1
|
Spangler RK, Jonnalagadda K, Ward JD, Partch CL. A wrinkle in timers: evolutionary rewiring of conserved biological timekeepers. Trends Biochem Sci 2025; 50:344-355. [PMID: 39952882 DOI: 10.1016/j.tibs.2025.01.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 01/16/2025] [Accepted: 01/21/2025] [Indexed: 02/17/2025]
Abstract
Biological timing mechanisms are intrinsic to all organisms, orchestrating the temporal coordination of biological events through complex genetic networks. Circadian rhythms and developmental timers utilize distinct timekeeping mechanisms. This review summarizes the molecular basis for circadian rhythms in mammals and Drosophila, and recent work leveraging these clocks to understand temporal regulation in Caenorhabditis elegans development. We describe the evolutionary connections between distinct timing mechanisms and discuss recent insights into the rewiring of core clock components in development. By integrating findings from circadian and developmental studies with biochemical and structural analyses of conserved components, we aim to illuminate the molecular basis of nematode timing mechanisms and highlight broader insights into biological timing across species.
Collapse
Affiliation(s)
- Rebecca K Spangler
- Department of Chemistry and Biochemistry, University of California - Santa Cruz, Santa Cruz, CA 95064, USA
| | - Keya Jonnalagadda
- Department of Molecular, Cell, and Developmental Biology, University of California - Santa Cruz, Santa Cruz, CA 95064, USA
| | - Jordan D Ward
- Department of Molecular, Cell, and Developmental Biology, University of California - Santa Cruz, Santa Cruz, CA 95064, USA
| | - Carrie L Partch
- Department of Chemistry and Biochemistry, University of California - Santa Cruz, Santa Cruz, CA 95064, USA; Center for Circadian Biology, University of California - Santa Diego, La Jolla, CA 92093, USA; Howard Hughes Medical Institute, University of California - Santa Cruz, Santa Cruz, CA 95064, USA.
| |
Collapse
|
2
|
Binti S, Edeen PT, Fay DS. Loss of the Na+/K+ cation pump CATP-1 suppresses nekl-associated molting defects. G3 (BETHESDA, MD.) 2024; 14:jkae244. [PMID: 39428996 PMCID: PMC11631496 DOI: 10.1093/g3journal/jkae244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 09/24/2024] [Accepted: 10/17/2024] [Indexed: 10/22/2024]
Abstract
The conserved Caenorhabditis elegans protein kinases NEKL-2 and NEKL-3 regulate membrane trafficking and are required for larval molting. Through a forward genetic screen we identified a mutation in catp-1 as a suppressor of molting defects in synthetically lethal nekl-2; nekl-3 double mutants. catp-1 encodes a membrane-associated P4-type ATPase involved in Na+-K+ exchange. A previous study found that wild-type worms exposed to the nicotinic agonist dimethylphenylpiperazinium (DMPP) exhibited larval arrest and molting-associated defects, which were suppressed by inhibition of catp-1. By testing a spectrum catp-1 alleles, we found that resistance to DMPP toxicity and the suppression of nekl defects did not strongly correlate, suggesting key differences in the mechanism of catp-1-mediated suppression. Through whole genome sequencing of additional nekl-2; nekl-3 suppressor strains, we identified two additional coding-altering mutations in catp-1. However, neither mutation, when introduced into nekl-2; nekl-3 mutants using CRISPR, was sufficient to elicit robust suppression of molting defects, suggesting the involvement of other loci. Endogenously tagged CATP-1 was primarily expressed in epidermal cells within punctate structures located near the apical plasma membrane, consistent with a role in regulating cellular processes within the epidermis. Based on previous studies, we tested the hypothesis that catp-1 inhibition induces entry into the pre-dauer L2d stage, potentially accounting for the ability of catp-1 mutants to suppress nekl molting defects. However, we found no evidence that loss of catp-1 leads to entry into L2d. As such, loss of catp-1 may suppress nekl-associated and DMPP-induced defects by altering electrochemical gradients within membrane-bound compartments.
Collapse
Affiliation(s)
- Shaonil Binti
- Department of Molecular Biology, College of Agriculture, Life Sciences and Natural Resources, University of Wyoming, Laramie, WY 82071, USA
| | - Philip T Edeen
- Department of Molecular Biology, College of Agriculture, Life Sciences and Natural Resources, University of Wyoming, Laramie, WY 82071, USA
| | - David S Fay
- Department of Molecular Biology, College of Agriculture, Life Sciences and Natural Resources, University of Wyoming, Laramie, WY 82071, USA
| |
Collapse
|
3
|
Ragle JM, Turzo A, Jackson A, Vo AA, Pham VT, Ward JD. The NHR-23-regulated putative protease inhibitor mlt-11 gene is necessary for C. elegans cuticle structure and function. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.12.593762. [PMID: 38766248 PMCID: PMC11100798 DOI: 10.1101/2024.05.12.593762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
C. elegans molting offers a powerful entry point to understanding developmentally programmed apical extracellular matrix remodeling. However, the gene regulatory network controlling this process remains poorly understood. Focusing on targets of NHR-23, a key transcription factor that drives molting, we confirmed the Kunitz family protease inhibitor gene mlt-11 as an NHR-23 target. Through reporter assays, we identified NHR-23-binding sites that are necessary and sufficient for epithelial expression. We generated a translational fusion and demonstrated that MLT-11 is localized to the cuticle and lined openings to the exterior (vulva, rectum, mouth). We created a set of strains expressing varied levels of MLT-11 by deleting endogenous cis-regulatory element sequences. Combined deletion of two cis-regulatory elements caused developmental delay, motility defects, and failure of the cuticle barrier. Inactivation of mlt-11 by RNAi produced even more pronounced defects. mlt-11 is necessary to pattern every layer of the adult cuticle, suggesting a broad patterning role prior to the formation of the mature cuticle. Together these studies provide an entry point into understanding how individual cis-regulatory elements function to coordinate expression of oscillating genes involved in molting and how MLT-11 ensures proper cuticle assembly.
Collapse
Affiliation(s)
- James Matthew Ragle
- Department of Molecular, Cell, and Developmental Biology, University of California-Santa Cruz, Santa Cruz, CA 95064, USA
| | - Ariela Turzo
- Department of Molecular, Cell, and Developmental Biology, University of California-Santa Cruz, Santa Cruz, CA 95064, USA
| | - Anton Jackson
- Department of Molecular, Cell, and Developmental Biology, University of California-Santa Cruz, Santa Cruz, CA 95064, USA
| | - An A. Vo
- Department of Molecular, Cell, and Developmental Biology, University of California-Santa Cruz, Santa Cruz, CA 95064, USA
| | - Vivian T. Pham
- Department of Molecular, Cell, and Developmental Biology, University of California-Santa Cruz, Santa Cruz, CA 95064, USA
| | - Jordan D. Ward
- Department of Molecular, Cell, and Developmental Biology, University of California-Santa Cruz, Santa Cruz, CA 95064, USA
| |
Collapse
|
4
|
Sundaram MV, Pujol N. The Caenorhabditis elegans cuticle and precuticle: a model for studying dynamic apical extracellular matrices in vivo. Genetics 2024; 227:iyae072. [PMID: 38995735 PMCID: PMC11304992 DOI: 10.1093/genetics/iyae072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 03/25/2024] [Indexed: 07/14/2024] Open
Abstract
Apical extracellular matrices (aECMs) coat the exposed surfaces of animal bodies to shape tissues, influence social interactions, and protect against pathogens and other environmental challenges. In the nematode Caenorhabditis elegans, collagenous cuticle and zona pellucida protein-rich precuticle aECMs alternately coat external epithelia across the molt cycle and play many important roles in the worm's development, behavior, and physiology. Both these types of aECMs contain many matrix proteins related to those in vertebrates, as well as some that are nematode-specific. Extensive differences observed among tissues and life stages demonstrate that aECMs are a major feature of epithelial cell identity. In addition to forming discrete layers, some cuticle components assemble into complex substructures such as ridges, furrows, and nanoscale pillars. The epidermis and cuticle are mechanically linked, allowing the epidermis to sense cuticle damage and induce protective innate immune and stress responses. The C. elegans model, with its optical transparency, facilitates the study of aECM cell biology and structure/function relationships and all the myriad ways by which aECM can influence an organism.
Collapse
Affiliation(s)
- Meera V Sundaram
- Department of Genetics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Nathalie Pujol
- Aix Marseille University, INSERM, CNRS, CIML, Turing Centre for Living Systems, 13009 Marseille, France
| |
Collapse
|
5
|
Patil G, van Zon JS. Timers, variability, and body-wide coordination: C. elegans as a model system for whole-animal developmental timing. Curr Opin Genet Dev 2024; 85:102172. [PMID: 38432125 DOI: 10.1016/j.gde.2024.102172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 02/06/2024] [Accepted: 02/06/2024] [Indexed: 03/05/2024]
Abstract
Successful development requires both precise timing of cellular processes, such as division and differentiation, and tight coordination of timing between tissues and organs. Yet, how time information is encoded with high precision and synchronized between tissues, despite inherent molecular noise, is unsolved. Here, we propose the nematode C. elegans as a unique model system for studying body-wide control of developmental timing. Recent studies combining genetics, quantitative analysis, and simulations have 1) mapped core timers controlling larval development, indicating temporal gradients as an underlying mechanism, and 2) elucidated general principles that make timing insensitive to inherent fluctuations and variation in environmental conditions. As the molecular regulators of C. elegans developmental timing are broadly conserved, these mechanisms likely apply also to higher organisms.
Collapse
|
6
|
Binti S, Edeen PT, Fay DS. Loss of the Na + /K + cation pump CATP-1 suppresses nekl -associated molting defects. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.15.585189. [PMID: 38559007 PMCID: PMC10979969 DOI: 10.1101/2024.03.15.585189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
The conserved C. elegans protein kinases NEKL-2 and NEKL-3 regulate multiple steps of membrane trafficking and are required for larval molting. Through a forward genetic screen we identified a loss-of-function mutation in catp-1 as a suppressor of molting defects in synthetically lethal nekl-2; nekl-3 double mutants. catp-1 is predicted to encode a membrane- associated P4-type ATPase involved in Na + -K + exchange. Moreover, a mutation predicted to abolish CATP-1 ion-pump activity also suppressed nekl-2; nekl-3 mutants. Endogenously tagged CATP-1 was primarily expressed in epidermal (hypodermal) cells within punctate structures located at or near the apical plasma membrane. Through whole genome sequencing, we identified two additional nekl-2; nekl-3 suppressor strains containing coding-altering mutations in catp-1 but found that neither mutation, when introduced into nekl-2; nekl-3 mutants using CRISPR methods, was sufficient to elicit robust suppression of molting defects. Our data also suggested that the two catp-1 isoforms, catp-1a and catp-1b , may in some contexts be functionally redundant. On the basis of previously published studies, we tested the hypothesis that loss of catp-1 may suppress nekl -associated defects by inducing partial entry into the dauer pathway. Contrary to expectations, however, we failed to obtain evidence that loss of catp-1 suppresses nekl-2; nekl-3 defects through a dauer-associated mechanism or that loss of catp-1 leads to entry into the pre-dauer L2d stage. As such, loss of catp-1 may suppress nekl- associated molting and membrane trafficking defects by altering electrochemical gradients within membrane-bound compartments.
Collapse
|
7
|
Johnson LC, Vo AA, Clancy JC, Myles KM, Pooranachithra M, Aguilera J, Levenson MT, Wohlenberg C, Rechtsteiner A, Ragle JM, Chisholm AD, Ward JD. NHR-23 activity is necessary for C. elegans developmental progression and apical extracellular matrix structure and function. Development 2023; 150:dev201085. [PMID: 37129010 PMCID: PMC10233720 DOI: 10.1242/dev.201085] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 04/11/2023] [Indexed: 05/03/2023]
Abstract
Nematode molting is a remarkable process where animals must repeatedly build a new apical extracellular matrix (aECM) beneath a previously built aECM that is subsequently shed. The nuclear hormone receptor NHR-23 (also known as NR1F1) is an important regulator of C. elegans molting. NHR-23 expression oscillates in the epidermal epithelium, and soma-specific NHR-23 depletion causes severe developmental delay and death. Tissue-specific RNAi suggests that nhr-23 acts primarily in seam and hypodermal cells. NHR-23 coordinates the expression of factors involved in molting, lipid transport/metabolism and remodeling of the aECM. NHR-23 depletion causes dampened expression of a nas-37 promoter reporter and a loss of reporter oscillation. The cuticle collagen ROL-6 and zona pellucida protein NOAH-1 display aberrant annular localization and severe disorganization over the seam cells after NHR-23 depletion, while the expression of the adult-specific cuticle collagen BLI-1 is diminished and frequently found in patches. Consistent with these localization defects, the cuticle barrier is severely compromised when NHR-23 is depleted. Together, this work provides insight into how NHR-23 acts in the seam and hypodermal cells to coordinate aECM regeneration during development.
Collapse
Affiliation(s)
- Londen C. Johnson
- Department of Molecular, Cell, and Developmental Biology, University of California Santa Cruz, Santa Cruz, CA 95064, USA
| | - An A. Vo
- Department of Molecular, Cell, and Developmental Biology, University of California Santa Cruz, Santa Cruz, CA 95064, USA
| | - John C. Clancy
- Department of Molecular, Cell, and Developmental Biology, University of California Santa Cruz, Santa Cruz, CA 95064, USA
| | - Krista M. Myles
- Department of Molecular, Cell, and Developmental Biology, University of California Santa Cruz, Santa Cruz, CA 95064, USA
| | - Murugesan Pooranachithra
- Department of Cell and Developmental Biology, School of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Joseph Aguilera
- Department of Molecular, Cell, and Developmental Biology, University of California Santa Cruz, Santa Cruz, CA 95064, USA
| | - Max T. Levenson
- Department of Molecular, Cell, and Developmental Biology, University of California Santa Cruz, Santa Cruz, CA 95064, USA
| | - Chloe Wohlenberg
- Department of Molecular, Cell, and Developmental Biology, University of California Santa Cruz, Santa Cruz, CA 95064, USA
| | - Andreas Rechtsteiner
- Department of Molecular, Cell, and Developmental Biology, University of California Santa Cruz, Santa Cruz, CA 95064, USA
| | - James Matthew Ragle
- Department of Molecular, Cell, and Developmental Biology, University of California Santa Cruz, Santa Cruz, CA 95064, USA
| | - Andrew D. Chisholm
- Department of Cell and Developmental Biology, School of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Jordan D. Ward
- Department of Molecular, Cell, and Developmental Biology, University of California Santa Cruz, Santa Cruz, CA 95064, USA
| |
Collapse
|
8
|
Filina O, Demirbas B, Haagmans R, van Zon JS. Temporal scaling in C. elegans larval development. Proc Natl Acad Sci U S A 2022; 119:e2123110119. [PMID: 35263226 PMCID: PMC8931370 DOI: 10.1073/pnas.2123110119] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Accepted: 02/03/2022] [Indexed: 12/02/2022] Open
Abstract
SignificanceAn enduring mystery of development is how its timing is controlled, particularly for development after birth, where timing is highly flexible and depends on environmental conditions, such as food availability and diet. We followed timing of cell- and organism-level events in individual Caenorhabditis elegans larvae developing from hatching to adulthood, uncovering widespread variations in event timing, both between isogenic individuals in the same environment and when changing conditions and genotypes. However, in almost all cases, we found that events occurred at the same time, when time was rescaled by the duration of development measured in each individual. This observation of "temporal scaling" poses strong constraints on models to explain timing of larval development.
Collapse
Affiliation(s)
- Olga Filina
- Department of Autonomous Matter, AMOLF, Amsterdam, 1098 XG The Netherlands
| | - Burak Demirbas
- Department of Autonomous Matter, AMOLF, Amsterdam, 1098 XG The Netherlands
| | - Rik Haagmans
- Department of Autonomous Matter, AMOLF, Amsterdam, 1098 XG The Netherlands
| | - Jeroen S. van Zon
- Department of Autonomous Matter, AMOLF, Amsterdam, 1098 XG The Netherlands
| |
Collapse
|
9
|
Hoang KL, Gerardo NM, Morran LT. Association with a novel protective microbe facilitates host adaptation to a stressful environment. Evol Lett 2021; 5:118-129. [PMID: 33868708 PMCID: PMC8045907 DOI: 10.1002/evl3.223] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 02/02/2021] [Accepted: 02/18/2021] [Indexed: 01/19/2023] Open
Abstract
Protective symbionts can allow hosts to occupy otherwise uninhabitable niches. Despite the importance of symbionts in host evolution, we know little about how these associations arise. Encountering a microbe that can improve host fitness in a stressful environment may favor persistent interactions with that microbe, potentially facilitating a long-term association. The bacterium Bacillus subtilis protects Caenorhabditis elegans nematodes from heat shock by increasing host fecundity compared to the nonprotective Escherichia coli. In this study, we ask how the protection provided by the bacterium affects the host's evolutionary trajectory. Because of the stark fitness contrast between hosts heat shocked on B. subtilis versus E. coli, we tested whether the protection conferred by the bacteria could increase the rate of host adaptation to a stressful environment. We passaged nematodes on B. subtilis or E. coli, under heat stress or standard conditions for 20 host generations of selection. When assayed under heat stress, we found that hosts exhibited the greatest fitness increase when evolved with B. subtilis under stress compared to when evolved with E. coli or under standard (nonstressful) conditions. Furthermore, despite not directly selecting for increased B. subtilis fitness, we found that hosts evolved to harbor more B. subtilis as they adapted to heat stress. Our findings demonstrate that the context under which hosts evolve is important for the evolution of beneficial associations and that protective microbes can facilitate host adaptation to stress. In turn, such host adaptation can benefit the microbe.
Collapse
Affiliation(s)
- Kim L. Hoang
- Department of BiologyEmory UniversityAtlantaGeorgia30322USA
- Department of ZoologyUniversity of OxfordOxfordOX1 3SZUnited Kingdom
| | | | - Levi T. Morran
- Department of BiologyEmory UniversityAtlantaGeorgia30322USA
| |
Collapse
|
10
|
Yang Y, Dong W, Wu Q, Wang D. Induction of Protective Response Associated with Expressional Alterations in Neuronal G Protein-Coupled Receptors in Polystyrene Nanoparticle Exposed Caenorhabditis elegans. Chem Res Toxicol 2021; 34:1308-1318. [PMID: 33650869 DOI: 10.1021/acs.chemrestox.0c00501] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
In this study, the association of expressional alterations in neuronal G protein-coupled receptors (GPCRs) with induction of protective response to polystyrene nanoparticles (PS-NPs) was investigated in Caenorhabditis elegans. On the basis of both phenotypic analysis and expression levels, the alterations in expressions of NPR-1, NPR-4, NPR-8, NPR-9, NPR-12, DCAR-1, GTR-1, DOP-2, SER-4, and DAF-37 in neuronal cells mediated the protective response to PS-NPs exposure. In neuronal cells, NPR-9, NPR-12, DCAR-1, and GTR-1 controlled the PS-NPs toxicity by activating or inhibiting JNK-1/JNK MAPK signaling. Neuronal NPR-8, NPR-9, DCAR-1, DOP-2, and DAF-37 controlled the PS-NPs toxicity by activating or inhibiting MPK-1/ERK MAPK signaling. Neuronal NPR-4, NPR-8, NPR-9, NPR-12, GTR-1, DOP-2, and DAF-37 controlled the PS-NPs toxicity by activating or inhibiting DBL-1/TGF-β signaling. Neuronal NPR-1, NPR-4, NPR-12, and GTR-1 controlled the PS-NPs toxicity by activating or inhibiting DAF-7/TGF-β signaling. Our data provides an important neuronal basis for induction of protective response to PS-NPs in C. elegans.
Collapse
Affiliation(s)
- Yunhan Yang
- Key Laboratory of Environmental Medicine Engineering of Ministry of Education, Medical School, Southeast University, Nanjing 210009, China
| | - Wenting Dong
- Key Laboratory of Environmental Medicine Engineering of Ministry of Education, Medical School, Southeast University, Nanjing 210009, China
| | - Qiuli Wu
- Key Laboratory of Environmental Medicine Engineering of Ministry of Education, Medical School, Southeast University, Nanjing 210009, China
| | - Dayong Wang
- Key Laboratory of Environmental Medicine Engineering of Ministry of Education, Medical School, Southeast University, Nanjing 210009, China.,College of Biology and Food Engineering, Chongqing Three Gorges University, Wanzhou 404100, China.,Shenzhen Ruipuxun Academy for Stem Cell & Regenerative Medicine, Shenzhen, 518122, China
| |
Collapse
|
11
|
Correlation of NHR-48 Transcriptional Modulator Expression with Selected CYP Genes’ Expression during Thiabendazole Treatment of Anisakis simplex (s.l.)?—An In Vitro Study. Pathogens 2020; 9:pathogens9121030. [PMID: 33316888 PMCID: PMC7764245 DOI: 10.3390/pathogens9121030] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 11/28/2020] [Accepted: 12/07/2020] [Indexed: 11/18/2022] Open
Abstract
Anisakis simplex (s.l.) is a complex of three sibling (biological) species of parasitic nematodes of marine mammals, including A. berlandi, A. pegreffii and A. simplex (s.s.). It is characterized by a complex life cycle in which humans can become accidental hosts by consuming dishes made of raw or undercooked fish containing L3 larvae, which in many regions of the world is related to the national or regional culinary tradition. This has spurred scientific efforts to develop new methods for treating the disease, called anisakiasis, and to neutralize invasive L3. Thiabendazole (TBZ) is a wide-spectrum anthelminthic with a higher efficacy than albendazole, a drug whose long-term use induces resistance in many parasitic species. Cytochromes P450 participate in TBZ metabolism, and the expression of their genes is controlled by nuclear hormone receptors (NHR). This study aimed to examine the effects of TBZ on the above-described pathway in invasive larvae of A. simplex (s.l.). The efficacy of TBZ against A. simplex (s.l.) larvae was observed for the first time. Larvae were cultured in vitro for 72 h in a medium containing TBZ at five concentrations from 0.5 to 1.5 mM. However, the survival curves did not significantly differ from each other. This means that all of the concentrations of TBZ had a similar effect on the A. simplex (s.l.) L3 larvae during in vitro culture. Nevertheless, TBZ modified the expression of nhr-48, cyp13a3 and cyp1a1 genes in the L3 of A. simplex (s.l.).
Collapse
|
12
|
Mata-Cabana A, Pérez-Nieto C, Olmedo M. Nutritional control of postembryonic development progression and arrest in Caenorhabditis elegans. ADVANCES IN GENETICS 2020; 107:33-87. [PMID: 33641748 DOI: 10.1016/bs.adgen.2020.11.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Developmental programs are under strict genetic control that favors robustness of the process. In order to guarantee the same outcome in different environmental situations, development is modulated by input pathways, which inform about external conditions. In the nematode Caenorhabditis elegans, the process of postembryonic development involves a series of stereotypic cell divisions, the progression of which is controlled by the nutritional status of the animal. C. elegans can arrest development at different larval stages, leading to cell arrest of the relevant divisions of the stage. This means that studying the nutritional control of development in C. elegans we can learn about the mechanisms controlling cell division in an in vivo model. In this work, we reviewed the current knowledge about the nutrient sensing pathways that control the progression or arrest of development in response to nutrient availability, with a special focus on the arrest at the L1 stage.
Collapse
Affiliation(s)
- Alejandro Mata-Cabana
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, Avd. Reina Mercedes, Sevilla, Spain
| | - Carmen Pérez-Nieto
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, Avd. Reina Mercedes, Sevilla, Spain
| | - María Olmedo
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, Avd. Reina Mercedes, Sevilla, Spain.
| |
Collapse
|
13
|
Tsiairis C, Großhans H. Gene expression oscillations in C. elegans underlie a new developmental clock. Curr Top Dev Biol 2020; 144:19-43. [PMID: 33992153 DOI: 10.1016/bs.ctdb.2020.11.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
During C. elegans larval development, thousands of genes, accounting for >20% of the transcriptome, exhibit oscillatory expression with large amplitudes. The time of peaking varies for different genes, but expression generally peaks once per larval stage, with both the oscillation period and larval stage duration varying in concert with temperature. This and other evidence support the existence of a gene expression oscillator that functions as a developmental clock. In this article, we review what is known about the biology, architecture and possible mechanisms of this clock. We compare it to other oscillators, and highlight tools and approaches suited to its study. Finally, we point out implications of these wide-spread and dynamic changes of gene expression on any type of gene expression profiling experiment in C. elegans larvae and how such experiments need to be controlled.
Collapse
Affiliation(s)
- Charisios Tsiairis
- Friedrich Miescher Institute for Biomedical Research (FMI), Basel, Switzerland.
| | - Helge Großhans
- Friedrich Miescher Institute for Biomedical Research (FMI), Basel, Switzerland; University of Basel, Basel, Switzerland.
| |
Collapse
|
14
|
Billard B, Vigne P, Braendle C. A Natural Mutational Event Uncovers a Life History Trade-Off via Hormonal Pleiotropy. Curr Biol 2020; 30:4142-4154.e9. [PMID: 32888477 DOI: 10.1016/j.cub.2020.08.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 07/31/2020] [Accepted: 08/03/2020] [Indexed: 12/30/2022]
Abstract
Environmental signals often control central life history decisions, including the choice between reproduction and somatic maintenance. Such adaptive developmental plasticity occurs in the nematode Caenorhabditis elegans, where environmental cues govern whether larvae will develop directly into reproducing adults or arrest their development to become stress-resistant dauer larvae. Here, we identified a natural variant underlying enhanced sensitivity to dauer-inducing cues in C. elegans: a 92-bp deletion in the cis-regulatory region of the gene eak-3. This deletion reduces synthesis or activity of the steroid hormone dafachronic acid (DA), thereby increasing environmental sensitivity for dauer induction. Consistent with known pleiotropic roles of DA, this eak-3 variant significantly slows down reproductive growth. We experimentally show that, although the eak-3 deletion can provide a fitness advantage through facilitated dauer production in stressful environments, this allele becomes rapidly outcompeted in favorable environments. The identified eak-3 variant therefore reveals a trade-off in how hormonal responses influence both the pace of developmental timing and the way in which environmental sensitivity controls adaptive plasticity. Together, our results show how a single mutational event altering hormonal signaling can lead to the emergence of a complex life history trade-off.
Collapse
Affiliation(s)
| | - Paul Vigne
- Université Côte d'Azur, CNRS, Inserm, IBV, Nice, France
| | | |
Collapse
|
15
|
Meeuse MWM, Hauser YP, Morales Moya LJ, Hendriks G, Eglinger J, Bogaarts G, Tsiairis C, Großhans H. Developmental function and state transitions of a gene expression oscillator in Caenorhabditis elegans. Mol Syst Biol 2020; 16:e9498. [PMID: 32687264 PMCID: PMC7370751 DOI: 10.15252/msb.20209498] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 06/15/2020] [Accepted: 06/22/2020] [Indexed: 11/26/2022] Open
Abstract
Gene expression oscillators can structure biological events temporally and spatially. Different biological functions benefit from distinct oscillator properties. Thus, finite developmental processes rely on oscillators that start and stop at specific times, a poorly understood behavior. Here, we have characterized a massive gene expression oscillator comprising > 3,700 genes in Caenorhabditis elegans larvae. We report that oscillations initiate in embryos, arrest transiently after hatching and in response to perturbation, and cease in adults. Experimental observation of the transitions between oscillatory and non-oscillatory states at high temporal resolution reveals an oscillator operating near a Saddle Node on Invariant Cycle (SNIC) bifurcation. These findings constrain the architecture and mathematical models that can represent this oscillator. They also reveal that oscillator arrests occur reproducibly in a specific phase. Since we find oscillations to be coupled to developmental processes, including molting, this characteristic of SNIC bifurcations endows the oscillator with the potential to halt larval development at defined intervals, and thereby execute a developmental checkpoint function.
Collapse
Affiliation(s)
- Milou WM Meeuse
- Friedrich Miescher Institute for Biomedical Research (FMI)BaselSwitzerland
- University of BaselBaselSwitzerland
| | - Yannick P Hauser
- Friedrich Miescher Institute for Biomedical Research (FMI)BaselSwitzerland
- University of BaselBaselSwitzerland
| | | | - Gert‐Jan Hendriks
- Friedrich Miescher Institute for Biomedical Research (FMI)BaselSwitzerland
- University of BaselBaselSwitzerland
| | - Jan Eglinger
- Friedrich Miescher Institute for Biomedical Research (FMI)BaselSwitzerland
| | | | - Charisios Tsiairis
- Friedrich Miescher Institute for Biomedical Research (FMI)BaselSwitzerland
| | - Helge Großhans
- Friedrich Miescher Institute for Biomedical Research (FMI)BaselSwitzerland
- University of BaselBaselSwitzerland
| |
Collapse
|
16
|
Carranza-García E, Navarro RE. Insights Into the Hypometabolic Stage Caused by Prolonged Starvation in L4-Adult Caenorhabditis elegans Hermaphrodites. Front Cell Dev Biol 2020; 8:124. [PMID: 32211406 PMCID: PMC7057233 DOI: 10.3389/fcell.2020.00124] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Accepted: 02/12/2020] [Indexed: 11/24/2022] Open
Abstract
Animals alter their reproductive cycles in response to changing nutritional conditions, to ensure that offspring production only occurs under favorable circumstances. These adaptive strategies include reversible hypometabolic states of dormancy such as “arrest” and “diapause.” The free-living nematode Caenorhabditis elegans can arrest its life cycle during some larval stages without modifying its anatomy and physiology until conditions improve but it can also modify its morphological and physiological features to cope with harsh conditions and transition into diapause. The well-defined “dauer” diapause was described more than 40 years ago and has been the subject of comprehensive investigations. The existence of another hypometabolic state, termed adult reproductive diapause (ARD), has been debated after it was first described 10 years ago. Here, we review the current knowledge regarding the effect of food deprivation during the pre-reproductive larval and adult stages on overall organismal homeostasis, highlighting the implications on germ cell maintenance and fertility preservation.
Collapse
Affiliation(s)
- E Carranza-García
- Departamento de Biología Celular y Desarrollo, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Rosa E Navarro
- Departamento de Biología Celular y Desarrollo, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
| |
Collapse
|
17
|
Co-occurring WARS2 and CHRNA6 mutations in a child with a severe form of infantile parkinsonism. Parkinsonism Relat Disord 2020; 72:75-79. [PMID: 32120303 DOI: 10.1016/j.parkreldis.2020.02.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 02/10/2020] [Accepted: 02/11/2020] [Indexed: 11/20/2022]
Abstract
OBJECTIVE To investigate the molecular cause(s) underlying a severe form of infantile-onset parkinsonism and characterize functionally the identified variants. METHODS A trio-based whole exome sequencing (WES) approach was used to identify the candidate variants underlying the disorder. In silico modeling, and in vitro and in vivo studies were performed to explore the impact of these variants on protein function and relevant cellular processes. RESULTS WES analysis identified biallelic variants in WARS2, encoding the mitochondrial tryptophanyl tRNA synthetase (mtTrpRS), a gene whose mutations have recently been associated with multiple neurological phenotypes, including childhood-onset, levodopa-responsive or unresponsive parkinsonism in a few patients. A substantial reduction of mtTrpRS levels in mitochondria and reduced OXPHOS function was demonstrated, supporting their pathogenicity. Based on the infantile-onset and severity of the phenotype, additional variants were considered as possible genetic modifiers. Functional assessment of a selected panel of candidates pointed to a de novo missense mutation in CHRNA6, encoding the α6 subunit of neuronal nicotinic receptors, which are involved in the cholinergic modulation of dopamine release in the striatum, as a second event likely contributing to the phenotype. In silico, in vitro (Xenopus oocytes and GH4C1 cells) and in vivo (C. elegans) analyses demonstrated the disruptive effects of the mutation on acetylcholine receptor structure and function. CONCLUSION Our findings consolidate the association between biallelic WARS2 mutations and movement disorders, and suggest CHRNA6 as a genetic modifier of the phenotype.
Collapse
|
18
|
Transposon Insertion Mutagenesis in Mice for Modeling Human Cancers: Critical Insights Gained and New Opportunities. Int J Mol Sci 2020; 21:ijms21031172. [PMID: 32050713 PMCID: PMC7036786 DOI: 10.3390/ijms21031172] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 01/30/2020] [Accepted: 02/03/2020] [Indexed: 02/07/2023] Open
Abstract
Transposon mutagenesis has been used to model many types of human cancer in mice, leading to the discovery of novel cancer genes and insights into the mechanism of tumorigenesis. For this review, we identified over twenty types of human cancer that have been modeled in the mouse using Sleeping Beauty and piggyBac transposon insertion mutagenesis. We examine several specific biological insights that have been gained and describe opportunities for continued research. Specifically, we review studies with a focus on understanding metastasis, therapy resistance, and tumor cell of origin. Additionally, we propose further uses of transposon-based models to identify rarely mutated driver genes across many cancers, understand additional mechanisms of drug resistance and metastasis, and define personalized therapies for cancer patients with obesity as a comorbidity.
Collapse
|
19
|
Kozlova AA, Lotfi M, Okkema PG. Cross Talk with the GAR-3 Receptor Contributes to Feeding Defects in Caenorhabditis elegans eat-2 Mutants. Genetics 2019; 212:231-243. [PMID: 30898771 PMCID: PMC6499512 DOI: 10.1534/genetics.119.302053] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Accepted: 03/14/2019] [Indexed: 02/02/2023] Open
Abstract
Precise signaling at the neuromuscular junction (NMJ) is essential for proper muscle contraction. In the Caenorhabditis elegans pharynx, acetylcholine (ACh) released from the MC and M4 motor neurons stimulates two different types of contractions in adjacent muscle cells, termed pumping and isthmus peristalsis. MC stimulates rapid pumping through the nicotinic ACh receptor EAT-2, which is tightly localized at the MC NMJ, and eat-2 mutants exhibit a slow pump rate. Surprisingly, we found that eat-2 mutants also hyperstimulated peristaltic contractions, and that they were characterized by increased and prolonged Ca2+ transients in the isthmus muscles. This hyperstimulation depends on cross talk with the GAR-3 muscarinic ACh receptor as gar-3 mutation specifically suppressed the prolonged contraction and increased Ca2+ observed in eat-2 mutant peristalses. Similar GAR-3-dependent hyperstimulation was also observed in mutants lacking the ace-3 acetylcholinesterase, and we suggest that NMJ defects in eat-2 and ace-3 mutants result in ACh stimulation of extrasynaptic GAR-3 receptors in isthmus muscles. gar-3 mutation also suppressed slow larval growth and prolonged life span phenotypes that result from dietary restriction in eat-2 mutants, indicating that cross talk with the GAR-3 receptor has a long-term impact on feeding behavior and eat-2 mutant phenotypes.
Collapse
Affiliation(s)
- Alena A Kozlova
- Department of Biological Sciences, University of Illinois at Chicago, Illinois 60607
| | - Michelle Lotfi
- Department of Biological Sciences, University of Illinois at Chicago, Illinois 60607
| | - Peter G Okkema
- Department of Biological Sciences, University of Illinois at Chicago, Illinois 60607
| |
Collapse
|
20
|
Sobkowiak R, Kaczmarek P, Kowalski M, Kabaciński R, Lesicki A. Behavior of Caenorhabditis elegans in a nicotine gradient modulated by food. Drug Chem Toxicol 2017; 42:451-462. [DOI: 10.1080/01480545.2017.1405971] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Robert Sobkowiak
- Department of Cell Biology, Faculty of Biology, Adam Mickiewicz University, Poznań, Poland
| | - Piotr Kaczmarek
- Faculty of Electrical Engineering, Institute of Control and Information Engineering, Poznan University of Technology, Poznań, Poland
| | - Mateusz Kowalski
- Faculty of Electrical Engineering, Institute of Control and Information Engineering, Poznan University of Technology, Poznań, Poland
| | - Rafał Kabaciński
- Faculty of Electrical Engineering, Institute of Control and Information Engineering, Poznan University of Technology, Poznań, Poland
| | - Andrzej Lesicki
- Department of Cell Biology, Faculty of Biology, Adam Mickiewicz University, Poznań, Poland
| |
Collapse
|
21
|
Ivakhnitskaia E, Lin RW, Hamada K, Chang C. Timing of neuronal plasticity in development and aging. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2017; 7. [PMID: 29139210 DOI: 10.1002/wdev.305] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2017] [Revised: 08/21/2017] [Accepted: 09/11/2017] [Indexed: 01/21/2023]
Abstract
Molecular oscillators are well known for their roles in temporal control of some biological processes like cell proliferation, but molecular mechanisms that provide temporal control of differentiation and postdifferentiation events in cells are less understood. In the nervous system, establishment of neuronal connectivity during development and decline in neuronal plasticity during aging are regulated with temporal precision, but the timing mechanisms are largely unknown. Caenorhabditis elegans has been a preferred model for aging research and recently emerges as a new model for the study of developmental and postdevelopmental plasticity in neurons. In this review we discuss the emerging mechanisms in timing of developmental lineage progression, axon growth and pathfinding, synapse formation, and reorganization, and neuronal plasticity in development and aging. We also provide a current view on the conserved core axon regeneration molecules with the intention to point out potential regulatory points of temporal controls. We highlight recent progress in understanding timing mechanisms that regulate decline in regenerative capacity, including progressive changes of intrinsic timers and co-opting the aging pathway molecules. WIREs Dev Biol 2018, 7:e305. doi: 10.1002/wdev.305 This article is categorized under: Invertebrate Organogenesis > Worms Establishment of Spatial and Temporal Patterns > Regulation of Size, Proportion, and Timing Nervous System Development > Worms Gene Expression and Transcriptional Hierarchies > Regulatory RNA.
Collapse
Affiliation(s)
- Evguenia Ivakhnitskaia
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, IL, USA.,Medical Scientist Training Program, University of Illinois at Chicago, Chicago, IL, USA.,Graduate Program in Neuroscience, University of Illinois at Chicago, Chicago, IL, USA
| | - Ryan Weihsiang Lin
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, IL, USA
| | - Kana Hamada
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, IL, USA
| | - Chieh Chang
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, IL, USA.,Graduate Program in Neuroscience, University of Illinois at Chicago, Chicago, IL, USA
| |
Collapse
|
22
|
Lažetić V, Fay DS. Molting in C. elegans. WORM 2017; 6:e1330246. [PMID: 28702275 DOI: 10.1080/21624054.2017.1330246] [Citation(s) in RCA: 87] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Revised: 05/01/2017] [Accepted: 05/09/2017] [Indexed: 12/21/2022]
Abstract
Molting is an essential developmental process for the majority of animal species on Earth. During the molting process, which is a specialized form of extracellular matrix (ECM) remodeling, the old apical ECM, or cuticle, is replaced with a new one. Many of the genes and pathways identified as important for molting in nematodes are highly conserved in vertebrates and include regulators and components of vesicular trafficking, steroid-hormone signaling, developmental timers, and hedgehog-like signaling. In this review, we discuss what is known about molting, with a focus on studies in Caenorhabditis elegans. We also describe the key structural elements of the cuticle that must be released, newly synthesized, or remodeled for proper molting to occur.
Collapse
Affiliation(s)
- Vladimir Lažetić
- Department of Molecular Biology, College of Agriculture and Natural Resources, University of Wyoming, Laramie, WY, USA
| | - David S Fay
- Department of Molecular Biology, College of Agriculture and Natural Resources, University of Wyoming, Laramie, WY, USA
| |
Collapse
|
23
|
Kalinnikova TB, Kolsanova RR, Belova EB, Shagidullin RR, Gainutdinov MK. Opposite effects of moderate heat stress and hyperthermia on cholinergic system of soil nematodes Caenorhabditis elegans and Caenorhabditis briggsae. J Therm Biol 2016; 62:37-49. [PMID: 27839548 DOI: 10.1016/j.jtherbio.2016.05.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Revised: 05/26/2016] [Accepted: 05/29/2016] [Indexed: 10/20/2022]
Abstract
Cholinergic system plays important role in all functions of organisms of free-living soil nematodes C. elegans and C. briggsae. Using pharmacological analysis we showed the existence of two opposite responses of nematodes cholinergic system to moderate and extreme heat stress. Short-term (15min) noxious heat (31-32°C) caused activation of cholinergic synaptic transmission in C. elegans and C. briggsae organisms by sensitization of nicotinic ACh receptors. In contrast, hyperthermia blocked cholinergic synaptic transmission by inhibition of ACh secretion by neurons. The resistance of behavior to extreme high temperature (36-37°C) was significantly higher in C. briggsae than in C. elegans, and thermostability of cholinergic transmission correlated with resistance of behavior to hyperthermia. Activation of cholinergic transmission by moderate heat stress can be the reason of movement speed increase in such adaptive behavior as noxious heat escape. Inhibition of ACh release is one of reasons for behavior failure caused by extreme high temperature since partial inhibition of ACh-esterase by aldicarb protected C. elegans and C. briggsae behavior against hyperthermia. Antagonist of mAChRs atropine almost completely prevented the rise in behavior thermotolerance caused by aldicarb. Pilocarpine, agonist of mAChRs, protected nematodes behavior against hyperthermia similarly with aldicarb. Therefore it is evident that it is the deficiency of mAChRs activity that is the reason for nematodes' behavior failure by hyperthermia.
Collapse
Affiliation(s)
- Tatiana B Kalinnikova
- Research Institute for Problems of Ecology and Mineral Wealth Use of Tatarstan Academy of Sciences, Daurskaya str., 28, 420087 Kazan, Russia.
| | - Rufina R Kolsanova
- Research Institute for Problems of Ecology and Mineral Wealth Use of Tatarstan Academy of Sciences, Daurskaya str., 28, 420087 Kazan, Russia
| | - Evgenia B Belova
- Research Institute for Problems of Ecology and Mineral Wealth Use of Tatarstan Academy of Sciences, Daurskaya str., 28, 420087 Kazan, Russia
| | - Rifgat R Shagidullin
- Research Institute for Problems of Ecology and Mineral Wealth Use of Tatarstan Academy of Sciences, Daurskaya str., 28, 420087 Kazan, Russia
| | - Marat Kh Gainutdinov
- Research Institute for Problems of Ecology and Mineral Wealth Use of Tatarstan Academy of Sciences, Daurskaya str., 28, 420087 Kazan, Russia
| |
Collapse
|
24
|
Uppaluri S, Brangwynne CP. A size threshold governs Caenorhabditis elegans developmental progression. Proc Biol Sci 2016; 282:20151283. [PMID: 26290076 DOI: 10.1098/rspb.2015.1283] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The growth of organisms from humans to bacteria is affected by environmental conditions. However, mechanisms governing growth and size control are not well understood, particularly in the context of changes in food availability in developing multicellular organisms. Here, we use a novel microfluidic platform to study the impact of diet on the growth and development of the nematode Caenorhabditis elegans. This device allows us to observe individual worms throughout larval development, quantify their growth as well as pinpoint the moulting transitions marking successive developmental stages. Under conditions of low food availability, worms grow very slowly, but do not moult until they have achieved a threshold size. The time spent in larval stages can be extended by over an order of magnitude, in agreement with a simple threshold size model. Thus, a critical worm size appears to trigger developmental progression, and may contribute to prolonged lifespan under dietary restriction.
Collapse
Affiliation(s)
- Sravanti Uppaluri
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544, USA
| | - Clifford P Brangwynne
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544, USA
| |
Collapse
|
25
|
Gouvêa DY, Aprison EZ, Ruvinsky I. Experience Modulates the Reproductive Response to Heat Stress in C. elegans via Multiple Physiological Processes. PLoS One 2015; 10:e0145925. [PMID: 26713620 PMCID: PMC4699941 DOI: 10.1371/journal.pone.0145925] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Accepted: 12/10/2015] [Indexed: 11/29/2022] Open
Abstract
Natural environments are considerably more variable than laboratory settings and often involve transient exposure to stressful conditions. To fully understand how organisms have evolved to respond to any given stress, prior experience must therefore be considered. We investigated the effects of individual and ancestral experience on C. elegans reproduction. We documented ways in which cultivation at 15°C or 25°C affects developmental time, lifetime fecundity, and reproductive performance after severe heat stress that exceeds the fertile range of the organism but is compatible with survival and future fecundity. We found that experience modulates multiple aspects of reproductive physiology, including the male and female germ lines and the interaction between them. These responses vary in their environmental sensitivity, suggesting the existence of complex mechanisms for coping with unpredictable and stressful environments.
Collapse
Affiliation(s)
- Devin Y. Gouvêa
- Committee on Conceptual and Historical Studies of Science, The University of Chicago, Chicago, Illinois, United States of America
- Committee on Evolutionary Biology, The University of Chicago, Chicago, Illinois, United States of America
| | - Erin Z. Aprison
- Department of Ecology and Evolution, The University of Chicago, Chicago, Illinois, United States of America
| | - Ilya Ruvinsky
- Committee on Evolutionary Biology, The University of Chicago, Chicago, Illinois, United States of America
- Department of Ecology and Evolution, The University of Chicago, Chicago, Illinois, United States of America
- Department of Organismal Biology and Anatomy, The University of Chicago, Chicago, Illinois, United States of America
| |
Collapse
|
26
|
Burke SL, Hammell M, Ambros V. Robust Distal Tip Cell Pathfinding in the Face of Temperature Stress Is Ensured by Two Conserved microRNAS in Caenorhabditis elegans. Genetics 2015; 200:1201-18. [PMID: 26078280 PMCID: PMC4574240 DOI: 10.1534/genetics.115.179184] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Accepted: 06/10/2015] [Indexed: 12/26/2022] Open
Abstract
Biological robustness, the ability of an organism to maintain a steady-state output as genetic or environmental inputs change, is critical for proper development. MicroRNAs have been implicated in biological robustness mechanisms through their post-transcriptional regulation of genes and gene networks. Previous research has illustrated examples of microRNAs promoting robustness as part of feedback loops and genetic switches and by buffering noisy gene expression resulting from environmental and/or internal changes. Here we show that the evolutionarily conserved microRNAs mir-34 and mir-83 (homolog of mammalian mir-29) contribute to the robust migration pattern of the distal tip cells in Caenorhabditis elegans by specifically protecting against stress from temperature changes. Furthermore, our results indicate that mir-34 and mir-83 may modulate the integrin signaling involved in distal tip cell migration by potentially targeting the GTPase cdc-42 and the beta-integrin pat-3. Our findings suggest a role for mir-34 and mir-83 in integrin-controlled cell migrations that may be conserved through higher organisms. They also provide yet another example of microRNA-based developmental robustness in response to a specific environmental stress, rapid temperature fluctuations.
Collapse
Affiliation(s)
- Samantha L Burke
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts 01605
| | - Molly Hammell
- Watson School of Biological Sciences, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724
| | - Victor Ambros
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts 01605
| |
Collapse
|
27
|
Identification of late larval stage developmental checkpoints in Caenorhabditis elegans regulated by insulin/IGF and steroid hormone signaling pathways. PLoS Genet 2014; 10:e1004426. [PMID: 24945623 PMCID: PMC4063711 DOI: 10.1371/journal.pgen.1004426] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Accepted: 04/20/2014] [Indexed: 01/10/2023] Open
Abstract
Organisms in the wild develop with varying food availability. During periods of nutritional scarcity, development may slow or arrest until conditions improve. The ability to modulate developmental programs in response to poor nutritional conditions requires a means of sensing the changing nutritional environment and limiting tissue growth. The mechanisms by which organisms accomplish this adaptation are not well understood. We sought to study this question by examining the effects of nutrient deprivation on Caenorhabditis elegans development during the late larval stages, L3 and L4, a period of extensive tissue growth and morphogenesis. By removing animals from food at different times, we show here that specific checkpoints exist in the early L3 and early L4 stages that systemically arrest the development of diverse tissues and cellular processes. These checkpoints occur once in each larval stage after molting and prior to initiation of the subsequent molting cycle. DAF-2, the insulin/insulin-like growth factor receptor, regulates passage through the L3 and L4 checkpoints in response to nutrition. The FOXO transcription factor DAF-16, a major target of insulin-like signaling, functions cell-nonautonomously in the hypodermis (skin) to arrest developmental upon nutrient removal. The effects of DAF-16 on progression through the L3 and L4 stages are mediated by DAF-9, a cytochrome P450 ortholog involved in the production of C. elegans steroid hormones. Our results identify a novel mode of C. elegans growth in which development progresses from one checkpoint to the next. At each checkpoint, nutritional conditions determine whether animals remain arrested or continue development to the next checkpoint. Organisms in the wild often face long periods in which food is scarce. This may occur due to seasonal effects, loss of territory, or changes in predator-to-prey ratio. During periods of scarcity, organisms undergo adaptations to conserve resources and prolong survival. When nutrient deprivation occurs during development, physical growth and maturation to adulthood is delayed. These effects are also observed in malnourished individuals, who are smaller and reach puberty at later ages. Developmental arrest in response to nutrient scarcity requires a means of sensing changing nutrient conditions and coordinating an organism-wide response. How this occurs is not well understood. We assessed the developmental response to nutrient withdrawal in the nematode worm Caenorhabditis elegans. By removing food in the late larval stages, a period of extensive tissue formation, we have uncovered previously unknown checkpoints that occur at precise times in development. Diverse tissues and cellular processes arrest at the checkpoints. Insulin-like signaling and steroid hormone signaling regulate tissue arrest following nutrient withdrawal. These pathways are conserved in mammals and are linked to growth processes and diseases. Given that the pathways that respond to nutrition are conserved in animals, it is possible that similar checkpoints may also be important in human development.
Collapse
|
28
|
Hendriks GJ, Gaidatzis D, Aeschimann F, Großhans H. Extensive oscillatory gene expression during C. elegans larval development. Mol Cell 2014; 53:380-92. [PMID: 24440504 DOI: 10.1016/j.molcel.2013.12.013] [Citation(s) in RCA: 146] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2013] [Revised: 11/25/2013] [Accepted: 12/12/2013] [Indexed: 10/25/2022]
Abstract
Oscillations are a key to achieving dynamic behavior and thus occur in biological systems as diverse as the beating heart, defecating worms, and nascent somites. Here we report pervasive, large-amplitude, and phase-locked oscillations of gene expression in developing C. elegans larvae, caused by periodic transcription. Nearly one fifth of detectably expressed transcripts oscillate with an 8 hr period, and hundreds change >10-fold. Oscillations are important for molting but occur in all phases, implying additional functions. Ribosome profiling reveals that periodic mRNA accumulation causes rhythmic translation, potentially facilitating transient protein accumulation as well as coordinated production of stable, complex structures such as the cuticle. Finally, large-amplitude oscillations in RNA sampled from whole worms indicate robust synchronization of gene expression programs across cells and tissues, suggesting that these oscillations will be a powerful new model to study coordinated gene expression in an animal.
Collapse
Affiliation(s)
- Gert-Jan Hendriks
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, CH-4058 Basel, Switzerland; University of Basel, Petersplatz 1, CH-4003 Basel, Switzerland
| | - Dimos Gaidatzis
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, CH-4058 Basel, Switzerland; Swiss Institute of Bioinformatics, CH-4058 Basel, Switzerland
| | - Florian Aeschimann
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, CH-4058 Basel, Switzerland; University of Basel, Petersplatz 1, CH-4003 Basel, Switzerland
| | - Helge Großhans
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, CH-4058 Basel, Switzerland.
| |
Collapse
|
29
|
Flatt T, Amdam GV, Kirkwood TBL, Omholt SW. Life-history evolution and the polyphenic regulation of somatic maintenance and survival. QUARTERLY REVIEW OF BIOLOGY 2013; 88:185-218. [PMID: 24053071 DOI: 10.1086/671484] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Here we discuss life-history evolution from the perspective of adaptive phenotypic plasticity, with a focus on polyphenisms for somatic maintenance and survival. Polyphenisms are adaptive discrete alternative phenotypes that develop in response to changes in the environment. We suggest that dauer larval diapause and its associated adult phenotypes in the nematode (Caenorhabditis elegans), reproductive dormancy in the fruit fly (Drosophila melanogaster) and other insects, and the worker castes of the honey bee (Apis mellifera) are examples of what may be viewed as the polyphenic regulation of somatic maintenance and survival. In these and other cases, the same genotype can--depending upon its environment--express either of two alternative sets of life-history phenotypes that differ markedly with respect to somatic maintenance, survival ability, and thus life span. This plastic modulation of somatic maintenance and survival has traditionally been underappreciated by researchers working on aging and life history. We review the current evidence for such adaptive life-history switches and their molecular regulation and suggest that they are caused by temporally and/or spatially varying, stressful environments that impose diversifying selection, thereby favoring the evolution of plasticity of somatic maintenance and survival under strong regulatory control. By considering somatic maintenance and survivorship from the perspective of adaptive life-history switches, we may gain novel insights into the mechanisms and evolution of aging.
Collapse
Affiliation(s)
- Thomas Flatt
- Institut für Populationsgenetik, Vetmeduni Vienna, A-1210 Vienna, Austria.
| | | | | | | |
Collapse
|
30
|
Monsalve GC, Frand AR. Toward a unified model of developmental timing: A "molting" approach. WORM 2013; 1:221-30. [PMID: 24058853 PMCID: PMC3670223 DOI: 10.4161/worm.20874] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2012] [Accepted: 05/24/2012] [Indexed: 02/06/2023]
Abstract
Animal development requires temporal coordination between recurrent processes and sequential events, but the underlying timing mechanisms are not yet understood. The molting cycle of C. elegans provides an ideal system to study this basic problem. We recently characterized LIN-42, which is related to the circadian clock protein PERIOD, as a key component of the developmental timer underlying rhythmic molting cycles. In this context, LIN-42 coordinates epithelial stem cell dynamics with progression of the molting cycle. Repeated actions of LIN-42 may enable the reprogramming of seam cell temporal fates, while stage-specific actions of LIN-42 and other heterochronic genes select fates appropriate for upcoming, rather than passing, life stages. Here, we discuss the possible configuration of the molting timer, which may include interconnected positive and negative regulatory loops among lin-42, conserved nuclear hormone receptors such as NHR-23 and -25, and the let-7 family of microRNAs. Physiological and environmental conditions may modulate the activities of particular components of this molting timer. Finding that LIN-42 regulates both a sleep-like behavioral state and epidermal stem cell dynamics further supports the model of functional conservation between LIN-42 and mammalian PERIOD proteins. The molting timer may therefore represent a primitive form of a central biological clock and provide a general paradigm for the integration of rhythmic and developmental processes.
Collapse
Affiliation(s)
- Gabriela C Monsalve
- Department of Biological Chemistry; David Geffen School of Medicine; University of California; Los Angeles, CA USA
| | | |
Collapse
|
31
|
Suzuki Y, Koyama T, Hiruma K, Riddiford LM, Truman JW. A molt timer is involved in the metamorphic molt in Manduca sexta larvae. Proc Natl Acad Sci U S A 2013; 110:12518-25. [PMID: 23852731 PMCID: PMC3732944 DOI: 10.1073/pnas.1311405110] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Manduca sexta larvae are a model for growth control in insects, particularly for the demonstration of critical weight, a threshold weight that the larva must surpass before it can enter metamorphosis on a normal schedule, and the inhibitory action of juvenile hormone on this checkpoint. We examined the effects of nutrition on allatectomized (CAX) larvae that lack juvenile hormone to impose the critical weight checkpoint. Normal larvae respond to prolonged starvation at the start of the last larval stage, by extending their subsequent feeding period to ensure that they begin metamorphosis above critical weight. CAX larvae, by contrast, show no homeostatic adjustment to starvation but start metamorphosis 4 d after feeding onset, regardless of larval size or the state of development of their imaginal discs. By feeding starved CAX larvae for various durations, we found that feeding for only 12-24 h was sufficient to result in metamorphosis on day 4, regardless of further feeding or body size. Manipulation of diet composition showed that protein was the critical macronutrient to initiate this timing. This constant period between the start of feeding and the onset of metamorphosis suggests that larvae possess a molt timer that establishes a minimal time to metamorphosis. Ligation experiments indicate that a portion of the timing may occur in the prothoracic glands. This positive system that promotes molting and the negative control via the critical weight checkpoint provide antagonistic pathways that evolution can modify to adapt growth to the ecological needs of different insects.
Collapse
Affiliation(s)
- Yuichiro Suzuki
- Department of Biology, University of Washington, Seattle, WA 98195-1800; and
| | - Takashi Koyama
- Department of Biology, University of Washington, Seattle, WA 98195-1800; and
| | - Kiyoshi Hiruma
- Faculty of Agriculture and Life Sciences, Hirosaki University, Hirosaki 036-8561, Japan
| | - Lynn M. Riddiford
- Department of Biology, University of Washington, Seattle, WA 98195-1800; and
| | - James W. Truman
- Department of Biology, University of Washington, Seattle, WA 98195-1800; and
| |
Collapse
|
32
|
Baugh LR. To grow or not to grow: nutritional control of development during Caenorhabditis elegans L1 arrest. Genetics 2013; 194:539-55. [PMID: 23824969 PMCID: PMC3697962 DOI: 10.1534/genetics.113.150847] [Citation(s) in RCA: 169] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2013] [Accepted: 05/09/2013] [Indexed: 12/30/2022] Open
Abstract
It is widely appreciated that larvae of the nematode Caenorhabditis elegans arrest development by forming dauer larvae in response to multiple unfavorable environmental conditions. C. elegans larvae can also reversibly arrest development earlier, during the first larval stage (L1), in response to starvation. "L1 arrest" (also known as "L1 diapause") occurs without morphological modification but is accompanied by increased stress resistance. Caloric restriction and periodic fasting can extend adult lifespan, and developmental models are critical to understanding how the animal is buffered from fluctuations in nutrient availability, impacting lifespan. L1 arrest provides an opportunity to study nutritional control of development. Given its relevance to aging, diabetes, obesity and cancer, interest in L1 arrest is increasing, and signaling pathways and gene regulatory mechanisms controlling arrest and recovery have been characterized. Insulin-like signaling is a critical regulator, and it is modified by and acts through microRNAs. DAF-18/PTEN, AMP-activated kinase and fatty acid biosynthesis are also involved. The nervous system, epidermis, and intestine contribute systemically to regulation of arrest, but cell-autonomous signaling likely contributes to regulation in the germline. A relatively small number of genes affecting starvation survival during L1 arrest are known, and many of them also affect adult lifespan, reflecting a common genetic basis ripe for exploration. mRNA expression is well characterized during arrest, recovery, and normal L1 development, providing a metazoan model for nutritional control of gene expression. In particular, post-recruitment regulation of RNA polymerase II is under nutritional control, potentially contributing to a rapid and coordinated response to feeding. The phenomenology of L1 arrest will be reviewed, as well as regulation of developmental arrest and starvation survival by various signaling pathways and gene regulatory mechanisms.
Collapse
Affiliation(s)
- L Ryan Baugh
- Department of Biology, Duke Center for Systems Biology, Duke University, Durham, North Carolina 27708-0338, USA.
| |
Collapse
|
33
|
Jones MR, Rose AM, Baillie DL. The ortholog of the human proto-oncogene ROS1 is required for epithelial development in C. elegans. Genesis 2013; 51:545-61. [PMID: 23733356 PMCID: PMC4232869 DOI: 10.1002/dvg.22405] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2013] [Revised: 05/16/2013] [Accepted: 05/20/2013] [Indexed: 12/19/2022]
Abstract
The orphan receptor ROS1 is a human proto-oncogene, mutations of which are found in an increasing number of cancers. Little is known about the role of ROS1, however in vertebrates it has been implicated in promoting differentiation programs in specialized epithelial tissues. In this study we show that the C. elegans ortholog of ROS1, the receptor tyrosine kinase ROL-3, has an essential role in orchestrating the morphogenesis and development of specialized epidermal tissues, highlighting a potentially conserved function in coordinating crosstalk between developing epithelial cells. We also provide evidence of a direct relationship between ROL-3, the mucin SRAP-1, and BCC-1, the homolog of mRNA regulating protein Bicaudal-C. This study answers a longstanding question as to the developmental function of ROL-3, identifies three new genes that are expressed and function in the developing epithelium of C. elegans, and introduces the nematode as a potentially powerful model system for investigating the increasingly important, yet poorly understood, human oncogene ROS1. genesis 51:545–561.
Collapse
Affiliation(s)
- Martin R Jones
- Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia, Canada, V6T 1Z4.
| | | | | |
Collapse
|
34
|
Alterations in gene expression in Caenorhabditis elegans associated with organophosphate pesticide intoxication and recovery. BMC Genomics 2013; 14:291. [PMID: 23631360 PMCID: PMC3760450 DOI: 10.1186/1471-2164-14-291] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2012] [Accepted: 04/20/2013] [Indexed: 01/13/2023] Open
Abstract
Background The principal toxicity of acute organophosphate (OP) pesticide poisoning is the disruption of neurotransmission through inhibition of acetylcholinesterase (AChE). However, other mechanisms leading to persistent effects and neurodegeneration remain controversial and difficult to detect. Because Caenorhabditis elegans is relatively resistant to OP lethality—particularly through the inhibition of AChE—studies in this nematode provide an opportunity to observe alterations in global gene expression following OP exposure that cannot be readily observed in less resistant organisms. Results We exposed cultures of worms in axenic, defined medium to dichlorvos under three exposure protocols. In the first, worms were exposed continuously throughout the experiment. In the second and third, the worms were exposed for either 2 or 8 h, the dichlorvos was washed out of the culture, and the worms were allowed to recover. We then analyzed gene expression using whole genome microarrays from RNA obtained from worms sampled at multiple time points throughout the exposure. The worms showed a time-dependent increase in the expression of genes involved in stress responses. Early in the exposure, the predominant effect was on metabolic processes, while at later times, an immune-like response and cellular repair mechanisms dominated the expression pattern. Following removal of dichlorvos, the gene expression in the worms appeared to relatively rapidly return to steady-state levels. Conclusion The changes in gene expression observed in the worms following exposure to dichlorvos point towards two potential mechanisms of toxicity: inhibition of AChE and mitochondrial disruption.
Collapse
|
35
|
Holden-Dye L, Joyner M, O'Connor V, Walker RJ. Nicotinic acetylcholine receptors: a comparison of the nAChRs of Caenorhabditis elegans and parasitic nematodes. Parasitol Int 2013; 62:606-15. [PMID: 23500392 DOI: 10.1016/j.parint.2013.03.004] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2012] [Revised: 02/28/2013] [Accepted: 03/05/2013] [Indexed: 01/15/2023]
Abstract
Nicotinic acetylcholine receptors (nAChRs) play a key role in the normal physiology of nematodes and provide an established target site for anthelmintics. The free-living nematode, Caenorhabditis elegans, has a large number of nAChR subunit genes in its genome and so provides an experimental model for testing novel anthelmintics which act at these sites. However, many parasitic nematodes lack specific genes present in C. elegans, and so care is required in extrapolating from studies using C. elegans to the situation in other nematodes. In this review the properties of C. elegans nAChRs are reviewed and compared to those of parasitic nematodes. This forms the basis for a discussion of the possible subunit composition of nAChRs from different species of parasitic nematodes. Currently our knowledge on this is largely based on studies using heterologous expression and pharmacological analysis of receptor subunits in Xenopus laevis oocytes. It is concluded that more information is required regarding the subunit composition and pharmacology of endogenous nAChRs in parasitic nematodes.
Collapse
Affiliation(s)
- Lindy Holden-Dye
- Centre for Biological Sciences, Life Sciences Building 85, University of Southampton, Southampton SO17 1BJ, UK.
| | | | | | | |
Collapse
|
36
|
Chisholm AD, Xu S. The Caenorhabditis elegans epidermis as a model skin. II: differentiation and physiological roles. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2012; 1:879-902. [PMID: 23539358 DOI: 10.1002/wdev.77] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The Caenorhabditis elegans epidermis forms one of the principal barrier epithelia of the animal. Differentiation of the epidermis begins in mid embryogenesis and involves apical-basal polarization of the cytoskeletal and secretory systems as well as cellular junction formation. Secretion of the external cuticle layers is one of the major developmental and physiological specializations of the epidermal epithelium. The four post-embryonic larval stages are separated by periodic moults, in which the epidermis generates a new cuticle with stage-specific characteristics. The differentiated epidermis also plays key roles in endocrine signaling, fat storage, and ionic homeostasis. The epidermis is intimately associated with the development and function of the nervous system, and may have glial-like roles in modulating neuronal function. The epidermis provides passive and active defenses against skin-penetrating pathogens and can repair small wounds. Finally, age-dependent deterioration of the epidermis is a prominent feature of aging and may affect organismal aging and lifespan.
Collapse
Affiliation(s)
- Andrew D Chisholm
- Division of Biological Sciences, Section of Cell and Developmental Biology, University of California San Diego, La Jolla, CA, USA.
| | | |
Collapse
|
37
|
APL-1, the Alzheimer's Amyloid precursor protein in Caenorhabditis elegans, modulates multiple metabolic pathways throughout development. Genetics 2012; 191:493-507. [PMID: 22466039 DOI: 10.1534/genetics.112.138768] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Mutations in the amyloid precursor protein (APP) gene or in genes that process APP are correlated with familial Alzheimer's disease (AD). The biological function of APP remains unclear. APP is a transmembrane protein that can be sequentially cleaved by different secretases to yield multiple fragments, which can potentially act as signaling molecules. Caenorhabditis elegans encodes one APP-related protein, APL-1, which is essential for viability. Here, we show that APL-1 signaling is dependent on the activity of the FOXO transcription factor DAF-16 and the nuclear hormone receptor DAF-12 and influences metabolic pathways such as developmental progression, body size, and egg-laying rate. Furthermore, apl-1(yn5) mutants, which produce high levels of the extracellular APL-1 fragment, show an incompletely penetrant temperature-sensitive embryonic lethality. In a genetic screen to isolate mutants in which the apl-1(yn5) lethality rate is modified, we identified a suppressor mutation in MOA-1/R155.2, a receptor-protein tyrosine phosphatase, and an enhancer mutation in MOA-2/B0495.6, a protein involved in receptor-mediated endocytosis. Knockdown of apl-1 in an apl-1(yn5) background caused lethality and molting defects at all larval stages, suggesting that apl-1 is required for each transitional molt. We suggest that signaling of the released APL-1 fragment modulates multiple metabolic states and that APL-1 is required throughout development.
Collapse
|
38
|
Russel S, Frand AR, Ruvkun G. Regulation of the C. elegans molt by pqn-47. Dev Biol 2011; 360:297-309. [PMID: 21989027 PMCID: PMC3618673 DOI: 10.1016/j.ydbio.2011.09.025] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2011] [Revised: 09/14/2011] [Accepted: 09/23/2011] [Indexed: 11/20/2022]
Abstract
C. elegans molts at the end of each of its four larval stages but this cycle ceases at the reproductive adult stage. We have identified a regulator of molting, pqn-47. Null mutations in pqn-47 cause a developmental arrest at the first larval molt, showing that this gene activity is required to transit the molt. Mutants with weak alleles of pqn-47 complete the larval molts but fail to exit the molting cycle at the adult stage. These phenotypes suggest that pqn-47 executes key aspects of the molting program including the cessation of molting cycles. The pqn-47 gene encodes a protein that is highly conserved in animal phylogeny but probably misannotated in genome sequences due to much less significant homology to a yeast transcription factor. A PQN-47::GFP fusion gene is expressed in many neurons, vulval precursor cells, the distal tip cell (DTC), intestine, and the lateral hypodermal seam cells but not in the main body hypodermal syncytium (hyp7) that underlies, synthesizes, and releases most of the collagenous cuticle. A functional PQN-47::GFP fusion protein localizes to the cytoplasm rather than the nucleus at all developmental stages, including the periods preceding and during ecdysis when genetic analysis suggests that pqn-47 functions. The cytoplasmic localization of PQN-47::GFP partially overlaps with the endoplasmic reticulum, suggesting that PQN-47 is involved in the extensive secretion of cuticle components or hormones that occurs during molts. The mammalian and insect homologues of pqn-47 may serve similar roles in regulated secretion.
Collapse
Affiliation(s)
- Sascha Russel
- Department of Molecular Biology, Massachusetts General Hospital, Department of Genetics, Harvard Medical School, Boston, MA 02114, USA
| | - Alison R. Frand
- Department of Molecular Biology, Massachusetts General Hospital, Department of Genetics, Harvard Medical School, Boston, MA 02114, USA
| | - Gary Ruvkun
- Department of Molecular Biology, Massachusetts General Hospital, Department of Genetics, Harvard Medical School, Boston, MA 02114, USA
| |
Collapse
|
39
|
Monsalve GC, Van Buskirk C, Frand AR. LIN-42/PERIOD controls cyclical and developmental progression of C. elegans molts. Curr Biol 2011; 21:2033-45. [PMID: 22137474 DOI: 10.1016/j.cub.2011.10.054] [Citation(s) in RCA: 104] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2011] [Revised: 10/07/2011] [Accepted: 10/31/2011] [Indexed: 01/06/2023]
Abstract
BACKGROUND Biological timing mechanisms that integrate cyclical and successive processes are not well understood. C. elegans molting cycles involve rhythmic cellular and animal behaviors linked to the periodic reconstruction of cuticles. Molts are coordinated with successive transitions in the temporal fates of epidermal blast cells, which are programmed by genes in the heterochronic regulatory network. It was known that juveniles molt at regular 8-10 hr intervals, but the anticipated pacemaker had not been characterized. RESULTS We find that inactivation of the heterochronic gene lin-42a, which is related to the core circadian clock gene PERIOD (PER), results in arrhythmic molts and continuously abnormal epidermal stem cell dynamics. The oscillatory expression of lin-42a in the epidermis peaks during the molts. Further, forced expression of lin-42a leads to anachronistic larval molts and lethargy in adults. CONCLUSIONS Our results suggest that rising and falling levels of LIN-42A allow the start and completion, respectively, of larval molts. We propose that LIN-42A and affiliated factors regulate molting cycles in much the same way that PER-based oscillators drive rhythmic behaviors and metabolic processes in mature mammals. Further, the combination of reiterative and stage-specific functions of LIN-42 may coordinate periodic molts with successive development of the epidermis.
Collapse
Affiliation(s)
- Gabriela C Monsalve
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | | | | |
Collapse
|
40
|
Boulin T, Hobert O. From genes to function: the C. elegans genetic toolbox. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2011; 1:114-37. [PMID: 23801671 DOI: 10.1002/wdev.1] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
This review aims to provide an overview of the technologies which make the nematode Caenorhabditis elegans an attractive genetic model system. We describe transgenesis techniques and forward and reverse genetic approaches to isolate mutants and clone genes. In addition, we discuss the new possibilities offered by genome engineering strategies and next-generation genome analysis tools.
Collapse
Affiliation(s)
- Thomas Boulin
- Department of Biology, Institut de Biologie de l'École Normale Supérieure, Paris, France.
| | | |
Collapse
|
41
|
A dominant mutation in a neuronal acetylcholine receptor subunit leads to motor neuron degeneration in Caenorhabditis elegans. J Neurosci 2010; 30:13932-42. [PMID: 20962215 DOI: 10.1523/jneurosci.1515-10.2010] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Inappropriate or excessive activation of ionotropic receptors can have dramatic consequences for neuronal function and, in many instances, leads to cell death. In Caenorhabditis elegans, nicotinic acetylcholine receptor (nAChR) subunits are highly expressed in a neural circuit that controls movement. Here, we show that heteromeric nAChRs containing the acr-2 subunit are diffusely localized in the processes of excitatory motor neurons and act to modulate motor neuron activity. Excessive signaling through these receptors leads to cell-autonomous degeneration of cholinergic motor neurons and paralysis. C. elegans double mutants lacking calreticulin and calnexin-two genes previously implicated in the cellular events leading to necrotic-like cell death (Xu et al. 2001)-are resistant to nAChR-mediated toxicity and possess normal numbers of motor neuron cell bodies. Nonetheless, excess nAChR activation leads to progressive destabilization of the motor neuron processes and, ultimately, paralysis in these animals. Our results provide new evidence that chronic activation of ionotropic receptors can have devastating degenerative effects in neurons and reveal that ion channel-mediated toxicity may have distinct consequences in neuronal cell bodies and processes.
Collapse
|
42
|
Insulin/Insulin-like growth factor signaling controls non-Dauer developmental speed in the nematode Caenorhabditis elegans. Genetics 2010; 187:337-43. [PMID: 20944013 DOI: 10.1534/genetics.110.123323] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Identified as a major pathway controlling entry in the facultative dauer diapause stage, the DAF-2/Insulin receptor (InsR) signaling acts in multiple developmental and physiological regulation events in Caenorhabditis elegans. Here we identified a role of the insulin-like pathway in controlling developmental speed during the C. elegans second larval stage. This role relies on the canonical DAF-16/FOXO-dependent branch of the insulin-like signaling and is largely independent of dauer formation. Our studies provide further evidence for broad conservation of insulin/insulin-like growth factor (IGF) functions in developmental speed control.
Collapse
|
43
|
Hada K, Asahina M, Hasegawa H, Kanaho Y, Slack FJ, Niwa R. The nuclear receptor gene nhr-25 plays multiple roles in the Caenorhabditis elegans heterochronic gene network to control the larva-to-adult transition. Dev Biol 2010; 344:1100-9. [PMID: 20678979 DOI: 10.1016/j.ydbio.2010.05.508] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2010] [Revised: 05/16/2010] [Accepted: 05/24/2010] [Indexed: 11/20/2022]
Abstract
Developmental timing in the nematode Caenorhabditis elegans is controlled by heterochronic genes, mutations in which cause changes in the relative timing of developmental events. One of the heterochronic genes, let-7, encodes a microRNA that is highly evolutionarily conserved, suggesting that similar genetic pathways control developmental timing across phyla. Here we report that the nuclear receptor nhr-25, which belongs to the evolutionarily conserved fushi tarazu-factor 1/nuclear receptor NR5A subfamily, interacts with heterochronic genes that regulate the larva-to-adult transition in C. elegans. We identified nhr-25 as a regulator of apl-1, a homolog of the Alzheimer's amyloid precursor protein-like gene that is downstream of let-7 family microRNAs. NHR-25 controls not only apl-1 expression but also regulates developmental progression in the larva-to-adult transition. NHR-25 negatively regulates the expression of the adult-specific collagen gene col-19 in lateral epidermal seam cells. In contrast, NHR-25 positively regulates the larva-to-adult transition for other timed events in seam cells, such as cell fusion, cell division and alae formation. The genetic relationships between nhr-25 and other heterochronic genes are strikingly varied among several adult developmental events. We propose that nhr-25 has multiple roles in both promoting and inhibiting the C. elegans heterochronic gene pathway controlling adult differentiation programs.
Collapse
Affiliation(s)
- Kazumasa Hada
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8572, Japan
| | | | | | | | | | | |
Collapse
|
44
|
Meli VS, Osuna B, Ruvkun G, Frand AR. MLT-10 defines a family of DUF644 and proline-rich repeat proteins involved in the molting cycle of Caenorhabditis elegans. Mol Biol Cell 2010; 21:1648-61. [PMID: 20335506 PMCID: PMC2869372 DOI: 10.1091/mbc.e08-07-0708] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Molting of nematodes involves the synthesis and removal of a collagen-rich exoskeleton. We describe Caenorhabditis elegans MLT-10, which defines a large family of DUF644 and proline-rich repeat proteins. We show that MLT-10 is released from the epidermis during molting and that MLT-10 is involved in renewal of the exoskeleton and development of the epidermis. The molting cycle of nematodes involves the periodic synthesis and removal of a collagen-rich exoskeleton, but the underlying molecular mechanisms are not well understood. Here, we describe the mlt-10 gene of Caenorhabditis elegans, which emerged from a genetic screen for molting-defective mutants sensitized by low cholesterol. MLT-10 defines a large family of nematode-specific proteins comprised of DUF644 and tandem P-X2-L-(S/T)-P repeats. Conserved nuclear hormone receptors promote expression of the mlt-10 gene in the hypodermis whenever the exoskeleton is remade. Further, a MLT-10::mCherry fusion protein is released from the hypodermis to the surrounding matrices and fluids during molting. The fusion protein is also detected in strands near the surface of animals. Both loss-of-function and gain-of-function mutations of mlt-10 impede the removal of old cuticles. However, the substitution mutation mlt-10(mg364), which disrupts the proline-rich repeats, causes the most severe phenotype. Mutations of mlt-10 are also associated with abnormalities in the exoskeleton and improper development of the epidermis. Thus, mlt-10 encodes a secreted protein involved in three distinct but interconnected aspects of the molting cycle. We propose that the molting cycle of C. elegans involves the dynamic assembly and disassembly of MLT-10 and possibly the paralogs of MLT-10.
Collapse
Affiliation(s)
- Vijaykumar S Meli
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095-1737, USA
| | | | | | | |
Collapse
|
45
|
A neuronal acetylcholine receptor regulates the balance of muscle excitation and inhibition in Caenorhabditis elegans. PLoS Biol 2009; 7:e1000265. [PMID: 20027209 PMCID: PMC2787625 DOI: 10.1371/journal.pbio.1000265] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2009] [Accepted: 11/12/2009] [Indexed: 12/29/2022] Open
Abstract
In the nematode Caenorhabditis elegans, cholinergic motor neurons stimulate muscle contraction as well as activate GABAergic motor neurons that inhibit contraction of the contralateral muscles. Here, we describe the composition of an ionotropic acetylcholine receptor that is required to maintain excitation of the cholinergic motor neurons. We identified a gain-of-function mutation that leads to spontaneous muscle convulsions. The mutation is in the pore domain of the ACR-2 acetylcholine receptor subunit and is identical to a hyperactivating mutation in the muscle receptor of patients with myasthenia gravis. Screens for suppressors of the convulsion phenotype led to the identification of other receptor subunits. Cell-specific rescue experiments indicate that these subunits function in the cholinergic motor neurons. Expression of these subunits in Xenopus oocytes demonstrates that the functional receptor is comprised of three alpha-subunits, UNC-38, UNC-63 and ACR-12, and two non-alpha-subunits, ACR-2 and ACR-3. Although this receptor exhibits a partially overlapping subunit composition with the C. elegans muscle acetylcholine receptor, it shows distinct pharmacology. Recordings from intact animals demonstrate that loss-of-function mutations in acr-2 reduce the excitability of the cholinergic motor neurons. By contrast, the acr-2(gf) mutation leads to a hyperactivation of cholinergic motor neurons and an inactivation of downstream GABAergic motor neurons in a calcium dependent manner. Presumably, this imbalance between excitatory and inhibitory input into muscles leads to convulsions. These data indicate that the ACR-2 receptor is important for the coordinated excitation and inhibition of body muscles underlying sinusoidal movement.
Collapse
|
46
|
Gendrel M, Rapti G, Richmond JE, Bessereau JL. A secreted complement-control-related protein ensures acetylcholine receptor clustering. Nature 2009; 461:992-6. [PMID: 19794415 DOI: 10.1038/nature08430] [Citation(s) in RCA: 84] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2009] [Accepted: 08/14/2009] [Indexed: 01/02/2023]
Abstract
Efficient neurotransmission at chemical synapses relies on spatial congruence between the presynaptic active zone, where synaptic vesicles fuse, and the postsynaptic differentiation, where neurotransmitter receptors concentrate. Diverse molecular systems have evolved to localize receptors at synapses, but in most cases, they rely on scaffolding proteins localized below the plasma membrane. A few systems have been suggested to control the synaptic localization of neurotransmitter receptors through extracellular interactions, such as the pentraxins that bind AMPA receptors and trigger their aggregation. However, it is not yet clear whether these systems have a central role in the organization of postsynaptic domains in vivo or rather provide modulatory functions. Here we describe an extracellular scaffold that is necessary to cluster acetylcholine receptors at neuromuscular junctions in the nematode Caenorhabditis elegans. It involves the ectodomain of the previously identified transmembrane protein LEV-10 (ref. 6) and a novel extracellular protein, LEV-9. LEV-9 is secreted by the muscle cells and localizes at cholinergic neuromuscular junctions. Acetylcholine receptors, LEV-9 and LEV-10 are interdependent for proper synaptic localization and physically interact based on biochemical evidence. Notably, the function of LEV-9 relies on eight complement control protein (CCP) domains. These domains, also called 'sushi domains', are usually found in proteins regulating complement activity in the vertebrate immune system. Because the complement system does not exist in protostomes, our results suggest that some of the numerous uncharacterized CCP proteins expressed in the mammalian brain might be directly involved in the organization of the synapse, independently from immune functions.
Collapse
|
47
|
Boyd WA, Smith MV, Kissling GE, Rice JR, Snyder DW, Portier CJ, Freedman JH. Application of a mathematical model to describe the effects of chlorpyrifos on Caenorhabditis elegans development. PLoS One 2009; 4:e7024. [PMID: 19753116 PMCID: PMC2737145 DOI: 10.1371/journal.pone.0007024] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2009] [Accepted: 08/07/2009] [Indexed: 11/25/2022] Open
Abstract
Background The nematode Caenorhabditis elegans is being assessed as an alternative model organism as part of an interagency effort to develop better means to test potentially toxic substances. As part of this effort, assays that use the COPAS Biosort flow sorting technology to record optical measurements (time of flight (TOF) and extinction (EXT)) of individual nematodes under various chemical exposure conditions are being developed. A mathematical model has been created that uses Biosort data to quantitatively and qualitatively describe C. elegans growth, and link changes in growth rates to biological events. Chlorpyrifos, an organophosphate pesticide known to cause developmental delays and malformations in mammals, was used as a model toxicant to test the applicability of the growth model for in vivo toxicological testing. Methodology/Principal Findings L1 larval nematodes were exposed to a range of sub-lethal chlorpyrifos concentrations (0–75 µM) and measured every 12 h. In the absence of toxicant, C. elegans matured from L1s to gravid adults by 60 h. A mathematical model was used to estimate nematode size distributions at various times. Mathematical modeling of the distributions allowed the number of measured nematodes and log(EXT) and log(TOF) growth rates to be estimated. The model revealed three distinct growth phases. The points at which estimated growth rates changed (change points) were constant across the ten chlorpyrifos concentrations. Concentration response curves with respect to several model-estimated quantities (numbers of measured nematodes, mean log(TOF) and log(EXT), growth rates, and time to reach change points) showed a significant decrease in C. elegans growth with increasing chlorpyrifos concentration. Conclusions Effects of chlorpyrifos on C. elegans growth and development were mathematically modeled. Statistical tests confirmed a significant concentration effect on several model endpoints. This confirmed that chlorpyrifos affects C. elegans development in a concentration dependent manner. The most noticeable effect on growth occurred during early larval stages: L2 and L3. This study supports the utility of the C. elegans growth assay and mathematical modeling in determining the effects of potentially toxic substances in an alternative model organism using high-throughput technologies.
Collapse
Affiliation(s)
- Windy A. Boyd
- Biomoleclular Screening Branch, National Toxicology Program, Research Triangle Park, North Carolina, United States of America
| | | | - Grace E. Kissling
- Biostatistics Branch, National Institute of Environmental Health Sciences, National Institutes of Health (NIH), Research Triangle Park, North Carolina, United States of America
| | - Julie R. Rice
- Biomoleclular Screening Branch, National Toxicology Program, Research Triangle Park, North Carolina, United States of America
| | - Daniel W. Snyder
- Biomoleclular Screening Branch, National Toxicology Program, Research Triangle Park, North Carolina, United States of America
| | - Christopher J. Portier
- Laboratory of Molecular Toxicology, National Institute of Environmental Health Sciences, National Institutes of Health (NIH), Research Triangle Park, North Carolina, United States of America
| | - Jonathan H. Freedman
- Biomoleclular Screening Branch, National Toxicology Program, Research Triangle Park, North Carolina, United States of America
- Laboratory of Molecular Toxicology, National Institute of Environmental Health Sciences, National Institutes of Health (NIH), Research Triangle Park, North Carolina, United States of America
- * E-mail:
| |
Collapse
|
48
|
Manipulating the Caenorhabditis elegans genome using mariner transposons. Genetica 2009; 138:541-9. [PMID: 19347589 DOI: 10.1007/s10709-009-9362-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2009] [Accepted: 03/20/2009] [Indexed: 12/16/2022]
Abstract
Tc1, one of the founding members of the Tc1/mariner transposon superfamily, was identified in the nematode Caenorhabditis elegans more than 25 years ago. Over the years, Tc1 and other endogenous mariner transposons became valuable tools for mutagenesis and targeted gene inactivation in C. elegans. However, transposition is naturally repressed in the C. elegans germline by an RNAi-like mechanism, necessitating the use of mutant strains in which transposition was globally derepressed, which causes drawbacks such as uncontrolled proliferation of the transposons in the genome and accumulation of background mutations. The more recent mobilization of the Drosophila mariner transposon Mos1 in the C. elegans germline circumvented the problems inherent to endogenous transposons. Mos1 transposition strictly depends on the expression of the Mos transposase, which can be controlled in the germline using inducible promoters. First, Mos1 can be used for insertional mutagenesis. The mobilization of Mos1 copies present on an extrachromosomal array results in the generation of a small number of Mos1 genomic insertions that can be rapidly cloned by inverse PCR. Second, Mos1 insertions can be used for genome engineering. Triggering the excision of a genomic Mos1 insertion causes a chromosomal break, which can be repaired by transgene-instructed gene conversion. This process is used to introduce specific changes in a given gene, such as point mutations, deletions or insertions of a tag, and to create single-copy transgenes.
Collapse
|
49
|
Ruaud AF, Nilsson L, Richard F, Larsen MK, Bessereau JL, Tuck S. The C. elegans P4-ATPase TAT-1 regulates lysosome biogenesis and endocytosis. Traffic 2008; 10:88-100. [PMID: 18939953 DOI: 10.1111/j.1600-0854.2008.00844.x] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
P-type adenosine triphosphatases (ATPases) of the Drs2p family (P4-ATPases) are multipass transmembrane proteins required to generate and maintain phospholipid asymmetry in membrane bilayers. In Saccharomyces cerevisiae, several members of this family control distinct transport events within the endosomal and secretory pathways. Comparatively, little is known about the functions of P4-ATPases in multicellular organisms. In this study, we analyzed the role of the Caenorhabditis elegans Drs2p homologue transbilayer amphipath transporter (TAT)-1 in intracellular trafficking. tat-1 is expressed in many tissues including the intestine, the epidermis and the nervous system. In intestinal cells, tat-1 loss-of-function mutants accumulate large vacuoles of mixed endolysosomal identity positive for the lysosomal protein LMP-1. In addition, they lack the same class of storage granules as lmp-1 mutants, suggesting that part of the tat-1 phenotype might result from LMP-1 sequestration in an aberrant compartment. Epidermal cells mutant for tat-1 contain acidified giant hybrid multivesicular bodies probably corresponding to endolysosomal intermediate compartments or deficient lysosomes. Finally, TAT-1 is required for yolk uptake in oocytes and an early step of fluid-phase endocytosis in the intestine. Hence, TAT-1 is required at multiple steps of the endolysosomal pathway, at least in part by ensuring proper trafficking of cell-specific effector proteins.
Collapse
|
50
|
Abstract
Because life is often unpredictable, dynamic, and complex, all animals have evolved remarkable abilities to cope with changes in their external environment and internal physiology. This regulatory plasticity leads to shifts in behavior and metabolism, as well as to changes in development, growth, and reproduction, which is thought to improve the chances of survival and reproductive success. In favorable environments, the nematode Caenorhabditis elegans develops rapidly to reproductive maturity, but in adverse environments, animals arrest at the dauer diapause, a long-lived stress resistant stage. A molecular and genetic analysis of dauer formation has revealed key insights into how sensory and dietary cues are coupled to conserved endocrine pathways, including insulin/IGF, TGF-beta, serotonergic, and steroid hormone signal transduction, which govern the choice between reproduction and survival. These and other pathways reveal a molecular basis for metazoan plasticity in response to extrinsic and intrinsic signals.
Collapse
Affiliation(s)
- Nicole Fielenbach
- Huffington Center on Aging, Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Adam Antebi
- Huffington Center on Aging, Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas 77030, USA
| |
Collapse
|