1
|
Monticelli S, Giangrande A. Evolutionary Conservation of the Gcm/Glide Cascade: Of Glia and Beyond. BRAIN, BEHAVIOR AND EVOLUTION 2024; 100:58-66. [PMID: 39586239 DOI: 10.1159/000542753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 10/25/2024] [Indexed: 11/27/2024]
Abstract
BACKGROUND Glia represent a major cell population of the nervous system, and they take part in virtually any process sustaining the development, the functioning, and the pathology of the nervous system. Glial cells diversified significantly during evolution and distinct signals have been adopted to initiate glial development in mammals as compared to flies. In the invertebrate model Drosophila melanogaster, the transcription factor Gcm is necessary and sufficient to generate glial cells. Although Gcm orthologs have been found in protostomes and deuterostomes, they do not act in glial fate commitment as in flies, calling for further investigations of the evolutionarily conserved role of Gcm. SUMMARY Here, we review the impact of the fly Gcm transcription factor in the differentiation of phagocytic competent cells inside and outside the nervous system, glia, and macrophages, respectively. Then, we discuss the evolutionary conservation of Gcm and the neural/nonneural functions of Gcm orthologs. Finally, we present a recent work from Pavlidaki et al. [Cell Rep. 2022;41(3):111506] showing that the Gcm cascade is conserved from fly macrophages to mammalian microglia to counteract acute and chronic inflammation. KEY MESSAGES Gcm has an ancestral role in immunity, and its anti-inflammatory effect is evolutionarily conserved. This opens new avenues to assess Gcm function in other species/animal models, its potential involvement in inflammation-related processes, such as regeneration, and to expand the investigation on glia evolution.
Collapse
Affiliation(s)
- Sara Monticelli
- IGBMC, Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France
- Centre National de la Recherche Scientifique, UMR 7104, Illkirch, France
- Institut National de la Santé et de la Recherche Médicale, UMR-S 1258, Illkirch, France
- Université de Strasbourg, IGBMC UMR 7104- UMR-S 1258, Illkirch, France
| | - Angela Giangrande
- IGBMC, Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France
- Centre National de la Recherche Scientifique, UMR 7104, Illkirch, France
- Institut National de la Santé et de la Recherche Médicale, UMR-S 1258, Illkirch, France
- Université de Strasbourg, IGBMC UMR 7104- UMR-S 1258, Illkirch, France
| |
Collapse
|
2
|
Sheloukhova L, Watanabe H. Evolution of glial cells: a non-bilaterian perspective. Neural Dev 2024; 19:10. [PMID: 38907299 PMCID: PMC11193209 DOI: 10.1186/s13064-024-00184-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 06/06/2024] [Indexed: 06/23/2024] Open
Abstract
Nervous systems of bilaterian animals generally consist of two cell types: neurons and glial cells. Despite accumulating data about the many important functions glial cells serve in bilaterian nervous systems, the evolutionary origin of this abundant cell type remains unclear. Current hypotheses regarding glial evolution are mostly based on data from model bilaterians. Non-bilaterian animals have been largely overlooked in glial studies and have been subjected only to morphological analysis. Here, we provide a comprehensive overview of conservation of the bilateral gliogenic genetic repertoire of non-bilaterian phyla (Cnidaria, Placozoa, Ctenophora, and Porifera). We overview molecular and functional features of bilaterian glial cell types and discuss their possible evolutionary history. We then examine which glial features are present in non-bilaterians. Of these, cnidarians show the highest degree of gliogenic program conservation and may therefore be crucial to answer questions about glial evolution.
Collapse
Affiliation(s)
- Larisa Sheloukhova
- Evolutionary Neurobiology Unit, Okinawa Institute of Science and Technology, 1919-1 Tancha, Onna-son, Kunigami-gun, Okinawa, 904-0412, Japan
| | - Hiroshi Watanabe
- Evolutionary Neurobiology Unit, Okinawa Institute of Science and Technology, 1919-1 Tancha, Onna-son, Kunigami-gun, Okinawa, 904-0412, Japan.
| |
Collapse
|
3
|
Algonaiman R, Almutairi AS, Al Zhrani MM, Barakat H. Effects of Prenatal Exposure to Bisphenol A Substitutes, Bisphenol S and Bisphenol F, on Offspring's Health: Evidence from Epidemiological and Experimental Studies. Biomolecules 2023; 13:1616. [PMID: 38002298 PMCID: PMC10669689 DOI: 10.3390/biom13111616] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 10/21/2023] [Accepted: 10/25/2023] [Indexed: 11/26/2023] Open
Abstract
Pregnancy and lactation are critical periods for human well-being and are sensitive windows for pollutant exposure. Bisphenol A (BPA) is well demonstrated as a toxicant and has been replaced in the plastic industry with other bisphenol analogs that share similarities in structure and characteristics, most commonly Bisphenol S (BPS) and Bisphenol F (BPF). Maternal exposure to BPS or BPF can result in their accumulation in the fetal compartment, leading to chronic exposure and potentially limiting normal fetal growth and development. This review summarizes considerable findings of epidemiological or experimental studies reporting associations between BPS or BPF and impaired fetal growth and development. Briefly, the available findings indicate that exposure to the two bisphenol analogs during pregnancy and lactation can result in multiple disturbances in the offspring, including fetal growth restrictions, neurological dysfunctions, and metabolic disorders with the potential to persist throughout childhood. The occurrence of premature births may also be attributed to exposure to the two bisphenols. The possible mechanisms of actions by which the two bisphenols can induce such effects can be attributed to a complex of interactions between the physiological mechanisms, including impaired placental functioning and development, dysregulation of gene expression, altered hormonal balance, and disturbances in immune responses as well as induced inflammations and oxidative stress. In conclusion, the available evidence suggests that BPS and BPF have a toxic potential in a compartment level to BPA. Future research is needed to provide more intensive information; long-term studies and epidemiological research, including a wide scale of populations with different settings, are recommended. Public awareness regarding the safety of BPA-free products should also be enhanced, with particular emphasis on educating individuals responsible for the well-being of children.
Collapse
Affiliation(s)
- Raya Algonaiman
- Department of Food Science and Human Nutrition, College of Agriculture and Veterinary Medicine, Qassim University, Buraydah 51452, Saudi Arabia;
| | - Abdulkarim S. Almutairi
- Al-Rass General Hospital, Qassim Health Cluster, Ministry of Health, Ibn Sina Street, King Khalid District, Al-Rass 58883, Saudi Arabia;
| | - Muath M. Al Zhrani
- Department of Applied Medical Science, Applied College, Bishah University, Bishah 67616, Saudi Arabia;
| | - Hassan Barakat
- Department of Food Science and Human Nutrition, College of Agriculture and Veterinary Medicine, Qassim University, Buraydah 51452, Saudi Arabia;
- Department of Food Technology, Faculty of Agriculture, Benha University, Moshtohor 13736, Egypt
| |
Collapse
|
4
|
Sheloukhova L, Watanabe H. Analysis of cnidarian Gcm suggests a neuronal origin of glial EAAT1 function. Sci Rep 2023; 13:14790. [PMID: 37684386 PMCID: PMC10491807 DOI: 10.1038/s41598-023-42046-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 09/04/2023] [Indexed: 09/10/2023] Open
Abstract
In bilaterian central nervous systems, coordination of neurotransmission by glial cells enables highly sophisticated neural functions. The diversity of transcription factors (TFs) involved in gliogenesis suggests multiple evolutionary origins of various glial cell types of bilaterians. Many of these TFs including the glial cells missing (Gcm) are also present in genomes of Cnidaria, the closest outgroup to Bilateria, but their function remains to be elucidated. In this study, we analyzed the function of Gcm, a multifunctional TF involved in development of glial and non-glial cell types, in the sea anemone, Nematostella vectensis. siRNA-mediated knockdown of Nematostella Gcm altered expression of cell adhesion proteins, glutamate and GABA transporters, ion channels, metabolic enzymes, and zinc finger and Ets-related TFs. NvGcm and mRNAs of downstream genes are expressed in broad neural cell clusters. However, immunostaining of a NvGcm target protein, the glutamate transporter, NvEAAT1, visualized a novel class of cells with flat cell bodies and no clear processes. Together with the finding of unique morphological features of NvEAAT1-functioning cells, these data suggest that extracellular glutamate metabolism, one of major glial functions, is deployed downstream of Gcm in specific neural cell types in Cnidaria.
Collapse
Affiliation(s)
- Larisa Sheloukhova
- Evolutionary Neurobiology Unit, Okinawa Institute of Science and Technology, 1919-1 Tancha, Onna-son, Kunigami-gun, Okinawa, 904-0412, Japan
| | - Hiroshi Watanabe
- Evolutionary Neurobiology Unit, Okinawa Institute of Science and Technology, 1919-1 Tancha, Onna-son, Kunigami-gun, Okinawa, 904-0412, Japan.
| |
Collapse
|
5
|
Aberrant Gcm1 expression mediates Wnt/β-catenin pathway activation in folate deficiency involved in neural tube defects. Cell Death Dis 2021; 12:234. [PMID: 33664222 PMCID: PMC7933360 DOI: 10.1038/s41419-020-03313-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Revised: 10/12/2020] [Accepted: 10/14/2020] [Indexed: 02/07/2023]
Abstract
Wnt signaling plays a major role in early neural development. An aberrant activation in Wnt/β-catenin pathway causes defective anteroposterior patterning, which results in neural tube closure defects (NTDs). Changes in folate metabolism may participate in early embryo fate determination. We have identified that folate deficiency activated Wnt/β-catenin pathway by upregulating a chorion-specific transcription factor Gcm1. Specifically, folate deficiency promoted formation of the Gcm1/β-catenin/T-cell factor (TCF4) complex formation to regulate the Wnt targeted gene transactivation through Wnt-responsive elements. Moreover, the transcription factor Nanog upregulated Gcm1 transcription in mESCs under folate deficiency. Lastly, in NTDs mouse models and low-folate NTDs human brain samples, Gcm1 and Wnt/β-catenin targeted genes related to neural tube closure are specifically overexpressed. These results indicated that low-folate level promoted Wnt/β-catenin signaling via activating Gcm1, and thus leaded into aberrant vertebrate neural development.
Collapse
|
6
|
The Repo Homeodomain Transcription Factor Suppresses Hematopoiesis in Drosophila and Preserves the Glial Fate. J Neurosci 2018; 39:238-255. [PMID: 30504274 DOI: 10.1523/jneurosci.1059-18.2018] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 10/08/2018] [Accepted: 10/12/2018] [Indexed: 01/12/2023] Open
Abstract
Despite their different origins, Drosophila glia and hemocytes are related cell populations that provide an immune function. Drosophila hemocytes patrol the body cavity and act as macrophages outside the nervous system, whereas glia originate from the neuroepithelium and provide the scavenger population of the nervous system. Drosophila glia are hence the functional orthologs of vertebrate microglia, even though the latter are cells of immune origin that subsequently move into the brain during development. Interestingly, the Drosophila immune cells within (glia) and outside (hemocytes) the nervous system require the same transcription factor glial cells deficient/glial cells missing (Glide/Gcm) for their development. This raises the issue of how do glia specifically differentiate in the nervous system, and hemocytes in the procephalic mesoderm. The Repo homeodomain transcription factor and panglial direct target of Glide/Gcm is known to ensure glial terminal differentiation. Here we show that Repo also takes center stage in the process that discriminates between glia and hemocytes. First, Repo expression is repressed in the hemocyte anlagen by mesoderm-specific factors. Second, Repo ectopic activation in the procephalic mesoderm is sufficient to repress the expression of hemocyte-specific genes. Third, the lack of Repo triggers the expression of hemocyte markers in glia. Thus, a complex network of tissue-specific cues biases the potential of Glide/Gcm. These data allow us to revise the concept of fate determinants and help us to understand the bases of cell specification. Both sexes were analyzed.SIGNIFICANCE STATEMENT Distinct cell types often require the same pioneer transcription factor, raising the issue of how one factor triggers different fates. In Drosophila, glia and hemocytes provide a scavenger activity within and outside the nervous system, respectively. While they both require the glial cells deficient/glial cells missing (Glide/Gcm) transcription factor, glia originate from the ectoderm, and hemocytes from the mesoderm. Here we show that tissue-specific factors inhibit the gliogenic potential of Glide/Gcm in the mesoderm by repressing the expression of the homeodomain protein Repo, a major glial-specific target of Glide/Gcm. Repo expression in turn inhibits the expression of hemocyte-specific genes in the nervous system. These cell-specific networks secure the establishment of the glial fate only in the nervous system and allow cell diversification.
Collapse
|
7
|
Gupta T, Kumar A, Cattenoz PB, VijayRaghavan K, Giangrande A. The Glide/Gcm fate determinant controls initiation of collective cell migration by regulating Frazzled. eLife 2016; 5. [PMID: 27740455 PMCID: PMC5114015 DOI: 10.7554/elife.15983] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Accepted: 10/12/2016] [Indexed: 12/16/2022] Open
Abstract
Collective migration is a complex process that contributes to build precise tissue and organ architecture. Several molecules implicated in cell interactions also control collective migration, but their precise role and the finely tuned expression that orchestrates this complex developmental process are poorly understood. Here, we show that the timely and threshold expression of the Netrin receptor Frazzled triggers the initiation of glia migration in the developing Drosophila wing. Frazzled expression is induced by the transcription factor Glide/Gcm in a dose-dependent manner. Thus, the glial determinant also regulates the efficiency of collective migration. NetrinB but not NetrinA serves as a chemoattractant and Unc5 contributes as a repellant Netrin receptor for glia migration. Our model includes strict spatial localization of a ligand, a cell autonomously acting receptor and a fate determinant that act coordinately to direct glia toward their final destination. DOI:http://dx.doi.org/10.7554/eLife.15983.001
Collapse
Affiliation(s)
- Tripti Gupta
- Department of Functional Genomics and Cancer, Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France.,Centre National de la Recherche Scientifique, UMR7104, Illkirch, France.,Institut National de la Santé et de la Recherche Médicale, U964, Illkirch, France.,Université de Strasbourg, Illkirch, France
| | - Arun Kumar
- Department of Functional Genomics and Cancer, Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France.,Centre National de la Recherche Scientifique, UMR7104, Illkirch, France.,Institut National de la Santé et de la Recherche Médicale, U964, Illkirch, France.,Université de Strasbourg, Illkirch, France
| | - Pierre B Cattenoz
- Department of Functional Genomics and Cancer, Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France.,Centre National de la Recherche Scientifique, UMR7104, Illkirch, France.,Institut National de la Santé et de la Recherche Médicale, U964, Illkirch, France.,Université de Strasbourg, Illkirch, France
| | - K VijayRaghavan
- Department of Developmental Biology and Genetics, Tata Institute for Fundamental Research, Bangalore, India.,National Centre for Biological Sciences, Tata Institute for Fundamental Research, Bangalore, India
| | - Angela Giangrande
- Department of Functional Genomics and Cancer, Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France.,Centre National de la Recherche Scientifique, UMR7104, Illkirch, France.,Institut National de la Santé et de la Recherche Médicale, U964, Illkirch, France.,Université de Strasbourg, Illkirch, France
| |
Collapse
|
8
|
Cattenoz PB, Giangrande A. Revisiting the role of the Gcm transcription factor, from master regulator to Swiss army knife. Fly (Austin) 2016; 10:210-8. [PMID: 27434165 DOI: 10.1080/19336934.2016.1212793] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Master genes are known to induce the differentiation of a multipotent cell into a specific cell type. These molecules are often transcription factors that switch on the regulatory cascade that triggers cell specification. Gcm was first described as the master gene of the glial fate in Drosophila as it induces the differentiation of neuroblasts into glia in the developing nervous system. Later on, Gcm was also shown to regulate the differentiation of blood, tendon and peritracheal cells as well as that of neuronal subsets. Thus, the glial master gene is used in at least 4 additional systems to promote differentiation. To understand the numerous roles of Gcm, we recently reported a genome-wide screen of Gcm direct targets in the Drosophila embryo. This screen provided new insight into the role and mode of action of this powerful transcription factor, notably on the interactions between Gcm and major differentiation pathways such as the Hedgehog, Notch and JAK/STAT. Here, we discuss the mode of action of Gcm in the different systems, we present new tissues that require Gcm and we revise the concept of 'master gene'.
Collapse
Affiliation(s)
- Pierre B Cattenoz
- a Department of Functional Genomics and Cancer , Institut de Génétique et de Biologie Moléculaire et Cellulaire , Illkirch , France
| | - Angela Giangrande
- a Department of Functional Genomics and Cancer , Institut de Génétique et de Biologie Moléculaire et Cellulaire , Illkirch , France
| |
Collapse
|
9
|
Functional Conservation of the Glide/Gcm Regulatory Network Controlling Glia, Hemocyte, and Tendon Cell Differentiation in Drosophila. Genetics 2015; 202:191-219. [PMID: 26567182 PMCID: PMC4701085 DOI: 10.1534/genetics.115.182154] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Accepted: 11/03/2015] [Indexed: 12/21/2022] Open
Abstract
High-throughput screens allow us to understand how transcription factors trigger developmental processes, including cell specification. A major challenge is identification of their binding sites because feedback loops and homeostatic interactions may mask the direct impact of those factors in transcriptome analyses. Moreover, this approach dissects the downstream signaling cascades and facilitates identification of conserved transcriptional programs. Here we show the results and the validation of a DNA adenine methyltransferase identification (DamID) genome-wide screen that identifies the direct targets of Glide/Gcm, a potent transcription factor that controls glia, hemocyte, and tendon cell differentiation in Drosophila. The screen identifies many genes that had not been previously associated with Glide/Gcm and highlights three major signaling pathways interacting with Glide/Gcm: Notch, Hedgehog, and JAK/STAT, which all involve feedback loops. Furthermore, the screen identifies effector molecules that are necessary for cell-cell interactions during late developmental processes and/or in ontogeny. Typically, immunoglobulin (Ig) domain-containing proteins control cell adhesion and axonal navigation. This shows that early and transiently expressed fate determinants not only control other transcription factors that, in turn, implement a specific developmental program but also directly affect late developmental events and cell function. Finally, while the mammalian genome contains two orthologous Gcm genes, their function has been demonstrated in vertebrate-specific tissues, placenta, and parathyroid glands, begging questions on the evolutionary conservation of the Gcm cascade in higher organisms. Here we provide the first evidence for the conservation of Gcm direct targets in humans. In sum, this work uncovers novel aspects of cell specification and sets the basis for further understanding of the role of conserved Gcm gene regulatory cascades.
Collapse
|
10
|
Altenhein B, Cattenoz PB, Giangrande A. The early life of a fly glial cell. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2015. [DOI: 10.1002/wdev.200] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
| | | | - Angela Giangrande
- Department of Functional Genomics and Cancer; IGBMC; Illkirch France
| |
Collapse
|
11
|
Altenhein B. Glial cell progenitors in the Drosophila embryo. Glia 2015; 63:1291-302. [PMID: 25779863 DOI: 10.1002/glia.22820] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Accepted: 03/02/2015] [Indexed: 12/31/2022]
Abstract
Development and general organization of the nervous system is comparable between insects and vertebrates. Our current knowledge on the formation of neurogenic anlagen and the generation of neural stem cells is deeply influenced by work done in invertebrate model organisms such as Drosophila and Caenorhabditis elegans. It is the aim of this review to summarize the most important steps in neurogenesis in the Drosophila embryo with a special emphasis on glial cell progenitors and the specification of glial cells. Induction of neurogenic regions during early embryogenesis and determination of neural stem cells are briefly described. Special attention is given to the formation of neural precursors called neuroblasts (NB) and their lineages. NBs divide in a stem cell mode to generate a cell clone of either neurons and/or glial cells. The latter require the activation of the transcription factor glial cells missing (gcm), thus providing a binary switch between neuronal and glial cell fates. Further aspects of glial cell specification and the resulting heterogeneity of the glial population in Drosophila are discussed.
Collapse
Affiliation(s)
- Benjamin Altenhein
- Department of Neurobiology, Neurodevelopment, Zoological Institute, University of Cologne, Cologne, Germany
| |
Collapse
|
12
|
Cattenoz PB, Giangrande A. New insights in the clockwork mechanism regulating lineage specification: Lessons from the Drosophila nervous system. Dev Dyn 2014; 244:332-41. [PMID: 25399853 DOI: 10.1002/dvdy.24228] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2014] [Revised: 11/06/2014] [Accepted: 11/07/2014] [Indexed: 11/05/2022] Open
Abstract
BACKGROUND Powerful transcription factors called fate determinants induce robust differentiation programs in multipotent cells and trigger lineage specification. These factors guarantee the differentiation of specific tissues/organs/cells at the right place and the right moment to form a fully functional organism. Fate determinants are activated by temporal, positional, epigenetic, and post-transcriptional cues, hence integrating complex and dynamic developmental networks. In turn, they activate specific transcriptional/epigenetic programs that secure novel molecular landscapes. RESULTS In this review, we use the Drosophila Gcm glial determinant as a model to discuss the mechanisms that allow lineage specification in the nervous system. The dynamic regulation of Gcm via interlocked loops has recently emerged as a key event in the establishment of stable identity. Gcm induces gliogenesis while triggering its own extinction, thus preventing the appearance of metastable states and neoplastic processes. CONCLUSIONS Using simple animal models that allow in vivo manipulations provides a key tool to disentangle the complex regulation of cell fate determinants.
Collapse
Affiliation(s)
- Pierre B Cattenoz
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France; Centre National de la Recherche Scientifique, Illkirch, France; Institut National de la Santé et de la Recherche Médicale, Illkirch, France; Université de Strasbourg, Illkirch, France
| | | |
Collapse
|
13
|
Cattenoz PB, Giangrande A. Lineage specification in the fly nervous system and evolutionary implications. Cell Cycle 2013; 12:2753-9. [PMID: 23966161 DOI: 10.4161/cc.25918] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Over the last decades, it has become clear that glia are multifunctional and plastic cells endowed with key regulatory roles. They control the response to developmental and/or pathological signals, thereby affecting neural proliferation, remodeling, survival, and regeneration. It is, therefore, important to understand the biology of these cells and the molecular mechanisms controlling their development/activity. The fly community has made major breakthroughs by characterizing the bases of gliogenesis and function. Here we describe the regulation and the role of the fly glial determinant. Then, we discuss the impact of the determinant in cell plasticity and differentiation. Finally, we address the conservation of this pathway across evolution.
Collapse
Affiliation(s)
- Pierre B Cattenoz
- Institut de Génétique et de Biologie Moléculaire et Cellulaire; IGBMC/CNRS/INSERM/UDS; Strasbourg, France
| | | |
Collapse
|
14
|
Laneve P, Delaporte C, Trebuchet G, Komonyi O, Flici H, Popkova A, D'Agostino G, Taglini F, Kerekes I, Giangrande A. The Gcm/Glide molecular and cellular pathway: new actors and new lineages. Dev Biol 2012; 375:65-78. [PMID: 23276603 DOI: 10.1016/j.ydbio.2012.12.014] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2012] [Revised: 11/18/2012] [Accepted: 12/14/2012] [Indexed: 12/21/2022]
Abstract
In Drosophila, the transcription factor Gcm/Glide plays a key role in cell fate determination and cellular differentiation. In light of its crucial biological impact, major efforts have been put for analyzing its properties as master regulator, from both structural and functional points of view. However, the lack of efficient antibodies specific to the Gcm/Glide protein precluded thorough analyses of its regulation and activity in vivo. In order to relieve such restraints, we designed an epitope-tagging approach to "FLAG"-recognize and analyze the functional protein both in vitro (exogenous Gcm/Glide) and in vivo (endogenous protein). We here (i) reveal a tight interconnection between the small RNA and the Gcm/Glide pathways. AGO1 and miR-1 are Gcm/Glide targets whereas miR-279 negatively controls Gcm/Glide expression (ii) identify a novel cell population, peritracheal cells, expressing and requiring Gcm/Glide. Peritracheal cells are non-neuronal neurosecretory cells that are essential in ecdysis. In addition to emphasizing the importance of following the distribution and the activity of endogenous proteins in vivo, this study provides new insights and a novel frame to understand the Gcm/Glide biology.
Collapse
Affiliation(s)
- Pietro Laneve
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch 67404, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Popkova A, Bernardoni R, Diebold C, Van de Bor V, Schuettengruber B, González I, Busturia A, Cavalli G, Giangrande A. Polycomb controls gliogenesis by regulating the transient expression of the Gcm/Glide fate determinant. PLoS Genet 2012; 8:e1003159. [PMID: 23300465 PMCID: PMC3531469 DOI: 10.1371/journal.pgen.1003159] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2012] [Accepted: 10/26/2012] [Indexed: 11/19/2022] Open
Abstract
The Gcm/Glide transcription factor is transiently expressed and required in the Drosophila nervous system. Threshold Gcm/Glide levels control the glial versus neuronal fate choice, and its perdurance triggers excessive gliogenesis, showing that its tight and dynamic regulation ensures the proper balance between neurons and glia. Here, we present a genetic screen for potential gcm/glide interactors and identify genes encoding chromatin factors of the Trithorax and of the Polycomb groups. These proteins maintain the heritable epigenetic state, among others, of HOX genes throughout development, but their regulatory role on transiently expressed genes remains elusive. Here we show that Polycomb negatively affects Gcm/Glide autoregulation, a positive feedback loop that allows timely accumulation of Gcm/Glide threshold levels. Such temporal fine-tuning of gene expression tightly controls gliogenesis. This work performed at the levels of individual cells reveals an undescribed mode of Polycomb action in the modulation of transiently expressed fate determinants and hence in the acquisition of specific cell identity in the nervous system.
Collapse
Affiliation(s)
- Anna Popkova
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS/INSERM/UDS, Illkirch, France
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Mao H, Lv Z, Ho MS. Gcm proteins function in the developing nervous system. Dev Biol 2012; 370:63-70. [PMID: 22842100 DOI: 10.1016/j.ydbio.2012.07.018] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2012] [Revised: 07/02/2012] [Accepted: 07/10/2012] [Indexed: 11/17/2022]
Abstract
A fundamental issue during nervous system development is how individual cells are formed from the undefined precursors. Differentiated neurons and glia, two major cell types mediating neuronal function, are acquired from immature precursors via a series of explicit controls exerted by transcription factors such as proteins in the family of Glial cells missing (Gcm). In mammals, Gcm proteins are involved in placenta and parathyroid gland development, whereas in the invertebrate organism Drosophila, Gcm proteins act as fate determinants for glial cell fate, regulate neural stem cell (NSC) induction and conversion, and promote glial proliferation. In particular, Gcm protein levels are carefully tuned for Drosophila gliogenesis and their stability is under precise control via the ubiquitin-proteasome system (UPS). Here we summarize recent advances on Gcm proteins function. In addition to describe various features of Gcm protein family, the significance of their functions in the developing nervous system is also discussed.
Collapse
Affiliation(s)
- Haian Mao
- Department of Nuclear Medicine, Shanghai Tenth Hospital, Tongji University, Shanghai 200072, China
| | | | | |
Collapse
|
17
|
Viktorin G, Riebli N, Popkova A, Giangrande A, Reichert H. Multipotent neural stem cells generate glial cells of the central complex through transit amplifying intermediate progenitors in Drosophila brain development. Dev Biol 2011; 356:553-65. [PMID: 21708145 DOI: 10.1016/j.ydbio.2011.06.013] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2010] [Revised: 05/27/2011] [Accepted: 06/11/2011] [Indexed: 10/18/2022]
|
18
|
Forero MG, Pennack JA, Hidalgo A. DeadEasy neurons: automatic counting of HB9 neuronal nuclei in Drosophila. Cytometry A 2010; 77:371-8. [PMID: 20162534 DOI: 10.1002/cyto.a.20877] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Research into the genetic basis of nervous system development and neurodegenerative diseases requires counting neurons to find out the extent of neurogenesis or neuronal loss. Drosophila is a widely used model organism for in vivo studies. However, counting neurons throughout the nervous system of the intact animal is humanly unfeasible. Automatic methods for cell counting in intact Drosophila are desirable. Here, we show a method called DeadEasy Neurons to count the number of neurons stained with anti-HB9 antibodies in Drosophila embryos. DeadEasy Neurons employs image filtering and mathematical morphology techniques in 2D and 3D, followed by identification of nuclei in 3D based on minimum volume, to count automatically the number of HB9 neurons in vivo. The resultant method has been validated for Drosophila embryos and we show here how it can be used to address biological questions. Counting neurons with DeadEasy is very fast, extremely accurate, and objective, and it enables analyses otherwise humanly unmanageable. DeadEasy Neurons can be modified by the user for other applications, and it will be freely available as an ImageJ plug-in. DeadEasy Neurons will be of interest to the microscopy, image processing, Drosophila, neurobiology, and biomedical communities.
Collapse
Affiliation(s)
- Manuel G Forero
- NeuroDevelopment Group, University of Birmingham, Birmingham, United Kingdom
| | | | | |
Collapse
|
19
|
Abstract
In the developing nervous system, building a functional neuronal network relies on coordinating the formation, specification and survival to diverse neuronal and glial cell subtypes. The establishment of neuronal connections further depends on sequential neuron-neuron and neuron-glia interactions that regulate cell-migration patterns and axon guidance. The visual system of Drosophila has a highly regular, retinotopic organization into reiterated interconnected synaptic circuits. It is therefore an excellent invertebrate model to investigate basic cellular strategies and molecular determinants regulating the different developmental processes that lead to network formation. Studies in the visual system have provided important insights into the mechanisms by which photoreceptor axons connect with their synaptic partners within the optic lobe. In this review, we highlight that this system is also well suited for uncovering general principles that underlie glial cell biology. We describe the glial cell subtypes in the visual system and discuss recent findings about their development and migration. Finally, we outline the pivotal roles of glial cells in mediating neural circuit assembly, boundary formation, neural proliferation and survival, as well as synaptic function.
Collapse
|
20
|
Umesono Y, Agata K. Evolution and regeneration of the planarian central nervous system. Dev Growth Differ 2009; 51:185-95. [PMID: 19379275 DOI: 10.1111/j.1440-169x.2009.01099.x] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
More than 100 years ago, early workers realized that planarians offer an excellent system for regeneration studies. Another unique aspect of planarians is that they occupy an interesting phylogenetic position with respect to the nervous system in that they possess an evolutionarily primitive brain structure and can regenerate a functional brain from almost any tiny body fragment. Recent molecular studies have revisited planarian regeneration and revealed key information about the cellular and molecular mechanisms underlying brain regeneration in planarians. One of our great advances was identification of a gene, nou-darake, which directs the formation of a proper extrinsic environment for pluripotent stem cells to differentiate into brain cells in the planarian Dugesia japonica. Our recent findings have provided mechanistic insights into stem cell biology and also evolutionary biology.
Collapse
Affiliation(s)
- Yoshihiko Umesono
- Department of Biophysics, Graduate School of Science, Kyoto University, Kitashirakawa-Oiwake, Sakyo-ku, Kyoto 606-8502, Japan.
| | | |
Collapse
|
21
|
Marlow HQ, Srivastava M, Matus DQ, Rokhsar D, Martindale MQ. Anatomy and development of the nervous system of Nematostella vectensis, an anthozoan cnidarian. Dev Neurobiol 2009; 69:235-54. [PMID: 19170043 DOI: 10.1002/dneu.20698] [Citation(s) in RCA: 164] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Nematostella vectensis, an anthozoan cnidarian, whose genome has been sequenced and is suitable for developmental and ecological studies, has a complex neural morphology that is modified during development from the larval to adult form. N. vectensis' nervous system is a diffuse nerve net with both ectodermal sensory and effector cells and endodermal multipolar ganglion cells. This nerve net consists of several distinct neural territories along the oral-aboral axis including the pharyngeal and oral nerve rings, and the larval apical tuft. These neuralized regions correspond to expression of conserved bilaterian neural developmental regulatory genes including homeodomain transcription factors and NCAMs. Early neurons and stem cell populations identified with NvMsi, NvELAV, and NvGCM, indicate that neural differentiation occurs throughout the animal and initiates prior to the conclusion of gastrulation. Neural specification in N. vectensis appears to occur through an independent mechanism from that in the classical cnidarian model Hydra.
Collapse
Affiliation(s)
- Heather Q Marlow
- Kewalo Marine Laboratory, Pacific Biomedical Research Center, University of Hawaii, Honolulu, Hawaii 96813, USA
| | | | | | | | | |
Collapse
|
22
|
DeadEasy caspase: automatic counting of apoptotic cells in Drosophila. PLoS One 2009; 4:e5441. [PMID: 19415123 PMCID: PMC2674211 DOI: 10.1371/journal.pone.0005441] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2009] [Accepted: 04/06/2009] [Indexed: 11/19/2022] Open
Abstract
Development, cancer, neurodegenerative and demyelinating diseases, injury, and stem cell manipulations are characterised by alterations in cell number. Research into development, disease, and the effects of drugs require cell number counts. These are generally indirect estimates, because counting cells in an animal or organ is paradoxically difficult, as well as being tedious and unmanageable. Drosophila is a powerful model organism used to investigate the genetic bases of development and disease. There are Drosophila models for multiple neurodegenerative diseases, characterised by an increase in cell death. However, a fast, reliable, and accurate way to count the number of dying cells in vivo is not available. Here, we present a method based on image filtering and mathematical morphology techniques, to count automatically the number of dying cells in intact fruit-fly embryos. We call the resulting programme DeadEasy Caspase. It has been validated for Drosophila and we present examples of its power to address biological questions. Quantification is automatic, accurate, objective, and very fast. DeadEasy Caspase will be freely available as an ImageJ plug-in, and it can be modified for use in other sample types. It is of interest to the Drosophila and wider biomedical communities. DeadEasy Caspase is a powerful tool for the analysis of cell survival and cell death in development and in disease, such as neurodegenerative diseases and ageing. Combined with the power of Drosophila genetics, DeadEasy expands the tools that enable the use of Drosophila to analyse gene function, model disease and test drugs in the intact nervous system and whole animal.
Collapse
|
23
|
Abstract
The ensheathment of neurons and their axons creates an ion-sensitive microenvironment that allows rapid conduction of nerve impulses. One of the fundamental questions about axonal ensheathment is how insulating glial cells wrap around axons. The mechanisms that underlie insulation of axons in invertebrates and vertebrates are not fully understood. In the present article we address cellular aspects of axonal ensheathment in Drosophila by taking advantage of glial mutants that illustrate a range of phenotypic defects including ensheathment of axons. From the findings of these mutant studies, we summarize that loss of glial cells, defects in glial membrane wrapping, failure of glial migration, and loss of specialized ladderlike septate junctions between ensheathing glial membranes result in axon-glial functional defects. These studies provide a broad perspective on glial ensheathment of axons in Drosophila and key insights into the anatomical and cellular aspects of axonal insulation. Given the powerful genetic approaches available in Drosophila, the axonal ensheathment process can be dissected in great detail to reveal the fundamental principles of ensheathment. These observations will be relevant to understanding the very similar processes in vertebrates, where defects in glial cell functions lead to devastating neurological diseases.
Collapse
Affiliation(s)
- Swati Banerjee
- Department of Cell and Molecular Physiology, Neurodevelopmental Disorders Research Center, University of North Carolina School of Medicine, Chapel Hill, North Carolina 27599-7545, USA
| | | |
Collapse
|
24
|
Misra K, Mishra K, Gui H, Matise MP. Prox1 regulates a transitory state for interneuron neurogenesis in the spinal cord. Dev Dyn 2008; 237:393-402. [PMID: 18213584 DOI: 10.1002/dvdy.21422] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Proper central nervous system (CNS) function depends critically on the generation of functionally distinct neuronal types in specific and reproducible positions. The generation of neuronal diversity during CNS development involves a fine balance between dividing neural progenitors and the differentiated neuronal progeny that they produce. However, the molecular mechanisms that regulate these processes are still poorly understood. Here, we show that the Prox1 transcription factor, which is expressed transiently and specifically in spinal interneurons, plays an important role in neurogenesis. Using both gain- and loss-of-function approaches, we find that Prox1 is capable of driving neuronal precursors out of the cell cycle and can initiate limited expression of neuronal proteins. Using RNAi approaches, we show that Prox1 function is required to execute a neurogenic differentiation program downstream of Mash1 and Ngn2. Our studies demonstrate an important, spinal interneuron-specific role for Prox1 in controlling steps required for both cell-cycle withdrawal and differentiation.
Collapse
Affiliation(s)
- Kamana Misra
- Robert Wood Johnson Medical School, UMDNJ, Piscataway, New Jersey 08854, USA
| | | | | | | |
Collapse
|
25
|
Ribes V, Stutzmann F, Bianchetti L, Guillemot F, Dollé P, Le Roux I. Combinatorial signalling controls Neurogenin2 expression at the onset of spinal neurogenesis. Dev Biol 2008; 321:470-81. [PMID: 18590718 DOI: 10.1016/j.ydbio.2008.06.003] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2008] [Revised: 05/15/2008] [Accepted: 06/03/2008] [Indexed: 11/17/2022]
Abstract
A central issue during embryonic development is to define how different signals cooperate in generating unique cell types. To address this issue, we focused on the function and the regulation of the proneural gene Neurogenin2 (Neurog2) during early mouse spinal neurogenesis. We showed that Neurog2 is first expressed in cells within the neural plate anterior to the node from the 5 somite-stage. The analysis of Neurog2 mutants established a role for this gene in triggering neural differentiation during spinal cord elongation. We identified a 798 base pair enhancer element (Neurog2-798) upstream of the Neurog2 coding sequence that directs the early caudal expression of Neurog2. Embryo culture experiments showed that Retinoic Acid (RA), Sonic hedgehog (Shh) and Fibroblast Growth Factor signals act in concert on this enhancer to control the spatial and temporal induction of Neurog2. We further demonstrated by transgenesis that two RA response elements and a Gli binding site within the Neurog2-798 element are absolutely required for its activity, strongly suggesting that the regulation of Neurog2 early expression by RA and Shh signals is direct. Our data thus support a model where signal integration at the level of a single enhancer constitutes a key mechanism to control the onset of neurogenesis.
Collapse
Affiliation(s)
- Vanessa Ribes
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Inserm U 596, CNRS UMR 7104, Université Louis Pasteur, 1 rue Laurent Friès, Illkirch, BP 10142 F-67400, France
| | | | | | | | | | | |
Collapse
|
26
|
Buga AM, Sascau M, Pisoschi C, Herndon JG, Kessler C, Popa-Wagner A. The genomic response of the ipsilateral and contralateral cortex to stroke in aged rats. J Cell Mol Med 2008; 12:2731-53. [PMID: 18266980 PMCID: PMC3828887 DOI: 10.1111/j.1582-4934.2008.00252.x] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Aged rats recover poorly after unilateral stroke, whereas young rats recover readily possibly with the help from the contralateral, healthy hemisphere. In this study we asked whether anomalous, age-related changes in the transcriptional activity in the brains of aged rats could be one underlying factor contributing to reduced functional recovery. We analysed gene expression in the periinfarct and contralateral areas of 3-month- and 18-month-old Sprague Dawley rats. Our experimental end-points were cDNA arrays containing genes related to hypoxia signalling, DNA damage and apoptosis, cellular response to injury, axonal damage and re-growth, cell lineage differentiation, dendritogenesis and neurogenesis. The major transcriptional events observed were: (i) Early up-regulation of DNA damage and down-regulation of anti-apoptosis-related genes in the periinfarct region of aged rats after stroke; (ii) Impaired neurogenesis in the periinfarct area, especially in aged rats; (iii) Impaired neurogenesis in the contralateral (unlesioned) hemisphere of both young and aged rats at all times after stroke and (iv) Marked up-regulation, in aged rats, of genes associated with inflammation and scar formation. These results were confirmed with quantitative real-time PCR. We conclude that reduced transcriptional activity in the healthy, contralateral hemisphere of aged rats in conjunction with an early up-regulation of DNA damage-related genes and pro-apoptotic genes and down-regulation of axono- and neurogenesis in the periinfarct area are likely to account for poor neurorehabilitation after stroke in old rats.
Collapse
Affiliation(s)
- A-M Buga
- Molecular Neurobiology Laboratory, Clinic of Neurology, University of Greifswald, Germany
| | | | | | | | | | | |
Collapse
|
27
|
Soustelle L, Giangrande A. Novel gcm-dependent lineages in the postembryonic nervous system of Drosophila melanogaster. Dev Dyn 2007; 236:2101-8. [PMID: 17654713 DOI: 10.1002/dvdy.21232] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
glial cells missing genes (gcm and gcm2) act as the glial fate determinants in the Drosophila embryo. However, their requirement in the adult central nervous system (CNS) is at present not known, except for their role in lamina glia. This is particularly important with respect to two recent sets of data. Adult glial subpopulations differentiate through embryonic glia proliferation. Also, gcm-gcm2 are required for the differentiation of specific adult neurons. We here show that gcm is expressed in precursors and postmitotic, migrating, cells of the medulla neuropile glia (mng) lineage. It is also expressed in a thoracic glial lineage and in neurons of the ventral nerve cord (VNC). Finally, while gcm is required for gliogenesis in medulla and VNC, it does not seem to be required for the generation of VNC neurons.
Collapse
Affiliation(s)
- Laurent Soustelle
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS/INSERM/ULP, Strasbourg, France
| | | |
Collapse
|
28
|
Colonques J, Ceron J, Tejedor FJ. Segregation of postembryonic neuronal and glial lineages inferred from a mosaic analysis of the Drosophila larval brain. Mech Dev 2007; 124:327-40. [PMID: 17344035 DOI: 10.1016/j.mod.2007.01.004] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2006] [Revised: 01/12/2007] [Accepted: 01/16/2007] [Indexed: 01/06/2023]
Abstract
Due to its intermediate complexity and its sophisticated genetic tools, the larval brain of Drosophila is a useful experimental system to study the mechanisms that control the generation of cell diversity in the CNS. In order to gain insight into the neuronal and glial lineage specificity of neural progenitor cells during postembryonic brain development, we have carried an extensive mosaic analysis throughout larval brain development. In contrast to embryonic CNS development, we have found that most postembryonic neurons and glial cells of the optic lobe and central brain originate from segregated progenitors. Our analysis also provides relevant information about the origin and proliferation patterns of several postembryonic lineages such as the superficial glia and the medial-anterior Medulla neuropile glia. Additionally, we have studied the spatio-temporal relationship between gcm expression and gliogenesis. We found that gcm expression is restricted to the post-mitotic cells of a few neuronal and glial lineages and it is mostly absent from postembryonic progenitors. Thus, in contrast to its major gliogenic role in the embryo, the function of gcm during postembryonic brain development seems to have evolved to the specification and differentiation of certain neuronal and glial lineages.
Collapse
Affiliation(s)
- J Colonques
- Instituto de Neurociencias, CSIC--Universidad Miguel Hernandez, Campus de San Juan, 03550 San Juan (Alicante), Spain
| | | | | |
Collapse
|