1
|
Sun Y, Zhang X, Wu Z, Li W, Kim WJ. Genetic screening reveals cone cell-specific factors as common genetic targets modulating rival-induced prolonged mating in male Drosophila melanogaster. G3 (BETHESDA, MD.) 2025; 15:jkae255. [PMID: 39489492 PMCID: PMC11708226 DOI: 10.1093/g3journal/jkae255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Accepted: 10/24/2024] [Indexed: 11/05/2024]
Abstract
Male-male social interactions exert a substantial impact on the transcriptional regulation of genes associated with aggression and mating behavior in male Drosophila melanogaster. Throughout our comprehensive genetic screening of aggression-related genes, we identified that the majority of mutants for these genes are associated with rival-induced and visually oriented mating behavior, longer-mating duration (LMD). The majority of mutants with upregulated genes in single-housed males significantly altered LMD behavior but not copulation latency, suggesting a primary regulation of mating duration. Single-cell RNA-sequencing revealed that LMD-related genes are predominantly co-expressed with male-specific genes like dsx and Cyp6a20 in specific cell populations, especially in cone cells. Functional validation confirmed the roles of these genes in mediating LMD. Expression of LMD genes like Cyp6a20, Cyp4d21, and CrzR was enriched in cone cells, with disruptions in cone cell-specific expression of CrzR and Cyp4d21 leading to disrupted LMD. We also identified a novel gene, CG10026/Macewindu, that reversed LMD when overexpressed in cone cells. These findings underscore the critical role of cone cells as a pivotal site for the expression of genes involved in the regulation of LMD behavior. This study provides valuable insights into the intricate mechanisms underlying complex sexual behaviors in Drosophila.
Collapse
Affiliation(s)
- Yanying Sun
- The HIT Center for Life Sciences, Harbin Institute of Technology, Harbin, Heilongjiang 150006, China
| | - Xiaoli Zhang
- The HIT Center for Life Sciences, Harbin Institute of Technology, Harbin, Heilongjiang 150006, China
| | - Zekun Wu
- The HIT Center for Life Sciences, Harbin Institute of Technology, Harbin, Heilongjiang 150006, China
| | - Wenjing Li
- The HIT Center for Life Sciences, Harbin Institute of Technology, Harbin, Heilongjiang 150006, China
| | - Woo Jae Kim
- The HIT Center for Life Sciences, Harbin Institute of Technology, Harbin, Heilongjiang 150006, China
- Medical and Health Research Institute, Zhengzhou Research Institute of HIT, Zhengzhou, Henan 450000, China
| |
Collapse
|
2
|
Li Y, Dong P, Yang Y, Guo T, Zhao Q, Miao D, Li H, Lu T, Xia F, Lyu J, Ma J, Kornberg TB, Zhang Q, Huang H. Metabolic control of progenitor cell propagation during Drosophila tracheal remodeling. Nat Commun 2022; 13:2817. [PMID: 35595807 PMCID: PMC9122933 DOI: 10.1038/s41467-022-30492-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 05/04/2022] [Indexed: 11/14/2022] Open
Abstract
Adult progenitor cells in the trachea of Drosophila larvae are activated and migrate out of niches when metamorphosis induces tracheal remodeling. Here we show that in response to metabolic deficiency in decaying tracheal branches, signaling by the insulin pathway controls the progenitor cells by regulating Yorkie (Yki)-dependent proliferation and migration. Yki, a transcription coactivator that is regulated by Hippo signaling, promotes transcriptional activation of cell cycle regulators and components of the extracellular matrix in tracheal progenitor cells. These findings reveal that regulation of Yki signaling by the insulin pathway governs proliferation and migration of tracheal progenitor cells, thereby identifying the regulatory mechanism by which metabolic depression drives progenitor cell activation and cell division that underlies tracheal remodeling. Tracheal remodeling is a key step during Drosophila metamorphosis. Here they report that tracheal progenitor cells are activated through Yorkie-dependent proliferation and migration, which is induced by metabolic deficit and insulin signaling.
Collapse
Affiliation(s)
- Yue Li
- Department of Cell Biology, and Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, 310058, China.,Zhejiang Provincial Key Laboratory of Genetic & Developmental Disorders, Zhejiang University School of Medicine, Hangzhou, 311121, China
| | - Pengzhen Dong
- Department of Cell Biology, and Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, 310058, China.,Zhejiang Provincial Key Laboratory of Genetic & Developmental Disorders, Zhejiang University School of Medicine, Hangzhou, 311121, China
| | - Yang Yang
- Department of Cell Biology, and Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, 310058, China
| | - Tianyu Guo
- Department of Cell Biology, and Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, 310058, China.,Zhejiang Provincial Key Laboratory of Genetic & Developmental Disorders, Zhejiang University School of Medicine, Hangzhou, 311121, China
| | - Quanyi Zhao
- National Center for Cardiovascular Disease, Fuwai Hospital, 167 North Lishi Road, Xicheng District, Beijing, 100037, China
| | - Dan Miao
- Department of Cell Biology, and Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, 310058, China
| | - Huanle Li
- Department of Cell Biology, and Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, 310058, China.,Zhejiang Provincial Key Laboratory of Genetic & Developmental Disorders, Zhejiang University School of Medicine, Hangzhou, 311121, China
| | - Tianfeng Lu
- Department of Cell Biology, and Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, 310058, China.,Zhejiang Provincial Key Laboratory of Genetic & Developmental Disorders, Zhejiang University School of Medicine, Hangzhou, 311121, China
| | - Fanning Xia
- Department of Cell Biology, and Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, 310058, China.,Zhejiang Provincial Key Laboratory of Genetic & Developmental Disorders, Zhejiang University School of Medicine, Hangzhou, 311121, China
| | - Jialan Lyu
- Department of Cell Biology, and Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, 310058, China.,Zhejiang Provincial Key Laboratory of Genetic & Developmental Disorders, Zhejiang University School of Medicine, Hangzhou, 311121, China
| | - Jun Ma
- Zhejiang Provincial Key Laboratory of Genetic & Developmental Disorders, Zhejiang University School of Medicine, Hangzhou, 311121, China.,Institute of Genetics and Department of Genetics, Division of Human Reproduction and Developmental Genetics of the Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, 310058, China
| | - Thomas B Kornberg
- Cardiovascular Research Institute, University of California San Francisco, San Francisco, CA, 94158, USA
| | - Qiang Zhang
- Department of Cell Biology, and Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, 310058, China.
| | - Hai Huang
- Department of Cell Biology, and Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, 310058, China. .,Zhejiang Provincial Key Laboratory of Genetic & Developmental Disorders, Zhejiang University School of Medicine, Hangzhou, 311121, China.
| |
Collapse
|
3
|
Charlton-Perkins MA, Friedrich M, Cook TA. Semper's cells in the insect compound eye: Insights into ocular form and function. Dev Biol 2021; 479:126-138. [PMID: 34343526 PMCID: PMC8410683 DOI: 10.1016/j.ydbio.2021.07.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Revised: 07/26/2021] [Accepted: 07/28/2021] [Indexed: 11/28/2022]
Abstract
The arthropod compound eye represents one of two major eye types in the animal kingdom and has served as an essential experimental paradigm for defining fundamental mechanisms underlying sensory organ formation, function, and maintenance. One of the most distinguishing features of the compound eye is the highly regular array of lens facets that define individual eye (ommatidial) units. These lens facets are produced by a deeply conserved quartet of cuticle-secreting cells, called Semper cells (SCs). Also widely known as cone cells, SCs were originally identified for their secretion of the dioptric system, i.e. the corneal lens and underlying crystalline cones. Additionally, SCs are now known to execute a diversity of patterning and glial functions in compound eye development and maintenance. Here, we present an integrated account of our current knowledge of SC multifunctionality in the Drosophila compound eye, highlighting emerging gene regulatory modules that may drive the diverse roles for these cells. Drawing comparisons with other deeply conserved retinal glia in the vertebrate single lens eye, this discussion speaks to glial cell origins and opens new avenues for understanding sensory system support programs.
Collapse
Affiliation(s)
- Mark A Charlton-Perkins
- Department of Paediatrics, Wellcome-MRC Stem Cell Institute, Jeffrey Cheah Biomedical Centre, University of Cambridge, Puddicombe Way, Cambridge, CB2 0AW, United Kingdom
| | - Markus Friedrich
- Department of Biological Sciences, Wayne State University, 5047 Gullen Mall, Detroit, MI, 48202, USA; Department of Ophthalmological, Visual, and Anatomical Sciences, Wayne State University, School of Medicine, 540 East Canfield Avenue, Detroit, MI, 48201, USA
| | - Tiffany A Cook
- Department of Ophthalmological, Visual, and Anatomical Sciences, Wayne State University, School of Medicine, 540 East Canfield Avenue, Detroit, MI, 48201, USA; Center of Molecular Medicine and Genetics, Wayne State University School of Medicine, 540 East Canfield Avenue, Detroit, MI, 48201, USA.
| |
Collapse
|
4
|
A Functional Analysis of the Drosophila Gene hindsight: Evidence for Positive Regulation of EGFR Signaling. G3-GENES GENOMES GENETICS 2020; 10:117-127. [PMID: 31649045 PMCID: PMC6945037 DOI: 10.1534/g3.119.400829] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
We have investigated the relationship between the function of the gene hindsight (hnt), which is the Drosophila homolog of Ras Responsive Element Binding protein-1 (RREB-1), and the EGFR signaling pathway. We report that hnt mutant embryos are defective in EGFR signaling dependent processes, namely chordotonal organ recruitment and oenocyte specification. We also show the temperature sensitive hypomorphic allele hntpebbled is enhanced by the hypomorphic MAPK allele rolled (rl1 ). We find that hnt overexpression results in ectopic DPax2 expression within the embryonic peripheral nervous system, and we show that this effect is EGFR-dependent. Finally, we show that the canonical U-shaped embryonic lethal phenotype of hnt, which is associated with premature degeneration of the extraembyonic amnioserosa and a failure in germ band retraction, is rescued by expression of several components of the EGFR signaling pathway (sSpi, Ras85D V12 , pntP1 ) as well as the caspase inhibitor p35 Based on this collection of corroborating evidence, we suggest that an overarching function of hnt involves the positive regulation of EGFR signaling.
Collapse
|
5
|
Serrato-Salas J, Izquierdo-Sánchez J, Argüello M, Conde R, Alvarado-Delgado A, Lanz-Mendoza H. Aedes aegypti antiviral adaptive response against DENV-2. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2018; 84:28-36. [PMID: 29408269 DOI: 10.1016/j.dci.2018.01.022] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2017] [Revised: 01/30/2018] [Accepted: 01/31/2018] [Indexed: 06/07/2023]
Abstract
Priming is the conceptual term defining memory phenomenon in innate immune response. Numerous examples of enhanced secondary immune response have been described in diverse taxa of invertebrates; which naturally lacks memory response. In mosquitoes, a previous non-lethal challenge with some specific pathogens modify their immune response against the same microorganism; developing an improved antimicrobial reaction. In this work, we explore the ability of Aedes aegypti to mount a higher antiviral response upon a second oral DENV challenge. When previously challenged with inactive virus, we observed that the posterior infection showed a diminished number of DENV infectious particles in midguts and carcasses. In challenged tissues, we detected higher de novo midgut DNA synthesis than control group, as determined by DNA incorporation of 5-bromo-2-deoxyuridine. We demonstrated that inactive DENV particle are capable to induce DNA synthesis levels comparable to infective DENV. We considered the Drosophila melanogaster hindsight and Delta-Notch mosquitoes orthologues as potential de novo DNA synthesis pathway components (as observed in fly oocyte development and midgut tissue renewal). We showed that Aedes aegypti hindsight transcript relative expression levels were higher than control during DENV infection and inactive DENV particle alimentation. Also, Aedes aegypti second challenge with active DENV induced higher hindsight, Delta and Notch transcriptions in the primed mosquitoes (compared with the primary infection levels). Considering that the mosquito de novo DNA synthesis is concomitant to viral particle reduction, this finding opens a new perspective on the mechanisms underlying the vector antiviral immune response and the effector molecules involved.
Collapse
Affiliation(s)
- Javier Serrato-Salas
- Centro de Investigaciones sobre Enfermedades Infecciosas, Instituto Nacional de Salud Pública, Av. Universidad 655, CP 62100, Cuernavaca, Morelos, Mexico
| | - Javier Izquierdo-Sánchez
- Centro de Investigaciones sobre Enfermedades Infecciosas, Instituto Nacional de Salud Pública, Av. Universidad 655, CP 62100, Cuernavaca, Morelos, Mexico
| | - Martha Argüello
- Centro de Investigaciones sobre Enfermedades Infecciosas, Instituto Nacional de Salud Pública, Av. Universidad 655, CP 62100, Cuernavaca, Morelos, Mexico
| | - Renáud Conde
- Centro de Investigaciones sobre Enfermedades Infecciosas, Instituto Nacional de Salud Pública, Av. Universidad 655, CP 62100, Cuernavaca, Morelos, Mexico
| | - Alejandro Alvarado-Delgado
- Centro de Investigaciones sobre Enfermedades Infecciosas, Instituto Nacional de Salud Pública, Av. Universidad 655, CP 62100, Cuernavaca, Morelos, Mexico
| | - Humberto Lanz-Mendoza
- Centro de Investigaciones sobre Enfermedades Infecciosas, Instituto Nacional de Salud Pública, Av. Universidad 655, CP 62100, Cuernavaca, Morelos, Mexico.
| |
Collapse
|
6
|
Serrato-Salas J, Hernández-Martínez S, Martínez-Barnetche J, Condé R, Alvarado-Delgado A, Zumaya-Estrada F, Lanz-Mendoza H. De Novo DNA Synthesis in Aedes aegypti Midgut Cells as a Complementary Strategy to Limit Dengue Viral Replication. Front Microbiol 2018; 9:801. [PMID: 29755433 PMCID: PMC5932203 DOI: 10.3389/fmicb.2018.00801] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Accepted: 04/10/2018] [Indexed: 12/23/2022] Open
Abstract
Aedes aegypti is the main vector of Dengue Virus, carrying the virus during the whole mosquito life post-infection. Few mosquito fitness costs have been associated to the virus infection, thereby allowing for a swift dissemination. In order to diminish the mosquito population, public health agency use persistent chemicals with environmental impact for disease control. Most countries barely use biological controls, if at all. With the purpose of developing novel Dengue control strategies, a detailed understanding of the unexplored virus-vector interactions is urgently needed. Damage induced (through tissue injury or bacterial invasion) DNA duplication (endoreplication) has been described in insects during epithelial cells renewal. Here, we delved into the mosquito midgut tissue ability to synthesize DNA de novo; postulating that Dengue virus infection could trigger a protective endoreplication mechanism in some mosquito cells. We hypothesized that the Aedes aegypti orthologue of the Drosophila melanogaster hindsight gene (not previously annotated in Aedes aegypti transcriptome/genome) is part of the Delta-Notch pathway. The activation of this transcriptional cascade leads to genomic DNA endoreplication. The amplification of the genomic copies of specific genes ultimately limits the viral spreading during infection. Conversely, inhibiting DNA synthesis capacity, hence endoreplication, leads to a higher viral replication.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Humberto Lanz-Mendoza
- Centro de Investigaciones Sobre Enfermedades Infecciosas, Instituto Nacional de Salud Pública, Cuernavaca, Mexico
| |
Collapse
|
7
|
Deady LD, Li W, Sun J. The zinc-finger transcription factor Hindsight regulates ovulation competency of Drosophila follicles. eLife 2017; 6:29887. [PMID: 29256860 PMCID: PMC5768419 DOI: 10.7554/elife.29887] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Accepted: 12/18/2017] [Indexed: 12/15/2022] Open
Abstract
Follicle rupture, the final step in ovulation, utilizes conserved molecular mechanisms including matrix metalloproteinases (Mmps), steroid signaling, and adrenergic signaling. It is still unknown how follicles become competent for follicle rupture/ovulation. Here, we identify a zinc-finger transcription factor Hindsight (Hnt) as the first transcription factor regulating follicle’s competency for ovulation in Drosophila. Hnt is not expressed in immature stage-13 follicle cells but is upregulated in mature stage-14 follicle cells, which is essential for follicle rupture/ovulation. Hnt upregulates Mmp2 expression in posterior follicle cells (essential for the breakdown of the follicle wall) and Oamb expression in all follicle cells (the receptor for receiving adrenergic signaling and inducing Mmp2 activation). Hnt’s role in regulating Mmp2 and Oamb can be replaced by its human homolog Ras-responsive element-binding protein 1 (RREB-1). Our data suggest that Hnt/RREB-1 plays conserved role in regulating follicle maturation and competency for ovulation. The release of an egg from the ovary of a female animal is a process known as ovulation. Animals as different as humans and fruit flies ovulate in largely similar ways. Yet the systems involved in controlling ovulation are still not well understood. An egg cell develops within a collection of cells that help the egg to form properly. Together, this unit is called a follicle. During ovulation, connections between the egg and the rest of the follicle break down and the egg is eventually ejected. Ovulation happens in response to a hormone signal from the brain. In humans, this hormone is called luteinizing hormone, whereas in flies it is called octopamine. Specialized protein molecules on the surface of the follicle cells receive these hormone signals, but can only cause ovulation in mature follicles. It was not clear what allows only mature follicles to ovulate. Deady et al. have now used the fruit fly Drosophila melanogaster to examine ovulation to identify how the process is controlled. The results showed that a protein called Hindsight primes follicle cells for ovulation. When a follicle reaches its final stage (called stage 14 in flies), the gene for Hindsight becomes active and produces the protein. This protein then activates other genes. One of the activated genes makes a protein that receives the hormone signal, while another makes a protein that breaks down follicle cells and allows the egg to be released. The findings of Deady et al. reveal that Hindsight is needed for ovulation in flies. Further experiments then showed that the gene for equivalent human protein can be transplanted into flies and can still prime follicles for ovulation. This indicates that the genes in humans and flies may perform the same tasks. Studying ovulation is an important part of understanding female fertility and could help scientists to understand more about human reproduction. These results may also lead to new contraceptives and improved approaches for treating infertility.
Collapse
Affiliation(s)
- Lylah D Deady
- Department of Physiology and Neurobiology, University of Connecticut, Connecticut, United States
| | - Wei Li
- Department of Physiology and Neurobiology, University of Connecticut, Connecticut, United States
| | - Jianjun Sun
- Department of Physiology and Neurobiology, University of Connecticut, Connecticut, United States.,Institute for Systems Genomics, University of Connecticut, Connecticut, United States
| |
Collapse
|
8
|
Jin M, Eblimit A, Pulikkathara M, Corr S, Chen R, Mardon G. Conditional knockout of retinal determination genes in differentiating cells in Drosophila. FEBS J 2016; 283:2754-66. [PMID: 27257739 DOI: 10.1111/febs.13772] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2016] [Revised: 05/18/2016] [Accepted: 06/02/2016] [Indexed: 12/13/2022]
Abstract
Conditional gene knockout in postmitotic cells is a valuable technique which allows the study of gene function with spatiotemporal control. Surprisingly, in contrast to its long-term and extensive use in mouse studies, this technology is lacking in Drosophila. Here, we use a novel method for generating complete loss of eyes absent (eya) or sine oculis (so) function in postmitotic cells posterior to the morphogenetic furrow (MF). Specifically, genomic rescue constructs with flippase recognition target (FRT) sequences flanking essential exons are used to generate conditional null alleles. By removing gene function in differentiating cells, we show that eya and so are dispensable for larval photoreceptor differentiation, but are required for differentiation during pupal development. Both eya and so are necessary for photoreceptor survival and the apoptosis caused by loss of eya or so function is likely a secondary consequence of inappropriate differentiation. We also confirm their requirement for cone cell development and reveal a novel role in interommatidial bristle (IOB) formation. In addition, so is required for normal eye disc morphology. This is the first report of a knockout method to study eya and so function in postmitotic cells. This technology will open the door to a large array of new functional studies in virtually any tissue and at any stage of development or in adults.
Collapse
Affiliation(s)
- Meng Jin
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX, USA
| | - Aiden Eblimit
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, USA.,Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | | | - Stuart Corr
- Department of Surgery, Baylor College of Medicine, Houston, TX, USA.,Department of Chemistry, Rice University, Houston, TX, USA.,Department of Biomedical Engineering, University of Houston, TX, USA
| | - Rui Chen
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, USA.,Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA.,Program in Developmental Biology, Baylor College of Medicine, Houston, TX, USA
| | - Graeme Mardon
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX, USA.,Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA.,Program in Developmental Biology, Baylor College of Medicine, Houston, TX, USA.,Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA.,Department of Ophthalmology, Baylor College of Medicine, Houston, TX, USA.,Program in Cell and Molecular Biology, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
9
|
Baechler BL, McKnight C, Pruchnicki PC, Biro NA, Reed BH. Hindsight/RREB-1 functions in both the specification and differentiation of stem cells in the adult midgut of Drosophila. Biol Open 2015; 5:1-10. [PMID: 26658272 PMCID: PMC4728307 DOI: 10.1242/bio.015636] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The adult Drosophila midgut is established during the larval/pupal transition from undifferentiated cells known as adult midgut precursors (AMPs). Four fundamental cell types are found in the adult midgut epithelium: undifferentiated intestinal stem cells (ISCs) and their committed daughter cells, enteroblasts (EBs), plus enterocytes (ECs) and enteroendocrine cells (EEs). Using the Drosophila posterior midgut as a model, we have studied the function of the transcription factor Hindsight (Hnt)/RREB-1 and its relationship to the Notch and Egfr signaling pathways. We show that hnt is required for EC differentiation in the context of ISC-to-EC differentiation, but not in the context of AMP-to-EC differentiation. In addition, we show that hnt is required for the establishment of viable or functional ISCs. Overall, our studies introduce hnt as a key factor in the regulation of both the developing and the mature adult midgut. We suggest that the nature of these contextual differences can be explained through the interaction of hnt with multiple signaling pathways.
Collapse
Affiliation(s)
- Brittany L Baechler
- Department of Biology, University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada
| | - Cameron McKnight
- Department of Biology, University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada
| | - Porsha C Pruchnicki
- Department of Biology, University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada
| | - Nicole A Biro
- Department of Biology, University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada
| | - Bruce H Reed
- Department of Biology, University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada
| |
Collapse
|
10
|
Oliva C, Molina-Fernandez C, Maureira M, Candia N, López E, Hassan B, Aerts S, Cánovas J, Olguín P, Sierralta J. Hindsight regulates photoreceptor axon targeting through transcriptional control of jitterbug/Filamin and multiple genes involved in axon guidance in Drosophila. Dev Neurobiol 2015; 75:1018-32. [PMID: 25652545 DOI: 10.1002/dneu.22271] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2014] [Revised: 01/19/2015] [Accepted: 01/19/2015] [Indexed: 01/20/2023]
Abstract
During axon targeting, a stereotyped pattern of connectivity is achieved by the integration of intrinsic genetic programs and the response to extrinsic long and short-range directional cues. How this coordination occurs is the subject of intense study. Transcription factors play a central role due to their ability to regulate the expression of multiple genes required to sense and respond to these cues during development. Here we show that the transcription factor HNT regulates layer-specific photoreceptor axon targeting in Drosophila through transcriptional control of jbug/Filamin and multiple genes involved in axon guidance and cytoskeleton organization.Using a microarray analysis we identified 235 genes whose expression levels were changed by HNT overexpression in the eye primordia. We analyzed nine candidate genes involved in cytoskeleton regulation and axon guidance, six of which displayed significantly altered gene expression levels in hnt mutant retinas. Functional analysis confirmed the role of OTK/PTK7 in photoreceptor axon targeting and uncovered Tiggrin, an integrin ligand, and Jbug/Filamin, a conserved actin- binding protein, as new factors that participate of photoreceptor axon targeting. Moreover, we provided in silico and molecular evidence that supports jbug/Filamin as a direct transcriptional target of HNT and that HNT acts partially through Jbug/Filamin in vivo to regulate axon guidance. Our work broadens the understanding of how HNT regulates the coordinated expression of a group of genes to achieve the correct connectivity pattern in the Drosophila visual system. © 2015 Wiley Periodicals, Inc. Develop Neurobiol 75: 1018-1032, 2015.
Collapse
Affiliation(s)
- Carlos Oliva
- Laboratorio de Neurobiología Celular y Molecular, Programa de Fisiología y Biofísica, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile.,Biomedical Neurosciences Institute, ICM, Facultad de Medicina, Universidad de Chile
| | - Claudia Molina-Fernandez
- Laboratorio de Genética del Desarrollo de Drosophila, Programa de Genética Humana, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile
| | - Miguel Maureira
- Laboratorio de Genética del Desarrollo de Drosophila, Programa de Genética Humana, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile
| | - Noemi Candia
- Laboratorio de Genética del Desarrollo de Drosophila, Programa de Genética Humana, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile
| | - Estefanía López
- Laboratorio de Neurobiología Celular y Molecular, Programa de Fisiología y Biofísica, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile.,Biomedical Neurosciences Institute, ICM, Facultad de Medicina, Universidad de Chile
| | - Bassem Hassan
- Laboratory of Neurogenetics, Department of Molecular and Developmental Genetics, VIB, K.U. Leuven, Leuven, Belgium
| | - Stein Aerts
- Laboratory of Neurogenetics, Department of Molecular and Developmental Genetics, VIB, K.U. Leuven, Leuven, Belgium
| | - José Cánovas
- Laboratorio de Neurobiología Celular y Molecular, Programa de Fisiología y Biofísica, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile.,Biomedical Neurosciences Institute, ICM, Facultad de Medicina, Universidad de Chile
| | - Patricio Olguín
- Laboratorio de Genética del Desarrollo de Drosophila, Programa de Genética Humana, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile
| | - Jimena Sierralta
- Laboratorio de Neurobiología Celular y Molecular, Programa de Fisiología y Biofísica, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile.,Biomedical Neurosciences Institute, ICM, Facultad de Medicina, Universidad de Chile
| |
Collapse
|
11
|
Drosophila eyes absent is required for normal cone and pigment cell development. PLoS One 2014; 9:e102143. [PMID: 25057928 PMCID: PMC4109927 DOI: 10.1371/journal.pone.0102143] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2014] [Accepted: 06/14/2014] [Indexed: 11/19/2022] Open
Abstract
In Drosophila, development of the compound eye is orchestrated by a network of highly conserved transcriptional regulators known as the retinal determination (RD) network. The retinal determination gene eyes absent (eya) is expressed in most cells within the developing eye field, from undifferentiated retinal progenitors to photoreceptor cells whose differentiation begins at the morphogenetic furrow (MF). Loss of eya expression leads to an early block in retinal development, making it impossible to study the role of eya expression during later steps of retinal differentiation. We have identified two new regulatory regions that control eya expression during retinal development. These two enhancers are necessary to maintain eya expression anterior to the MF (eya-IAM) and in photoreceptors (eya-PSE), respectively. We find that deleting these enhancers affects developmental events anterior to the MF as well as retinal differentiation posterior to the MF. In line with previous results, we find that reducing eya expression anterior to the MF affects several early steps during early retinal differentiation, including cell cycle arrest and expression of the proneural gene ato. Consistent with previous observations that suggest a role for eya in cell proliferation during early development we find that deletion of eya-IAM leads to a marked reduction in the size of the adult retinal field. On the other hand, deletion of eya-PSE leads to defects in cone and pigment cell development. In addition we find that eya expression is necessary to activate expression of the cone cell marker Cut and to regulate levels of the Hedgehog pathway effector Ci. In summary, our study uncovers novel aspects of eya-mediated regulation of eye development. The genetic tools generated in this study will allow for a detailed study of how the RD network regulates key steps in eye formation.
Collapse
|
12
|
Ming L, Wilk R, Reed BH, Lipshitz HD. Drosophila Hindsight and mammalian RREB-1 are evolutionarily conserved DNA-binding transcriptional attenuators. Differentiation 2014; 86:159-70. [PMID: 24418439 DOI: 10.1016/j.diff.2013.12.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2013] [Revised: 10/25/2013] [Accepted: 12/05/2013] [Indexed: 12/22/2022]
Abstract
The Drosophila Hindsight (hnt) gene encodes a C2H2-type Zinc-finger protein, HNT, that plays multiple developmental roles including control of embryonic germ band retraction and regulation of retinal cell fate and morphogenesis. While the developmental functions of the human HNT homolog, RREB-1, are unknown, it has been shown to function as a transcriptional modulator of several tumor suppressor genes. Here we investigate HNT's functional motifs, target genes and its regulatory abilities. We show that the C-terminal region of HNT, containing the last five of its 14 Zinc fingers, binds in vitro to DNA elements very similar to those identified for RREB-1. We map HNT's in vivo binding sites on salivary gland polytene chromosomes and define, at high resolution, where HNT is bound to two target genes, hnt itself and nervy (nvy). Data from both loss-of-function and over-expression experiments show that HNT attenuates the transcription of these two targets in a tissue-specific manner. RREB-1, when expressed in Drosophila, binds to the same polytene chromosome sites as HNT, attenuates expression of the hnt and nvy genes, and rescues the germ band retraction phenotype. HNT's ninth Zinc finger has degenerated or been lost in the vertebrate lineage. We show that a HNT protein mutant for this finger can also attenuate target gene expression and rescue germ band retraction. Thus HNT and RREB-1 are functional homologs at the level of DNA binding, transcriptional regulation and developmental control.
Collapse
Affiliation(s)
- Liang Ming
- Department of Molecular Genetics, University of Toronto, 1 King's College Circle, Toronto, Ontario, Canada M5S 1A8.
| | - Ronit Wilk
- Department of Molecular Genetics, University of Toronto, 1 King's College Circle, Toronto, Ontario, Canada M5S 1A8.
| | - Bruce H Reed
- Department of Biology, University of Waterloo, 200 University Avenue W, Waterloo, Ontario, Canada N2L 3G1.
| | - Howard D Lipshitz
- Department of Molecular Genetics, University of Toronto, 1 King's College Circle, Toronto, Ontario, Canada M5S 1A8.
| |
Collapse
|
13
|
Abstract
Since the discovery of a single white-eyed male in a population of red eyed flies over 100 years ago (Morgan, 1910), the compound eye of the fruit fly, Drosophila melanogaster, has been a favorite experimental system for identifying genes that regulate various aspects of development. For example, a fair amount of what we know today about enzymatic pathways and vesicular transport is due to the discovery and subsequent characterization of eye color mutants such as white. Likewise, our present day understanding of organogenesis has been aided considerably by studies of mutations, such as eyeless, that either reduce or eliminate the compound eyes. But by far the phenotype that has provided levers into the greatest number of experimental fields has been the humble "rough" eye. The fly eye is composed of several hundred unit-eyes that are also called ommatidia. These unit eyes are packed into a hexagonal array of remarkable precision. The structure of the eye is so precise that it has been compared with that of a crystal (Ready et al., 1976). Even the slightest perturbations to the structure of the ommatidium can be visually detected by light or electron microscopy. The cause for this is two-fold: (1) any defect that affects the hexagonal geometry of a single ommatidium can and will disrupt the positioning of surrounding unit eyes thereby propagating structural flaws and (2) disruptions in genes that govern the development of even a single cell within an ommatidium will affect all unit eyes. In both cases, the effect is the visual magnification of even the smallest imperfection. Studies of rough eye mutants have provided key insights into the areas of cell fate specification, lateral inhibition, signal transduction, transcription factor networks, planar cell polarity, cell proliferation, and programmed cell death just to name a few. This review will attempt to summarize the key steps that are required to assemble each ommatidium.
Collapse
Affiliation(s)
- Justin P Kumar
- Department of Biology, Indiana University, Bloomington, Indiana 47405, USA.
| |
Collapse
|
14
|
Graham TGW, Tabei SMA, Dinner AR, Rebay I. Modeling bistable cell-fate choices in the Drosophila eye: qualitative and quantitative perspectives. Development 2010; 137:2265-78. [PMID: 20570936 PMCID: PMC2889600 DOI: 10.1242/dev.044826] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
A major goal of developmental biology is to understand the molecular mechanisms whereby genetic signaling networks establish and maintain distinct cell types within multicellular organisms. Here, we review cell-fate decisions in the developing eye of Drosophila melanogaster and the experimental results that have revealed the topology of the underlying signaling circuitries. We then propose that switch-like network motifs based on positive feedback play a central role in cell-fate choice, and discuss how mathematical modeling can be used to understand and predict the bistable or multistable behavior of such networks.
Collapse
Affiliation(s)
- Thomas G. W. Graham
- Ben May Department for Cancer Research, University of Chicago, 929 East 57th Street, Chicago, IL 60637, USA
| | - S. M. Ali Tabei
- James Franck Institute, University of Chicago, 929 East 57th Street, Chicago, IL 60637, USA
| | - Aaron R. Dinner
- James Franck Institute, University of Chicago, 929 East 57th Street, Chicago, IL 60637, USA
| | - Ilaria Rebay
- Ben May Department for Cancer Research, University of Chicago, 929 East 57th Street, Chicago, IL 60637, USA
| |
Collapse
|
15
|
Regulation of axonal development by the nuclear protein hindsight (pebbled) in the Drosophila visual system. Dev Biol 2010; 344:911-21. [PMID: 20541542 DOI: 10.1016/j.ydbio.2010.06.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2010] [Revised: 05/14/2010] [Accepted: 06/03/2010] [Indexed: 11/24/2022]
Abstract
The molecules and networks involved in the process of acquisition and maintenance of the form of a mature neuron are not completely known. Using a misexpression screen we identified the gene hindsight as a gene involved in the process of acquisition of the neuronal morphogenesis in the Drosophila adult nervous system. hindsight encodes a transcription factor known for its role in early developmental processes such as embryonic germ band retraction and dorsal closure, as well as in the establishment of cell morphology, planar cell polarity, and epithelial integrity during retinal development. We describe here a novel function for HNT by showing that both loss and gain of function of HNT affects the pathfinding of the photoreceptors axons. By manipulating the timing and level of HNT expression, together with the number of cells manipulated we show here that the function of HNT in axonal guidance is independent of the HNT functions previously reported in retinal cells. Based on genetic interaction experiments we show that part of HNT function in axonal development is exerted through the regulation of genes involved in the dynamics of the actin cytoskeleton.
Collapse
|
16
|
Swanson CI, Evans NC, Barolo S. Structural rules and complex regulatory circuitry constrain expression of a Notch- and EGFR-regulated eye enhancer. Dev Cell 2010; 18:359-70. [PMID: 20230745 PMCID: PMC2847355 DOI: 10.1016/j.devcel.2009.12.026] [Citation(s) in RCA: 121] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2008] [Revised: 09/27/2009] [Accepted: 12/27/2009] [Indexed: 01/13/2023]
Abstract
Enhancers integrate spatiotemporal information to generate precise patterns of gene expression. How complex is the regulatory logic of a typical developmental enhancer, and how important is its internal organization? Here, we examine in detail the structure and function of sparkling, a Notch- and EGFR/MAPK-regulated, cone cell-specific enhancer of the Drosophila Pax2 gene, in vivo. In addition to its 12 previously identified protein-binding sites, sparkling is densely populated with previously unmapped regulatory sequences, which interact in complex ways to control gene expression. One segment is essential for activation at a distance, yet dispensable for other activation functions and for cell type patterning. Unexpectedly, rearranging sparkling's regulatory sites converts it into a robust photoreceptor-specific enhancer. Our results show that a single combination of regulatory inputs can encode multiple outputs, and suggest that the enhancer's organization determines the correct expression pattern by facilitating certain short-range regulatory interactions at the expense of others.
Collapse
MESH Headings
- Animals
- Animals, Genetically Modified
- Base Sequence
- Binding Sites/genetics
- DNA/genetics
- DNA-Binding Proteins/genetics
- DNA-Binding Proteins/metabolism
- Drosophila/genetics
- Drosophila/growth & development
- Drosophila/metabolism
- Drosophila Proteins/genetics
- Drosophila Proteins/metabolism
- Drosophila melanogaster/genetics
- Drosophila melanogaster/growth & development
- Drosophila melanogaster/metabolism
- Enhancer Elements, Genetic
- ErbB Receptors/genetics
- ErbB Receptors/metabolism
- Evolution, Molecular
- Eye/growth & development
- Eye/metabolism
- Eye Proteins/genetics
- Eye Proteins/metabolism
- Gene Expression Regulation, Developmental
- Genes, Insect
- MAP Kinase Signaling System
- Molecular Sequence Data
- Mutagenesis
- PAX2 Transcription Factor/genetics
- PAX2 Transcription Factor/metabolism
- Photoreceptor Cells, Invertebrate/cytology
- Photoreceptor Cells, Invertebrate/metabolism
- Receptors, Invertebrate Peptide/genetics
- Receptors, Invertebrate Peptide/metabolism
- Receptors, Notch/genetics
- Receptors, Notch/metabolism
- Sequence Homology, Nucleic Acid
Collapse
Affiliation(s)
- Christina I. Swanson
- Department of Cell & Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109-2200, USA
| | - Nicole C. Evans
- Department of Cell & Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109-2200, USA
| | - Scott Barolo
- Department of Cell & Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109-2200, USA
| |
Collapse
|
17
|
Buffin E, Gho M. Laser microdissection of sensory organ precursor cells of Drosophila microchaetes. PLoS One 2010; 5:e9285. [PMID: 20174573 PMCID: PMC2824816 DOI: 10.1371/journal.pone.0009285] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2009] [Accepted: 01/27/2010] [Indexed: 12/31/2022] Open
Abstract
Background In Drosophila, each external sensory organ originates from the division of a unique precursor cell (the sensory organ precursor cell or SOP). Each SOP is specified from a cluster of equivalent cells, called a proneural cluster, all of them competent to become SOP. Although, it is well known how SOP cells are selected from proneural clusters, little is known about the downstream genes that are regulated during SOP fate specification. Methodology/Principal Findings In order to better understand the mechanism involved in the specification of these precursor cells, we combined laser microdissection, toisolate SOP cells, with transcriptome analysis, to study their RNA profile. Using this procedure, we found that genes that exhibit a 2-fold or greater expression in SOPs versus epithelial cells were mainly associated with Gene Ontology (GO) terms related with cell fate determination and sensory organ specification. Furthermore, we found that several genes such as pebbled/hindsight, scabrous, miranda, senseless, or cut, known to be expressed in SOP cells by independent procedures, are particularly detected in laser microdissected SOP cells rather than in epithelial cells. Conclusions/Significance These results confirm the feasibility and the specificity of our laser microdissection based procedure. We anticipate that this analysis will give new insight into the selection and specification of neural precursor cells.
Collapse
Affiliation(s)
- Eulalie Buffin
- Université Pierre et Marie Curie-Paris 6, UMR 7622, Paris, France
- CNRS, UMR 7622, Paris, France
| | - Michel Gho
- Université Pierre et Marie Curie-Paris 6, UMR 7622, Paris, France
- CNRS, UMR 7622, Paris, France
- * E-mail:
| |
Collapse
|