brickman JM. FGF signalling as a mediator of lineage transitions--evidence from embryonic stem cell differentiation. J Cell Biochem 2010; 110:10-20. [PMID: 20336694 DOI: 10.1002/jcb.22536] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The fibroblast growth factor (FGF) signalling pathway is one of the most ubiquitous in biology. It has diverse roles in development, differentiation and cancer. Embryonic stem (ES) cells are in vitro cell lines capable of differentiating into all the lineages of the conceptus. As such they have the capacity to differentiate into derivatives of all three germ layers and to some extent the extra-embryonic lineages as well. Given the prominent role of FGF signalling in early embryonic development, we explore the role of this pathway in early ES cell differentiation towards the major lineages of the embryo. As early embryonic differentiation is intricately choreographed at the level of morphogenetic movement, adherent ES cell culture affords a unique opportunity to study the basic steps in early lineage specification in the absence of ever shifting complex in vivo microenvironments. Thus recent experiments in ES cell differentiation are able to pinpoint specific FGF dependent lineage transitions that are difficult to resolve in vivo. Here we review the role of FGF signalling in early development alongside the ES cell data and suggest that FGF dependent signalling via phospho-Erk activation maybe a major mediator of transitions in lineage specification.
Collapse
Affiliation(s)
- Santiago Nahuel Villegas
- Institute for Stem Cell Research, MRC Centre for Regenerative Medicine, King's Buildings, West Mains Rd., Edinburgh EH9 3JQ, UK
| | | | | |
Collapse
|
44
|
Maltepe E, Bakardjiev AI, Fisher SJ. The placenta: transcriptional, epigenetic, and physiological integration during development. J Clin Invest 2010; 120:1016-25. [PMID: 20364099 DOI: 10.1172/jci41211] [Citation(s) in RCA: 211] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The placenta provides critical transport functions between the maternal and fetal circulations during intrauterine development. Formation of this interface relies on coordinated interactions among transcriptional, epigenetic, and environmental factors. Here we describe these mechanisms in the context of the differentiation of placental cells (trophoblasts) and synthesize current knowledge about how they interact to generate a functional placenta. Developing an understanding of these pathways contributes to an improvement of our models for studying trophoblast biology and sheds light on the etiology of pregnancy complications and the in utero programming of adult diseases.
Collapse
Affiliation(s)
- Emin Maltepe
- Department of Pediatrics, Eli and Edythe Broad Center for Regeneration Medicine and Stem Cell Research, Center for Reproductive Sciences, University of California, San Francisco, 513 Parnassus Ave. HSE-1401, Box 1346, San Francisco, CA 94143-1346, USA.
| | | | | |
Collapse
|
45
|
Hill CA, Sussan TE, Reeves RH, Richtsmeier JT. Complex contributions of Ets2 to craniofacial and thymus phenotypes of trisomic "Down syndrome" mice. Am J Med Genet A 2009; 149A:2158-65. [PMID: 19764029 DOI: 10.1002/ajmg.a.33012] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Ts65Dn mice have segmental trisomy for orthologs of about half of the genes on human chromosome 21, including Ets2. These mice develop anomalies of the cranial skeleton and thymus that parallel those in Down syndrome. Overexpression of the Ets2 transcription factor gene was posited to be sufficient to produce these craniofacial and thymus deficits in transgenic mice that constitutively overexpress a processed Ets2 transcript under a promiscuous promoter [Sumarsono et al. (1996); Nature 379:534-537; Wolvetang et al. (2003); Hum Mol Genet 12:247-255]. Evaluation of trisomic mice with varying copy numbers of a properly regulated Ets2 gene indicated increased dosage of Ets2 was not sufficient to produce effects on thymus and most of the cranial anomalies seen in Ts65Dn mice. However, mesoderm-derived cranial skeletal elements are significantly more affected in Ts65Dn, Ets2(+/-) mice compared to Ts65Dn littermates suggesting a differential interaction of Ets2-related processes with mesoderm-derived and neural crest-derived formative tissues. Our results support the growing evidence for interactions among multiple genes contributing to developmental perturbations resulting in variation in complex Down syndrome phenotypes.
Collapse
Affiliation(s)
- Cheryl A Hill
- Department of Anthropology, Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | | | | | | |
Collapse
|
46
|
Axial differentiation and early gastrulation stages of the pig embryo. Differentiation 2009; 78:301-11. [DOI: 10.1016/j.diff.2009.07.006] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2009] [Revised: 07/20/2009] [Accepted: 07/23/2009] [Indexed: 11/23/2022]
|
47
|
Early alteration of the self-renewal/differentiation threshold in trophoblast stem cells derived from mouse embryos after nuclear transfer. Dev Biol 2009; 334:325-34. [DOI: 10.1016/j.ydbio.2009.07.022] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2009] [Revised: 06/12/2009] [Accepted: 07/09/2009] [Indexed: 02/04/2023]
|
48
|
Jedlicka P, Sui X, Sussel L, Gutierrez-Hartmann A. Ets transcription factors control epithelial maturation and transit and crypt-villus morphogenesis in the mammalian intestine. THE AMERICAN JOURNAL OF PATHOLOGY 2009; 174:1280-90. [PMID: 19264912 DOI: 10.2353/ajpath.2009.080409] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Members of the Ets transcription factor family are widely expressed in both the developing and mature mammalian intestine, but their biological functions remain primarily uncharacterized. We used a dominant repressor transgene approach to probe the function of epithelial Ets factors in the homeostasis of the crypt-villus unit, the functional unit of the small intestine. We show that targeted expression in small intestinal epithelium of a fusion protein composed of the Engrailed repressor domain and the Erm DNA-binding domain (En/Erm) results in marked disruption of normal crypt-villus homeostasis, including a cell-autonomous disturbance of epithelial maturation, increased epithelial transit, severe villus dysmorphogenesis, and crypt dysmorphogenesis. The epithelial maturation disturbance is independent of the regulation of TGFbetaRII levels, in contrast to Ets-mediated epithelial differentiation during development; rather, regulation of Cdx2 expression may play a role. The villus dysmorphogenesis is independent of alterations in the crypt-villus boundary and inappropriate beta-catenin activation, and thus appears to represent a new mechanism controlling villus architectural organization. An Analysis of animals mosaic for En/Erm expression suggests that crypt nonautonomous mechanisms underlie the crypt dysmorphogenesis phenotype. Our studies thus uncover novel Ets-regulated pathways of intestinal homeostasis in vivo. Interestingly, the overall En/Erm phenotype of disturbed crypt-villus homeostasis is consistent with recently identified Ets function(s) in the restriction of intestinal epithelial tumorigenesis.
Collapse
Affiliation(s)
- Paul Jedlicka
- Department of Pathology, University of Colorado Denver, Anschutz Medical Center, PO Box 6511, MS 8104, Aurora CO 80045, USA.
| | | | | | | |
Collapse
|
49
|
Coolen M, Menuet A, Mazan S. Towards a synthetic view of axis specification mechanisms in vertebrates: insights from the dogfish. C R Biol 2009; 332:210-8. [DOI: 10.1016/j.crvi.2008.07.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2008] [Accepted: 07/12/2008] [Indexed: 12/18/2022]
|
50
|
Yamamoto M, Beppu H, Takaoka K, Meno C, Li E, Miyazono K, Hamada H. Antagonism between Smad1 and Smad2 signaling determines the site of distal visceral endoderm formation in the mouse embryo. ACTA ACUST UNITED AC 2009; 184:323-34. [PMID: 19153222 PMCID: PMC2654303 DOI: 10.1083/jcb.200808044] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
The anterior–posterior axis of the mouse embryo is established by formation of distal visceral endoderm (DVE) and its subsequent migration. The precise mechanism of DVE formation has remained unknown, however. Here we show that bone morphogenetic protein (BMP) signaling plays dual roles in DVE formation. BMP signaling is required at an early stage for differentiation of the primitive endoderm into the embryonic visceral endoderm (VE), whereas it inhibits DVE formation, restricting it to the distal region, at a later stage. A Smad2-activating factor such as Activin also contributes to DVE formation by generating a region of VE positive for the Smad2 signal and negative for Smad1 signal. DVE is thus formed at the distal end of the embryo, the only region of VE negative for the Smad1 signal and positive for Smad2 signal. An inverse relation between the level of phosphorylated Smad1 and that of phosphorylated Smad2 in VE suggests an involvement of antagonism between Smad1- and Smad2-mediated signaling.
Collapse
Affiliation(s)
- Masamichi Yamamoto
- Developmental Genetics Group, Graduate School of Frontier Biosciences, Osaka University, Osaka, Japan.
| | | | | | | | | | | | | |
Collapse
|