1
|
Zhao X, Yang X, Lv P, Xu Y, Wang X, Zhao Z, Du J. Polycomb regulates circadian rhythms in Drosophila in clock neurons. Life Sci Alliance 2024; 7:e202302140. [PMID: 37914396 PMCID: PMC10620068 DOI: 10.26508/lsa.202302140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 10/15/2023] [Accepted: 10/17/2023] [Indexed: 11/03/2023] Open
Abstract
Circadian rhythms are essential physiological feature for most living organisms. Previous studies have shown that epigenetic regulation plays a crucial role. There is a knowledge gap in the chromatin state of some key clock neuron clusters. In this study, we show that circadian rhythm is affected by the epigenetic regulator Polycomb (Pc) within the Drosophila clock neurons. To investigate the molecular mechanisms underlying the roles of Pc in these clock neuron clusters, we use targeted DamID (TaDa) to identify genes significantly bound by Pc in the neurons marked by C929-Gal4 (including l-LNvs cluster), R6-Gal4 (including s-LNvs cluster), R18H11-Gal4 (including DN1 cluster), and DVpdf-Gal4, pdf-Gal80 (including LNds cluster). It shows that Pc binds to the genes involved in the circadian rhythm pathways, arguing a direct role for Pc in regulating circadian rhythms through specific clock genes. This study shows the identification of Pc targets in the clock neuron clusters, providing potential resource for understanding the regulatory mechanisms of circadian rhythms by the PcG complex. Thus, this study provided an example for epigenetic regulation of adult behavior.
Collapse
Affiliation(s)
- Xianguo Zhao
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China
| | - Xingzhuo Yang
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China
| | - Pengfei Lv
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China
| | - Yuetong Xu
- Department of Crop Genomics and Bioinformatics, College of Agronomy and Biotechnology, National Maize Improvement Center of China, China Agricultural University, Beijing, China
| | - Xiangfeng Wang
- Department of Crop Genomics and Bioinformatics, College of Agronomy and Biotechnology, National Maize Improvement Center of China, China Agricultural University, Beijing, China
| | - Zhangwu Zhao
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China
| | - Juan Du
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China
| |
Collapse
|
2
|
Shpak M, Ghanavi HR, Lange JD, Pool JE, Stensmyr MC. Genomes from historical Drosophila melanogaster specimens illuminate adaptive and demographic changes across more than 200 years of evolution. PLoS Biol 2023; 21:e3002333. [PMID: 37824452 PMCID: PMC10569592 DOI: 10.1371/journal.pbio.3002333] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 09/11/2023] [Indexed: 10/14/2023] Open
Abstract
The ability to perform genomic sequencing on long-dead organisms is opening new frontiers in evolutionary research. These opportunities are especially notable in the case of museum collections, from which countless documented specimens may now be suitable for genomic analysis-if data of sufficient quality can be obtained. Here, we report 25 newly sequenced genomes from museum specimens of the model organism Drosophila melanogaster, including the oldest extant specimens of this species. By comparing historical samples ranging from the early 1800s to 1933 against modern-day genomes, we document evolution across thousands of generations, including time periods that encompass the species' initial occupation of northern Europe and an era of rapidly increasing human activity. We also find that the Lund, Sweden population underwent local genetic differentiation during the early 1800s to 1933 interval (potentially due to drift in a small population) but then became more similar to other European populations thereafter (potentially due to increased migration). Within each century-scale time period, our temporal sampling allows us to document compelling candidates for recent natural selection. In some cases, we gain insights regarding previously implicated selection candidates, such as ChKov1, for which our inferred timing of selection favors the hypothesis of antiviral resistance over insecticide resistance. Other candidates are novel, such as the circadian-related gene Ahcy, which yields a selection signal that rivals that of the DDT resistance gene Cyp6g1. These insights deepen our understanding of recent evolution in a model system, and highlight the potential of future museomic studies.
Collapse
Affiliation(s)
- Max Shpak
- Laboratory of Genetics, University of Wisconsin–Madison, Madison, Wisconsin, United States of America
| | | | - Jeremy D. Lange
- Laboratory of Genetics, University of Wisconsin–Madison, Madison, Wisconsin, United States of America
| | - John E. Pool
- Laboratory of Genetics, University of Wisconsin–Madison, Madison, Wisconsin, United States of America
| | - Marcus C. Stensmyr
- Department of Biology, Lund University, Lund, Scania, Sweden
- Max Planck Center on Next Generation Insect Chemical Ecology, Lund, Sweden
| |
Collapse
|
3
|
Jangam SV, Briere LC, Jay KL, Andrews JC, Walker MA, Rodan LH, High FA, Undiagnosed Diseases Network, Yamamoto S, Sweetser DA, Wangler MF. A de novo missense variant in EZH1 associated with developmental delay exhibits functional deficits in Drosophila melanogaster. Genetics 2023; 224:iyad110. [PMID: 37314226 PMCID: PMC10411565 DOI: 10.1093/genetics/iyad110] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 01/13/2023] [Accepted: 05/31/2023] [Indexed: 06/15/2023] Open
Abstract
EZH1, a polycomb repressive complex-2 component, is involved in a myriad of cellular processes. EZH1 represses transcription of downstream target genes through histone 3 lysine27 (H3K27) trimethylation (H3K27me3). Genetic variants in histone modifiers have been associated with developmental disorders, while EZH1 has not yet been linked to any human disease. However, the paralog EZH2 is associated with Weaver syndrome. Here we report a previously undiagnosed individual with a novel neurodevelopmental phenotype identified to have a de novo missense variant in EZH1 through exome sequencing. The individual presented in infancy with neurodevelopmental delay and hypotonia and was later noted to have proximal muscle weakness. The variant, p.A678G, is in the SET domain, known for its methyltransferase activity, and an analogous somatic or germline mutation in EZH2 has been reported in patients with B-cell lymphoma or Weaver syndrome, respectively. Human EZH1/2 are homologous to fly Enhancer of zeste (E(z)), an essential gene in Drosophila, and the affected residue (p.A678 in humans, p.A691 in flies) is conserved. To further study this variant, we obtained null alleles and generated transgenic flies expressing wildtype [E(z)WT] and the variant [E(z)A691G]. When expressed ubiquitously the variant rescues null-lethality similar to the wildtype. Overexpression of E(z)WT induces homeotic patterning defects but notably the E(z)A691G variant leads to dramatically stronger morphological phenotypes. We also note a dramatic loss of H3K27me2 and a corresponding increase in H3K27me3 in flies expressing E(z)A691G, suggesting this acts as a gain-of-function allele. In conclusion, here we present a novel EZH1 de novo variant associated with a neurodevelopmental disorder. Furthermore, we found that this variant has a functional impact in Drosophila.
Collapse
Affiliation(s)
- Sharayu V Jangam
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX 77030, USA
| | - Lauren C Briere
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Kristy L Jay
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX 77030, USA
| | - Jonathan C Andrews
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX 77030, USA
| | - Melissa A Walker
- Department of Neurology, Division of Neurogenetics, Child Neurology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Lance H Rodan
- Department of Neurology, Boston Children's Hospital, Boston, MA 02115, USA
| | - Frances A High
- Division of Medical Genetics and Metabolism, Massachusetts General Hospital for Children, Boston, MA 02114, USA
| | | | - Shinya Yamamoto
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX 77030, USA
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA
| | - David A Sweetser
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
- Division of Medical Genetics and Metabolism, Massachusetts General Hospital for Children, Boston, MA 02114, USA
| | - Michael F Wangler
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX 77030, USA
| |
Collapse
|
4
|
Bu S, Lau SSY, Yong WL, Zhang H, Thiagarajan S, Bashirullah A, Yu F. Polycomb group genes are required for neuronal pruning in Drosophila. BMC Biol 2023; 21:33. [PMID: 36793038 PMCID: PMC9933400 DOI: 10.1186/s12915-023-01534-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 02/02/2023] [Indexed: 02/17/2023] Open
Abstract
BACKGROUND Pruning that selectively eliminates unnecessary or incorrect neurites is required for proper wiring of the mature nervous system. During Drosophila metamorphosis, dendritic arbourization sensory neurons (ddaCs) and mushroom body (MB) γ neurons can selectively prune their larval dendrites and/or axons in response to the steroid hormone ecdysone. An ecdysone-induced transcriptional cascade plays a key role in initiating neuronal pruning. However, how downstream components of ecdysone signalling are induced remains not entirely understood. RESULTS Here, we identify that Scm, a component of Polycomb group (PcG) complexes, is required for dendrite pruning of ddaC neurons. We show that two PcG complexes, PRC1 and PRC2, are important for dendrite pruning. Interestingly, depletion of PRC1 strongly enhances ectopic expression of Abdominal B (Abd-B) and Sex combs reduced, whereas loss of PRC2 causes mild upregulation of Ultrabithorax and Abdominal A in ddaC neurons. Among these Hox genes, overexpression of Abd-B causes the most severe pruning defects, suggesting its dominant effect. Knockdown of the core PRC1 component Polyhomeotic (Ph) or Abd-B overexpression selectively downregulates Mical expression, thereby inhibiting ecdysone signalling. Finally, Ph is also required for axon pruning and Abd-B silencing in MB γ neurons, indicating a conserved function of PRC1 in two types of pruning. CONCLUSIONS This study demonstrates important roles of PcG and Hox genes in regulating ecdysone signalling and neuronal pruning in Drosophila. Moreover, our findings suggest a non-canonical and PRC2-independent role of PRC1 in Hox gene silencing during neuronal pruning.
Collapse
Affiliation(s)
- Shufeng Bu
- Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, Singapore, 117604, Singapore
- Department of Biological Sciences, National University of Singapore, Singapore, 117543, Singapore
| | - Samuel Song Yuan Lau
- Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, Singapore, 117604, Singapore
| | - Wei Lin Yong
- Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, Singapore, 117604, Singapore
| | - Heng Zhang
- Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, Singapore, 117604, Singapore
| | - Sasinthiran Thiagarajan
- Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, Singapore, 117604, Singapore
- Department of Biological Sciences, National University of Singapore, Singapore, 117543, Singapore
| | - Arash Bashirullah
- Division of Pharmaceutical Sciences, University of Wisconsin-Madison, Madison, WI, 53705-2222, USA
| | - Fengwei Yu
- Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, Singapore, 117604, Singapore.
- Department of Biological Sciences, National University of Singapore, Singapore, 117543, Singapore.
| |
Collapse
|
5
|
Jangam S, Briere LC, Jay K, Andrews JC, Walker MA, Rodan LH, High FA, Yamamoto S, Sweetser DA, Wangler M. A de novo missense variant in EZH1 associated with developmental delay exhibits functional deficits in Drosophila melanogaster. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.01.31.23285113. [PMID: 36778246 PMCID: PMC9915809 DOI: 10.1101/2023.01.31.23285113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
EZH1 ( Enhancer of Zeste, homolog 1) , a Polycomb Repressive Complex-2 (PRC2) component, is involved in a myriad of cellular processes through modifying histone 3 lysine27 (H3K27) residues. EZH1 represses transcription of downstream target genes through H3K27 trimethylation (H3K27me3). Genetic mutations in histone modifiers have been associated with developmental disorders, while EZH1 has not yet been linked to any human disease. However, the paralog EZH2 is associated with Weaver syndrome. Here we report a previously undiagnosed individual with a novel neurodevelopmental phenotype identified to have a de novo variant in EZH1 , p.Ala678Gly, through exome sequencing. The individual presented in infancy with neurodevelopmental delay and hypotonia and was later noted to have proximal muscle weakness. The variant, p.A678G, is in the SET domain, known for its methyltransferase activity, and was the best candidate variant found in the exome. Human EZH1 / 2 are homologous to fly Enhancer of zeste E(z) , an essential gene in flies, and the residue (A678 in humans, A691 in Drosophila ) is conserved. To further study this variant, we obtained Drosophila null alleles and generated transgenic flies expressing wild-type (E(z) WT ) and the variant (E(z) A691G ) . The E(z) A691G variant led to hyper H3K27me3 while the E(z) WT did not, suggesting this is as a gain-of-function allele. When expressed under the tubulin promotor in vivo the variant rescued null-lethality similar to wild-type but the E(z) A691G flies exhibit bang sensitivity and shortened lifespan. In conclusion, here we present a novel EZH1 de novo variant associated with a neurodevelopmental disorder. Furthermore, we found that this variant has a functional impact in Drosophila . Biochemically this allele leads to increased H3K27me3 suggesting gain-of-function, but when expressed in adult flies the E(z) A691G has some characteristics of partial loss-of-function which may suggest it is a more complex allele in vivo .
Collapse
Affiliation(s)
- Sharayu Jangam
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, 77030 USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, Texas, 77030 USA
| | - Lauren C Briere
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Kristy Jay
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, 77030 USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, Texas, 77030 USA
- Genetics and Genomics program, Baylor College of Medicine, Houston, Texas, 77030 USA
| | - Jonathan C Andrews
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, 77030 USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, Texas, 77030 USA
| | - Melissa A Walker
- Department of Neurology, Division of Neurogenetics, Child Neurology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Lance H Rodan
- Department of Neurology, Boston Children's Hospital, Boston, MA 02115, USA
| | - Frances A High
- Division of Medical Genetics & Metabolism, Massachusetts General Hospital for Children, Boston, MA 02114, USA
| | - Shinya Yamamoto
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, 77030 USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, Texas, 77030 USA
- Genetics and Genomics program, Baylor College of Medicine, Houston, Texas, 77030 USA
| | - David A Sweetser
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
- Division of Medical Genetics & Metabolism, Massachusetts General Hospital for Children, Boston, MA 02114, USA
| | - Michael Wangler
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, 77030 USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, Texas, 77030 USA
- Genetics and Genomics program, Baylor College of Medicine, Houston, Texas, 77030 USA
| |
Collapse
|
6
|
Apitz H, Salecker I. Retinal determination genes coordinate neuroepithelial specification and neurogenesis modes in the Drosophila optic lobe. Development 2017; 143:2431-42. [PMID: 27381228 PMCID: PMC4958324 DOI: 10.1242/dev.135004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Accepted: 05/18/2016] [Indexed: 12/15/2022]
Abstract
Differences in neuroepithelial patterning and neurogenesis modes contribute to area-specific diversifications of neural circuits. In the Drosophila visual system, two neuroepithelia, the outer (OPC) and inner (IPC) proliferation centers, generate neuron subtypes for four ganglia in several ways. Whereas neuroepithelial cells in the medial OPC directly convert into neuroblasts, in an IPC subdomain they generate migratory progenitors by epithelial-mesenchymal transition that mature into neuroblasts in a second proliferative zone. The molecular mechanisms that regulate the identity of these neuroepithelia, including their neurogenesis modes, remain poorly understood. Analysis of Polycomblike revealed that loss of Polycomb group-mediated repression of the Hox gene Abdominal-B (Abd-B) caused the transformation of OPC to IPC neuroepithelial identity. This suggests that the neuroepithelial default state is IPC-like, whereas OPC identity is derived. Ectopic Abd-B blocks expression of the highly conserved retinal determination gene network members Eyes absent (Eya), Sine oculis (So) and Homothorax (Hth). These factors are essential for OPC specification and neurogenesis control. Finally, eya and so are also sufficient to confer OPC-like identity, and, in parallel with hth, the OPC-specific neurogenesis mode on the IPC. Summary: Polycomb-mediated repression of the Abd-B Hox gene controls expression of retinal determination genes and hence identity of the Drosophila optic lobe neuroepithelia.
Collapse
Affiliation(s)
- Holger Apitz
- The Francis Crick Institute, Mill Hill Laboratory, London NW7 1AA, UK
| | - Iris Salecker
- The Francis Crick Institute, Mill Hill Laboratory, London NW7 1AA, UK
| |
Collapse
|
7
|
McKerrow WH, Savva YA, Rezaei A, Reenan RA, Lawrence CE. Predicting RNA hyper-editing with a novel tool when unambiguous alignment is impossible. BMC Genomics 2017; 18:522. [PMID: 28693467 PMCID: PMC5502491 DOI: 10.1186/s12864-017-3898-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Accepted: 06/22/2017] [Indexed: 12/13/2022] Open
Abstract
Background Repetitive elements are now known to have relevant cellular functions, including self-complementary sequences that form double stranded (ds) RNA. There are numerous pathways that determine the fate of endogenous dsRNA, and misregulation of endogenous dsRNA is a driver of autoimmune disease, particularly in the brain. Unfortunately, the alignment of high-throughput, short-read sequences to repeat elements poses a dilemma: Such sequences may align equally well to multiple genomic locations. In order to differentiate repeat elements, current alignment methods depend on sequence variation in the reference genome. Reads are discarded when no such variations are present. However, RNA hyper-editing, a possible fate for dsRNA, introduces enough variation to distinguish between repeats that are otherwise identical. Results To take advantage of this variation, we developed a new algorithm, RepProfile, that simultaneously aligns reads and predicts novel variations. RepProfile accurately aligns hyper-edited reads that other methods discard. In particular we predict hyper-editing of Drosophila melanogaster repeat elements in vivo at levels previously described only in vitro, and provide validation by Sanger sequencing sixty-two individual cloned sequences. We find that hyper-editing is concentrated in genes involved in cell-cell communication at the synapse, including some that are associated with neurodegeneration. We also find that hyper-editing tends to occur in short runs. Conclusions Previous studies of RNA hyper-editing discarded ambiguously aligned reads, ignoring hyper-editing in long, perfect dsRNA – the perfect substrate for hyper-editing. We provide a method that simulation and Sanger validation show accurately predicts such RNA editing, yielding a superior picture of hyper-editing. Electronic supplementary material The online version of this article (doi:10.1186/s12864-017-3898-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Wilson H McKerrow
- Division of Applied Mathematics, Brown University, Providence, 02912, RI, USA.
| | - Yiannis A Savva
- Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, 02912, RI, USA
| | - Ali Rezaei
- Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, 02912, RI, USA
| | - Robert A Reenan
- Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, 02912, RI, USA
| | - Charles E Lawrence
- Division of Applied Mathematics, Brown University, Providence, 02912, RI, USA
| |
Collapse
|
8
|
Henry GL, Davis FP, Picard S, Eddy SR. Cell type-specific genomics of Drosophila neurons. Nucleic Acids Res 2012; 40:9691-704. [PMID: 22855560 PMCID: PMC3479168 DOI: 10.1093/nar/gks671] [Citation(s) in RCA: 113] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Many tools are available to analyse genomes but are often challenging to use in a cell type–specific context. We have developed a method similar to the isolation of nuclei tagged in a specific cell type (INTACT) technique [Deal,R.B. and Henikoff,S. (2010) A simple method for gene expression and chromatin profiling of individual cell types within a tissue. Dev. Cell, 18, 1030–1040; Steiner,F.A., Talbert,P.B., Kasinathan,S., Deal,R.B. and Henikoff,S. (2012) Cell-type-specific nuclei purification from whole animals for genome-wide expression and chromatin profiling. Genome Res., doi:10.1101/gr.131748.111], first developed in plants, for use in Drosophila neurons. We profile gene expression and histone modifications in Kenyon cells and octopaminergic neurons in the adult brain. In addition to recovering known gene expression differences, we also observe significant cell type–specific chromatin modifications. In particular, a small subset of differentially expressed genes exhibits a striking anti-correlation between repressive and activating histone modifications. These genes are enriched for transcription factors, recovering those known to regulate mushroom body identity and predicting analogous regulators of octopaminergic neurons. Our results suggest that applying INTACT to specific neuronal populations can illuminate the transcriptional regulatory networks that underlie neuronal cell identity.
Collapse
Affiliation(s)
- Gilbert L Henry
- Janelia Farm Research Campus, Howard Hughes Medical Institute, 19700 Helix Drive, Ashburn, VA 20147, USA.
| | | | | | | |
Collapse
|
9
|
Touma JJ, Weckerle FF, Cleary MD. Drosophila Polycomb complexes restrict neuroblast competence to generate motoneurons. Development 2012; 139:657-66. [DOI: 10.1242/dev.071589] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Similar to mammalian neural progenitors, Drosophila neuroblasts progressively lose competence to make early-born neurons. In neuroblast 7-1 (NB7-1), Kruppel (Kr) specifies the third-born U3 motoneuron and Kr misexpression induces ectopic U3 cells. However, competence to generate U3 cells is limited to early divisions, when the Eve+ U motoneurons are produced, and competence is lost when NB7-1 transitions to making interneurons. We have found that Polycomb repressor complexes (PRCs) are necessary and sufficient to restrict competence in NB7-1. PRC loss of function extends the ability of Kr to induce U3 fates and PRC gain of function causes precocious loss of competence to make motoneurons. PRCs also restrict competence to make HB9+ Islet+ motoneurons in another neuroblast that undergoes a motoneuron-to-interneuron transition, NB3-1. In contrast to the regulation of motoneuron competence, PRC activity does not affect the production of Eve+ interneurons by NB3-3, HB9+ Islet+ interneurons by NB7-3, or Dbx+ interneurons by multiple neuroblasts. These findings support a model in which PRCs establish motoneuron-specific competence windows in neuroblasts that transition from motoneuron to interneuron production.
Collapse
Affiliation(s)
- Johnny J. Touma
- School of Natural Sciences, University of California Merced, Merced, CA 95343, USA
| | - Frank F. Weckerle
- School of Natural Sciences, University of California Merced, Merced, CA 95343, USA
| | - Michael D. Cleary
- School of Natural Sciences, University of California Merced, Merced, CA 95343, USA
| |
Collapse
|
10
|
Davis MB, SanGil I, Berry G, Olayokun R, Neves LH. Identification of common and cell type specific LXXLL motif EcR cofactors using a bioinformatics refined candidate RNAi screen in Drosophila melanogaster cell lines. BMC DEVELOPMENTAL BIOLOGY 2011; 11:66. [PMID: 22050674 PMCID: PMC3227616 DOI: 10.1186/1471-213x-11-66] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2011] [Accepted: 11/03/2011] [Indexed: 12/31/2022]
Abstract
Background During Drosophila development, titers of the steroid ecdysone trigger and maintain temporal and tissue specific biological transitions. Decades of evidence reveal that the ecdysone response is both unique to specific tissues and distinct among developmental timepoints. To achieve this diversity in response, the several isoforms of the Ecdysone Receptor, which transduce the hormone signal to the genome level, are believed to interact with tissue specific cofactors. To date, little is known about the identity of these cofactor interactions; therefore, we conducted a bioinformatics informed, RNAi luciferase reporter screen against a subset of putative candidate cofactors identified through an in silico proteome screen. Candidates were chosen based on criteria obtained from bioinformatic consensus of known nuclear receptor cofactors and homologs, including amino acid sequence motif content and context. Results The bioinformatics pre-screen of the Drosophila melanogaster proteome was successful in identifying an enriched putative candidate gene cohort. Over 80% of the genes tested yielded a positive hit in our reporter screen. We have identified both cell type specific and common cofactors which appear to be necessary for proper ecdysone induced gene regulation. We have determined that certain cofactors act as co-repressors to reduce target gene expression, while others act as co-activators to increase target gene expression. Interestingly, we find that a few of the cofactors shared among cell types have a reversible roles to function as co-repressors in certain cell types while in other cell types they serve as co-activators. Lastly, these proteins are highly conserved, with higher order organism homologs also harboring the LXXLL steroid receptor interaction domains, suggesting a highly conserved mode of steroid cell target specificity. Conclusions In conclusion, we submit these cofactors as novel components of the ecdysone signaling pathway in order to further elucidate the dynamics of steroid specificity.
Collapse
Affiliation(s)
- Melissa B Davis
- Department of Genetics, University of Georgia, Athens, GA 30502, USA.
| | | | | | | | | |
Collapse
|
11
|
Diverse tumor pathology due to distinctive patterns of JAK/STAT pathway activation caused by different Drosophila polyhomeotic alleles. Genetics 2011; 190:279-82. [PMID: 22048022 DOI: 10.1534/genetics.111.135442] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Drosophila polyhomeotic (ph) is one of the important polycomb group genes that is linked to human cancer. In the mosaic eye imaginal discs, while ph(del), a null allele, causes only non-autonomous overgrowth, ph(505), a hypomorphic allele, causes both autonomous and non-autonomous overgrowth. These allele-specific phenotypes stem from the different sensitivities of ph mutant cells to the Upd homologs that they secrete.
Collapse
|
12
|
Loss of the Polycomb group gene polyhomeotic induces non-autonomous cell overproliferation. EMBO Rep 2010; 12:157-63. [PMID: 21164514 DOI: 10.1038/embor.2010.188] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2010] [Revised: 10/27/2010] [Accepted: 11/03/2010] [Indexed: 11/09/2022] Open
Abstract
Polycomb group (PcG) proteins are conserved epigenetic regulators that are linked to cancer in humans. However, little is known about how they control cell proliferation. Here, we report that mutant clones of the PcG gene polyhomeotic (ph) form unique single-cell-layer cavities that secrete three JAK/STAT pathway ligands, which in turn act redundantly to stimulate overproliferation of surrounding wild-type cells. Notably, different ph alleles cause different phenotypes at the cellular level. Although the ph-null allele induces non-autonomous overgrowth, an allele encoding truncated Ph induces both autonomous and non-autonomous overgrowth. We propose that PcG misregulation promotes tumorigenesis through several cellular mechanisms.
Collapse
|
13
|
Bates KE, Sung CS, Robinow S. The unfulfilled gene is required for the development of mushroom body neuropil in Drosophila. Neural Dev 2010; 5:4. [PMID: 20122139 PMCID: PMC2829026 DOI: 10.1186/1749-8104-5-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2009] [Accepted: 02/01/2010] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The mushroom bodies (MBs) of Drosophila are required for complex behaviors and consist of three types of neurons, gamma, alpha'/beta' and alpha/beta. Previously, roles for transcription factors in MB neuronal differentiation have only been described for a subset of MB neurons. We are investigating the roles of unfulfilled (unf; HR51, CG16801) in MB development. unf encodes a nuclear receptor that is orthologous to the nuclear receptors fasciculation of axons defective 1 (FAX-1) of the nematode and photoreceptor specific nuclear receptor (PNR) of mammals. Based on our previous observations that unf transcripts accumulate in MB neurons at all developmental stages and the presence of axon pathfinding defects in fax-1 mutants, we hypothesized that unf regulates MB axon growth and pathfinding. RESULTS We show that unf mutants exhibit a range of highly penetrant axon stalling phenotypes affecting all neurons of the larval and adult MBs. Phenotypic analysis of unfX1 mutants revealed that alpha'/beta' and alpha/beta neurons initially project axons but stall prior to the formation of medial or dorsal MB lobes. unfZ0001 mutants form medial lobes, although these axons fail to branch, which results in a failure to form the alpha or alpha' dorsal lobes. In either mutant background, gamma neurons fail to develop larval-specific dorsal projections. These mutant gamma neurons undergo normal pruning, but fail to re-extend axons medially during pupal development. unfRNAi animals displayed phenotypes similar to those seen in unfZ0001 mutants. Unique asymmetrical phenotypes were observed in unfX1/unfZ0001 compound heterozygotes. Expression of UAS-unf transgenes in MB neurons rescues the larval and adult unf mutant phenotypes. CONCLUSIONS These data support the hypothesis that unf plays a common role in the development of all types of MB neurons. Our data indicate that unf is necessary for MB axon extension and branching and that the formation of dorsal collaterals is more sensitive to the loss of unf function than medial projections. The asymmetrical phenotypes observed in compound heterozygotes support the hypothesis that the earliest MB axons may serve as pioneers for the later-born MB neurons, providing evidence for pioneer MB axon guidance in post-embryonic development.
Collapse
Affiliation(s)
- Karen E Bates
- Department of Zoology, University of Hawaii, Honolulu, HI 96822, USA
| | | | | |
Collapse
|
14
|
Polyhomeotic has a tumor suppressor activity mediated by repression of Notch signaling. Nat Genet 2009; 41:1076-82. [DOI: 10.1038/ng.414] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2009] [Accepted: 06/05/2009] [Indexed: 01/26/2023]
|
15
|
Aso Y, Grübel K, Busch S, Friedrich AB, Siwanowicz I, Tanimoto H. The mushroom body of adult Drosophila characterized by GAL4 drivers. J Neurogenet 2009; 23:156-72. [PMID: 19140035 DOI: 10.1080/01677060802471718] [Citation(s) in RCA: 280] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
The mushroom body is required for a variety of behaviors of Drosophila melanogaster. Different types of intrinsic and extrinsic mushroom body neurons might underlie its functional diversity. There have been many GAL4 driver lines identified that prominently label the mushroom body intrinsic neurons, which are known as "Kenyon cells." Under one constant experimental condition, we analyzed and compared the the expression patterns of 25 GAL4 drivers labeling the mushroom body. As an internet resource, we established a digital catalog indexing representative confocal data of them. Further more, we counted the number of GAL4-positive Kenyon cells in each line. We found that approximately 2,000 Kenyon cells can be genetically labeled in total. Three major Kenyon cell subtypes, the gamma, alpha'/beta', and alpha/beta neurons, respectively, contribute to 33, 18, and 49% of 2,000 Kenyon cells. Taken together, this study lays groundwork for functional dissection of the mushroom body.
Collapse
Affiliation(s)
- Yoshinori Aso
- Max-Planck-Institut für Neurobiologie, Martinsried, Germany
| | | | | | | | | | | |
Collapse
|
16
|
Yang JSJ, Bai JM, Lee T. Dynein-dynactin complex is essential for dendritic restriction of TM1-containing Drosophila Dscam. PLoS One 2008; 3:e3504. [PMID: 18946501 PMCID: PMC2566808 DOI: 10.1371/journal.pone.0003504] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2008] [Accepted: 09/29/2008] [Indexed: 01/14/2023] Open
Abstract
Background Many membrane proteins, including Drosophila Dscam, are enriched in dendrites or axons within neurons. However, little is known about how the differential distribution is established and maintained. Methodology/Principal Findings Here we investigated the mechanisms underlying the dendritic targeting of Dscam[TM1]. Through forward genetic mosaic screens and by silencing specific genes via targeted RNAi, we found that several genes, encoding various components of the dynein-dynactin complex, are required for restricting Dscam[TM1] to the mushroom body dendrites. In contrast, compromising dynein/dynactin function did not affect dendritic targeting of two other dendritic markers, Nod and Rdl. Tracing newly synthesized Dscam[TM1] further revealed that compromising dynein/dynactin function did not affect the initial dendritic targeting of Dscam[TM1], but disrupted the maintenance of its restriction to dendrites. Conclusions/Significance The results of this study suggest multiple mechanisms of dendritic protein targeting. Notably, dynein-dynactin plays a role in excluding dendritic Dscam, but not Rdl, from axons by retrograde transport.
Collapse
Affiliation(s)
- Jacob Shun-Jen Yang
- Department of Neurobiology, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Jia-Min Bai
- Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| | - Tzumin Lee
- Department of Neurobiology, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
17
|
Abstract
Stem cell-based regenerative medicine holds great promise for repair of diseased tissue. Modern directions in the field of epigenetic research aimed to decipher the epigenetic signals that give stem cells their unique ability to self-renew and differentiate into different cell types. However, this research is only the tip of the iceberg when it comes to writing an 'epigenetic instruction manual' for the ramification of molecular details of cell commitment and differentiation. In this review, we discuss the impact of the epigenetic research on our understanding of stem cell biology.
Collapse
Affiliation(s)
- Victoria V Lunyak
- Buck Institute for Age Research, 8001 Redwood Blvd, Novato, CA 94945, USA.
| | | |
Collapse
|
18
|
Yu HH, Lee T. Neuronal temporal identity in post-embryonic Drosophila brain. Trends Neurosci 2007; 30:520-6. [PMID: 17825435 DOI: 10.1016/j.tins.2007.07.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2007] [Revised: 07/18/2007] [Accepted: 07/18/2007] [Indexed: 11/25/2022]
Abstract
Understanding how a vast number of neuron types derive from a limited number of neural progenitors remains a major challenge in developmental neurobiology. In the post-embryonic Drosophila brain, specific neuron types derive from specific progenitors at specific times. This suggests involvement of time-dependent cell fate determinants acting as 'temporal codes' along with lineage cues to specify neuronal cell fates. Interestingly, such temporal codes might be provided not only by several regulators acting in sequence, but also by the differential protein levels of the BTB-zinc finger nuclear protein Chinmo. Identifying temporal codes and determining their origins should allow us to elucidate how neuronal diversification occurs through protracted neurogenesis.
Collapse
Affiliation(s)
- Hung-Hsiang Yu
- Department of Neurobiology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | | |
Collapse
|
19
|
Spletter ML, Liu J, Liu J, Su H, Giniger E, Komiyama T, Quake S, Luo L. Lola regulates Drosophila olfactory projection neuron identity and targeting specificity. Neural Dev 2007; 2:14. [PMID: 17634136 PMCID: PMC1947980 DOI: 10.1186/1749-8104-2-14] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2007] [Accepted: 07/16/2007] [Indexed: 11/25/2022] Open
Abstract
Background Precise connections of neural circuits can be specified by genetic programming. In the Drosophila olfactory system, projection neurons (PNs) send dendrites to single glomeruli in the antenna lobe (AL) based upon lineage and birth order and send axons with stereotyped terminations to higher olfactory centers. These decisions are likely specified by a PN-intrinsic transcriptional code that regulates the expression of cell-surface molecules to instruct wiring specificity. Results We find that the loss of longitudinals lacking (lola), which encodes a BTB-Zn-finger transcription factor with 20 predicted splice isoforms, results in wiring defects in both axons and dendrites of all lineages of PNs. RNA in situ hybridization and quantitative RT-PCR suggest that most if not all lola isoforms are expressed in all PNs, but different isoforms are expressed at widely varying levels. Overexpression of individual lola isoforms fails to rescue the lola null phenotypes and causes additional phenotypes. Loss of lola also results in ectopic expression of Gal4 drivers in multiple cell types and in the loss of transcription factor gene lim1 expression in ventral PNs. Conclusion Our results indicate that lola is required for wiring of axons and dendrites of most PN classes, and suggest a need for its molecular diversity. Expression pattern changes of Gal4 drivers in lola-/- clones imply that lola normally represses the expression of these regulatory elements in a subset of the cells surrounding the AL. We propose that Lola functions as a general transcription factor that regulates the expression of multiple genes ultimately controlling PN identity and wiring specificity.
Collapse
Affiliation(s)
- Maria Lynn Spletter
- Howard Hughes Medical Institute, Department of Biological Sciences, Stanford University, Stanford, California 94305, USA
| | - Jian Liu
- Howard Hughes Medical Institute, Department of Bioengineering, Stanford University, Stanford, California 94305, USA
- Department of Biomedical Engineering, Emory University, Atlanta, Georgia 30322, USA
| | - Justin Liu
- Howard Hughes Medical Institute, Department of Biological Sciences, Stanford University, Stanford, California 94305, USA
| | - Helen Su
- Howard Hughes Medical Institute, Department of Biological Sciences, Stanford University, Stanford, California 94305, USA
- Janelia Farm Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | - Edward Giniger
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Takaki Komiyama
- Howard Hughes Medical Institute, Department of Biological Sciences, Stanford University, Stanford, California 94305, USA
- Janelia Farm Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | - Stephen Quake
- Howard Hughes Medical Institute, Department of Bioengineering, Stanford University, Stanford, California 94305, USA
| | - Liqun Luo
- Howard Hughes Medical Institute, Department of Biological Sciences, Stanford University, Stanford, California 94305, USA
| |
Collapse
|
20
|
Parrish JZ, Emoto K, Jan LY, Jan YN. Polycomb genes interact with the tumor suppressor genes hippo and warts in the maintenance of Drosophila sensory neuron dendrites. Genes Dev 2007; 21:956-72. [PMID: 17437999 PMCID: PMC1847713 DOI: 10.1101/gad.1514507] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Dendritic fields are important determinants of neuronal function. However, how neurons establish and then maintain their dendritic fields is not well understood. Here we show that Polycomb group (PcG) genes are required for maintenance of complete and nonoverlapping dendritic coverage of the larval body wall by Drosophila class IV dendrite arborization (da) neurons. In esc, Su(z)12, or Pc mutants, dendritic fields are established normally, but class IV neurons display a gradual loss of dendritic coverage, while axons remain normal in appearance, demonstrating that PcG genes are specifically required for dendrite maintenance. Both multiprotein Polycomb repressor complexes (PRCs) involved in transcriptional silencing are implicated in regulation of dendrite arborization in class IV da neurons, likely through regulation of homeobox (Hox) transcription factors. We further show genetic interactions and association between PcG proteins and the tumor suppressor kinase Warts (Wts), providing evidence for their cooperation in multiple developmental processes including dendrite maintenance.
Collapse
Affiliation(s)
- Jay Z. Parrish
- Howard Hughes Medical Institute, Department of Physiology, and Department of Biochemistry and Biophysics, University of California at San Francisco, San Francisco, California 94143, USA
| | - Kazuo Emoto
- Howard Hughes Medical Institute, Department of Physiology, and Department of Biochemistry and Biophysics, University of California at San Francisco, San Francisco, California 94143, USA
| | - Lily Yeh Jan
- Howard Hughes Medical Institute, Department of Physiology, and Department of Biochemistry and Biophysics, University of California at San Francisco, San Francisco, California 94143, USA
| | - Yuh Nung Jan
- Howard Hughes Medical Institute, Department of Physiology, and Department of Biochemistry and Biophysics, University of California at San Francisco, San Francisco, California 94143, USA
- Corresponding author.E-MAIL ; FAX (415) 476-5774
| |
Collapse
|
21
|
Bello B, Holbro N, Reichert H. Polycomb group genes are required for neural stem cell survival in postembryonic neurogenesis ofDrosophila. Development 2007; 134:1091-9. [PMID: 17287254 DOI: 10.1242/dev.02793] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Genes of the Polycomb group (PcG) are part of a cellular memory system that maintains appropriate inactive states of Hox gene expression in Drosophila. Here, we investigate the role of PcG genes in postembryonic development of the Drosophila CNS. We use mosaic-based MARCM techniques to analyze the role of these genes in the persistent larval neuroblasts and progeny of the central brain and thoracic ganglia. We find that proliferation in postembryonic neuroblast clones is dramatically reduced in the absence of Polycomb, Sex combs extra, Sex combs on midleg, Enhancer of zeste or Suppressor of zeste 12. The proliferation defects in these PcG mutants are due to the loss of neuroblasts by apoptosis in the mutant clones. Mutation of PcG genes in postembryonic lineages results in the ectopic expression of posterior Hox genes, and experimentally induced misexpression of posterior Hox genes, which in the wild type causes neuroblast death, mimics the PcG loss-of-function phenotype. Significantly, full restoration of wild-type-like properties in the PcG mutant lineages is achieved by blocking apoptosis in the neuroblast clones. These findings indicate that loss of PcG genes leads to aberrant derepression of posterior Hox gene expression in postembryonic neuroblasts, which causes neuroblast death and termination of proliferation in the mutant clones. Our findings demonstrate that PcG genes are essential for normal neuroblast survival in the postembryonic CNS of Drosophila. Moreover, together with data on mammalian PcG genes, they imply that repression of aberrant reactivation of Hox genes may be a general and evolutionarily conserved role for PcG genes in CNS development.
Collapse
Affiliation(s)
- Bruno Bello
- Biozentrum, University of Basel, Klingelbergstrasse 50, CH-4056 Basel, Switzerland.
| | | | | |
Collapse
|