1
|
Guo P, Li B, Dong W, Zhou H, Wang L, Su T, Carl C, Zheng Y, Hong Y, Deng H, Pan D. PI4P-mediated solid-like Merlin condensates orchestrate Hippo pathway regulation. Science 2024; 385:eadf4478. [PMID: 39116228 PMCID: PMC11956869 DOI: 10.1126/science.adf4478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 10/11/2023] [Accepted: 06/10/2024] [Indexed: 08/10/2024]
Abstract
Despite recent studies implicating liquid-like biomolecular condensates in diverse cellular processes, many biomolecular condensates exist in a solid-like state, and their function and regulation are less understood. We show that the tumor suppressor Merlin, an upstream regulator of the Hippo pathway, localizes to both cell junctions and medial apical cortex in Drosophila epithelia, with the latter forming solid-like condensates that activate Hippo signaling. Merlin condensation required phosphatidylinositol-4-phosphate (PI4P)-mediated plasma membrane targeting and was antagonistically controlled by Pez and cytoskeletal tension through plasma membrane PI4P regulation. The solid-like material properties of Merlin condensates are essential for physiological function and protect the condensates against external perturbations. Collectively, these findings uncover an essential role for solid-like condensates in normal physiology and reveal regulatory mechanisms for their formation and disassembly.
Collapse
Affiliation(s)
- Pengfei Guo
- Department of Physiology, Howard Hughes Medical Institute, University of Texas Southwestern Medical Center; Dallas, TX 75390, USA
| | - Bing Li
- Department of Physiology, Howard Hughes Medical Institute, University of Texas Southwestern Medical Center; Dallas, TX 75390, USA
| | - Wei Dong
- Department of Cell Biology, University of Pittsburgh; Pittsburgh, PA 15261, USA
| | - Huabin Zhou
- Department of Biophysics, Howard Hughes Medical Institute, University of Texas Southwestern Medical Center; Dallas, TX 75390, USA
| | - Li Wang
- Department of Physiology, Howard Hughes Medical Institute, University of Texas Southwestern Medical Center; Dallas, TX 75390, USA
| | - Ting Su
- Department of Physiology, Howard Hughes Medical Institute, University of Texas Southwestern Medical Center; Dallas, TX 75390, USA
| | - Christopher Carl
- Department of Physiology, Howard Hughes Medical Institute, University of Texas Southwestern Medical Center; Dallas, TX 75390, USA
| | - Yonggang Zheng
- Department of Physiology, Howard Hughes Medical Institute, University of Texas Southwestern Medical Center; Dallas, TX 75390, USA
| | - Yang Hong
- Department of Cell Biology, University of Pittsburgh; Pittsburgh, PA 15261, USA
| | - Hua Deng
- Department of Physiology, Howard Hughes Medical Institute, University of Texas Southwestern Medical Center; Dallas, TX 75390, USA
| | - Duojia Pan
- Department of Physiology, Howard Hughes Medical Institute, University of Texas Southwestern Medical Center; Dallas, TX 75390, USA
| |
Collapse
|
2
|
Huang Y, Mao X, van Jaarsveld RH, Shu L, Terhal PA, Jia Z, Xi H, Peng Y, Yan H, Yuan S, Li Q, Wang H, Bellen HJ. Variants in CAPZA2, a member of an F-actin capping complex, cause intellectual disability and developmental delay. Hum Mol Genet 2020; 29:1537-1546. [PMID: 32338762 PMCID: PMC7268783 DOI: 10.1093/hmg/ddaa078] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 03/29/2020] [Accepted: 04/20/2020] [Indexed: 11/13/2022] Open
Abstract
The actin cytoskeleton is regulated by many proteins including capping proteins that stabilize actin filaments (F-actin) by inhibiting actin polymerization and depolymerization. Here, we report two pediatric probands who carry damaging heterozygous de novo mutations in CAPZA2 (HGNC: 1490) and exhibit neurological symptoms with shared phenotypes including global motor development delay, speech delay, intellectual disability, hypotonia and a history of seizures. CAPZA2 encodes a subunit of an F-actin-capping protein complex (CapZ). CapZ is an obligate heterodimer consisting of α and β heterodimer conserved from yeast to human. Vertebrate genomes contain three α subunits encoded by three different genes and CAPZA2 encodes the α2 subunit. The single orthologue of CAPZA genes in Drosophila is cpa. Loss of cpa leads to lethality in early development and expression of the human reference; CAPZA2 rescues this lethality. However, the two CAPZA2 variants identified in the probands rescue this lethality at lower efficiency than the reference. Moreover, expression of the CAPZA2 variants affects bristle morphogenesis, a process that requires extensive actin polymerization and bundling during development. Taken together, our findings suggest that variants in CAPZA2 lead to a non-syndromic neurodevelopmental disorder in children.
Collapse
Affiliation(s)
- Yan Huang
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Baylor College of Medicine, Houston, TX 77030, USA
| | - Xiao Mao
- National Health Commission Key Laboratory of Birth Defects Research, Prevention and Treatment, Hunan Provincial Maternal and Child Health Care Hospital, Changsha, Hunan 410008, China
- Department of Medical Genetics, Maternal and Child Health Hospital of Hunan Province, Changsha, Hunan 410008, China
| | | | - Li Shu
- National Health Commission Key Laboratory of Birth Defects Research, Prevention and Treatment, Hunan Provincial Maternal and Child Health Care Hospital, Changsha, Hunan 410008, China
- Department of Medical Genetics, Maternal and Child Health Hospital of Hunan Province, Changsha, Hunan 410008, China
| | - Paulien A Terhal
- Department of Genetics, University Medical Center Utrecht, Utrecht CX 3584, The Netherlands
| | - Zhengjun Jia
- National Health Commission Key Laboratory of Birth Defects Research, Prevention and Treatment, Hunan Provincial Maternal and Child Health Care Hospital, Changsha, Hunan 410008, China
- Department of Medical Genetics, Maternal and Child Health Hospital of Hunan Province, Changsha, Hunan 410008, China
| | - Hui Xi
- National Health Commission Key Laboratory of Birth Defects Research, Prevention and Treatment, Hunan Provincial Maternal and Child Health Care Hospital, Changsha, Hunan 410008, China
- Department of Medical Genetics, Maternal and Child Health Hospital of Hunan Province, Changsha, Hunan 410008, China
| | - Ying Peng
- National Health Commission Key Laboratory of Birth Defects Research, Prevention and Treatment, Hunan Provincial Maternal and Child Health Care Hospital, Changsha, Hunan 410008, China
- Department of Medical Genetics, Maternal and Child Health Hospital of Hunan Province, Changsha, Hunan 410008, China
| | - Huiming Yan
- National Health Commission Key Laboratory of Birth Defects Research, Prevention and Treatment, Hunan Provincial Maternal and Child Health Care Hospital, Changsha, Hunan 410008, China
- Department of Medical Genetics, Maternal and Child Health Hospital of Hunan Province, Changsha, Hunan 410008, China
| | - Shan Yuan
- Department of Medical Genetics, Maternal and Child Health Hospital of Hunan Province, Changsha, Hunan 410008, China
| | - Qibin Li
- Clabee Genomics, Shenzhen, Guangdong 518000, China
- Center on Translational Neuroscience, College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China
| | - Hua Wang
- National Health Commission Key Laboratory of Birth Defects Research, Prevention and Treatment, Hunan Provincial Maternal and Child Health Care Hospital, Changsha, Hunan 410008, China
- Department of Medical Genetics, Maternal and Child Health Hospital of Hunan Province, Changsha, Hunan 410008, China
| | - Hugo J Bellen
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA
- Howard Hughes Medical Institute, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
3
|
Gou J, Stotsky JA, Othmer HG. Growth control in the Drosophila wing disk. WILEY INTERDISCIPLINARY REVIEWS-SYSTEMS BIOLOGY AND MEDICINE 2020; 12:e1478. [PMID: 31917525 DOI: 10.1002/wsbm.1478] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 12/02/2019] [Accepted: 12/17/2019] [Indexed: 12/16/2022]
Abstract
The regulation of size and shape is a fundamental requirement of biological development and has been a subject of scientific study for centuries, but we still lack an understanding of how organisms know when to stop growing. Imaginal wing disks of the fruit fly Drosophila melanogaster, which are precursors of the adult wings, are an archetypal tissue for studying growth control. The growth of the disks is dependent on many inter- and intra-organ factors such as morphogens, mechanical forces, nutrient levels, and hormones that influence gene expression and cell growth. Extracellular signals are transduced into gene-control signals via complex signal transduction networks, and since cells typically receive many different signals, a mechanism for integrating the signals is needed. Our understanding of the effect of morphogens on tissue-level growth regulation via individual pathways has increased significantly in the last half century, but our understanding of how multiple biochemical and mechanical signals are integrated to determine whether or not a cell decides to divide is still rudimentary. Numerous fundamental questions are involved in understanding the decision-making process, and here we review the major biochemical and mechanical pathways involved in disk development with a view toward providing a basis for beginning to understand how multiple signals can be integrated at the cell level, and how this translates into growth control at the level of the imaginal disk. This article is categorized under: Analytical and Computational Methods > Computational Methods Biological Mechanisms > Cell Signaling Models of Systems Properties and Processes > Cellular Models.
Collapse
Affiliation(s)
- Jia Gou
- School of Mathematics, University of Minnesota, Minneapolis, Minnesota
| | - Jay A Stotsky
- School of Mathematics, University of Minnesota, Minneapolis, Minnesota
| | - Hans G Othmer
- School of Mathematics, University of Minnesota, Minneapolis, Minnesota
| |
Collapse
|
4
|
Abstract
Organ growth is fundamental to animal development. One of major mechanisms for growth control is mediated by the conserved Hippo signaling pathway initially identified in Drosophila. The core of this pathway in Drosophila consists of a cascade of protein kinases Hippo and Warts that negatively regulate transcriptional coactivator Yorkie (Yki). Activation of Yki promotes cell survival and proliferation to induce organ growth. A key issue in Hippo signaling is to understand how core kinase cascade is activated. Activation of Hippo kinase cascade is regulated in the upstream by at least two transmembrane proteins Crumbs and Fat that act in parallel. These membrane proteins interact with additional factors such as FERM-domain proteins Expanded and Merlin to modulate subcellular localization and function of the Hippo kinase cascade. Hippo signaling is also influenced by cytoskeletal networks and cell tension in epithelia of developing organs. These upstream events in the regulation of Hippo signaling are only partially understood. This review focuses on our current understanding of some upstream processes involved in Hippo signaling in developing Drosophila organs.
Collapse
Affiliation(s)
- Kwang-Wook Choi
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, Korea
| |
Collapse
|
5
|
Forceful patterning in mouse preimplantation embryos. Semin Cell Dev Biol 2017; 71:129-136. [PMID: 28577924 DOI: 10.1016/j.semcdb.2017.05.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Revised: 05/16/2017] [Accepted: 05/21/2017] [Indexed: 12/22/2022]
Abstract
The generation of a functional organism from a single, fertilized ovum requires the spatially coordinated regulation of diverse cell identities. The establishment and precise arrangement of differentiated cells in developing embryos has, historically, been extensively studied by geneticists and developmental biologists. While chemical gradients and genetic regulatory networks are widely acknowledged to play significant roles in embryo patterning, recent studies have highlighted that mechanical forces generated by, and exerted on, embryos are also crucial for the proper control of cell differentiation and morphogenesis. Here we review the most recent findings in murine preimplantation embryogenesis on the roles of cortical tension in the coupling of cell-fate determination and cell positioning in 8-16-cell-stage embryos. These basic principles of mechanochemical coupling in mouse embryos can be applied to other pattern formation phenomena that rely on localized modifications of cell polarity proteins and actin cytoskeletal components and activities.
Collapse
|
6
|
MoCAP proteins regulated by MoArk1-mediated phosphorylation coordinate endocytosis and actin dynamics to govern development and virulence of Magnaporthe oryzae. PLoS Genet 2017; 13:e1006814. [PMID: 28542408 PMCID: PMC5466339 DOI: 10.1371/journal.pgen.1006814] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Revised: 06/09/2017] [Accepted: 05/12/2017] [Indexed: 12/22/2022] Open
Abstract
Actin organization is a conserved cellular process that regulates the growth and development of eukaryotic cells. It also governs the virulence process of pathogenic fungi, such as the rice blast fungus Magnaporthe oryzae, with mechanisms not yet fully understood. In a previous study, we found that actin-regulating kinase MoArk1 displays conserved functions important in endocytosis and actin organization, and MoArk1 is required for maintaining the growth and full virulence of M. oryzae. To understand how MoArk1 might function, we identified capping protein homologs from M. oryzae (MoCAP) that interact with MoArk1 in vivo. MoCAP is heterodimer consisting of α and β subunits MoCapA and MoCapB. Single and double deletions of MoCAP subunits resulted in abnormal mycelial growth and conidia formation. The ΔMocap mutants also exhibited reduced appressorium penetration and invasive hyphal growth within host cells. Furthermore, the ΔMocap mutants exhibited delayed endocytosis and abnormal cytoskeleton assembly. Consistent with above findings, MoCAP proteins interacted with MoAct1, co-localized with actin during mycelial development, and participated in appressorial actin ring formation. Further analysis revealed that the S85 residue of MoCapA and the S285 residue of MoCapB were subject to phosphorylation by MoArk1 that negatively regulates MoCAP functions. Finally, the addition of exogenous phosphatidylinositol 4,5-bisphosphate (PIP2) failed to modulate actin ring formation in ΔMocap mutants, in contrast to the wild-type strain, suggesting that MoCAP may also mediate phospholipid signaling in the regulation of the actin organization. These results together demonstrate that MoCAP proteins whose functions are regulated by MoArk1 and PIP2 are important for endocytosis and actin dynamics that are directly linked to growth, conidiation and pathogenicity of M. oryzae. The actin-regulating kinase MoArk1 plays a conserved function in endocytosis and actin organization and is also essential for growth and full virulence of the rice blast fungus Magnaporthe oryzae. To understand how MoArk1 functions, we identified the F-actin capping protein α (MoCapA) and β (MoCapB) subunits that interact with MoArk1. We showed that single and double deletions of MoCAPA and MoCAPB result in slowed growth, reduced conidia production, abnormal morphogenesis, and attenuated virulence. We found that ΔMocap mutants are defective in endocytosis and actin organization and that MoCAP proteins are subject to regulation by MoArk1 through protein phosphorylation. Finally, we provided evidence demonstrating that MoCAP proteins modulate actin dynamics in response to phosphatidylinositol 4,5-biphosphate (PIP2). These combined results suggest that MoCAP proteins play an important role in endocytosis, actin organization, and virulence. Further studies of MoCAP proteins could lead to a better understanding of the connections between actin organization and host infection by M. oryzae.
Collapse
|
7
|
Twinstar/cofilin is required for regulation of epithelial integrity and tissue growth in Drosophila. Oncogene 2016; 35:5144-54. [DOI: 10.1038/onc.2016.46] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Revised: 01/12/2016] [Accepted: 02/08/2016] [Indexed: 12/14/2022]
|
8
|
Álvarez-Fernández C, Tamirisa S, Prada F, Chernomoretz A, Podhajcer O, Blanco E, Martín-Blanco E. Identification and functional analysis of healing regulators in Drosophila. PLoS Genet 2015; 11:e1004965. [PMID: 25647511 PMCID: PMC4315591 DOI: 10.1371/journal.pgen.1004965] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2014] [Accepted: 12/20/2014] [Indexed: 12/28/2022] Open
Abstract
Wound healing is an essential homeostatic mechanism that maintains the epithelial barrier integrity after tissue damage. Although we know the overall steps in wound healing, many of the underlying molecular mechanisms remain unclear. Genetically amenable systems, such as wound healing in Drosophila imaginal discs, do not model all aspects of the repair process. However, they do allow the less understood aspects of the healing response to be explored, e.g., which signal(s) are responsible for initiating tissue remodeling? How is sealing of the epithelia achieved? Or, what inhibitory cues cancel the healing machinery upon completion? Answering these and other questions first requires the identification and functional analysis of wound specific genes. A variety of different microarray analyses of murine and humans have identified characteristic profiles of gene expression at the wound site, however, very few functional studies in healing regulation have been carried out. We developed an experimentally controlled method that is healing-permissive and that allows live imaging and biochemical analysis of cultured imaginal discs. We performed comparative genome-wide profiling between Drosophila imaginal cells actively involved in healing versus their non-engaged siblings. Sets of potential wound-specific genes were subsequently identified. Importantly, besides identifying and categorizing new genes, we functionally tested many of their gene products by genetic interference and overexpression in healing assays. This non-saturated analysis defines a relevant set of genes whose changes in expression level are functionally significant for proper tissue repair. Amongst these we identified the TCP1 chaperonin complex as a key regulator of the actin cytoskeleton essential for the wound healing response. There is promise that our newly identified wound-healing genes will guide future work in the more complex mammalian wound healing response. Two major challenges in our understanding of epithelial repair and regeneration is the identification of the signals triggered after injury and the characterization of mechanisms initiated during tissue repair. From a clinical perspective, a key question that remains unanswered is “Why do some wounds fail to heal?” Considering the low genetic redundancy of Drosophila and its high degree of conservation of fundamental functions, the analysis of wound closure in imaginal discs, whose features are comparable to other post-injury events, seems to be a good model. To proceed to genomic studies, we developed a healing-permissive in vitro culture system for discs. Employing this method and microarray analysis, we aimed to identify relevant genes that are involved in healing. We compared cells that were actively involved in healing to those not involved, and identified a set of upregulated or downregulated genes. They were annotated, clustered by expression profiles, chromosomal locations, and presumptive functions. Most importantly, we functionally tested them in a healing assay. This led to the selection of a group of genes whose changes in expression level and functionality are significant for proper tissue repair. Data obtained from these analyses must facilitate the targeting of these genes in gene therapy or pharmacological studies in mammals.
Collapse
Affiliation(s)
- Carmen Álvarez-Fernández
- Instituto de Biología Molecular de Barcelona, Consejo Superior de Investigaciones Científicas. Parc Cientific de Barcelona, Barcelona, Spain
| | - Srividya Tamirisa
- Instituto de Biología Molecular de Barcelona, Consejo Superior de Investigaciones Científicas. Parc Cientific de Barcelona, Barcelona, Spain
| | - Federico Prada
- Terapia Molecular y Celular, Fundación Instituto Leloir, Buenos Aires, Argentina
| | - Ariel Chernomoretz
- Departamento de Física, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Osvaldo Podhajcer
- Terapia Molecular y Celular, Fundación Instituto Leloir, Buenos Aires, Argentina
| | - Enrique Blanco
- Departament de Genètica and Institut de Biomedicina (IBUB), Universitat de Barcelona, Barcelona, Spain
| | - Enrique Martín-Blanco
- Instituto de Biología Molecular de Barcelona, Consejo Superior de Investigaciones Científicas. Parc Cientific de Barcelona, Barcelona, Spain
- * E-mail:
| |
Collapse
|
9
|
Subunits of the Drosophila actin-capping protein heterodimer regulate each other at multiple levels. PLoS One 2014; 9:e96326. [PMID: 24788460 PMCID: PMC4008575 DOI: 10.1371/journal.pone.0096326] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2014] [Accepted: 04/07/2014] [Indexed: 01/23/2023] Open
Abstract
The actin-Capping Protein heterodimer, composed of the α and β subunits, is a master F-actin regulator. In addition to its role in many cellular processes, Capping Protein acts as a main tumor suppressor module in Drosophila and in humans, in part, by restricting the activity of Yorkie/YAP/TAZ oncogenes. We aimed in this report to understand how both subunits regulate each other in vivo. We show that the levels and capping activities of both subunits must be tightly regulated to control F-actin levels and consequently growth of the Drosophila wing. Overexpressing capping protein α and β decreases both F-actin levels and tissue growth, while expressing forms of Capping Protein that have dominant negative effects on F-actin promote tissue growth. Both subunits regulate each other's protein levels. In addition, overexpressing one of the subunit in tissues knocked-down for the other increases the mRNA and protein levels of the subunit knocked-down and compensates for its loss. We propose that the ability of the α and β subunits to control each other's levels assures that a pool of functional heterodimer is produced in sufficient quantities to restrict the development of tumor but not in excess to sustain normal tissue growth.
Collapse
|
10
|
Fernández BG, Jezowska B, Janody F. Drosophila actin-Capping Protein limits JNK activation by the Src proto-oncogene. Oncogene 2014; 33:2027-39. [PMID: 23644660 DOI: 10.1038/onc.2013.155] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2012] [Revised: 03/27/2013] [Accepted: 03/28/2013] [Indexed: 12/17/2022]
Abstract
The Src family kinases c-Src, and its downstream effectors, the Rho family of small GTPases RhoA and Jun N-terminal kinase (JNK) have a significant role in tumorigenesis. In this report, using the Drosophila wing disc epithelium as a model system, we demonstrate that the actin-Capping Protein (CP) αβ heterodimer, which regulates actin filament (F-actin) polymerization, limits Src-induced apoptosis or tissue overgrowth by restricting JNK activation. We show that overexpressing Src64B drives JNK-independent loss of epithelial integrity and JNK-dependent apoptosis via Btk29A, p120ctn and Rho1. However, when cells are kept alive with the Caspase inhibitor P35, JNK acts as a potent inducer of proliferation via activation of the Yorkie oncogene. Reducing CP levels direct apoptosis of overgrowing Src64B-overexpressing tissues. Conversely, overexpressing capping protein inhibits Src64B and Rho1, but not Rac1-induced JNK signaling. CP requires the actin-binding domain of the α-subunit to limit Src64B-induced apoptosis, arguing that the control of F-actin mediates this effect. In turn, JNK directs F-actin accumulation. Moreover, overexpressing capping protein also prevents apoptosis induced by ectopic JNK expression. Our data are consistent with a model in which the control of F-actin by CP limits Src-induced apoptosis or tissue overgrowth by acting downstream of Btk29A, p120ctn and Rho1, but upstream of JNK. In turn, JNK may counteract the effect of CP on F-actin, providing a positive feedback, which amplifies JNK activation. We propose that cytoskeletal changes triggered by misregulation of F-actin modulators may have a significant role in Src-mediated malignant phenotypes during the early stages of cellular transformation.
Collapse
Affiliation(s)
| | - B Jezowska
- Instituto Gulbenkian de Ciência, Oeiras, Portugal
| | - F Janody
- Instituto Gulbenkian de Ciência, Oeiras, Portugal
| |
Collapse
|
11
|
Zebrafish Dynamin is required for maintenance of enveloping layer integrity and the progression of epiboly. Dev Biol 2013; 385:52-66. [PMID: 24161849 DOI: 10.1016/j.ydbio.2013.10.015] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2013] [Revised: 10/14/2013] [Accepted: 10/16/2013] [Indexed: 11/21/2022]
Abstract
Epiboly, the first morphogenetic cell movement that occurs in the zebrafish embryo, is the process by which the blastoderm thins and spreads to engulf the yolk cell. This process requires the concerted actions of the deep cells, the enveloping layer (EVL) and the extra-embryonic yolk syncytial layer (YSL). The EVL is mechanically coupled to the YSL which acts as an epiboly motor, generating the force necessary to draw the blastoderm towards the vegetal pole though actomyosin flow and contraction of the actomyosin ring. However, it has been proposed that the endocytic removal of yolk cell membrane just ahead of the advancing blastoderm may also play a role. To assess the contribution of yolk cell endocytosis in driving epiboly movements, we used a combination of drug- and dominant-negative-based approaches to inhibit Dynamin, a large GTPase with a well-characterized role in vesicle scission. We show that Dynamin-dependent endocytosis in the yolk cell is dispensable for epiboly of the blastoderm. However, global inhibition of Dynamin function revealed that Dynamin plays a fundamental role within the blastoderm during epiboly, where it maintains epithelial integrity and the transmission of tension across the EVL. The epithelial defects were associated with disrupted tight junctions and a striking reduction of cortically localized phosphorylated ezrin/radixin/moesin (P-ERM), key regulators of epithelial integrity in other systems. Furthermore, we show that Dynamin maintains EVL and promotes epiboly progression by antagonizing Rho A activity.
Collapse
|
12
|
Chountala M, Vakaloglou KM, Zervas CG. Parvin overexpression uncovers tissue-specific genetic pathways and disrupts F-actin to induce apoptosis in the developing epithelia in Drosophila. PLoS One 2012; 7:e47355. [PMID: 23077599 PMCID: PMC3471835 DOI: 10.1371/journal.pone.0047355] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2012] [Accepted: 09/11/2012] [Indexed: 01/15/2023] Open
Abstract
Parvin is a putative F-actin binding protein important for integrin-mediated cell adhesion. Here we used overexpression of Drosophila Parvin to uncover its functions in different tissues in vivo. Parvin overexpression caused major defects reminiscent of metastatic cancer cells in developing epithelia, including apoptosis, alterations in cell shape, basal extrusion and invasion. These defects were closely correlated with abnormalities in the organization of F-actin at the basal epithelial surface and of integrin-matrix adhesion sites. In wing epithelium, overexpressed Parvin triggered increased Rho1 protein levels, predominantly at the basal side, whereas in the developing eye it caused a rough eye phenotype and severely disrupted F-actin filaments at the retina floor of pigment cells. We identified genes that suppressed these Parvin-induced dominant effects, depending on the cell type. Co-expression of both ILK and the apoptosis inhibitor DIAP1 blocked Parvin-induced lethality and apoptosis and partially ameliorated cell delamination in epithelia, but did not rescue the elevated Rho1 levels, the abnormal organization of F-actin in the wing and the assembly of integrin-matrix adhesion sites. The rough eye phenotype was suppressed by coexpression of either PTEN or Wech, or by knock-down of Xrp1. Two main conclusions can be drawn from our studies: (1), high levels of cytoplasmic Parvin are toxic in epithelial cells; (2) Parvin in a dose dependent manner affects the organization of actin cytoskeleton in both wing and eye epithelia, independently of its role as a structural component of the ILK-PINCH-Parvin complex that mediates the integrin-actin link. Thus, distinct genetic interactions of Parvin occur in different cell types and second site modifier screens are required to uncover such genetic circuits.
Collapse
Affiliation(s)
- Maria Chountala
- Division of Genetics, Biomedical Research Foundation of the Academy of Athens (BRFAA), Athens, Greece
| | - Katerina M. Vakaloglou
- Division of Genetics, Biomedical Research Foundation of the Academy of Athens (BRFAA), Athens, Greece
| | - Christos G. Zervas
- Division of Genetics, Biomedical Research Foundation of the Academy of Athens (BRFAA), Athens, Greece
- * E-mail:
| |
Collapse
|
13
|
Jezowska B, Fernández BG, Amândio AR, Duarte P, Mendes C, Brás-Pereira C, Janody F. A dual function of Drosophila capping protein on DE-cadherin maintains epithelial integrity and prevents JNK-mediated apoptosis. Dev Biol 2011; 360:143-59. [DOI: 10.1016/j.ydbio.2011.09.016] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2011] [Revised: 08/29/2011] [Accepted: 09/14/2011] [Indexed: 12/22/2022]
|
14
|
Tamori Y, Deng WM. Cell competition and its implications for development and cancer. J Genet Genomics 2011; 38:483-95. [PMID: 22035869 PMCID: PMC3891807 DOI: 10.1016/j.jgg.2011.09.006] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2011] [Revised: 09/06/2011] [Accepted: 09/07/2011] [Indexed: 12/31/2022]
Abstract
Cell competition is a struggle for existence between cells in heterogeneous tissues of multicellular organisms. Loser cells, which die during cell competition, are normally viable when grown only with other loser cells, but when mixed with winner cells, they are at a growth disadvantage and undergo apoptosis. Intriguingly, several recent studies have revealed that cells bearing mutant tumor-suppressor genes, which show overgrowth and tumorigenesis in a homotypic situation, are frequently eliminated, through cell competition, from tissues in which they are surrounded by wild-type cells. Here, we focus on the regulation of cellular competitiveness and the mechanism of cell competition as inferred from two different categories of mutant cells: (1) slower-growing cells and (2) structurally defective cells. We also discuss the possible role of cell competition as an intrinsic homeostasis system through which normal cells sense and remove aberrant cells, such as precancerous cells, to maintain the integrity and normal development of tissues and organs.
Collapse
Affiliation(s)
- Yoichiro Tamori
- Department of Biological Science, Florida State University, Tallahassee, FL 32306-4370, USA
| | - Wu-Min Deng
- Department of Biological Science, Florida State University, Tallahassee, FL 32306-4370, USA
| |
Collapse
|
15
|
Staley BK, Irvine KD. Hippo signaling in Drosophila: recent advances and insights. Dev Dyn 2011; 241:3-15. [PMID: 22174083 DOI: 10.1002/dvdy.22723] [Citation(s) in RCA: 197] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/05/2011] [Indexed: 01/08/2023] Open
Abstract
The Hippo signaling pathway emerged from studies of Drosophila tumor suppressor genes, and is now appreciated as a major growth control pathway in vertebrates as well as arthropods. As a recently discovered pathway, key components of the pathway are continually being identified, and new insights into how the pathway is regulated and deployed are arising at a rapid pace. Over the past year and a half, significant advances have been made in our understanding of upstream regulatory inputs into Hippo signaling, key negative regulators of Hippo pathway activity have been identified, and important roles for the pathway in regeneration have been described. This review describes these and other advances, focusing on recent progress in our understanding of Hippo signaling that has come from continued studies in Drosophila.
Collapse
Affiliation(s)
- Binnaz Kucuk Staley
- Howard Hughes Medical Institute, Waksman Institute and Department of Molecular Biology and Biochemistry, Rutgers The State University of New Jersey, Piscataway, New Jersey 08854, USA
| | | |
Collapse
|
16
|
Sansores-Garcia L, Bossuyt W, Wada KI, Yonemura S, Tao C, Sasaki H, Halder G. Modulating F-actin organization induces organ growth by affecting the Hippo pathway. EMBO J 2011; 30:2325-35. [PMID: 21556047 PMCID: PMC3116287 DOI: 10.1038/emboj.2011.157] [Citation(s) in RCA: 354] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2010] [Accepted: 04/27/2011] [Indexed: 01/08/2023] Open
Abstract
The Hippo tumour suppressor pathway is a conserved signalling pathway that controls organ size. The core of the Hpo pathway is a kinase cascade, which in Drosophila involves the Hpo and Warts kinases that negatively regulate the activity of the transcriptional coactivator Yorkie. Although several additional components of the Hippo pathway have been discovered, the inputs that regulate Hippo signalling are not fully understood. Here, we report that induction of extra F-actin formation, by loss of Capping proteins A or B, or caused by overexpression of an activated version of the formin Diaphanous, induced strong overgrowth in Drosophila imaginal discs through modulating the activity of the Hippo pathway. Importantly, loss of Capping proteins and Diaphanous overexpression did not significantly affect cell polarity and other signalling pathways, including Hedgehog and Decapentaplegic signalling. The interaction between F-actin and Hpo signalling is evolutionarily conserved, as the activity of the mammalian Yorkie-orthologue Yap is modulated by changes in F-actin. Thus, regulators of F-actin, and in particular Capping proteins, are essential for proper growth control by affecting Hippo signalling.
Collapse
Affiliation(s)
- Leticia Sansores-Garcia
- Department of Biochemistry and Molecular Biology, University of Texas, MD Anderson Cancer Center, Houston, TX, USA
| | - Wouter Bossuyt
- Department of Biochemistry and Molecular Biology, University of Texas, MD Anderson Cancer Center, Houston, TX, USA
| | - Ken-Ichi Wada
- Laboratory for Embryonic Induction, RIKEN Center for Developmental Biology, Hyogo, Japan
| | - Shigenobu Yonemura
- Electron Microscope Laboratory, RIKEN Center for Developmental Biology, Hyogo, Japan
| | - Chunyao Tao
- Department of Biochemistry and Molecular Biology, University of Texas, MD Anderson Cancer Center, Houston, TX, USA
| | - Hiroshi Sasaki
- Laboratory for Embryonic Induction, RIKEN Center for Developmental Biology, Hyogo, Japan
| | - Georg Halder
- Department of Biochemistry and Molecular Biology, University of Texas, MD Anderson Cancer Center, Houston, TX, USA
- Program in Developmental Biology, Baylor College of Medicine, Houston, TX, USA
- Program in Genes and Development, University of Texas, MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
17
|
Fernández BG, Gaspar P, Brás-Pereira C, Jezowska B, Rebelo SR, Janody F. Actin-Capping Protein and the Hippo pathway regulate F-actin and tissue growth in Drosophila. Development 2011; 138:2337-46. [PMID: 21525075 DOI: 10.1242/dev.063545] [Citation(s) in RCA: 236] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The conserved Hippo tumor suppressor pathway is a key kinase cascade that controls tissue growth by regulating the nuclear import and activity of the transcription co-activator Yorkie. Here, we report that the actin-Capping Protein αβ heterodimer, which regulates actin polymerization, also functions to suppress inappropriate tissue growth by inhibiting Yorkie activity. Loss of Capping Protein activity results in abnormal accumulation of apical F-actin, reduced Hippo pathway activity and the ectopic expression of several Yorkie target genes that promote cell survival and proliferation. Reduction of two other actin-regulatory proteins, Cofilin and the cyclase-associated protein Capulet, cause abnormal F-actin accumulation, but only the loss of Capulet, like that of Capping Protein, induces ectopic Yorkie activity. Interestingly, F-actin also accumulates abnormally when Hippo pathway activity is reduced or abolished, independently of Yorkie activity, whereas overexpression of the Hippo pathway component expanded can partially reverse the abnormal accumulation of F-actin in cells depleted for Capping Protein. Taken together, these findings indicate a novel interplay between Hippo pathway activity and actin filament dynamics that is essential for normal growth control.
Collapse
|
18
|
Yan D, Wu Y, Yang Y, Belenkaya TY, Tang X, Lin X. The cell-surface proteins Dally-like and Ihog differentially regulate Hedgehog signaling strength and range during development. Development 2010; 137:2033-44. [PMID: 20501592 DOI: 10.1242/dev.045740] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Hedgehog (Hh) acts as a morphogen in various developmental contexts to specify distinct cell fates in a concentration-dependent manner. Hh signaling is regulated by two conserved cell-surface proteins: Ig/fibronectin superfamily member Interference hedgehog (Ihog) and Dally-like (Dlp), a glypican that comprises a core protein and heparan sulfate glycosaminoglycan (GAG) chains. Here, we show in Drosophila that the Dlp core protein can interact with Hh and is essential for its function in Hh signaling. In wing discs, overexpression of Dlp increases short-range Hh signaling while reducing long-range signaling. By contrast, Ihog has biphasic activity in Hh signaling in cultured cells: low levels of Ihog increase Hh signaling, whereas high levels decrease it. In wing discs, overexpression of Ihog represses high-threshold targets, while extending the range of low-threshold targets, thus showing opposite effects to Dlp. We further show that Ihog and its family member Boi are required to maintain Hh on the cell surface. Finally, Ihog and Dlp have complementary expression patterns in discs. These data led us to propose that Dlp acts as a signaling co-receptor. However, Ihog might not act as a classic co-receptor; rather, it may act as an exchange factor by retaining Hh on the cell surface, but also compete with the receptor for Hh binding.
Collapse
Affiliation(s)
- Dong Yan
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, and The Graduate Program in Molecular and Developmental Biology, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
| | | | | | | | | | | |
Collapse
|
19
|
Neisch AL, Speck O, Stronach B, Fehon RG. Rho1 regulates apoptosis via activation of the JNK signaling pathway at the plasma membrane. ACTA ACUST UNITED AC 2010; 189:311-23. [PMID: 20404112 PMCID: PMC2856900 DOI: 10.1083/jcb.200912010] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
In the absence of moesin, RhoA slips out of its normal role as a GTPase to activate the JNK MAPK pathway and spur apoptosis. Precisely controlled growth and morphogenesis of developing epithelial tissues require coordination of multiple factors, including proliferation, adhesion, cell shape, and apoptosis. RhoA, a small GTPase, is known to control epithelial morphogenesis and integrity through its ability to regulate the cytoskeleton. In this study, we examine a less well-characterized RhoA function in cell survival. We demonstrate that the Drosophila melanogaster RhoA, Rho1, promotes apoptosis independently of Rho kinase through its effects on c-Jun NH2-terminal kinase (JNK) signaling. In addition, Rho1 forms a complex with Slipper (Slpr), an upstream activator of the JNK pathway. Loss of Moesin (Moe), an upstream regulator of Rho1 activity, results in increased levels of Rho1 at the plasma membrane and cortical accumulation of Slpr. Together, these results suggest that Rho1 functions at the cell cortex to regulate JNK activity and implicate Rho1 and Moe in epithelial cell survival.
Collapse
Affiliation(s)
- Amanda L Neisch
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, IL 60637, USA
| | | | | | | |
Collapse
|
20
|
Sánchez-Soriano N, Gonçalves-Pimentel C, Beaven R, Haessler U, Ofner-Ziegenfuss L, Ballestrem C, Prokop A. Drosophila growth cones: a genetically tractable platform for the analysis of axonal growth dynamics. Dev Neurobiol 2010; 70:58-71. [PMID: 19937774 DOI: 10.1002/dneu.20762] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
The formation of neuronal networks, during development and regeneration, requires outgrowth of axons along reproducible paths toward their appropriate postsynaptic target cells. Axonal extension occurs at growth cones (GCs) at the tips of axons. GC advance and navigation requires the activity of their cytoskeletal networks, comprising filamentous actin (F-actin) in lamellipodia and filopodia as well as dynamic microtubules (MTs) emanating from bundles of the axonal core. The molecular mechanisms governing these two cytoskeletal networks, their cross-talk, and their response to extracellular signaling cues are only partially understood, hindering our conceptual understanding of how regulated changes in GC behavior are controlled. Here, we introduce Drosophila GCs as a suitable model to address these mechanisms. Morphological and cytoskeletal readouts of Drosophila GCs are similar to those of other models, including mammals, as demonstrated here for MT and F-actin dynamics, axonal growth rates, filopodial structure and motility, organizational principles of MT networks, and subcellular marker localization. Therefore, we expect fundamental insights gained in Drosophila to be translatable into vertebrate biology. The advantage of the Drosophila model over others is its enormous amenability to combinatorial genetics as a powerful strategy to address the complexity of regulatory networks governing axonal growth. Thus, using pharmacological and genetic manipulations, we demonstrate a role of the actin cytoskeleton in a specific form of MT organization (loop formation), known to regulate GC pausing behavior. We demonstrate these events to be mediated by the actin-MT linking factor Short stop, thus identifying an essential molecular player in this context.
Collapse
Affiliation(s)
- Natalia Sánchez-Soriano
- Faculty of Life Sciences, Wellcome Trust Centre for Cell-Matrix Research, Manchester M13 9PT, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
21
|
Pedersen KS, Codrea MC, Vermeulen CJ, Loeschcke V, Bendixen E. Proteomic characterization of a temperature-sensitive conditional lethal in Drosophila melanogaster. Heredity (Edinb) 2009; 104:125-34. [PMID: 19812620 DOI: 10.1038/hdy.2009.132] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Genetic variation that is expressed only under specific environmental conditions can contribute to additional adverse effects of inbreeding if environmental conditions change. We present a proteomic characterization of a conditional lethal found in an inbred line of Drosophila melanogaster. The lethal effect is apparent as a large increase in early mortality at the restrictive temperature (29 degrees C) as opposed to normal survival at the permissive temperature (20 degrees C). The increased mortality in response to the restrictive temperature is probably caused by a single recessive major locus. A quantitative trait locus (QTL) region segregating variation affecting the lethal effect has been identified, allowing for a separation of primary/causal effects and secondary consequences in the proteome expression patterns observed. In this study, the proteomic response to the restrictive temperature in the lethal-line (L-line) was compared with the response in an inbred-control-line (IC-line) and an outbred-control-line (OC-line). Quantitative protein changes were detected using isobaric tags for relative and absolute quantitation (iTRAQ) two-dimensional liquid chromatography-tandem mass spectrometry. In all, 45 proteins were found to be significantly differently regulated in response to the restrictive temperature in the L-line as compared with the IC-line. No proteins were significantly differently regulated between the IC-line and the OC-line, verifying that differential protein regulation was specific to a genetic defect in the L-line. Proteins associated with oxidative phosphorylation and mitochondria were significantly overrepresented within the list of differentially expressed proteins. Proteins related to muscle contraction were also found to be differentially expressed in the L-line in response to the restrictive temperature, supporting phenotypic observations of moribund muscle hyper-contraction.
Collapse
Affiliation(s)
- K S Pedersen
- Department of Biological Sciences, Aarhus University, Aarhus C, Denmark.
| | | | | | | | | |
Collapse
|
22
|
Gates J, Nowotarski SH, Yin H, Mahaffey JP, Bridges T, Herrera C, Homem CCF, Janody F, Montell DJ, Peifer M. Enabled and Capping protein play important roles in shaping cell behavior during Drosophila oogenesis. Dev Biol 2009; 333:90-107. [PMID: 19576200 PMCID: PMC2728145 DOI: 10.1016/j.ydbio.2009.06.030] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2009] [Revised: 06/20/2009] [Accepted: 06/22/2009] [Indexed: 12/29/2022]
Abstract
During development, cells craft an impressive array of actin-based structures, mediating events as diverse as cytokinesis, apical constriction, and cell migration. One challenge is to determine how cells regulate actin assembly and disassembly to carry out these cell behaviors. During Drosophila oogenesis diverse cell behaviors are seen in the soma and germline. We used oogenesis to explore developmental roles of two important actin regulators: Enabled/VASP proteins and Capping protein. We found that Enabled plays an important role in cortical integrity of nurse cells, formation of robust bundled actin filaments in late nurse cells that facilitate nurse cell dumping, and migration of somatic border cells. During nurse cell dumping, Enabled localizes to barbed ends of the nurse cell actin filaments, suggesting its mechanism of action. We further pursued this mechanism using mutant Enabled proteins, each affecting one of its protein domains. These data suggest critical roles for the EVH2 domain and its tetramerization subdomain, while the EVH1 domain appears less critical. Enabled appears to be negatively regulated during oogenesis by Abelson kinase. We also explored the function of Capping protein. This revealed important roles in oocyte determination, nurse cell cortical integrity and nurse cell dumping, and support the idea that Capping protein and Enabled act antagonistically during dumping. Together these data reveal places that these actin regulators shape oogenesis.
Collapse
Affiliation(s)
- Julie Gates
- Lineberger Comprehensive Cancer Center and Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
- Department of Biology, Bucknell University, Lewisburg, PA 17837
| | - Stephanie H. Nowotarski
- Lineberger Comprehensive Cancer Center and Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Hongyan Yin
- Department of Biological Chemistry, Center for Cell Dynamics, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | - James P. Mahaffey
- Lineberger Comprehensive Cancer Center and Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Tina Bridges
- Department of Biological Chemistry, Center for Cell Dynamics, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | | | - Catarina C. F. Homem
- Lineberger Comprehensive Cancer Center and Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | | | - Denise J. Montell
- Department of Biological Chemistry, Center for Cell Dynamics, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | - Mark Peifer
- Lineberger Comprehensive Cancer Center and Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| |
Collapse
|
23
|
Widmann TJ, Dahmann C. Wingless signaling and the control of cell shape in Drosophila wing imaginal discs. Dev Biol 2009; 334:161-73. [PMID: 19627985 DOI: 10.1016/j.ydbio.2009.07.013] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2009] [Revised: 06/24/2009] [Accepted: 07/13/2009] [Indexed: 01/02/2023]
Abstract
The control of cell morphology is important for shaping animals during development. Here we address the role of the Wnt/Wingless signal transduction pathway and two of its target genes, vestigial and shotgun (encoding E-cadherin), in controlling the columnar shape of Drosophila wing disc cells. We show that clones of cells mutant for arrow (encoding an essential component of the Wingless signal transduction pathway), vestigial or shotgun undergo profound cell shape changes and are extruded towards the basal side of the epithelium. Compartment-wide expression of a dominant-negative form of the Wingless transducer T-cell factor (TCF/Pangolin), or double-stranded RNA targeting vestigial or shotgun, leads to abnormally short cells throughout this region, indicating that these genes act cell autonomously to maintain normal columnar cell shape. Conversely, overexpression of Wingless, a constitutively-active form of the Wingless transducer beta-catenin/Armadillo, or Vestigial, results in precocious cell elongation. Co-expression of Vestigial partially suppresses the abnormal cell shape induced by dominant-negative TCF. We conclude that Wingless signal transduction plays a cell-autonomous role in promoting and maintaining the columnar shape of wing disc cells. Furthermore, our data suggest that Wingless controls cell shape, in part, through maintaining vestigial expression.
Collapse
Affiliation(s)
- Thomas J Widmann
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, 01307 Dresden, Germany
| | | |
Collapse
|
24
|
The influence of cell mechanics, cell-cell interactions, and proliferation on epithelial packing. Curr Biol 2008; 17:2095-104. [PMID: 18082406 DOI: 10.1016/j.cub.2007.11.049] [Citation(s) in RCA: 808] [Impact Index Per Article: 47.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2007] [Revised: 10/19/2007] [Accepted: 11/09/2007] [Indexed: 11/20/2022]
Abstract
BACKGROUND Epithelial junctional networks assume packing geometries characterized by different cell shapes, neighbor number distributions and areas. The development of specific packing geometries is tightly controlled; in the Drosophila wing epithelium, cells convert from an irregular to a hexagonal array shortly before hair formation. Packing geometry is determined by developmental mechanisms that likely control the biophysical properties of cells and their interactions. RESULTS To understand how physical cellular properties and proliferation determine cell-packing geometries, we use a vertex model for the epithelial junctional network in which cell packing geometries correspond to stable and stationary network configurations. The model takes into account cell elasticity and junctional forces arising from cortical contractility and adhesion. By numerically simulating proliferation, we generate different network morphologies that depend on physical parameters. These networks differ in polygon class distribution, cell area variation, and the rate of T1 and T2 transitions during growth. Comparing theoretical results to observed cell morphologies reveals regions of parameter space where calculated network morphologies match observed ones. We independently estimate parameter values by quantifying network deformations caused by laser ablating individual cell boundaries. CONCLUSIONS The vertex model accounts qualitatively and quantitatively for the observed packing geometry in the wing disc and its response to perturbation by laser ablation. Epithelial packing geometry is a consequence of both physical cellular properties and the disordering influence of proliferation. The occurrence of T2 transitions during network growth suggests that elimination of cells from the proliferating disc epithelium may be the result of junctional force balances.
Collapse
|
25
|
Cooper JA, Sept D. New insights into mechanism and regulation of actin capping protein. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2008; 267:183-206. [PMID: 18544499 PMCID: PMC2583073 DOI: 10.1016/s1937-6448(08)00604-7] [Citation(s) in RCA: 179] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
The heterodimeric actin capping protein, referred to here as "CP," is an essential element of the actin cytoskeleton, binding to the barbed ends of actin filaments and regulating their polymerization. In vitro, CP has a critical role in the dendritic nucleation process of actin assembly mediated by Arp2/3 complex, and in vivo, CP is important for actin assembly and actin-based process of morphogenesis and differentiation. Recent studies have provided new insight into the mechanism of CP binding the barbed end, which raises new possibilities for the dynamics of CP and actin in cells. In addition, a number of molecules that bind and regulate CP have been discovered, suggesting new ideas for how CP may integrate into diverse processes of cell physiology.
Collapse
Affiliation(s)
- John A Cooper
- Department of Cell Biology, Washington University, St. Louis, MO 63110, USA
| | | |
Collapse
|
26
|
Ren N, Charlton J, Adler PN. The flare gene, which encodes the AIP1 protein of Drosophila, functions to regulate F-actin disassembly in pupal epidermal cells. Genetics 2007; 176:2223-34. [PMID: 17565945 PMCID: PMC1950627 DOI: 10.1534/genetics.107.072959] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Adult Drosophila are decorated with several types of polarized cuticular structures, such as hairs and bristles. The morphogenesis of these takes place in pupal cells and is mediated by the actin and microtubule cytoskeletons. Mutations in flare (flr) result in grossly abnormal epidermal hairs. We report here that flr encodes the Drosophila actin interacting protein 1 (AIP1). In other systems this protein has been found to promote cofilin-mediated F-actin disassembly. In Drosophila cofilin is encoded by twinstar (tsr). We show that flr mutations result in increased levels of F-actin accumulation and increased F-actin stability in vivo. Further, flr is essential for cell proliferation and viability and for the function of the frizzled planar cell polarity system. All of these phenotypes are similar to those seen for tsr mutations. This differs from the situation in yeast where cofilin is essential while aip1 mutations result in only subtle defects in the actin cytoskeleton. Surprisingly, we found that mutations in flr and tsr also result in greatly increased tubulin staining, suggesting a tight linkage between the actin and microtubule cytoskeleton in these cells.
Collapse
Affiliation(s)
- Nan Ren
- Biology Department, Institute for Morphogenesis and Regenerative Medicine and Cancer Center, University of Virginia, Charlottesville, VA 22903, USA
| | | | | |
Collapse
|
27
|
Sánchez-Soriano N, Tear G, Whitington P, Prokop A. Drosophila as a genetic and cellular model for studies on axonal growth. Neural Dev 2007; 2:9. [PMID: 17475018 PMCID: PMC1876224 DOI: 10.1186/1749-8104-2-9] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2007] [Accepted: 05/02/2007] [Indexed: 11/10/2022] Open
Abstract
One of the most fascinating processes during nervous system development is the establishment of stereotypic neuronal networks. An essential step in this process is the outgrowth and precise navigation (pathfinding) of axons and dendrites towards their synaptic partner cells. This phenomenon was first described more than a century ago and, over the past decades, increasing insights have been gained into the cellular and molecular mechanisms regulating neuronal growth and navigation. Progress in this area has been greatly assisted by the use of simple and genetically tractable invertebrate model systems, such as the fruit fly Drosophila melanogaster. This review is dedicated to Drosophila as a genetic and cellular model to study axonal growth and demonstrates how it can and has been used for this research. We describe the various cellular systems of Drosophila used for such studies, insights into axonal growth cones and their cytoskeletal dynamics, and summarise identified molecular signalling pathways required for growth cone navigation, with particular focus on pathfinding decisions in the ventral nerve cord of Drosophila embryos. These Drosophila-specific aspects are viewed in the general context of our current knowledge about neuronal growth.
Collapse
Affiliation(s)
- Natalia Sánchez-Soriano
- The Wellcome Trust Centre for Cell-Matrix Research, Faculty of Life Sciences, The University of Manchester, Manchester, UK
| | - Guy Tear
- MRC Centre for Developmental Neurobiology, Guy's Campus, King's College, London, UK
| | - Paul Whitington
- Department of Anatomy and Cell Biology, University of Melbourne, Victoria, Australia
| | - Andreas Prokop
- The Wellcome Trust Centre for Cell-Matrix Research, Faculty of Life Sciences, The University of Manchester, Manchester, UK
| |
Collapse
|