1
|
Functional and structural basis of extreme conservation in vertebrate 5' untranslated regions. Nat Genet 2021; 53:729-741. [PMID: 33821006 PMCID: PMC8825242 DOI: 10.1038/s41588-021-00830-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 02/26/2021] [Indexed: 01/07/2023]
Abstract
The lack of knowledge about extreme conservation in genomes remains a major gap in our understanding of the evolution of gene regulation. Here, we reveal an unexpected role of extremely conserved 5' untranslated regions (UTRs) in noncanonical translational regulation that is linked to the emergence of essential developmental features in vertebrate species. Endogenous deletion of conserved elements within these 5' UTRs decreased gene expression, and extremely conserved 5' UTRs possess cis-regulatory elements that promote cell-type-specific regulation of translation. We further developed in-cell mutate-and-map (icM2), a new methodology that maps RNA structure inside cells. Using icM2, we determined that an extremely conserved 5' UTR encodes multiple alternative structures and that each single nucleotide within the conserved element maintains the balance of alternative structures important to control the dynamic range of protein expression. These results explain how extreme sequence conservation can lead to RNA-level biological functions encoded in the untranslated regions of vertebrate genomes.
Collapse
|
2
|
Hollmann NM, Jagtap PKA, Masiewicz P, Guitart T, Simon B, Provaznik J, Stein F, Haberkant P, Sweetapple LJ, Villacorta L, Mooijman D, Benes V, Savitski MM, Gebauer F, Hennig J. Pseudo-RNA-Binding Domains Mediate RNA Structure Specificity in Upstream of N-Ras. Cell Rep 2020; 32:107930. [PMID: 32697992 PMCID: PMC7383231 DOI: 10.1016/j.celrep.2020.107930] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 06/03/2020] [Accepted: 06/29/2020] [Indexed: 12/12/2022] Open
Abstract
RNA-binding proteins (RBPs) commonly feature multiple RNA-binding domains (RBDs), which provide these proteins with a modular architecture. Accumulating evidence supports that RBP architectural modularity and adaptability define the specificity of their interactions with RNA. However, how multiple RBDs recognize their cognate single-stranded RNA (ssRNA) sequences in concert remains poorly understood. Here, we use Upstream of N-Ras (Unr) as a model system to address this question. Although reported to contain five ssRNA-binding cold-shock domains (CSDs), we demonstrate that Unr includes an additional four CSDs that do not bind RNA (pseudo-RBDs) but are involved in mediating RNA tertiary structure specificity by reducing the conformational heterogeneity of Unr. Disrupting the interactions between canonical and non-canonical CSDs impacts RNA binding, Unr-mediated translation regulation, and the Unr-dependent RNA interactome. Taken together, our studies reveal a new paradigm in protein-RNA recognition, where interactions between RBDs and pseudo-RBDs select RNA tertiary structures, influence RNP assembly, and define target specificity.
Collapse
Affiliation(s)
- Nele Merret Hollmann
- Structural and Computational Biology Unit, EMBL Heidelberg, Meyerhofstraße 1, 69117 Heidelberg, Germany; Collaboration for Joint PhD Degree between EMBL and Heidelberg University, Faculty of Biosciences, Heidelberg, Germany
| | | | - Pawel Masiewicz
- Structural and Computational Biology Unit, EMBL Heidelberg, Meyerhofstraße 1, 69117 Heidelberg, Germany
| | - Tanit Guitart
- Gene Regulation, Stem Cells and Cancer Programme, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, 08003 Barcelona, Spain
| | - Bernd Simon
- Structural and Computational Biology Unit, EMBL Heidelberg, Meyerhofstraße 1, 69117 Heidelberg, Germany
| | - Jan Provaznik
- Genomics Core Facility, EMBL Heidelberg, Meyerhofstraße 1, 69117 Heidelberg, Germany
| | - Frank Stein
- Proteomics Core Facility, EMBL Heidelberg, Meyerhofstraße 1, 69117 Heidelberg, Germany
| | - Per Haberkant
- Proteomics Core Facility, EMBL Heidelberg, Meyerhofstraße 1, 69117 Heidelberg, Germany
| | - Lara Jayne Sweetapple
- Structural and Computational Biology Unit, EMBL Heidelberg, Meyerhofstraße 1, 69117 Heidelberg, Germany
| | - Laura Villacorta
- Genomics Core Facility, EMBL Heidelberg, Meyerhofstraße 1, 69117 Heidelberg, Germany
| | - Dylan Mooijman
- Developmental Biology Unit, EMBL Heidelberg, Meyerhofstraße 1, 69117 Heidelberg, Germany
| | - Vladimir Benes
- Genomics Core Facility, EMBL Heidelberg, Meyerhofstraße 1, 69117 Heidelberg, Germany
| | - Mikhail M Savitski
- Proteomics Core Facility, EMBL Heidelberg, Meyerhofstraße 1, 69117 Heidelberg, Germany; Genome Biology Unit, EMBL Heidelberg, Meyerhofstraße 1, 69117 Heidelberg, Germany
| | - Fátima Gebauer
- Gene Regulation, Stem Cells and Cancer Programme, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, 08003 Barcelona, Spain; Universitat Pompeu Fabra (UPF), 08003 Barcelona, Spain
| | - Janosch Hennig
- Structural and Computational Biology Unit, EMBL Heidelberg, Meyerhofstraße 1, 69117 Heidelberg, Germany.
| |
Collapse
|
3
|
Guo AX, Cui JJ, Wang LY, Yin JY. The role of CSDE1 in translational reprogramming and human diseases. Cell Commun Signal 2020; 18:14. [PMID: 31987048 PMCID: PMC6986143 DOI: 10.1186/s12964-019-0496-2] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Accepted: 12/16/2019] [Indexed: 02/06/2023] Open
Abstract
Abstract CSDE1 (cold shock domain containing E1) plays a key role in translational reprogramming, which determines the fate of a number of RNAs during biological processes. Interestingly, the role of CSDE1 is bidirectional. It not only promotes and represses the translation of RNAs but also increases and decreases the abundance of RNAs. However, the mechanisms underlying this phenomenon are still unknown. In this review, we propose a “protein-RNA connector” model to explain this bidirectional role and depict its three versions: sequential connection, mutual connection and facilitating connection. As described in this molecular model, CSDE1 binds to RNAs and cooperates with other protein regulators. CSDE1 connects with different RNAs and their regulators for different purposes. The triple complex of CSDE1, a regulator and an RNA reprograms translation in different directions for each transcript. Meanwhile, a number of recent studies have found important roles for CSDE1 in human diseases. This model will help us to understand the role of CSDE1 in translational reprogramming and human diseases. Video Abstract
Graphical abstract ![]()
Collapse
Affiliation(s)
- Ao-Xiang Guo
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, 410078, People's Republic of China.,Institute of Clinical Pharmacology, Central South University; Hunan Key Laboratory of Pharmacogenetics, Changsha, 410078, People's Republic of China.,Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, 110 Xiangya Road, Changsha, 410078, People's Republic of China.,National Clinical Research Center for Geriatric Disorders, 87 Xiangya Road, Changsha, 410008, Hunan, People's Republic of China
| | - Jia-Jia Cui
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, 410078, People's Republic of China.,Institute of Clinical Pharmacology, Central South University; Hunan Key Laboratory of Pharmacogenetics, Changsha, 410078, People's Republic of China.,Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, 110 Xiangya Road, Changsha, 410078, People's Republic of China.,National Clinical Research Center for Geriatric Disorders, 87 Xiangya Road, Changsha, 410008, Hunan, People's Republic of China
| | - Lei-Yun Wang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, 410078, People's Republic of China.,Institute of Clinical Pharmacology, Central South University; Hunan Key Laboratory of Pharmacogenetics, Changsha, 410078, People's Republic of China.,Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, 110 Xiangya Road, Changsha, 410078, People's Republic of China.,National Clinical Research Center for Geriatric Disorders, 87 Xiangya Road, Changsha, 410008, Hunan, People's Republic of China
| | - Ji-Ye Yin
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, 410078, People's Republic of China. .,Institute of Clinical Pharmacology, Central South University; Hunan Key Laboratory of Pharmacogenetics, Changsha, 410078, People's Republic of China. .,Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, 110 Xiangya Road, Changsha, 410078, People's Republic of China. .,National Clinical Research Center for Geriatric Disorders, 87 Xiangya Road, Changsha, 410008, Hunan, People's Republic of China. .,Hunan Provincial Gynecological Cancer Diagnosis and Treatment Engineering Research Center, Changsha, 410078, People's Republic of China. .,Hunan Key Laboratory of Precise Diagnosis and Treatment of Gastrointestinal Tumor, Changsha, 410078, People's Republic of China.
| |
Collapse
|
4
|
Guo H, Li Y, Shen L, Wang T, Jia X, Liu L, Xu T, Ou M, Hoekzema K, Wu H, Gillentine MA, Liu C, Ni H, Peng P, Zhao R, Zhang Y, Phornphutkul C, Stegmann APA, Prada CE, Hopkin RJ, Shieh JT, McWalter K, Monaghan KG, van Hasselt PM, van Gassen K, Bai T, Long M, Han L, Quan Y, Chen M, Zhang Y, Li K, Zhang Q, Tan J, Zhu T, Liu Y, Pang N, Peng J, Scott DA, Lalani SR, Azamian M, Mancini GMS, Adams DJ, Kvarnung M, Lindstrand A, Nordgren A, Pevsner J, Osei-Owusu IA, Romano C, Calabrese G, Galesi O, Gecz J, Haan E, Ranells J, Racobaldo M, Nordenskjold M, Madan-Khetarpal S, Sebastian J, Ball S, Zou X, Zhao J, Hu Z, Xia F, Liu P, Rosenfeld JA, de Vries BBA, Bernier RA, Xu ZQD, Li H, Xie W, Hufnagel RB, Eichler EE, Xia K. Disruptive variants of CSDE1 associate with autism and interfere with neuronal development and synaptic transmission. SCIENCE ADVANCES 2019; 5:eaax2166. [PMID: 31579823 PMCID: PMC6760934 DOI: 10.1126/sciadv.aax2166] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Accepted: 08/27/2019] [Indexed: 05/30/2023]
Abstract
RNA binding proteins are key players in posttranscriptional regulation and have been implicated in neurodevelopmental and neuropsychiatric disorders. Here, we report a significant burden of heterozygous, likely gene-disrupting variants in CSDE1 (encoding a highly constrained RNA binding protein) among patients with autism and related neurodevelopmental disabilities. Analysis of 17 patients identifies common phenotypes including autism, intellectual disability, language and motor delay, seizures, macrocephaly, and variable ocular abnormalities. HITS-CLIP revealed that Csde1-binding targets are enriched in autism-associated gene sets, especially FMRP targets, and in neuronal development and synaptic plasticity-related pathways. Csde1 knockdown in primary mouse cortical neurons leads to an overgrowth of the neurites and abnormal dendritic spine morphology/synapse formation and impaired synaptic transmission, whereas mutant and knockdown experiments in Drosophila result in defects in synapse growth and synaptic transmission. Our study defines a new autism-related syndrome and highlights the functional role of CSDE1 in synapse development and synaptic transmission.
Collapse
Affiliation(s)
- Hui Guo
- Center for Medical Genetics and Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA
| | - Ying Li
- Center for Medical Genetics and Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China
| | - Lu Shen
- Center for Medical Genetics and Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China
| | - Tianyun Wang
- Center for Medical Genetics and Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA
| | - Xiangbin Jia
- Center for Medical Genetics and Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China
| | - Lijuan Liu
- Institute of Life Sciences, Key Laboratory of Developmental Genes and Human Disease, Southeast University, Nanjing, Jiangsu, China
| | - Tao Xu
- Department of Neurobiology, Beijing Key Laboratory of Neural Regeneration and Repair, Beijing Laboratory of Brain Disorders (Ministry of Science and Technology), Beijing Institute of Brain Disorders, Capital Medical University, Beijing, China
| | - Mengzhu Ou
- Institute of Life Sciences, Key Laboratory of Developmental Genes and Human Disease, Southeast University, Nanjing, Jiangsu, China
| | - Kendra Hoekzema
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA
| | - Huidan Wu
- Center for Medical Genetics and Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China
| | - Madelyn A. Gillentine
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA
| | - Cenying Liu
- Center for Medical Genetics and Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China
| | - Hailun Ni
- Center for Medical Genetics and Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China
| | - Pengwei Peng
- Center for Medical Genetics and Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China
| | - Rongjuan Zhao
- Center for Medical Genetics and Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China
| | - Yu Zhang
- Key Laboratory of Developmental Disorders in Children, Liuzhou Maternity and Child Healthcare Hospital, Liuzhou, Guangxi, China
| | - Chanika Phornphutkul
- Division of Human Genetics, Warren Alpert Medical School of Brown University, Hasbro Children's Hospital/Rhode Island Hospital, Providence, RI, USA
| | | | - Carlos E. Prada
- Department of Pediatrics, University of Cincinnati College of Medicine, Division of Human Genetics, Cincinnati Children’s Hospital, Cincinnati, OH, USA
| | - Robert J. Hopkin
- Department of Pediatrics, University of Cincinnati College of Medicine, Division of Human Genetics, Cincinnati Children’s Hospital, Cincinnati, OH, USA
| | - Joseph T. Shieh
- Institute for Human Genetics and Department of Pediatrics, University of California, San Francisco, San Francisco, CA, USA
| | | | | | | | | | - Ting Bai
- Center for Medical Genetics and Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China
| | - Min Long
- Center for Medical Genetics and Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China
| | - Lin Han
- Center for Medical Genetics and Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China
| | - Yingting Quan
- Center for Medical Genetics and Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China
| | - Meilin Chen
- Center for Medical Genetics and Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China
| | - Yaowen Zhang
- Center for Medical Genetics and Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China
| | - Kuokuo Li
- Center for Medical Genetics and Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China
| | - Qiumeng Zhang
- Center for Medical Genetics and Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China
| | - Jieqiong Tan
- Center for Medical Genetics and Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China
| | - Tengfei Zhu
- Center for Medical Genetics and Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China
| | - Yaning Liu
- Center for Medical Genetics and Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China
| | - Nan Pang
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, China
| | - Jing Peng
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, China
| | - Daryl A. Scott
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX, USA
| | - Seema R. Lalani
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Mahshid Azamian
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Grazia M. S. Mancini
- Department of Clinical Genetics, Erasmus MC University Medical Center, Rotterdam, Netherlands
| | - Darius J. Adams
- Goryeb Children’s Hospital, Atlantic Health System, Morristown, NJ, USA
| | - Malin Kvarnung
- Department of Molecular Medicine and Surgery, Center for Molecular Medicine, Karolinska Institute, Stockholm, Sweden
- Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden
| | - Anna Lindstrand
- Department of Molecular Medicine and Surgery, Center for Molecular Medicine, Karolinska Institute, Stockholm, Sweden
- Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden
| | - Ann Nordgren
- Department of Molecular Medicine and Surgery, Center for Molecular Medicine, Karolinska Institute, Stockholm, Sweden
- Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden
| | - Jonathan Pevsner
- Department of Neurology, Kennedy Krieger Institute, Baltimore, MD, USA
- Program in Human Genetics, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Ikeoluwa A. Osei-Owusu
- Department of Neurology, Kennedy Krieger Institute, Baltimore, MD, USA
- Program in Human Genetics, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | | | | | | | - Jozef Gecz
- School of Medicine and the Robinson Research Institute, University of Adelaide at the Women’s and Children’s Hospital, Adelaide, South Australia, Australia
| | - Eric Haan
- Adult Genetics Unit, Royal Adelaide Hospital, and School of Medicine, University of Adelaide, Adelaide, South Australia, Australia
| | - Judith Ranells
- Department of Pediatrics, University of South Florida, Tampa, FL, USA
| | - Melissa Racobaldo
- Department of Pediatrics, University of South Florida, Tampa, FL, USA
| | - Magnus Nordenskjold
- Department of Molecular Medicine and Surgery, Center for Molecular Medicine, Karolinska Institute, Stockholm, Sweden
- Department of Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden
| | - Suneeta Madan-Khetarpal
- Division of Medical Genetics, Children’s Hospital of Pittsburgh of UPMC, Pittsburgh, PA, USA
| | - Jessica Sebastian
- Division of Medical Genetics, Children’s Hospital of Pittsburgh of UPMC, Pittsburgh, PA, USA
| | - Susie Ball
- Central Washington Genetics Program, Virginia Mason Memorial, Yakima, WA, USA
| | - Xiaobing Zou
- Children Development Behavior Center of the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Jingping Zhao
- Mental Health Institute of the Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Zhengmao Hu
- Center for Medical Genetics and Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China
| | - Fan Xia
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Baylor Genetics, Houston, TX, USA
| | - Pengfei Liu
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Baylor Genetics, Houston, TX, USA
| | - Jill A. Rosenfeld
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Bert B. A. de Vries
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, Netherlands
| | | | - Zhi-Qing David Xu
- Department of Neurobiology, Beijing Key Laboratory of Neural Regeneration and Repair, Beijing Laboratory of Brain Disorders (Ministry of Science and Technology), Beijing Institute of Brain Disorders, Capital Medical University, Beijing, China
| | - Honghui Li
- Key Laboratory of Developmental Disorders in Children, Liuzhou Maternity and Child Healthcare Hospital, Liuzhou, Guangxi, China
| | - Wei Xie
- Institute of Life Sciences, Key Laboratory of Developmental Genes and Human Disease, Southeast University, Nanjing, Jiangsu, China
| | - Robert B. Hufnagel
- Ophthalmic Genetics and Visual Function Branch, National Eye Institute, NIH, Bethesda, MD, USA
| | - Evan E. Eichler
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA
- Howard Hughes Medical Institute, University of Washington, Seattle, WA, USA
| | - Kun Xia
- Center for Medical Genetics and Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China
- Key Laboratory of Medical Information Research, Central South University, Changsha, Hunan, China
- CAS Center for Excellence in Brain Science and Intelligences Technology (CEBSIT), Chinese Academy of Sciences, Shanghai 200030, China
- Hunan Key Laboratory of Animal Models for Human Diseases, Central South University, Changsha, Hunan 410078, China
| |
Collapse
|
5
|
Saltel F, Giese A, Azzi L, Elatmani H, Costet P, Ezzoukhry Z, Dugot-Senant N, Miquerol L, Boussadia O, Wodrich H, Dubus P, Jacquemin-Sablon H. Unr defines a novel class of nucleoplasmic reticulum involved in mRNA translation. J Cell Sci 2017; 130:1796-1808. [PMID: 28386023 DOI: 10.1242/jcs.198697] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Accepted: 03/31/2017] [Indexed: 12/23/2022] Open
Abstract
Unr (officially known as CSDE1) is a cytoplasmic RNA-binding protein with roles in the regulation of mRNA stability and translation. In this study, we identified a novel function for Unr, which acts as a positive regulator of placental development. Unr expression studies in the developing placenta revealed the presence of Unr-rich foci that are apparently located in the nuclei of trophoblast giant cells (TGCs). We determined that what we initially thought to be foci, were actually cross sections of a network of double-wall nuclear membrane invaginations that contain a cytoplasmic core related to the nucleoplasmic reticulum (NR). We named them, accordingly, Unr-NRs. Unr-NRs constitute a novel type of NR because they contain high levels of poly(A) RNA and translation factors, and are sites of active translation. In murine tissues, Unr-NRs are only found in two polyploid cell types, in TGCs and hepatocytes. In vitro, their formation is linked to stress and polyploidy because, in three cancer cell lines, cytotoxic drugs that are known to promote polyploidization induce their formation. Finally, we show that Unr is required in vivo for the formation of Unr-containing NRs because these structures are absent in Unr-null TGCs.
Collapse
Affiliation(s)
- Frédéric Saltel
- INSERM UMR1053 Bordeaux Research In Translational Oncology, BaRITOn, F-33000 Bordeaux, France .,University of Bordeaux, F-33000 Bordeaux, France
| | - Alban Giese
- INSERM UMR1053 Bordeaux Research In Translational Oncology, BaRITOn, F-33000 Bordeaux, France.,University of Bordeaux, F-33000 Bordeaux, France
| | - Lamia Azzi
- INSERM UMR1053 Bordeaux Research In Translational Oncology, BaRITOn, F-33000 Bordeaux, France.,University of Bordeaux, F-33000 Bordeaux, France.,Department of Tumor Biology, CHU, F-33000 Bordeaux, France
| | - Habiba Elatmani
- INSERM UMR1053 Bordeaux Research In Translational Oncology, BaRITOn, F-33000 Bordeaux, France.,University of Bordeaux, F-33000 Bordeaux, France
| | - Pierre Costet
- Laboratoire de Transgenèse, Université Bordeaux, F-33000 Bordeaux, France
| | - Zakaria Ezzoukhry
- INSERM UMR1053 Bordeaux Research In Translational Oncology, BaRITOn, F-33000 Bordeaux, France.,University of Bordeaux, F-33000 Bordeaux, France
| | | | - Lucile Miquerol
- Aix-Marseille University, CNRS, IBDM UMR 7288, Marseille, France
| | | | - Harald Wodrich
- University of Bordeaux, F-33000 Bordeaux, France.,MFP CNRS UMR 5234, Microbiologie Fondamentale et Pathogénicité, Université de Bordeaux, F-33000 Bordeaux, France
| | - Pierre Dubus
- INSERM UMR1053 Bordeaux Research In Translational Oncology, BaRITOn, F-33000 Bordeaux, France.,University of Bordeaux, F-33000 Bordeaux, France.,Department of Tumor Biology, CHU, F-33000 Bordeaux, France
| | - Hélène Jacquemin-Sablon
- INSERM UMR1053 Bordeaux Research In Translational Oncology, BaRITOn, F-33000 Bordeaux, France .,University of Bordeaux, F-33000 Bordeaux, France
| |
Collapse
|
6
|
Prabu JR, Müller M, Thomae AW, Schüssler S, Bonneau F, Becker PB, Conti E. Structure of the RNA Helicase MLE Reveals the Molecular Mechanisms for Uridine Specificity and RNA-ATP Coupling. Mol Cell 2016; 60:487-99. [PMID: 26545078 DOI: 10.1016/j.molcel.2015.10.011] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Revised: 08/10/2015] [Accepted: 10/02/2015] [Indexed: 10/22/2022]
Abstract
The MLE helicase remodels the roX lncRNAs, enabling the lncRNA-mediated assembly of the Drosophila dosage compensation complex. We identified a stable MLE core comprising the DExH helicase module and two auxiliary domains: a dsRBD and an OB-like fold. MLEcore is an unusual DExH helicase that can unwind blunt-ended RNA duplexes and has specificity for uridine nucleotides. We determined the 2.1 Å resolution structure of MLEcore bound to a U10 RNA and ADP-AlF4. The OB-like and dsRBD folds bind the DExH module and contribute to form the entrance of the helicase channel. Four uridine nucleotides engage in base-specific interactions, rationalizing the conservation of uridine-rich sequences in critical roX substrates. roX2 binding is orchestrated by MLE's auxiliary domains, which is prerequisite for MLE localization to the male X chromosome. The structure visualizes a transition-state mimic of the reaction and suggests how eukaryotic DEAH/RHA helicases couple ATP hydrolysis to RNA translocation.
Collapse
Affiliation(s)
- J Rajan Prabu
- Department of Structural Cell Biology, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany
| | - Marisa Müller
- Biomedical Center and Center for Integrated Protein Science, Ludwig-Maximilians-University, 82152 Martinsried, Germany
| | - Andreas W Thomae
- Biomedical Center and Center for Integrated Protein Science, Ludwig-Maximilians-University, 82152 Martinsried, Germany
| | - Steffen Schüssler
- Department of Structural Cell Biology, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany
| | - Fabien Bonneau
- Department of Structural Cell Biology, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany
| | - Peter B Becker
- Biomedical Center and Center for Integrated Protein Science, Ludwig-Maximilians-University, 82152 Martinsried, Germany.
| | - Elena Conti
- Department of Structural Cell Biology, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany.
| |
Collapse
|
7
|
Landis GN, Salomon MP, Keroles D, Brookes N, Sekimura T, Tower J. The progesterone antagonist mifepristone/RU486 blocks the negative effect on life span caused by mating in female Drosophila. Aging (Albany NY) 2015; 7:53-69. [PMID: 25614682 PMCID: PMC4350324 DOI: 10.18632/aging.100721] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Mating causes decreased life span in female Drosophila. Here we report that mifepristone blocked this effect, yielding life span increases up to +68%. Drug was fed to females after mating, in the absence of males, demonstrating function in females. Mifepristone did not increase life span of virgin females or males. Mifepristone reduced progeny production but did not reduce food intake. High-throughput RNA sequencing was used to identify genes up-regulated or down-regulated upon mating, and where the change was reduced by mifepristone. Five candidate positive regulators of life span were identified, including dosage compensation regulator Unr and three X-linked genes: multi sex combs (PcG gene), Dopamine 2-like receptor and CG14215. The 37 candidate negative genes included neuropeptide CNMamide and several involved in protein mobilization and immune response. The results inform the interpretation of experiments involving mifepristone, and implicate steroid hormone signaling in regulating the trade-off between reproduction and life span.
Collapse
Affiliation(s)
- Gary N Landis
- Molecular and Computational Biology Program, Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089-2910, USA
| | - Matthew P Salomon
- Molecular and Computational Biology Program, Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089-2910, USA
| | - Daniel Keroles
- Molecular and Computational Biology Program, Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089-2910, USA
| | - Nicholas Brookes
- Molecular and Computational Biology Program, Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089-2910, USA
| | - Troy Sekimura
- Molecular and Computational Biology Program, Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089-2910, USA
| | - John Tower
- Molecular and Computational Biology Program, Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089-2910, USA
| |
Collapse
|
8
|
Militti C, Maenner S, Becker PB, Gebauer F. UNR facilitates the interaction of MLE with the lncRNA roX2 during Drosophila dosage compensation. Nat Commun 2014; 5:4762. [PMID: 25158899 DOI: 10.1038/ncomms5762] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Accepted: 07/21/2014] [Indexed: 12/30/2022] Open
Abstract
Dosage compensation is a regulatory process that balances the expression of X-chromosomal genes between males (XY) and females (XX). In Drosophila, this requires non-coding RNAs and RNA-binding proteins (RBPs) whose specific functions remain elusive. Here we show that the Drosophila RBP UNR promotes the targeting of the activating male-specific-lethal complex to the X-chromosome by facilitating the interaction of two crucial subunits: the RNA helicase MLE and the long non-coding RNA roX2.
Collapse
Affiliation(s)
- Cristina Militti
- 1] Gene Regulation, Stem Cells and Cancer Programme, Centre for Genomic Regulation (CRG), Dr Aiguader 88, Barcelona 08003, Spain [2] Universitat Pompeu Fabra (UPF), Dr Aiguader 88, Barcelona 08003, Spain [3]
| | - Sylvain Maenner
- 1] Adolf-Butenandt-Institute and Center for Integrated Protein Science, Ludwig-Maximilians University, Munich D-80336, Germany [2]
| | - Peter B Becker
- Adolf-Butenandt-Institute and Center for Integrated Protein Science, Ludwig-Maximilians University, Munich D-80336, Germany
| | - Fátima Gebauer
- 1] Gene Regulation, Stem Cells and Cancer Programme, Centre for Genomic Regulation (CRG), Dr Aiguader 88, Barcelona 08003, Spain [2] Universitat Pompeu Fabra (UPF), Dr Aiguader 88, Barcelona 08003, Spain
| |
Collapse
|
9
|
Gebauer F, Preiss T, Hentze MW. From cis-regulatory elements to complex RNPs and back. Cold Spring Harb Perspect Biol 2012; 4:a012245. [PMID: 22751153 DOI: 10.1101/cshperspect.a012245] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Messenger RNAs (mRNAs), the templates for translation, have evolved to harbor abundant cis-acting sequences that affect their posttranscriptional fates. These elements are frequently located in the untranslated regions and serve as binding sites for trans-acting factors, RNA-binding proteins, and/or small non-coding RNAs. This article provides a systematic synopsis of cis-acting elements, trans-acting factors, and the mechanisms by which they affect translation. It also highlights recent technical advances that have ushered in the era of transcriptome-wide studies of the ribonucleoprotein complexes formed by mRNAs and their trans-acting factors.
Collapse
Affiliation(s)
- Fátima Gebauer
- Gene Regulation Programme, Centre for Genomic Regulation (CRG) and UPF, 08003-Barcelona, Spain.
| | | | | |
Collapse
|
10
|
[Research advance of dosage compensation and MSL complex]. YI CHUAN = HEREDITAS 2012; 34:533-44. [PMID: 22659425 DOI: 10.3724/sp.j.1005.2012.00533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Dosage compensation effect, which exists widely in eukaryotes with sexual reproduction, is an essential biological process that equalizes the level of gene expression between genders based on sex determination. In Drosophila, the male-specific lethal (MSL) complex mediates dosage compensation by acetylating histone H4 lysine K16 on nucleosome of some specific sites on the male X chromosome, globally upregulates twofold expression of active X-linked genes from the single X chromosome, and makes up for the shortage that the male has only one single X chromosome in male Drosophila. Up to date, the structure of basic components of MSL complex, which consists of at least five protein subunits and two non-coding RNAs, has already been revealed, and the interaction sites among these components have also been generally identified. Furthermore, abundant researches on recognition mechanism of the complex have been published. In contrast, many studies have revealed that mammalian dosage compensation functions by silencing gene expression from one of the two X chromosomes in females. The main components of mammalian MSL complex have already been identified, but the knowledge of their function is limited. Up to now, research of MSLs in teleosts is scarcely studied. This review summarizes the similarities and differences among dosage compensation mechanisms of nematodes, fruit flies and mammals, introduces the recent research advances in MSL complex, as well as molecular mechanism of dosage compensation in fruit fly, and finally addresses some problems to be resolved. Meanwhile, the diversity of msl3 gene in fishes is found by synteny analysis. This information might provide insightful directions for future research on the mechanisms of dosage compensation in various species.
Collapse
|
11
|
Conrad T, Akhtar A. Dosage compensation in Drosophila melanogaster: epigenetic fine-tuning of chromosome-wide transcription. Nat Rev Genet 2012; 13:123-34. [PMID: 22251873 DOI: 10.1038/nrg3124] [Citation(s) in RCA: 187] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Dosage compensation is an epigenetic mechanism that normalizes gene expression from unequal copy numbers of sex chromosomes. Different organisms have evolved alternative molecular solutions to this task. In Drosophila melanogaster, transcription of the single male X chromosome is upregulated by twofold in a process orchestrated by the dosage compensation complex. Despite this conceptual simplicity, dosage compensation involves multiple coordinated steps to recognize and activate the entire X chromosome. We are only beginning to understand the intriguing interplay between multiple levels of local and long-range chromatin regulation required for the fine-tuned transcriptional activation of a heterogeneous gene population. This Review highlights the known facts and open questions of dosage compensation in D. melanogaster.
Collapse
Affiliation(s)
- Thomas Conrad
- Max Planck Institute of Immunobiology and Epigenetics, Stübeweg 51, 79108 Freiburg im Breisgau, Germany
| | | |
Collapse
|
12
|
Mihailovich M, Wurth L, Zambelli F, Abaza I, Militti C, Mancuso FM, Roma G, Pavesi G, Gebauer F. Widespread generation of alternative UTRs contributes to sex-specific RNA binding by UNR. RNA (NEW YORK, N.Y.) 2012; 18:53-64. [PMID: 22101243 PMCID: PMC3261744 DOI: 10.1261/rna.029603.111] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2011] [Accepted: 10/03/2011] [Indexed: 05/31/2023]
Abstract
Upstream of N-ras (UNR) is a conserved RNA-binding protein that regulates mRNA translation and stability by binding to sites generally located in untranslated regions (UTRs). In Drosophila, sex-specific binding of UNR to msl2 mRNA and the noncoding RNA roX is believed to play key roles in the control of X-chromosome dosage compensation in both sexes. To investigate broader sex-specific functions of UNR, we have identified its RNA targets in adult male and female flies by high-throughput RNA binding and transcriptome analysis. Here we show that UNR binds to a large set of protein-coding transcripts and to a smaller set of noncoding RNAs in a sex-specific fashion. The analyses also reveal a strong correlation between sex-specific binding of UNR and sex-specific differential expression of UTRs in target genes. Validation experiments indicate that UNR indeed recognizes sex-specifically processed transcripts. These results suggest that UNR exploits the transcript diversity generated by alternative processing and alternative promoter usage to bind and regulate target genes in a sex-specific manner.
Collapse
Affiliation(s)
- Marija Mihailovich
- Gene Regulation Programme, Centre for Genomic Regulation (CRG) and UPF, 08003 Barcelona, Spain
| | - Laurence Wurth
- Gene Regulation Programme, Centre for Genomic Regulation (CRG) and UPF, 08003 Barcelona, Spain
| | - Federico Zambelli
- Department of Biomolecular Science and Biotechnology, University of Milano, 20133 Milano, Italy
| | - Irina Abaza
- Gene Regulation Programme, Centre for Genomic Regulation (CRG) and UPF, 08003 Barcelona, Spain
| | - Cristina Militti
- Gene Regulation Programme, Centre for Genomic Regulation (CRG) and UPF, 08003 Barcelona, Spain
| | - Francesco M. Mancuso
- Bioinformatics Unit, Centre for Genomic Regulation (CRG) and UPF, 08003 Barcelona, Spain
| | - Guglielmo Roma
- Bioinformatics Unit, Centre for Genomic Regulation (CRG) and UPF, 08003 Barcelona, Spain
| | - Giulio Pavesi
- Department of Biomolecular Science and Biotechnology, University of Milano, 20133 Milano, Italy
| | - Fátima Gebauer
- Gene Regulation Programme, Centre for Genomic Regulation (CRG) and UPF, 08003 Barcelona, Spain
| |
Collapse
|
13
|
Abstract
Equalizing sex chromosome expression between the sexes when they have largely differing gene content appears to be necessary, and across species, is accomplished in a variety of ways. Even in birds, where the process is less than complete, a mechanism to reduce the difference in gene dose between the sexes exists. In early development, while the dosage difference is unregulated and still in flux, it is frequently exploited by sex determination mechanisms. The Drosophila female sex determination process is one clear example, determining the sexes based on X chromosome dose. Recent data show that in Drosophila, the female sex not only reads this gene balance difference, but at the same time usurps the moment. Taking advantage of the transient default state of male dosage compensation, the sex determination master-switch Sex-lethal which resides on the X, has its expression levels enhanced before it works to correct the gene imbalance. Intriguingly, key developmental genes which could create developmental havoc if their levels were unbalanced show more exquisite regulation, suggesting nature distinguishes them and ensures their expression is kept in the desirable range.
Collapse
Affiliation(s)
- Jamila I Horabin
- Department of Biomedical Sciences, Florida State University, Tallahassee, FL, USA.
| |
Collapse
|
14
|
Georgiev P, Chlamydas S, Akhtar A. Drosophila dosage compensation: males are from Mars, females are from Venus. Fly (Austin) 2011; 5:147-54. [PMID: 21339706 DOI: 10.4161/fly.5.2.14934] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Dosage compensation of X-linked genes is a phenomenon of concerted, chromosome-wide regulation of gene expression underpinned by sustained and tightly regulated histone modifications and chromatin remodeling, coupled with constrains of nuclear architecture. This elaborate process allows the accomplishment of regulated expression of genes on the single male X chromosome to levels comparable to those expressed from the two X chromosomes in females. The ribonucleoprotein Male Specific Lethal (MSL) complex is enriched on the male X chromosome and is intricately involved in this process in Drosophila melanogaster. In this review we discuss the recent advances that highlight the complexity lying behind regulation of gene expression by just two-fold.
Collapse
Affiliation(s)
- Plamen Georgiev
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
| | | | | |
Collapse
|
15
|
Graindorge A, Militti C, Gebauer F. Posttranscriptional control of X-chromosome dosage compensation. WILEY INTERDISCIPLINARY REVIEWS-RNA 2011; 2:534-45. [PMID: 21957042 DOI: 10.1002/wrna.75] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
RNA regulation plays a major role in the generation of diversity at the molecular and cellular levels, and furnishes the cell with flexibility potential to adapt to changing environments. Often, the regulation by/of RNA dictates when, where, and how the information encoded in the nucleus is revealed. One example is the regulation of X-chromosome dosage compensation. In Drosophila, differences in X-linked gene dosage between males and females are compensated by the transcriptional upregulation of the single male X chromosome. Mechanisms of alternative splicing and translational control, among others, enforce dosage compensation in males while inhibiting this process in females. In this review, we discuss the posttranscriptional RNA regulatory mechanisms that ensure appropriate dosage compensation in Drosophila, drawing parallels with the mammalian system when appropriate.
Collapse
Affiliation(s)
- Antoine Graindorge
- Gene Regulation Programme, Centre for Genomic Regulation (CRG), UPF, Barcelona, Spain
| | | | | |
Collapse
|
16
|
Kravets A, Qin H, Ahmad A, Bethlendy G, Gao Q, Rustchenko E. Widespread occurrence of dosage compensation in Candida albicans. PLoS One 2010; 5:e10856. [PMID: 20552010 PMCID: PMC2883996 DOI: 10.1371/journal.pone.0010856] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2009] [Accepted: 05/05/2010] [Indexed: 11/18/2022] Open
Abstract
The important human pathogen Candida albicans possesses an unusual form of gene regulation, in which the copy number of an entire specific chromosome or a large portion of a specific chromosome changes in response to a specific adverse environment, thus, insuring survival. In the absence of the adverse environment, the altered portion of the genome can be restored to its normal condition. One major question is how C. albicans copes with gene imbalance arising by transitory aneuploid states. Here, we compared transcriptomes from cells with either two copies or one copy of chromosome 5 (Ch5) in, respectively, a diploid strain 3153A and its representative derivative Sor55. Statistical analyses revealed that at least 40% of transcripts from the monosomic Ch5 are fully compensated to a disomic level, thus, indicating the existence of a genome-wide mechanism maintaining cellular homeostasis. Only approximately 15% of transcripts were diminished twofold in accordance with what would be expected for Ch5 monosomy. Another minor portion of approximately 6% of transcripts, unexpectedly, increased up to twofold and higher than the disomic level, demonstrating indirect control by monosomy. Array comparative genome hybridization revealed that only few out of approximately 500 genes on the monosomic Ch5b were duplicated, thus, not causing a global up regulation. Dosage compensation was confirmed with several representative genes from another monosomic Ch5a in the mutant Sor60. We suggest that C. albicans's unusual regulation of gene expression by the loss and gain of entire chromosomes is coupled with widespread compensation of gene dosage at the transcriptional level.
Collapse
Affiliation(s)
- Anatoliy Kravets
- Department of Biochemistry and Biophysics, University of Rochester Medical Center, Rochester, New York, United States of America
| | - Hong Qin
- Department of Biology, Spelman College, Atlanta, Georgia, United States of America
| | - Ausaf Ahmad
- Department of Biochemistry and Biophysics, University of Rochester Medical Center, Rochester, New York, United States of America
| | - Gabor Bethlendy
- Roche Diagnostics Corporation, Indianapolis, Indiana, United States of America
| | - Qinshan Gao
- Department of Microbiology, Mount Sinai School of Medicine, New York, New York, United States of America
| | - Elena Rustchenko
- Department of Biochemistry and Biophysics, University of Rochester Medical Center, Rochester, New York, United States of America
- * E-mail:
| |
Collapse
|
17
|
Mihailovich M, Militti C, Gabaldón T, Gebauer F. Eukaryotic cold shock domain proteins: highly versatile regulators of gene expression. Bioessays 2010; 32:109-18. [PMID: 20091748 DOI: 10.1002/bies.200900122] [Citation(s) in RCA: 127] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Cold shock domain (CSD)-containing proteins have been found in all three domains of life and function in a variety of processes that are related, for the most part, to post-transcriptional gene regulation. The CSD is an ancient beta-barrel fold that serves to bind nucleic acids. The CSD is structurally and functionally similar to the S1 domain, a fold with otherwise unrelated primary sequence. The flexibility of the CSD/S1 domain for RNA recognition confers an enormous functional versatility to the proteins that contain them. This review summarizes the current knowledge on eukaryotic CSD/S1 domain-containing proteins with a special emphasis on UNR (upstream of N-ras), a member of this family with multiple copies of the CSD.
Collapse
Affiliation(s)
- Marija Mihailovich
- Gene Regulation Programme, Centre de Regulació Genòmica (CRG-UPF), Barcelona, Spain
| | | | | | | |
Collapse
|
18
|
Abstract
One of the most important decisions in development is whether to be male or female. In Drosophila melanogaster, most cells make this choice independent of their neighbors such that diploid cells with one X chromosome (XY) are male and those with two X chromosomes (XX) are female. X-chromosome number is relayed through regulatory proteins that act together to activate Sex-lethal (Sxl) in XX animals. The resulting SXL female specific RNA binding protein modulates the expression of a set of downstream genes, ultimately leading to sexually dimorphic structures and behaviors. Despite the apparent simplicity of this mechanism, Sxl activity is controlled by a host of transcriptional and posttranscriptional mechanisms that tailor its function to specific developmental scenarios. This review describes recent advances in our understanding of Sxl regulation and function, highlighting work that challenges some of the textbook views about this classical (often cited, yet poorly understood) binary switch gene.
Collapse
Affiliation(s)
- Helen K Salz
- Department of Genetics, Case Western Reserve University, Cleveland, OH, USA.
| | | |
Collapse
|
19
|
Abstract
In Drosophila, dosage compensation of the single male X chromosome involves upregulation of expression of X linked genes. Dosage compensation complex or the male specific lethal (MSL) complex is intimately involved in this regulation. The MSL complex members decorate the male X chromosome by binding on hundreds of sites along the X chromosome. Recent genome wide analysis has brought new light into X chromosomal regulation. It is becoming increasingly clear that although the X chromosome achieves male specific regulation via the MSL complex members, a number of general factors also impinge on this regulation. Future studies integrating these aspects promise to shed more light into this epigenetic phenomenon.
Collapse
|
20
|
Gelbart ME, Kuroda MI. Drosophila dosage compensation: a complex voyage to the X chromosome. Development 2009; 136:1399-410. [PMID: 19363150 DOI: 10.1242/dev.029645] [Citation(s) in RCA: 189] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Dosage compensation is the crucial process that equalizes gene expression from the X chromosome between males (XY) and females (XX). In Drosophila, the male-specific lethal (MSL) ribonucleoprotein complex mediates dosage compensation by upregulating transcription from the single male X chromosome approximately twofold. A key challenge is to understand how the MSL complex distinguishes the X chromosome from autosomes. Recent studies suggest that this occurs through a multi-step targeting mechanism that involves DNA sequence elements and epigenetic marks associated with transcription. This review will discuss the relative contributions of sequence elements and transcriptional marks to the complete pattern of MSL complex binding.
Collapse
Affiliation(s)
- Marnie E Gelbart
- Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA
| | | |
Collapse
|
21
|
RNA structure: new messages in translation, replication and disease. Workshop on the role of RNA structures in the translation of viral and cellular RNAs. EMBO Rep 2009; 10:449-53. [PMID: 19343048 DOI: 10.1038/embor.2009.56] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2009] [Accepted: 03/03/2009] [Indexed: 11/08/2022] Open
|