1
|
Rich A, Lu Z, Simone AD, Garcia L, Janssen J, Ando K, Ou J, Vergassola M, Poss KD, Talia SD. Decaying and expanding Erk gradients process memory of skeletal size during zebrafish fin regeneration. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.23.634576. [PMID: 39896678 PMCID: PMC11785216 DOI: 10.1101/2025.01.23.634576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/04/2025]
Abstract
Regeneration of an amputated salamander limb or fish fin restores pre-injury size and structure, illustrating the phenomenon of positional memory. Although appreciated for centuries, the identity of position-dependent cues and how they control tissue growth are not resolved. Here, we quantify Erk signaling events in whole populations of osteoblasts during zebrafish fin regeneration. We find that osteoblast Erk activity is dependent on Fgf receptor signaling and organized into millimeter-long gradients that extend from the distal tip to the amputation site. Erk activity scales with the amount of tissue amputated, predicts the likelihood of osteoblast cycling, and predicts the size of regenerated skeletal structures. Mathematical modeling suggests gradients are established by the transient deposition of long-lived ligands that are transported by tissue growth. This concept is supported by the observed scaling of expression of the essential epidermal ligand fgf20a with extents of amputation. Our work provides evidence that localized, scaled expression of pro-regenerative ligands instructs long-range signaling and cycling to control skeletal size in regenerating appendages.
Collapse
Affiliation(s)
- Ashley Rich
- Department of Cell Biology, Duke University Medical Center, Durham, NC, USA
- Duke Center for Quantitative Living Systems, Duke University Medical Center, Durham, NC, USA
| | - Ziqi Lu
- Department of Cell Biology, Duke University Medical Center, Durham, NC, USA
- Duke Center for Quantitative Living Systems, Duke University Medical Center, Durham, NC, USA
| | - Alessandro De Simone
- Department of Genetics and Evolution, University of Geneva, 1211 Geneva, Switzerland
| | - Lucas Garcia
- Department of Cell Biology, Duke University Medical Center, Durham, NC, USA
| | | | - Kazunori Ando
- Department of Cell Biology, Duke University Medical Center, Durham, NC, USA
- Duke Regeneration Center, Duke University Medical Center, Durham, NC, USA
- Morgridge Institute for Research, Madison WI USA
- Department of Cell and Regenerative Biology, University of Wisconsin, Madison, WI, USA
| | - Jianhong Ou
- Department of Cell Biology, Duke University Medical Center, Durham, NC, USA
- Duke Regeneration Center, Duke University Medical Center, Durham, NC, USA
- Morgridge Institute for Research, Madison WI USA
- Department of Cell and Regenerative Biology, University of Wisconsin, Madison, WI, USA
| | - Massimo Vergassola
- Department of Physics, École Normale Supérieure, Paris 75005, France
- Department of Physics, University of California, San Diego, CA, USA
| | - Kenneth D. Poss
- Department of Cell Biology, Duke University Medical Center, Durham, NC, USA
- Duke Regeneration Center, Duke University Medical Center, Durham, NC, USA
- Morgridge Institute for Research, Madison WI USA
- Department of Cell and Regenerative Biology, University of Wisconsin, Madison, WI, USA
| | - Stefano Di Talia
- Department of Cell Biology, Duke University Medical Center, Durham, NC, USA
- Duke Center for Quantitative Living Systems, Duke University Medical Center, Durham, NC, USA
| |
Collapse
|
2
|
Nikolić M, Antonetti V, Liu F, Muhaxheri G, Petkova MD, Scheeler M, Smith EM, Bialek W, Gregor T. Scale invariance in early embryonic development. Proc Natl Acad Sci U S A 2024; 121:e2403265121. [PMID: 39514304 PMCID: PMC11572962 DOI: 10.1073/pnas.2403265121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 10/01/2024] [Indexed: 11/16/2024] Open
Abstract
The expression of a few key genes determines the body plan of the fruit fly. We show that the spatial expression patterns for several of these genes scale precisely with embryo size. Discrete positional markers such as the peaks in striped patterns or the boundaries of expression domains have positions along the embryo's major axis proportional to embryo length, accurate to within 1%. Further, the information (in bits) that graded patterns of expression provide about a cell's position can be decomposed into information about fractional or scaled position and information about absolute position or embryo length; all information available is about scaled position, with [Formula: see text]2% error. These findings imply that the underlying genetic network's behavior exhibits scale invariance in a more precise mathematical sense. We argue that models that can explain this scale invariance also have a "zero mode" in the dynamics of gene expression, and this connects to observations on the spatial correlation of fluctuations in expression levels.
Collapse
Affiliation(s)
- Miloš Nikolić
- Joseph Henry Laboratories of Physics, Princeton University, Princeton, NJ08544
- Lewis–Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ08544
| | - Victoria Antonetti
- Joseph Henry Laboratories of Physics, Princeton University, Princeton, NJ08544
- Department of Physics, Lehman College, City University of New York, Bronx, NY10468
| | - Feng Liu
- Lewis–Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ08544
- Key Laboratory of Hebei Province for Molecular Biophysics, Institute of Biophysics, School of Health Science and Biomedical Engineering, Hebei University of Technology, Tianjin300130, China
| | - Gentian Muhaxheri
- Joseph Henry Laboratories of Physics, Princeton University, Princeton, NJ08544
- Department of Physics, Lehman College, City University of New York, Bronx, NY10468
| | | | - Martin Scheeler
- Joseph Henry Laboratories of Physics, Princeton University, Princeton, NJ08544
| | - Eric M. Smith
- Joseph Henry Laboratories of Physics, Princeton University, Princeton, NJ08544
| | - William Bialek
- Joseph Henry Laboratories of Physics, Princeton University, Princeton, NJ08544
- Lewis–Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ08544
- Initiative for the Theoretical Sciences, The Graduate Center, City University of New York, New York, NY10016
| | - Thomas Gregor
- Joseph Henry Laboratories of Physics, Princeton University, Princeton, NJ08544
- Lewis–Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ08544
- Department of Developmental and Stem Cell Biology, CNRS UMR3738 Paris Cité, Institut Pasteur, Paris75015, France
| |
Collapse
|
3
|
Favre P, van Schaik E, Schorderet M, Yerly F, Reinhardt D. Regulation of tissue growth in plants - A mathematical modeling study on shade avoidance response in Arabidopsis hypocotyls. FRONTIERS IN PLANT SCIENCE 2024; 15:1285655. [PMID: 38486850 PMCID: PMC10938469 DOI: 10.3389/fpls.2024.1285655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 02/05/2024] [Indexed: 03/17/2024]
Abstract
Introduction Plant growth is a plastic phenomenon controlled both by endogenous genetic programs and by environmental cues. The embryonic stem, the hypocotyl, is an ideal model system for the quantitative study of growth due to its relatively simple geometry and cellular organization, and to its essentially unidirectional growth pattern. The hypocotyl of Arabidopsis thaliana has been studied particularly well at the molecular-genetic level and at the cellular level, and it is the model of choice for analysis of the shade avoidance syndrome (SAS), a growth reaction that allows plants to compete with neighboring plants for light. During SAS, hypocotyl growth is controlled primarily by the growth hormone auxin, which stimulates cell expansion without the involvement of cell division. Methods We assessed hypocotyl growth at cellular resolution in Arabidopsis mutants defective in auxin transport and biosynthesis and we designed a mathematical auxin transport model based on known polar and non-polar auxin transporters (ABCB1, ABCB19, and PINs) and on factors that control auxin homeostasis in the hypocotyl. In addition, we introduced into the model biophysical properties of the cell types based on precise cell wall measurements. Results and Discussion Our model can generate the observed cellular growth patterns based on auxin distribution along the hypocotyl resulting from production in the cotyledons, transport along the hypocotyl, and general turnover of auxin. These principles, which resemble the features of mathematical models of animal morphogen gradients, allow to generate robust shallow auxin gradients as they are expected to exist in tissues that exhibit quantitative auxin-driven tissue growth, as opposed to the sharp auxin maxima generated by patterning mechanisms in plant development.
Collapse
Affiliation(s)
- Patrick Favre
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| | - Evert van Schaik
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| | | | - Florence Yerly
- Haute école d’ingénierie et d’architecture Fribourg, Haute Ecole Spécialisée de Suisse Occidentale (HES-SO), University of Applied Sciences and Arts of Western Switzerland, Fribourg, Switzerland
| | - Didier Reinhardt
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| |
Collapse
|
4
|
Athilingam T, Nelanuthala AVS, Breen C, Karedla N, Fritzsche M, Wohland T, Saunders TE. Long-range formation of the Bicoid gradient requires multiple dynamic modes that spatially vary across the embryo. Development 2024; 151:dev202128. [PMID: 38345326 PMCID: PMC10911119 DOI: 10.1242/dev.202128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 01/03/2024] [Indexed: 02/15/2024]
Abstract
Morphogen gradients provide essential positional information to gene networks through their spatially heterogeneous distribution, yet how they form is still hotly contested, with multiple models proposed for different systems. Here, we focus on the transcription factor Bicoid (Bcd), a morphogen that forms an exponential gradient across the anterior-posterior (AP) axis of the early Drosophila embryo. Using fluorescence correlation spectroscopy we find there are spatial differences in Bcd diffusivity along the AP axis, with Bcd diffusing more rapidly in the posterior. We establish that such spatially varying differences in Bcd dynamics are sufficient to explain how Bcd can have a steep exponential gradient in the anterior half of the embryo and yet still have an observable fraction of Bcd near the posterior pole. In the nucleus, we demonstrate that Bcd dynamics are impacted by binding to DNA. Addition of the Bcd homeodomain to eGFP::NLS qualitatively replicates the Bcd concentration profile, suggesting this domain regulates Bcd dynamics. Our results reveal how a long-range gradient can form while retaining a steep profile through much of its range.
Collapse
Affiliation(s)
- Thamarailingam Athilingam
- Warwick Medical School, University of Warwick, Coventry CV4 7AL, UK
- Mechanobiology Institute, National University of Singapore, Singapore117411
| | - Ashwin V. S. Nelanuthala
- Department of Biological Sciences and Centre for Bioimaging Sciences, National University of Singapore, Singapore117558
| | | | - Narain Karedla
- Kennedy Institute of Rheumatology, University of Oxford, Oxford, OX3 7LF, UK
| | - Marco Fritzsche
- Kennedy Institute of Rheumatology, University of Oxford, Oxford, OX3 7LF, UK
| | - Thorsten Wohland
- Department of Biological Sciences and Centre for Bioimaging Sciences, National University of Singapore, Singapore117558
- Department of Chemistry, National University of Singapore, Singapore117558
| | - Timothy E. Saunders
- Warwick Medical School, University of Warwick, Coventry CV4 7AL, UK
- Mechanobiology Institute, National University of Singapore, Singapore117411
- Department of Biological Sciences and Centre for Bioimaging Sciences, National University of Singapore, Singapore117558
| |
Collapse
|
5
|
Baumgartner S. Revisiting bicoid function: complete inactivation reveals an additional fundamental role in Drosophila egg geometry specification. Hereditas 2024; 161:1. [PMID: 38167241 PMCID: PMC10759373 DOI: 10.1186/s41065-023-00305-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 12/18/2023] [Indexed: 01/05/2024] Open
Abstract
INTRODUCTION The bicoid (bcd) gene in Drosophila has served as a paradigm for a morphogen in textbooks for decades. Discovered in 1986 as a mutation affecting anterior development in the embryo, its expression pattern as a protein gradient later confirmed the prediction from transplantation experiments. These experiments suggested that the protein fulfills the criteria of a true morphogen, with the existence of a homeodomain crucial for activation of genes along the anterior-posterior axis, based on the concentration of the morphogen. The bcd gene undergoes alternative splicing, resulting in, among other isoforms, a small and often neglected isoform with low abundance, which lacks the homeodomain, termed small bicoid (smbcd). Most importantly, all known classical strong bcd alleles used in the past to determine bcd function apparently do not affect the function of this isoform. RESULTS To overcome the uncertainty regarding which isoform regulates what, I removed the bcd locus entirely using CRISPR technology. bcdCRISPR eggs exhibited a short and round appearance. The phenotype could be ascribed to smbcd because all bcd alleles affecting the function of the major transcript, termed large bicoid (lgbcd) showed normally sized eggs. Several patterning genes for the embryo showed expression in the oocyte, and their expression patterns were altered in bcdCRISPR oocytes. In bcdCRISPR embryos, all downstream segmentation genes showed altered expression patterns, consistent with the expression patterns in "classical" alleles; however, due to the altered egg geometry resulting in fewer blastoderm nuclei, additional constraints came into play, further affecting their expression patterns. CONCLUSIONS This study unveils a novel and fundamental role of bcd in shaping the egg's geometry. This discovery demands a comprehensive revision of our understanding of this important patterning gene and prompts a reevaluation of past experiments conducted under the assumption that bcd mutants were bcdnull-mutants.
Collapse
Affiliation(s)
- Stefan Baumgartner
- Dept. of Experimental Medical Sciences, Lund University, Lund, S-22184, Sweden.
| |
Collapse
|
6
|
Hernández-López C, Puliafito A, Xu Y, Lu Z, Di Talia S, Vergassola M. Two-fluid dynamics and micron-thin boundary layers shape cytoplasmic flows in early Drosophila embryos. Proc Natl Acad Sci U S A 2023; 120:e2302879120. [PMID: 37878715 PMCID: PMC10622894 DOI: 10.1073/pnas.2302879120] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 08/22/2023] [Indexed: 10/27/2023] Open
Abstract
Cytoplasmic flows are widely emerging as key functional players in development. In early Drosophila embryos, flows drive the spreading of nuclei across the embryo. Here, we combine hydrodynamic modeling with quantitative imaging to develop a two-fluid model that features an active actomyosin gel and a passive viscous cytosol. Gel contractility is controlled by the cell cycle oscillator, the two fluids being coupled by friction. In addition to recapitulating experimental flow patterns, our model explains observations that remained elusive and makes a series of predictions. First, the model captures the vorticity of cytosolic flows, which highlights deviations from Stokes' flow that were observed experimentally but remained unexplained. Second, the model reveals strong differences in the gel and cytosol motion. In particular, a micron-sized boundary layer is predicted close to the cortex, where the gel slides tangentially while the cytosolic flow cannot slip. Third, the model unveils a mechanism that stabilizes the spreading of nuclei with respect to perturbations of their initial positions. This self-correcting mechanism is argued to be functionally important for proper nuclear spreading. Fourth, we use our model to analyze the effects of flows on the transport of the morphogen Bicoid and the establishment of its gradients. Finally, the model predicts that the flow strength should be reduced if the shape of the domain is more round, which is experimentally confirmed in Drosophila mutants. Thus, our two-fluid model explains flows and nuclear positioning in early Drosophila, while making predictions that suggest novel future experiments.
Collapse
Affiliation(s)
| | | | - Yitong Xu
- Department of Cell Biology, Duke University Medical Center, Durham, NC27710
| | - Ziqi Lu
- Department of Cell Biology, Duke University Medical Center, Durham, NC27710
| | - Stefano Di Talia
- Department of Cell Biology, Duke University Medical Center, Durham, NC27710
| | - Massimo Vergassola
- Department of Physics, École Normale Supérieure, Paris75005, France
- Department of Physics, University of California, San Diego, CA92075
| |
Collapse
|
7
|
Raza MR, George JE, Kumari S, Mitra MK, Paul D. Anomalous diffusion of E. coli under microfluidic confinement and chemical gradient. SOFT MATTER 2023; 19:6446-6457. [PMID: 37606542 DOI: 10.1039/d3sm00286a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/23/2023]
Abstract
We report a two-layer microfluidic device to study the combined effect of confinement and chemical gradient on the motility of wild-type E. coli. We track individual E. coli in 50 μm and 10 μm wide microchannels, with a channel height of 2 μm, to generate quasi-2D conditions. We find that contrary to expectations, bacterial trajectories are superdiffusive even in the absence of a chemical (glucose) gradient. The superdiffusive behaviour becomes more pronounced upon introducing a chemical gradient or strengthening the lateral confinement. Run length distributions for weak lateral confinement in the absence of chemical gradients follow an exponential distribution. Both confinement and chemoattraction induce deviations from this behaviour, with the run length distributions approaching a power-law form under these conditions. Both confinement and chemoattraction suppress large-angle tumbles as well. Our results suggest that wild-type E. coli modulates both its runs and tumbles in a similar manner under physical confinement and chemical gradient. Our findings have implications for understanding how bacteria modulate their motility behaviour in natural habitats.
Collapse
Affiliation(s)
- Md Ramiz Raza
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, 400076, India.
| | - Jijo Easo George
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, 400076, India.
| | - Savita Kumari
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, 400076, India.
| | - Mithun K Mitra
- Department of Physics, Indian Institute of Technology Bombay, Mumbai, 400076, India
| | - Debjani Paul
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, 400076, India.
| |
Collapse
|
8
|
López CH, Puliafito A, Xu Y, Lu Z, Di Talia S, Vergassola M. Two-fluid dynamics and micron-thin boundary layers shape cytoplasmic flows in early Drosophila embryos. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.16.532979. [PMID: 36993669 PMCID: PMC10055070 DOI: 10.1101/2023.03.16.532979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
Abstract
Cytoplasmic flows are widely emerging as key functional players in development. In early Drosophila embryos, flows drive the spreading of nuclei across the embryo. Here, we combine hydrodynamic modeling with quantitative imaging to develop a two-fluid model that features an active actomyosin gel and a passive viscous cytosol. Gel contractility is controlled by the cell cycle oscillator, the two fluids being coupled by friction. In addition to recapitulating experimental flow patterns, our model explains observations that remained elusive, and makes a series of new predictions. First, the model captures the vorticity of cytosolic flows, which highlights deviations from Stokes' flow that were observed experimentally but remained unexplained. Second, the model reveals strong differences in the gel and cytosol motion. In particular, a micron-sized boundary layer is predicted close to the cortex, where the gel slides tangentially whilst the cytosolic flow cannot slip. Third, the model unveils a mechanism that stabilizes the spreading of nuclei with respect to perturbations of their initial positions. This self-correcting mechanism is argued to be functionally important for proper nuclear spreading. Fourth, we use our model to analyze the effects of flows on the transport of the morphogen Bicoid, and the establishment of its gradients. Finally, the model predicts that the flow strength should be reduced if the shape of the domain is more round, which is experimentally confirmed in Drosophila mutants. Thus, our two-fluid model explains flows and nuclear positioning in early Drosophila, while making predictions that suggest novel future experiments.
Collapse
Affiliation(s)
| | - Alberto Puliafito
- Department of Oncology, University of Turin, 10060 Candiolo, Italy
- Candiolo Cancer Institute, FPO - IRCCS, Str. Prov. 142, km 3.95, 10060 Candiolo, Italy
| | - Yitong Xu
- Department of Cell Biology, Duke University Medical Center, Durham, NC 27710 USA and
| | - Ziqi Lu
- Department of Cell Biology, Duke University Medical Center, Durham, NC 27710 USA and
| | - Stefano Di Talia
- Department of Cell Biology, Duke University Medical Center, Durham, NC 27710 USA and
| | - Massimo Vergassola
- École Normale Supérieure, 75005 Paris, France
- Department of Physics, University of California San Diego, San Diego, CA 92075, USA
| |
Collapse
|
9
|
Scott S, Weiss M, Selhuber-Unkel C, Barooji YF, Sabri A, Erler JT, Metzler R, Oddershede LB. Extracting, quantifying, and comparing dynamical and biomechanical properties of living matter through single particle tracking. Phys Chem Chem Phys 2023; 25:1513-1537. [PMID: 36546878 DOI: 10.1039/d2cp01384c] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
A panoply of new tools for tracking single particles and molecules has led to an explosion of experimental data, leading to novel insights into physical properties of living matter governing cellular development and function, health and disease. In this Perspective, we present tools to investigate the dynamics and mechanics of living systems from the molecular to cellular scale via single-particle techniques. In particular, we focus on methods to measure, interpret, and analyse complex data sets that are associated with forces, materials properties, transport, and emergent organisation phenomena within biological and soft-matter systems. Current approaches, challenges, and existing solutions in the associated fields are outlined in order to support the growing community of researchers at the interface of physics and the life sciences. Each section focuses not only on the general physical principles and the potential for understanding living matter, but also on details of practical data extraction and analysis, discussing limitations, interpretation, and comparison across different experimental realisations and theoretical frameworks. Particularly relevant results are introduced as examples. While this Perspective describes living matter from a physical perspective, highlighting experimental and theoretical physics techniques relevant for such systems, it is also meant to serve as a solid starting point for researchers in the life sciences interested in the implementation of biophysical methods.
Collapse
Affiliation(s)
- Shane Scott
- Institute of Physiology, Kiel University, Hermann-Rodewald-Straße 5, 24118 Kiel, Germany
| | - Matthias Weiss
- Experimental Physics I, University of Bayreuth, Universitätsstr. 30, D-95447 Bayreuth, Germany
| | - Christine Selhuber-Unkel
- Institute for Molecular Systems Engineering, Heidelberg University, D-69120 Heidelberg, Germany.,Max Planck School Matter to Life, Jahnstraße 29, D-69120 Heidelberg, Germany
| | - Younes F Barooji
- Niels Bohr Institute, Blegdamsvej 17, DK-2100 Copenhagen, Denmark.
| | - Adal Sabri
- Experimental Physics I, University of Bayreuth, Universitätsstr. 30, D-95447 Bayreuth, Germany
| | - Janine T Erler
- BRIC, University of Copenhagen, Ole Maaløes Vej 5, DK-2200 Copenhagen, Denmark.
| | - Ralf Metzler
- Institute of Physics and Astronomy, University of Potsdam, Karl-Liebknecht Str. 24/25, D-14476 Potsdam, Germany.,Asia Pacific Center for Theoretical Physics, Pohang 37673, Republic of Korea
| | | |
Collapse
|
10
|
Kuhn T, Landge AN, Mörsdorf D, Coßmann J, Gerstenecker J, Čapek D, Müller P, Gebhardt JCM. Single-molecule tracking of Nodal and Lefty in live zebrafish embryos supports hindered diffusion model. Nat Commun 2022; 13:6101. [PMID: 36243734 PMCID: PMC9569377 DOI: 10.1038/s41467-022-33704-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 09/28/2022] [Indexed: 12/24/2022] Open
Abstract
The hindered diffusion model postulates that the movement of a signaling molecule through an embryo is affected by tissue geometry and binding-mediated hindrance, but these effects have not been directly demonstrated in vivo. Here, we visualize extracellular movement and binding of individual molecules of the activator-inhibitor signaling pair Nodal and Lefty in live developing zebrafish embryos using reflected light-sheet microscopy. We observe that diffusion coefficients of molecules are high in extracellular cavities, whereas mobility is reduced and bound fractions are high within cell-cell interfaces. Counterintuitively, molecules nevertheless accumulate in cavities, which we attribute to the geometry of the extracellular space by agent-based simulations. We further find that Nodal has a larger bound fraction than Lefty and shows a binding time of tens of seconds. Together, our measurements and simulations provide direct support for the hindered diffusion model and yield insights into the nanometer-to-micrometer-scale mechanisms that lead to macroscopic signal dispersal.
Collapse
Affiliation(s)
- Timo Kuhn
- grid.6582.90000 0004 1936 9748Institute of Biophysics, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - Amit N. Landge
- grid.9811.10000 0001 0658 7699University of Konstanz, Universitätsstraße 10, 78464 Konstanz, Germany
| | - David Mörsdorf
- grid.418026.90000 0004 0492 0357Friedrich Miescher Laboratory of the Max Planck Society, Max-Planck-Ring 9, 72076 Tübingen, Germany ,grid.10420.370000 0001 2286 1424University of Vienna, Department of Neurosciences and Developmental Biology, Djerassiplatz 1, 1030 Vienna, Austria
| | - Jonas Coßmann
- grid.6582.90000 0004 1936 9748Institute of Biophysics, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - Johanna Gerstenecker
- grid.6582.90000 0004 1936 9748Institute of Biophysics, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - Daniel Čapek
- grid.9811.10000 0001 0658 7699University of Konstanz, Universitätsstraße 10, 78464 Konstanz, Germany
| | - Patrick Müller
- grid.9811.10000 0001 0658 7699University of Konstanz, Universitätsstraße 10, 78464 Konstanz, Germany ,grid.418026.90000 0004 0492 0357Friedrich Miescher Laboratory of the Max Planck Society, Max-Planck-Ring 9, 72076 Tübingen, Germany
| | - J. Christof M. Gebhardt
- grid.6582.90000 0004 1936 9748Institute of Biophysics, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| |
Collapse
|
11
|
Filatova T, Popović N, Grima R. Modulation of nuclear and cytoplasmic mRNA fluctuations by time-dependent stimuli: Analytical distributions. Math Biosci 2022; 347:108828. [DOI: 10.1016/j.mbs.2022.108828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 04/15/2022] [Accepted: 04/15/2022] [Indexed: 10/18/2022]
|
12
|
Datta A, Ghosh S, Kondev J. How to assemble a scale-invariant gradient. eLife 2022; 11:71365. [PMID: 35311649 PMCID: PMC8986316 DOI: 10.7554/elife.71365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 03/20/2022] [Indexed: 11/17/2022] Open
Abstract
Intracellular protein gradients serve a variety of functions, such as the establishment of cell polarity or to provide positional information for gene expression in developing embryos. Given that cell size in a population can vary considerably, for the protein gradients to work properly they often have to be scaled to the size of the cell. Here, we examine a model of protein gradient formation within a cell that relies on cytoplasmic diffusion and cortical transport of proteins toward a cell pole. We show that the shape of the protein gradient is determined solely by the cell geometry. Furthermore, we show that the length scale over which the protein concentration in the gradient varies is determined by the linear dimensions of the cell, independent of the diffusion constant or the transport speed. This gradient provides scale-invariant positional information within a cell, which can be used for assembly of intracellular structures whose size is scaled to the linear dimensions of the cell, such as the cytokinetic ring and actin cables in budding yeast cells.
Collapse
Affiliation(s)
- Arnab Datta
- Department of Physics, Brandeis University, Waltham, United States
| | - Sagnik Ghosh
- Department of Physics, Brandeis University, Waltham, United States
| | - Jane Kondev
- Department of Physics, Brandeis University, Waltham, United States
| |
Collapse
|
13
|
Ceccarelli AS, Borges A, Chara O. Size matters: tissue size as a marker for a transition between reaction-diffusion regimes in spatio-temporal distribution of morphogens. ROYAL SOCIETY OPEN SCIENCE 2022; 9:211112. [PMID: 35116146 PMCID: PMC8790355 DOI: 10.1098/rsos.211112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 12/22/2021] [Indexed: 06/14/2023]
Abstract
The reaction-diffusion model constitutes one of the most influential mathematical models to study distribution of morphogens in tissues. Despite its widespread use, the effect of finite tissue size on model-predicted spatio-temporal morphogen distributions has not been completely elucidated. In this study, we analytically investigated the spatio-temporal distributions of morphogens predicted by a reaction-diffusion model in a finite one-dimensional domain, as a proxy for a biological tissue, and compared it with the solution of the infinite-domain model. We explored the reduced parameter, the tissue length in units of a characteristic reaction-diffusion length, and identified two reaction-diffusion regimes separated by a crossover tissue size estimated in approximately three characteristic reaction-diffusion lengths. While above this crossover the infinite-domain model constitutes a good approximation, it breaks below this crossover, whereas the finite-domain model faithfully describes the entire parameter space. We evaluated whether the infinite-domain model renders accurate estimations of diffusion coefficients when fitted to finite spatial profiles, a procedure typically followed in fluorescence recovery after photobleaching (FRAP) experiments. We found that the infinite-domain model overestimates diffusion coefficients when the domain is smaller than the crossover tissue size. Thus, the crossover tissue size may be instrumental in selecting the suitable reaction-diffusion model to study tissue morphogenesis.
Collapse
Affiliation(s)
- Alberto S. Ceccarelli
- Systems Biology Group (SysBio), Institute of Physics of Liquids and Biological Systems (IFLySIB), National Scientific and Technical Research Council (CONICET), University of La Plata, La Plata, Argentina
| | - Augusto Borges
- Systems Biology Group (SysBio), Institute of Physics of Liquids and Biological Systems (IFLySIB), National Scientific and Technical Research Council (CONICET), University of La Plata, La Plata, Argentina
- Research Unit of Sensory Biology & Organogenesis, Helmholtz Zentrum München, Munich, Germany
- Graduate School of Quantitative Biosciences (QBM), Munich, Germany
| | - Osvaldo Chara
- Systems Biology Group (SysBio), Institute of Physics of Liquids and Biological Systems (IFLySIB), National Scientific and Technical Research Council (CONICET), University of La Plata, La Plata, Argentina
- Center for Information Services and High Performance Computing (ZIH), Technische Universität Dresden, Dresden, Germany
- Instituto de Tecnología, Universidad Argentina de la Empresa (UADE), Buenos Aires, Argentina
| |
Collapse
|
14
|
Shlemov A, Alexandrov T, Golyandina N, Holloway D, Baumgartner S, Spirov AV. Quantification reveals early dynamics in Drosophila maternal gradients. PLoS One 2021; 16:e0244701. [PMID: 34411119 PMCID: PMC8376041 DOI: 10.1371/journal.pone.0244701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Accepted: 07/16/2021] [Indexed: 11/18/2022] Open
Abstract
The Bicoid (Bcd) protein is a primary determinant of early anterior-posterior (AP) axis specification in Drosophila embryogenesis. This morphogen is spatially distributed in an anterior-high gradient, and affects particular AP cell fates in a concentration-dependent manner. The early distribution and dynamics of the bicoid (bcd) mRNA, the source for the Bcd protein gradient, is not well understood, leaving a number of open questions for how Bcd positional information develops and is regulated. Confocal microscope images of whole early embryos, stained for bcd mRNA or the Staufen (Stau) protein involved in its transport, were processed to extract quantitative AP intensity profiles at two depths (apical-under the embryo surface but above the nuclear layer; and basal-below the nuclei). Each profile was quantified by a two- (or three-) exponential equation. The parameters of these equations were used to analyze the early developmental dynamics of bcd. Analysis of 1D profiles was compared with 2D intensity surfaces from the same images. This approach reveals strong early changes in bcd and Stau, which appear to be coordinated. We can unambiguously discriminate three stages in early development using the exponential parameters: pre-blastoderm (1-9 cleavage cycle, cc), syncytial blastoderm (10-13 cc) and cellularization (from 14A cc). Key features which differ in this period are how fast the first exponential (anterior component) of the apical profile drops with distance and whether it is higher or lower than the basal first exponential. We can further discriminate early and late embryos within the pre-blastoderm stage, depending on how quickly the anterior exponential drops. This relates to the posterior-wards spread of bcd in the first hour of development. Both bcd and Stau show several redistributions in the head cytoplasm, quite probably related to nuclear activity: first shifting inwards towards the core plasm, forming either protrusions (early pre-blastoderm) or round aggregations (early nuclear cleavage cycles, cc, 13 and 14), then moving to the embryo surface and spreading posteriorly. These movements are seen both with the 2D surface study and the 1D profile analysis. The continued spreading of bcd can be tracked from the time of nuclear layer formation (later pre-blastoderm) to the later syncytial blastoderm stages by the progressive loss of steepness of the apical anterior exponential (for both bcd and Stau). Finally, at the beginning of cc14 (cellularization stage) we see a distinctive flip from the basal anterior gradient being higher to the apical gradient being higher (for both bcd and Stau). Quantitative analysis reveals substantial (and correlated) bcd and Stau redistributions during early development, supporting that the distribution and dynamics of bcd mRNA are key factors in the formation and maintenance of the Bcd protein morphogenetic gradient. This analysis reveals the complex and dynamic nature of bcd redistribution, particularly in the head cytoplasm. These resemble observations in oogenesis; their role and significance have yet to be clarified. The observed co-localization during redistribution of bcd and Stau may indicate the involvement of active transport.
Collapse
Affiliation(s)
- Alex Shlemov
- Laboratory for Algorithmic Biology, St. Petersburg State University, St. Petersburg, Russia
| | - Theodore Alexandrov
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, California, United States of America
| | - Nina Golyandina
- Faculty of Mathematics and Mechanics, St. Petersburg State University, St. Petersburg, Russia
| | - David Holloway
- Mathematics Department, British Columbia Institute of Technology, Burnaby, British Columbia, Canada
| | - Stefan Baumgartner
- Department of Experimental Medical Sciences, Lund University, Lund, Sweden
- Department of Biology, University of Konstanz, Konstanz, Germany
| | - Alexander V. Spirov
- Computer Science and CEWIT, SUNY Stony Brook, Stony Brook, New York, United States of America
- Lab Modelling Evolution, The I.M. Sechenov Institute of Evolutionary Physiology & Biochemistry, St. Petersburg, Russia
- * E-mail:
| |
Collapse
|
15
|
Cai X, Rondeel I, Baumgartner S. Modulating the bicoid gradient in space and time. Hereditas 2021; 158:29. [PMID: 34404481 PMCID: PMC8371787 DOI: 10.1186/s41065-021-00192-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 07/19/2021] [Indexed: 11/15/2022] Open
Abstract
Background The formation of the Bicoid (Bcd) gradient in the early Drosophila is one of the most fascinating observations in biology and serves as a paradigm for gradient formation, yet its mechanism is still not fully understood. Two distinct models were proposed in the past, the SDD and the ARTS model. Results We define novel cis- and trans-acting factors that are indispensable for gradient formation. The first one is the poly A tail length of the bcd mRNA where we demonstrate that it changes not only in time, but also in space. We show that posterior bcd mRNAs possess a longer poly tail than anterior ones and this elongation is likely mediated by wispy (wisp), a poly A polymerase. Consequently, modulating the activity of Wisp results in changes of the Bcd gradient, in controlling downstream targets such as the gap and pair-rule genes, and also in influencing the cuticular pattern. Attempts to modulate the Bcd gradient by subjecting the egg to an extra nuclear cycle, i.e. a 15th nuclear cycle by means of the maternal haploid (mh) mutation showed no effect, neither on the appearance of the gradient nor on the control of downstream target. This suggests that the segmental anlagen are determined during the first 14 nuclear cycles. Finally, we identify the Cyclin B (CycB) gene as a trans-acting factor that modulates the movement of Bcd such that Bcd movement is allowed to move through the interior of the egg. Conclusions Our analysis demonstrates that Bcd gradient formation is far more complex than previously thought requiring a revision of the models of how the gradient is formed.
Collapse
Affiliation(s)
- Xiaoli Cai
- Departmentof Experimental Medical Sciences, Lund University, BMC D10, 22184, Lund, Sweden
| | - Inge Rondeel
- Departmentof Experimental Medical Sciences, Lund University, BMC D10, 22184, Lund, Sweden.,Present address: Hubrecht Institute, 3584 CT, Utrecht, The Netherlands
| | - Stefan Baumgartner
- Departmentof Experimental Medical Sciences, Lund University, BMC D10, 22184, Lund, Sweden. .,Department of Biology, University of Konstanz, 78457, Konstanz, Germany.
| |
Collapse
|
16
|
Kimura K, Motegi F. Fluid flow dynamics in cellular patterning. Semin Cell Dev Biol 2021; 120:3-9. [PMID: 34274213 DOI: 10.1016/j.semcdb.2021.07.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 06/24/2021] [Accepted: 07/01/2021] [Indexed: 10/20/2022]
Abstract
The development of complex forms of multicellular organisms depends on the spatial arrangement of cellular architecture and functions. The interior design of the cell is patterned by spatially biased distributions of molecules and biochemical reactions in the cytoplasm and/or on the plasma membrane. In recent years, a dynamic change in the cytoplasmic fluid flow has emerged as a key physical process of driving long-range transport of molecules to particular destinations within the cell. Here, recent experimental advances in the understanding of the generation of the various types of cytoplasmic flows and contributions to intracellular patterning are reviewed with a particular focus on feedback mechanisms between the mechanical properties of fluid flow and biochemical signaling during animal cell polarization.
Collapse
Affiliation(s)
- Kenji Kimura
- School of Science and Technology, Kwansei Gakuin University, Japan.
| | - Fumio Motegi
- Instiute for Genetic Medicine, Hokkaido University, Japan; Temasek Lifesciences Laboratory, Singapore; Mechanobiology Institute, National University of Singapore, Singapore; Department of Biological Sciences, National University of Singapore, Singapore.
| |
Collapse
|
17
|
Myasnikova EM, Sabirov MA, Spirov AV. Quantitative Analysis of the Dynamics of Maternal Gradients in the Early Drosophila Embryo. J Comput Biol 2021; 28:747-757. [PMID: 34152850 DOI: 10.1089/cmb.2020.0571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Predetermination, formation, and maintenance of the primary morphogenetic gradient (bicoid, bcd) of the early Drosophila embryo involves many interrelated processes. Here we focus on the biological systems analysis of the bcd mRNA redistribution in an early embryo. The results of the quantitative analysis of experimental data, together with the results of their dynamic modeling, substantiate the role of active transport in the redistribution of the bcd mRNA. The role of the nonlinearity of degradation mechanisms in the mRNA pattern robustness is discussed.
Collapse
Affiliation(s)
- Ekaterina M Myasnikova
- Lab Modeling Evolution, I.M. Sechenov Institute of Evolutionary Physiology and Biochemistry of the Russian Academy of Sciences, St-Petersburg, Russia.,Center for Advanced Studies, Peter the Great St. Petersburg Polytechnical University, St-Petersburg, Russia
| | - Marat A Sabirov
- Lab Modeling Evolution, I.M. Sechenov Institute of Evolutionary Physiology and Biochemistry of the Russian Academy of Sciences, St-Petersburg, Russia
| | - Alexander V Spirov
- Lab Modeling Evolution, I.M. Sechenov Institute of Evolutionary Physiology and Biochemistry of the Russian Academy of Sciences, St-Petersburg, Russia
| |
Collapse
|
18
|
Mirth CK, Saunders TE, Amourda C. Growing Up in a Changing World: Environmental Regulation of Development in Insects. ANNUAL REVIEW OF ENTOMOLOGY 2021; 66:81-99. [PMID: 32822557 DOI: 10.1146/annurev-ento-041620-083838] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
All organisms are exposed to changes in their environment throughout their life cycle. When confronted with these changes, they adjust their development and physiology to ensure that they can produce the functional structures necessary for survival and reproduction. While some traits are remarkably invariant, or robust, across environmental conditions, others show high degrees of variation, known as plasticity. Generally, developmental processes that establish cell identity are thought to be robust to environmental perturbation, while those relating to body and organ growth show greater degrees of plasticity. However, examples of plastic patterning and robust organ growth demonstrate that this is not a hard-and-fast rule.In this review, we explore how the developmental context and the gene regulatory mechanisms underlying trait formation determine the impacts of the environment on development in insects. Furthermore, we outline future issues that need to be resolved to understand how the structure of signaling networks defines whether a trait displays plasticity or robustness.
Collapse
Affiliation(s)
- Christen K Mirth
- School of Biological Sciences, Monash University, Melbourne 3800, Victoria, Australia;
| | - Timothy E Saunders
- Mechanobiology Institute, National University of Singapore, Singapore 117411, Republic of Singapore
- Department of Biological Sciences, National University of Singapore, Singapore 117588, Republic of Singapore
- Institute of Molecular and Cell Biology, A*Star, Proteos, Singapore 138673, Republic of Singapore
| | - Christopher Amourda
- MRC London Institute of Medical Sciences, Imperial College London, London W12 0NN, United Kingdom
| |
Collapse
|
19
|
Nijhout HF, Kudla AM, Hazelwood CC. Genetic assimilation and accommodation: Models and mechanisms. Curr Top Dev Biol 2020; 141:337-369. [PMID: 33602492 DOI: 10.1016/bs.ctdb.2020.11.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Genetic assimilation and genetic accommodation are mechanisms by which novel phenotypes are produced and become established in a population. Novel characters may be fixed and canalized so they are insensitive to environmental variation, or can be plastic and adaptively responsive to environmental variation. In this review we explore the various theories that have been proposed to explain the developmental origin and evolution of novel phenotypes and the mechanisms by which canalization and phenotypic plasticity evolve. These theories and models range from conceptual to mathematical and have taken different views of how genes and environment contribute to the development and evolution of the properties of phenotypes. We will argue that a deeper and more nuanced understanding of genetic accommodation requires a recognition that phenotypes are not static entities but are dynamic system properties with no fixed deterministic relationship between genotype and phenotype. We suggest a mechanistic systems-view of development that allows one to incorporate both genes and environment in a common model, and that enables both quantitative analysis and visualization of the evolution of canalization and phenotypic plasticity.
Collapse
Affiliation(s)
| | - Anna M Kudla
- Department of Biology, Duke University, Durham, NC, United States
| | | |
Collapse
|
20
|
Fancher S, Mugler A. Diffusion vs. direct transport in the precision of morphogen readout. eLife 2020; 9:58981. [PMID: 33051001 PMCID: PMC7641583 DOI: 10.7554/elife.58981] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 10/13/2020] [Indexed: 01/14/2023] Open
Abstract
Morphogen profiles allow cells to determine their position within a developing organism, but not all morphogen profiles form by the same mechanism. Here, we derive fundamental limits to the precision of morphogen concentration sensing for two canonical mechanisms: the diffusion of morphogen through extracellular space and the direct transport of morphogen from source cell to target cell, for example, via cytonemes. We find that direct transport establishes a morphogen profile without adding noise in the process. Despite this advantage, we find that for sufficiently large values of profile length, the diffusion mechanism is many times more precise due to a higher refresh rate of morphogen molecules. We predict a profile lengthscale below which direct transport is more precise, and above which diffusion is more precise. This prediction is supported by data from a wide variety of morphogens in developing Drosophila and zebrafish.
Collapse
Affiliation(s)
- Sean Fancher
- Department of Physics and Astronomy, Purdue University, West Lafayette, United States.,Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, United States
| | - Andrew Mugler
- Department of Physics and Astronomy, Purdue University, West Lafayette, United States.,Department of Physics and Astronomy, University of Pittsburgh, Pittsburgh, United States
| |
Collapse
|
21
|
Bernheim S, Meilhac SM. Mesoderm patterning by a dynamic gradient of retinoic acid signalling. Philos Trans R Soc Lond B Biol Sci 2020; 375:20190556. [PMID: 32829679 PMCID: PMC7482219 DOI: 10.1098/rstb.2019.0556] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/11/2020] [Indexed: 12/15/2022] Open
Abstract
Retinoic acid (RA), derived from vitamin A, is a major teratogen, clinically recognized in 1983. Identification of its natural presence in the embryo and dissection of its molecular mechanism of action became possible in the animal model with the advent of molecular biology, starting with the cloning of its nuclear receptor. In normal development, the dose of RA is tightly controlled to regulate organ formation. Its production depends on enzymes, which have a dynamic expression profile during embryonic development. As a small molecule, it diffuses rapidly and acts as a morphogen. Here, we review advances in deciphering how endogenously produced RA provides positional information to cells. We compare three mesodermal tissues, the limb, the somites and the heart, and discuss how RA signalling regulates antero-posterior and left-right patterning. A common principle is the establishment of its spatio-temporal dynamics by positive and negative feedback mechanisms and by antagonistic signalling by FGF. However, the response is cell-specific, pointing to the existence of cofactors and effectors, which are as yet incompletely characterized. This article is part of a discussion meeting issue 'Contemporary morphogenesis'.
Collapse
Affiliation(s)
- Ségolène Bernheim
- Imagine-Institut Pasteur, Laboratory of Heart Morphogenesis, 75015 Paris, France
- INSERM UMR1163, 75015 Paris, France
- Université de Paris, Paris, France
| | - Sigolène M. Meilhac
- Imagine-Institut Pasteur, Laboratory of Heart Morphogenesis, 75015 Paris, France
- INSERM UMR1163, 75015 Paris, France
- Université de Paris, Paris, France
| |
Collapse
|
22
|
Zhu H, Cui Y, Luo C, Liu F. Quantifying Temperature Compensation of Bicoid Gradients with a Fast T-Tunable Microfluidic Device. Biophys J 2020; 119:1193-1203. [PMID: 32853562 PMCID: PMC7499060 DOI: 10.1016/j.bpj.2020.08.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 08/02/2020] [Accepted: 08/04/2020] [Indexed: 10/23/2022] Open
Abstract
As a reaction-diffusion system strongly affected by temperature, early fly embryos surprisingly show highly reproducible and accurate developmental patterns during embryogenesis under temperature perturbations. To reveal the underlying temperature compensation mechanism, it is important to overcome the challenge in quantitative imaging on fly embryos under temperature perturbations. Inspired by microfluidics generating temperature steps on fly embryos, here we design a microfluidic device capable of ensuring the normal development of multiple fly embryos as well as achieving real-time temperature control and fast temperature switches for quantitative live imaging with a home-built two-photon microscope. We apply this system to quantify the temperature compensation of the morphogen Bicoid (Bcd) gradient in fly embryos. The length constant of the exponential Bcd gradient reaches the maximum at 25°C within the measured temperatures of 18-29°C and gradually adapts to the corresponding value at new temperatures upon a fast temperature switch. The relaxation time of such an adaptation becomes longer if the temperature is switched in a later developmental stage. This age-dependent temperature compensation could be explained if the traditional synthesis-diffusion-degradation model is extended to incorporate the dynamic change of the parameters controlling the formation of Bcd gradients.
Collapse
Affiliation(s)
- Hongcun Zhu
- State Key Laboratory of Nuclear Physics and Technology, School of Physics, Peking University, Beijing, China
| | - Yeping Cui
- State Key Laboratory of Nuclear Physics and Technology, School of Physics, Peking University, Beijing, China
| | - Chunxiong Luo
- Center for Quantitative Biology, Peking University, Beijing, China; The State Key Laboratory for Artificial Microstructures and Mesoscopic Physics, School of Physics, Peking University, Beijing, China
| | - Feng Liu
- State Key Laboratory of Nuclear Physics and Technology, School of Physics, Peking University, Beijing, China; Center for Quantitative Biology, Peking University, Beijing, China.
| |
Collapse
|
23
|
Henslee EA, Dunlop CM, de Mel CM, Carter EA, Abdallat RG, Camelliti P, Labeed FH. DEP-Dots for 3D cell culture: low-cost, high-repeatability, effective 3D cell culture in multiple gel systems. Sci Rep 2020; 10:14603. [PMID: 32884022 PMCID: PMC7471335 DOI: 10.1038/s41598-020-71265-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Accepted: 07/13/2020] [Indexed: 11/16/2022] Open
Abstract
It is known that cells grown in 3D are more tolerant to drug treatment than those grown in dispersion, but the mechanism for this is still not clear; cells grown in 3D have opportunities to develop inter-cell communication, but are also closely packed which may impede diffusion. In this study we examine methods for dielectrophoresis-based cell aggregation of both suspension and adherent cell lines, and compare the effect of various drugs on cells grown in 3D and 2D. Comparing viability of pharmacological interventions on 3D cell clusters against both suspension cells and adherent cells grown in monolayer, as well as against a unicellular organism with no propensity for intracellular communication, we suggest that 3D aggregates of adherent cells, compared to suspension cells, show a substantially different drug response to cells grown in monolayer, which increases as the IC50 is approached. Further, a mathematical model of the system for each agent demonstrates that changes to drug response are due to inherent changes in the system of adherent cells from the 2D to 3D state. Finally, differences in the electrophysiological membrane properties of the adherent cell type suggest this parameter plays an important role in the differences found in the 3D drug response.
Collapse
Affiliation(s)
- Erin A Henslee
- Centre for Biomedical Engineering, Department of Mechanical Engineering Sciences, University of Surrey, Guildford, GU2 7XH, Surrey, UK.,Department of Engineering, Wake Forest University, Wake Downtown, Winston-Salem, NC, 27109, USA
| | - Carina M Dunlop
- Department of Mathematics, University of Surrey, Guildford, GU2 7XH, Surrey, UK
| | - Christine M de Mel
- Centre for Biomedical Engineering, Department of Mechanical Engineering Sciences, University of Surrey, Guildford, GU2 7XH, Surrey, UK
| | - Emily A Carter
- Centre for Biomedical Engineering, Department of Mechanical Engineering Sciences, University of Surrey, Guildford, GU2 7XH, Surrey, UK
| | - Rula G Abdallat
- Centre for Biomedical Engineering, Department of Mechanical Engineering Sciences, University of Surrey, Guildford, GU2 7XH, Surrey, UK.,Department of Biomedical Engineering, Faculty of Engineering, The Hashemite University, PO Box 330127, Zarqa, 13133, Jordan
| | - Patrizia Camelliti
- School of Biosciences and Medicine, University of Surrey, Guildford, GU2 7XH, Surrey, UK
| | - Fatima H Labeed
- Centre for Biomedical Engineering, Department of Mechanical Engineering Sciences, University of Surrey, Guildford, GU2 7XH, Surrey, UK.
| |
Collapse
|
24
|
Yang Z, Zhu H, Kong K, Wu X, Chen J, Li P, Jiang J, Zhao J, Cui B, Liu F. The dynamic transmission of positional information in stau- mutants during Drosophila embryogenesis. eLife 2020; 9:e54276. [PMID: 32511091 PMCID: PMC7332292 DOI: 10.7554/elife.54276] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 06/06/2020] [Indexed: 01/04/2023] Open
Abstract
It has been suggested that Staufen (Stau) is key in controlling the variability of the posterior boundary of the Hb anterior domain (xHb). However, the mechanism that underlies this control is elusive. Here, we quantified the dynamic 3D expression of segmentation genes in Drosophila embryos. With improved control of measurement errors, we show that the xHb of stau- mutants reproducibly moves posteriorly by 10% of the embryo length (EL) to the wild type (WT) position in the nuclear cycle (nc) 14, and that its variability over short time windows is comparable to that of the WT. Moreover, for stau- mutants, the upstream Bicoid (Bcd) gradients show equivalent relative intensity noise to that of the WT in nc12-nc14, and the downstream Even-skipped (Eve) and cephalic furrow (CF) show the same positional errors as these factors in WT. Our results indicate that threshold-dependent activation and self-organized filtering are not mutually exclusive and could both be implemented in early Drosophila embryogenesis.
Collapse
Affiliation(s)
- Zhe Yang
- State Key Laboratory of Nuclear Physics and Technology & Center for Quantitative Biology, Peking UniversityBeijingChina
- China National Center for Biotechnology DevelopmentBeijingChina
| | - Hongcun Zhu
- State Key Laboratory of Nuclear Physics and Technology & Center for Quantitative Biology, Peking UniversityBeijingChina
| | - Kakit Kong
- State Key Laboratory of Nuclear Physics and Technology & Center for Quantitative Biology, Peking UniversityBeijingChina
| | - Xiaoxuan Wu
- State Key Laboratory of Nuclear Physics and Technology & Center for Quantitative Biology, Peking UniversityBeijingChina
| | - Jiayi Chen
- State Key Laboratory of Nuclear Physics and Technology & Center for Quantitative Biology, Peking UniversityBeijingChina
| | - Peiyao Li
- State Key Laboratory of Nuclear Physics and Technology & Center for Quantitative Biology, Peking UniversityBeijingChina
| | - Jialong Jiang
- State Key Laboratory of Nuclear Physics and Technology & Center for Quantitative Biology, Peking UniversityBeijingChina
| | - Jinchao Zhao
- State Key Laboratory of Nuclear Physics and Technology & Center for Quantitative Biology, Peking UniversityBeijingChina
| | - Bofei Cui
- State Key Laboratory of Nuclear Physics and Technology & Center for Quantitative Biology, Peking UniversityBeijingChina
| | - Feng Liu
- State Key Laboratory of Nuclear Physics and Technology & Center for Quantitative Biology, Peking UniversityBeijingChina
| |
Collapse
|
25
|
Gordon NK, Chen Z, Gordon R, Zou Y. French flag gradients and Turing reaction-diffusion versus differentiation waves as models of morphogenesis. Biosystems 2020; 196:104169. [PMID: 32485350 DOI: 10.1016/j.biosystems.2020.104169] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 05/11/2020] [Accepted: 05/11/2020] [Indexed: 01/01/2023]
Abstract
The Turing reaction-diffusion model and the French Flag Model are widely accepted in the field of development as the best models for explaining embryogenesis. Virtually all current attempts to understand cell differentiation in embryos begin and end with the assumption that some combination of these two models works. The result may become a bias in embryogenesis in assuming the problem has been solved by these two-chemical substance-based models. Neither model is applied consistently. We review the differences between the French Flag, Turing reaction-diffusion model, and a mechanochemical model called the differentiation wave/cell state splitter model. The cytoskeletal cell state splitter and the embryonic differentiation waves was first proposed in 1987 as a combined physics and chemistry model for cell differentiation in embryos, based on empirical observations on urodele amphibian embryos. We hope that the development of theory can be advanced and observations relevant to distinguishing the embryonic differentiation wave model from the French Flag model and reaction-diffusion equations will be taken up by experimentalists. Experimentalists rely on mathematical biologists for theory, and therefore depend on them for what parameters they choose to measure and ignore. Therefore, mathematical biologists need to fully understand the distinctions between these three models.
Collapse
Affiliation(s)
| | - Zhan Chen
- Department of Mathematical Sciences, Georgia Southern University, Statesboro, GA, USA.
| | - Richard Gordon
- Gulf Specimen Marine Laboratory & Aquarium, 222 Clark Drive, Panacea, FL, 32346, USA; C.S. Mott Center for Human Growth & Development, Department of Obstetrics & Gynecology, Wayne State University, 275 E. Hancock, Detroit, MI, 48201, USA.
| | - Yuting Zou
- Department of Mathematical Sciences, Georgia Southern University, Statesboro, GA, USA.
| |
Collapse
|
26
|
Tran H, Walczak AM, Dostatni N. Constraints and limitations on the transcriptional response downstream of the Bicoid morphogen gradient. Curr Top Dev Biol 2020; 137:119-142. [PMID: 32143741 DOI: 10.1016/bs.ctdb.2019.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
Abstract
The regulation of the hunchback promoter expression by the maternal Bicoid gradient has been studied as a model system in development for many years. Yet, at the level of quantitative agreement between data and theoretical models, even the first step of this regulation, transcription, continues to be challenging. This situation is slowly progressing, thanks to quantitative live-imaging techniques coupled to advanced statistical data analysis and modeling. Here, we outline the current state of our knowledge of this apparently "simple" step, highlighting the newly appreciated role of bursty transcription dynamics and its regulation.
Collapse
Affiliation(s)
- Huy Tran
- Institut Curie, PSL Research University, CNRS, Sorbonne Université, Nuclear Dynamics, Paris, France; Ecole Normale Supérieure, PSL Research University, CNRS, Sorbonne Université, Laboratoire de Physique, Paris, France
| | - Aleksandra M Walczak
- Ecole Normale Supérieure, PSL Research University, CNRS, Sorbonne Université, Laboratoire de Physique, Paris, France.
| | - Nathalie Dostatni
- Institut Curie, PSL Research University, CNRS, Sorbonne Université, Nuclear Dynamics, Paris, France.
| |
Collapse
|
27
|
Huang A, Rupprecht JF, Saunders TE. Embryonic geometry underlies phenotypic variation in decanalized conditions. eLife 2020; 9:e47380. [PMID: 32048988 PMCID: PMC7032927 DOI: 10.7554/elife.47380] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Accepted: 02/11/2020] [Indexed: 11/13/2022] Open
Abstract
During development, many mutations cause increased variation in phenotypic outcomes, a phenomenon termed decanalization. Phenotypic discordance is often observed in the absence of genetic and environmental variations, but the mechanisms underlying such inter-individual phenotypic discordance remain elusive. Here, using the anterior-posterior (AP) patterning of the Drosophila embryo, we identified embryonic geometry as a key factor predetermining patterning outcomes under decanalizing mutations. With the wild-type AP patterning network, we found that AP patterning is robust to variations in embryonic geometry; segmentation gene expression remains reproducible even when the embryo aspect ratio is artificially reduced by more than twofold. In contrast, embryonic geometry is highly predictive of individual patterning defects under decanalized conditions of either increased bicoid (bcd) dosage or bcd knockout. We showed that the phenotypic discordance can be traced back to variations in the gap gene expression, which is rendered sensitive to the geometry of the embryo under mutations.
Collapse
Affiliation(s)
- Anqi Huang
- Mechanobiology Institute, National University of SingaporeSingaporeSingapore
| | - Jean-François Rupprecht
- Mechanobiology Institute, National University of SingaporeSingaporeSingapore
- CNRS and Turing Center for Living Systems, Centre de Physique Théorique, Aix-Marseille UniversitéMarseilleFrance
| | - Timothy E Saunders
- Mechanobiology Institute, National University of SingaporeSingaporeSingapore
- Department of Biological Sciences, National University of SingaporeSingaporeSingapore
- Institute of Molecular and Cell Biology, Proteos, A*StarSingaporeSingapore
| |
Collapse
|
28
|
Abstract
Spatially distributed signaling molecules, known as morphogens, provide spatial information during development. A host of different morphogens have now been identified, from subcellular gradients through to morphogens that act across a whole embryo. These gradients form over a wide-range of timescales, from seconds to hours, and their time windows for interpretation are also highly variable; the processes of morphogen gradient formation and interpretation are highly dynamic. The morphogen Bicoid (Bcd), present in the early Drosophila embryo, is essential for setting up the future Drosophila body segments. Due to its accessibility for both genetic perturbations and imaging, this system has provided key insights into how precise patterning can occur within a highly dynamic system. Here, we review the temporal scales of Bcd gradient formation and interpretation. In particular, we discuss the quantitative evidence for different models of Bcd gradient formation, outline the time windows for Bcd interpretation, and describe how Bcd temporally adapts its own ability to be interpreted. The utilization of temporal information in morphogen readout may provide crucial inputs to ensure precise spatial patterning, particularly in rapidly developing systems.
Collapse
|
29
|
Cai X, Fahmy K, Baumgartner S. bicoid RNA localization requires the trans-Golgi network. Hereditas 2019; 156:30. [PMID: 31528161 PMCID: PMC6737670 DOI: 10.1186/s41065-019-0106-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Accepted: 08/26/2019] [Indexed: 11/10/2022] Open
Abstract
Background The formation of the bicoid (bcd) mRNA gradient is a crucial step for Bcd protein gradient formation in Drosophila. In the past, a microtubule (MT)-based cortical network had been shown to be indispensable for bcd mRNA transport to the posterior. Results We report the identification of a MT-binding protein CLASP/Chb as the first component associated with this cortical MT network. Since CLASPs in vertebrates were shown to serve as an acentriolar microtubule organization center (aMTOC) in concert with trans-Golgi proteins, we examined the effect of the Drosophila trans-Golgins on bcd localization and gradient formation. Using a genetic approach, we demonstrate that the Drosophila trans-Golgins dGCC88, dGolgin97 and dGCC185 indeed affect bcd mRNA localization during oocyte development. Consequently, the bcd mRNA is already mislocalized before the egg is fertilized. The expression domains of genes downstream of the hierarchy of bcd, e.g. of the gap gene empty spiracles or of the pair-rule gene even-skipped are changed, indicating an altered segmental anlagen, due to a faulty bcd gradient. Thus, at the end of embryogenesis, trans-Golgin mutants show bcd-like cuticle phenotypes. Conclusions Our data provides evidence that the Golgi as a cellular member of the secretory pathway exerts control on bcd localization which indicates that bcd gradient formation is probably more intricate than previously presumed.
Collapse
Affiliation(s)
- Xiaoli Cai
- 1Department of Experimental Medical Sciences, Lund University, BMC D10, S-22184 Lund, Sweden
| | - Khalid Fahmy
- 2Present Address: Department of Genetics, Ain Shams University, Cairo, Egypt
| | - Stefan Baumgartner
- 1Department of Experimental Medical Sciences, Lund University, BMC D10, S-22184 Lund, Sweden.,3Department of Biology, University of Konstanz, D-78457 Constance, Germany
| |
Collapse
|
30
|
de Beco S, Vaidžiulytė K, Manzi J, Dalier F, di Federico F, Cornilleau G, Dahan M, Coppey M. Optogenetic dissection of Rac1 and Cdc42 gradient shaping. Nat Commun 2018; 9:4816. [PMID: 30446664 PMCID: PMC6240110 DOI: 10.1038/s41467-018-07286-8] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Accepted: 10/19/2018] [Indexed: 12/22/2022] Open
Abstract
During cell migration, Rho GTPases spontaneously form spatial gradients that define the front and back of cells. At the front, active Cdc42 forms a steep gradient whereas active Rac1 forms a more extended pattern peaking a few microns away. What are the mechanisms shaping these gradients, and what is the functional role of the shape of these gradients? Here we report, using a combination of optogenetics and micropatterning, that Cdc42 and Rac1 gradients are set by spatial patterns of activators and deactivators and not directly by transport mechanisms. Cdc42 simply follows the distribution of Guanine nucleotide Exchange Factors, whereas Rac1 shaping requires the activity of a GTPase-Activating Protein, β2-chimaerin, which is sharply localized at the tip of the cell through feedbacks from Cdc42 and Rac1. Functionally, the spatial extent of Rho GTPases gradients governs cell migration, a sharp Cdc42 gradient maximizes directionality while an extended Rac1 gradient controls the speed. A steep gradient of Cdc42 is at the front of migrating cells, whereas the active Rac1 gradient is graded. Here the authors show that Cdc42 gradients follow the distribution of GEFs and govern direction of migration, while Rac1 gradients require the activity of the GAP β2-chimaerin and control cell speed.
Collapse
Affiliation(s)
- S de Beco
- Laboratoire Physico Chimie Curie, Institut Curie, PSL Research University, Sorbonne Université, CNRS, 75005, Paris, France
| | - K Vaidžiulytė
- Laboratoire Physico Chimie Curie, Institut Curie, PSL Research University, Sorbonne Université, CNRS, 75005, Paris, France
| | - J Manzi
- Laboratoire Physico Chimie Curie, Institut Curie, PSL Research University, Sorbonne Université, CNRS, 75005, Paris, France
| | - F Dalier
- PASTEUR, Département de chimie, École normale supérieure, CNRS UMR 8640, PSL Research University, Sorbonne Université, 75005, Paris, France
| | - F di Federico
- Laboratoire Physico Chimie Curie, Institut Curie, PSL Research University, Sorbonne Université, CNRS, 75005, Paris, France
| | - G Cornilleau
- Laboratoire Physico Chimie Curie, Institut Curie, PSL Research University, Sorbonne Université, CNRS, 75005, Paris, France
| | - M Dahan
- Laboratoire Physico Chimie Curie, Institut Curie, PSL Research University, Sorbonne Université, CNRS, 75005, Paris, France
| | - M Coppey
- Laboratoire Physico Chimie Curie, Institut Curie, PSL Research University, Sorbonne Université, CNRS, 75005, Paris, France.
| |
Collapse
|
31
|
Alexandrov T, Golyandina N, Holloway D, Shlemov A, Spirov A. Two-Exponential Models of Gene Expression Patterns for Noisy Experimental Data. J Comput Biol 2018; 25:1220-1230. [PMID: 30117746 PMCID: PMC6247991 DOI: 10.1089/cmb.2017.0063] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Spatial pattern formation of the primary anterior-posterior morphogenetic gradient of the transcription factor Bicoid (Bcd) has been studied experimentally and computationally for many years. Bcd specifies positional information for the downstream segmentation genes, affecting the fly body plan. More recently, a number of researchers have focused on the patterning dynamics of the underlying bcd messenger RNA (mRNA) gradient, which is translated into Bcd protein. New, more accurate techniques for visualizing bcd mRNA need to be combined with quantitative signal extraction techniques to reconstruct the bcd mRNA distribution. Here, we present a robust technique for quantifying gradients with a two-exponential model. This approach (1) has natural, biologically relevant parameters and (2) is invariant to linear transformations of the data arising due to variation in experimental conditions (e.g., microscope settings, nonspecific background signal). This allows us to quantify bcd mRNA gradient variability from embryo to embryo (important for studying the robustness of developmental regulatory networks); sort out atypical gradients; and classify embryos to developmental stage by quantitative gradient parameters.
Collapse
Affiliation(s)
- Theodore Alexandrov
- Structural and Computational Biology Unit, EMBL, Heidelberg, Germany
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California of San Diego, La Jolla, California
| | | | - David Holloway
- Mathematics Department, British Columbia Institute of Technology, Burnaby, Canada
| | - Alex Shlemov
- St. Petersburg State University, St. Petersburg, Russia
| | - Alexander Spirov
- Computer Science and CEWIT, SUNY Stony Brook, Stony Brook, New York
- The Sechenov Institute of Evolutionary Physiology and Biochemistry, St. Petersburg, Russia
| |
Collapse
|
32
|
Durrieu L, Kirrmaier D, Schneidt T, Kats I, Raghavan S, Hufnagel L, Saunders TE, Knop M. Bicoid gradient formation mechanism and dynamics revealed by protein lifetime analysis. Mol Syst Biol 2018; 14:e8355. [PMID: 30181144 PMCID: PMC6121778 DOI: 10.15252/msb.20188355] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Revised: 08/06/2018] [Accepted: 08/07/2018] [Indexed: 01/21/2023] Open
Abstract
Embryogenesis relies on instructions provided by spatially organized signaling molecules known as morphogens. Understanding the principles behind morphogen distribution and how cells interpret locally this information remains a major challenge in developmental biology. Here, we introduce morphogen-age measurements as a novel approach to test models of morphogen gradient formation. Using a tandem fluorescent timer as a protein age sensor, we find a gradient of increasing age of Bicoid along the anterior-posterior axis in the early Drosophila embryo. Quantitative analysis of the protein age distribution across the embryo reveals that the synthesis-diffusion-degradation model is the most likely model underlying Bicoid gradient formation, and rules out other hypotheses for gradient formation. Moreover, we show that the timer can detect transitions in the dynamics associated with syncytial cellularization. Our results provide new insight into Bicoid gradient formation and demonstrate how morphogen-age information can complement knowledge about movement, abundance, and distribution, which should be widely applicable to other systems.
Collapse
Affiliation(s)
- Lucia Durrieu
- Zentrum für Molekulare Biologie der Universität Heidelberg (ZMBH), DKFZ-ZMBH Alliance, University of Heidelberg, Heidelberg, Germany
- European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - Daniel Kirrmaier
- Zentrum für Molekulare Biologie der Universität Heidelberg (ZMBH), DKFZ-ZMBH Alliance, University of Heidelberg, Heidelberg, Germany
- Deutsches Krebsforschungszentrum (DKFZ) DKFZ-ZMBH Alliance, Heidelberg, Germany
| | - Tatjana Schneidt
- European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - Ilia Kats
- Zentrum für Molekulare Biologie der Universität Heidelberg (ZMBH), DKFZ-ZMBH Alliance, University of Heidelberg, Heidelberg, Germany
| | - Sarada Raghavan
- Zentrum für Molekulare Biologie der Universität Heidelberg (ZMBH), DKFZ-ZMBH Alliance, University of Heidelberg, Heidelberg, Germany
| | - Lars Hufnagel
- European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - Timothy E Saunders
- European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
- Mechanobiology Institute and Department of Biological Sciences, National University of Singapore, Singapore
- Institute of Molecular and Cell Biology, A*Star, Biopolis, Singapore
| | - Michael Knop
- Zentrum für Molekulare Biologie der Universität Heidelberg (ZMBH), DKFZ-ZMBH Alliance, University of Heidelberg, Heidelberg, Germany
- Deutsches Krebsforschungszentrum (DKFZ) DKFZ-ZMBH Alliance, Heidelberg, Germany
| |
Collapse
|
33
|
Ghodsi Z, Hassani H, Kalantari M, Silva ES. Estimation of protein diffusion parameters. Stat (Int Stat Inst) 2018. [DOI: 10.1002/sta4.192] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Zara Ghodsi
- Statistical Research Centre Bournemouth University Poole BH12 5BB
| | - Hossein Hassani
- Research Institute for Energy Management and Planning University of Tehran No. 13, Qods St Tehran 1417466191 Iran
| | - Mahdi Kalantari
- Department of Statistics Payame Noor University Tehran 19395‐4697 Iran
| | - Emmanuel Sirimal Silva
- Fashion Business School, London College of Fashion University of the Arts London London UK
| |
Collapse
|
34
|
Nandi SK, Safran SA. Protein gradients in single cells induced by their coupling to "morphogen"-like diffusion. J Chem Phys 2018; 148:205101. [PMID: 29865807 DOI: 10.1063/1.5021086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
One of the many ways cells transmit information within their volume is through steady spatial gradients of different proteins. However, the mechanism through which proteins without any sources or sinks form such single-cell gradients is not yet fully understood. One of the models for such gradient formation, based on differential diffusion, is limited to proteins with large ratios of their diffusion constants or to specific protein-large molecule interactions. We introduce a novel mechanism for gradient formation via the coupling of the proteins within a single cell with a molecule, that we call a "pronogen," whose action is similar to that of morphogens in multi-cell assemblies; the pronogen is produced with a fixed flux at one side of the cell. This coupling results in an effectively non-linear diffusion degradation model for the pronogen dynamics within the cell, which leads to a steady-state gradient of the protein concentration. We use stability analysis to show that these gradients are linearly stable with respect to perturbations.
Collapse
Affiliation(s)
- Saroj Kumar Nandi
- Department of Chemical and Biological Physics, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Sam A Safran
- Department of Chemical and Biological Physics, Weizmann Institute of Science, Rehovot 7610001, Israel
| |
Collapse
|
35
|
Hemmi N, Akiyama-Oda Y, Fujimoto K, Oda H. A quantitative study of the diversity of stripe-forming processes in an arthropod cell-based field undergoing axis formation and growth. Dev Biol 2018; 437:84-104. [DOI: 10.1016/j.ydbio.2018.03.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2017] [Revised: 03/01/2018] [Accepted: 03/01/2018] [Indexed: 12/25/2022]
|
36
|
|
37
|
Mekus Z, Cooley J, George A, Sabo V, Strzegowski M, Starz-Gaiano M, E. Peercy B. Effects of cell packing on chemoattractant distribution within a tissue. AIMS BIOPHYSICS 2018. [DOI: 10.3934/biophy.2018.1.1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
|
38
|
|
39
|
Cortical movement of Bicoid in early Drosophila embryos is actin- and microtubule-dependent and disagrees with the SDD diffusion model. PLoS One 2017; 12:e0185443. [PMID: 28973031 PMCID: PMC5626467 DOI: 10.1371/journal.pone.0185443] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Accepted: 09/12/2017] [Indexed: 01/02/2023] Open
Abstract
The Bicoid (Bcd) protein gradient in Drosophila serves as a paradigm for gradient formation in textbooks. The SDD model (synthesis, diffusion, degradation) was proposed to explain the formation of the gradient. The SDD model states that the bcd mRNA is located at the anterior pole of the embryo at all times and serves a source for translation of the Bicoid protein, coupled with diffusion and uniform degradation throughout the embryo. Recently, the ARTS model (active RNA transport, synthesis) challenged the SDD model. In this model, the mRNA is transported at the cortex along microtubules to form a mRNA gradient which serves as template for the production of Bcd, hence little Bcd movement is involved. To test the validity of the SDD model, we developed a sensitive assay to monitor the movement of Bcd during early nuclear cycles. We observed that Bcd moved along the cortex and not in a broad front towards the posterior as the SDD model would have predicted. We subjected embryos to hypoxia where the mRNA remained strictly located at the tip at all times, while the protein was allowed to move freely, thus conforming to an ideal experimental setup to test the SDD model. Unexpectedly, Bcd still moved along the cortex. Moreover, cortical Bcd movement was sparse, even under longer hypoxic conditions. Hypoxic embryos treated with drugs compromising microtubule and actin function affected Bcd cortical movement and stability. Vinblastine treatment allowed the simulation of an ideal SDD model whereby the protein moved throughout the embryo in a broad front. In unfertilized embryos, the Bcd protein followed the mRNA which itself was transported into the interior of the embryo utilizing a hitherto undiscovered microtubular network. Our data suggest that the Bcd gradient formation is probably more complex than previously anticipated.
Collapse
|
40
|
Liu F, Sun D, Murakami R, Matsuno H. Modeling and analysis of the Delta-Notch dependent boundary formation in the Drosophila large intestine. BMC SYSTEMS BIOLOGY 2017; 11:80. [PMID: 28950873 PMCID: PMC5615251 DOI: 10.1186/s12918-017-0455-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
BACKGROUND The boundary formation in the Drosophila large intestine is widely studied as an important biological problem. It has been shown that the Delta-Notch signaling pathway plays an essential role in the formation of boundary cells. RESULTS In this paper, we propose a mathematical model for the Delta-Notch dependent boundary formation in the Drosophila large intestine in order to better interpret related experimental findings of this biological phenomenon. To achieve this, we not only perform stability analysis on the model from a theoretical point of view, but also perform numerical simulations to analyze the model with and without noises, the phenotype change with the change of Delta or Notch expression, and the perturbation influences of binding and inhibition parameters on the boundary formation. CONCLUSIONS By doing all these work, we can assure that our model can better interpret the biological findings related to the boundary formation in the Drosophila large intestine.
Collapse
Affiliation(s)
- Fei Liu
- Control and Simulation Center, Harbin Institute of Technology, West Dazhi Street 92, Harbin, 150001, People's Republic of China. .,School of Software Engineering, South China University of Technology, Building B7, Guangzhou, 510006, People's Republic of China.
| | - Deshun Sun
- Control and Simulation Center, Harbin Institute of Technology, West Dazhi Street 92, Harbin, 150001, People's Republic of China
| | - Ryutaro Murakami
- Faculty of Science, Yamaguchi University, Yoshida 1677-1, Yamaguchi, 753-8512, Japan
| | - Hiroshi Matsuno
- Faculty of Science, Yamaguchi University, Yoshida 1677-1, Yamaguchi, 753-8512, Japan
| |
Collapse
|
41
|
Fradin C. On the importance of protein diffusion in biological systems: The example of the Bicoid morphogen gradient. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2017; 1865:1676-1686. [PMID: 28919007 DOI: 10.1016/j.bbapap.2017.09.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2017] [Revised: 08/16/2017] [Accepted: 09/05/2017] [Indexed: 10/18/2022]
Abstract
Morphogens are proteins that form concentration gradients in embryos and developing tissues, where they act as postal codes, providing cells with positional information and allowing them to behave accordingly. Bicoid was the first discovered morphogen, and remains one of the most studied. It regulates segmentation in flies, forming a striking exponential gradient along the anterior-posterior axis of early Drosophila embryos, and activating the transcription of multiple target genes in a concentration-dependent manner. In this review, the work done by us and by others to characterize the mobility of Bicoid in D. melanogaster embryos is presented. The central role played by the diffusion of Bicoid in both the establishment of the gradient and the activation of target genes is discussed, and placed in the context of the need for these processes to be all at once rapid, precise and robust. The Bicoid system, and morphogen gradients in general, remain amongst the most amazing examples of the coexistence, often observed in living systems, of small-scale disorder and large-scale spatial order. This article is part of a Special Issue entitled: Biophysics in Canada, edited by Lewis Kay, John Baenziger, Albert Berghuis and Peter Tieleman.
Collapse
Affiliation(s)
- Cécile Fradin
- Dept. of Physics and Astronomy, McMaster University, 1280 Main St W., Hamilton, ON L8S 4M1, Canada
| |
Collapse
|
42
|
Lin L, Othmer HG. Improving Parameter Inference from FRAP Data: an Analysis Motivated by Pattern Formation in the Drosophila Wing Disc. Bull Math Biol 2017; 79:448-497. [PMID: 28101740 PMCID: PMC5493054 DOI: 10.1007/s11538-016-0241-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Accepted: 12/13/2016] [Indexed: 02/07/2023]
Abstract
Fluorescence recovery after photobleaching (FRAP) is used to obtain quantitative information about molecular diffusion and binding kinetics at both cell and tissue levels of organization. FRAP models have been proposed to estimate the diffusion coefficients and binding kinetic parameters of species for a variety of biological systems and experimental settings. However, it is not clear what the connection among the diverse parameter estimates from different models of the same system is, whether the assumptions made in the model are appropriate, and what the qualities of the estimates are. Here we propose a new approach to investigate the discrepancies between parameters estimated from different models. We use a theoretical model to simulate the dynamics of a FRAP experiment and generate the data that are used in various recovery models to estimate the corresponding parameters. By postulating a recovery model identical to the theoretical model, we first establish that the appropriate choice of observation time can significantly improve the quality of estimates, especially when the diffusion and binding kinetics are not well balanced, in a sense made precise later. Secondly, we find that changing the balance between diffusion and binding kinetics by changing the size of the bleaching region, which gives rise to different FRAP curves, provides a priori knowledge of diffusion and binding kinetics, which is important for model formulation. We also show that the use of the spatial information in FRAP provides better parameter estimation. By varying the recovery model from a fixed theoretical model, we show that a simplified recovery model can adequately describe the FRAP process in some circumstances and establish the relationship between parameters in the theoretical model and those in the recovery model. We then analyze an example in which the data are generated with a model of intermediate complexity and the parameters are estimated using models of greater or less complexity, and show how sensitivity analysis can be used to improve FRAP model formulation. Lastly, we show how sophisticated global sensitivity analysis can be used to detect over-fitting when using a model that is too complex.
Collapse
Affiliation(s)
- Lin Lin
- Department of Biomedical Engineering, School of Mathematics, University of Minnesota, Minneapolis, MN, 55455, USA.
- , 21 Wade Ave, Woburn, MA, 01801, USA.
| | - Hans G Othmer
- Department of Biomedical Engineering, School of Mathematics, University of Minnesota, Minneapolis, MN, 55455, USA
| |
Collapse
|
43
|
Ipiña EP, Dawson SP. The effect of reactions on the formation and readout of the gradient of Bicoid. Phys Biol 2017; 14:016002. [DOI: 10.1088/1478-3975/aa56d9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
44
|
Wang Q, Holmes WR, Sosnik J, Schilling T, Nie Q. Cell Sorting and Noise-Induced Cell Plasticity Coordinate to Sharpen Boundaries between Gene Expression Domains. PLoS Comput Biol 2017; 13:e1005307. [PMID: 28135279 PMCID: PMC5279720 DOI: 10.1371/journal.pcbi.1005307] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Accepted: 12/09/2016] [Indexed: 12/13/2022] Open
Abstract
A fundamental question in biology is how sharp boundaries of gene expression form precisely in spite of biological variation/noise. Numerous mechanisms position gene expression domains across fields of cells (e.g. morphogens), but how these domains are refined remains unclear. In some cases, domain boundaries sharpen through differential adhesion-mediated cell sorting. However, boundaries can also sharpen through cellular plasticity, with cell fate changes driven by up- or down-regulation of gene expression. In this context, we have argued that noise in gene expression can help cells transition to the correct fate. Here we investigate the efficacy of cell sorting, gene expression plasticity, and their combination in boundary sharpening using multi-scale, stochastic models. We focus on the formation of hindbrain segments (rhombomeres) in the developing zebrafish as an example, but the mechanisms investigated apply broadly to many tissues. Our results indicate that neither sorting nor plasticity is sufficient on its own to sharpen transition regions between different rhombomeres. Rather the two have complementary strengths and weaknesses, which synergize when combined to sharpen gene expression boundaries. In many developing systems, chemical gradients control the formation of segmental domains of gene expression, specifying distinct domains that go on to form different tissues and structures, in a concentration-dependent manner. These gradients are noisy however, raising the question of how sharply delineated boundaries between distinct segments form. It is crucial that developing systems be able to cope with stochasticity and generate well-defined boundaries between different segmented domains. Previous work suggests that cell sorting and cellular plasticity help sharpen boundaries between segments. However, it remains unclear how effective each of these mechanisms is and what their role in sharpening may be. Motivated by recent experimental observations, we construct a hybrid stochastic model to investigate these questions. We find that neither mechanism is sufficient on its own to sharpen boundaries between different segments. Rather, results indicate each has its own strengths and weaknesses, and that they work together synergistically to promote the development of precise, well defined segment boundaries. Formation of segmented rhombomeres in the zebrafish hindbrain, which later form different components of the central nervous system, is a motivating case for this study.
Collapse
Affiliation(s)
- Qixuan Wang
- Center for Complex Biological Systems, University of California Irvine, Irvine, CA, United States of America
- Department of Mathematics, University of California Irvine, Irvine, CA, United States of America
| | - William R. Holmes
- Department of Physics and Astronomy, Vanderbilt University, Nashville, TN, United States of America
| | - Julian Sosnik
- Center for Complex Biological Systems, University of California Irvine, Irvine, CA, United States of America
- Department of Developmental and Cell Biology, University of California Irvine, Irvine, CA, United States of America
| | - Thomas Schilling
- Center for Complex Biological Systems, University of California Irvine, Irvine, CA, United States of America
- Department of Developmental and Cell Biology, University of California Irvine, Irvine, CA, United States of America
| | - Qing Nie
- Center for Complex Biological Systems, University of California Irvine, Irvine, CA, United States of America
- Department of Mathematics, University of California Irvine, Irvine, CA, United States of America
- * E-mail:
| |
Collapse
|
45
|
Amourda C, Saunders TE. Gene expression boundary scaling and organ size regulation in the Drosophila embryo. Dev Growth Differ 2017; 59:21-32. [PMID: 28093727 DOI: 10.1111/dgd.12333] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Revised: 11/22/2016] [Accepted: 11/23/2016] [Indexed: 12/21/2022]
Abstract
How the shape and size of tissues and organs is regulated during development is a major question in developmental biology. Such regulation relies upon both intrinsic cues (such as signaling networks) and extrinsic inputs (such as from neighboring tissues). Here, we focus on pattern formation and organ development during Drosophila embryogenesis. In particular, we outline the importance of both biochemical and mechanical tissue-tissue interactions in size regulation. We describe how the Drosophila embryo can potentially provide novel insights into how shape and size are regulated during development. We focus on gene expression boundary scaling in the early embryo and how size is regulated in three organs (hindgut, trachea, and ventral nerve cord) later in development, with particular focus on the role of tissue-tissue interactions. Overall, we demonstrate that Drosophila embryogenesis provides a suitable model system for studying spatial and temporal scaling and size control in vivo.
Collapse
Affiliation(s)
- Christopher Amourda
- Mechanobiology Institute, National University of Singapore, T-Lab, #10-01, 5A Engineering Drive 1, 117411, Singapore
| | - Timothy E Saunders
- Mechanobiology Institute, National University of Singapore, T-Lab, #10-01, 5A Engineering Drive 1, 117411, Singapore.,Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, 117543, Singapore.,Institute Of Molecular and Cell Biology, 61 Biopolis Drive, Proteos, Singapore 138673, Singapore
| |
Collapse
|
46
|
Vasiev B. Modelling Chemotactic Motion of Cells in Biological Tissues. PLoS One 2016; 11:e0165570. [PMID: 27798687 PMCID: PMC5087904 DOI: 10.1371/journal.pone.0165570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Accepted: 10/13/2016] [Indexed: 11/19/2022] Open
Abstract
Developmental processes in biology are underlined by proliferation, differentiation and migration of cells. The latter two are interlinked since cellular differentiation is governed by the dynamics of morphogens which, in turn, is affected by the movement of cells. Mutual effects of morphogenetic and cell movement patterns are enhanced when the movement is due to chemotactic response of cells to the morphogens. In this study we introduce a mathematical model to analyse how this interplay can result in a steady movement of cells in a tissue and associated formation of travelling waves in a concentration field of morphogen. Using the model we have identified four chemotactic scenarios for migration of single cell or homogeneous group of cells in a tissue. Such a migration can take place if moving cells are (1) repelled by a chemical produced by themselves or (2) attracted by a chemical produced by the surrounding cells in a tissue. Furthermore, the group of cells can also move if cells in surrounding tissue are (3) repelled by a chemical produced by moving cells or (4) attracted by a chemical produced by surrounding cells themselves. The proposed mechanisms can underlie migration of cells during embryonic development as well as spread of metastatic cells.
Collapse
Affiliation(s)
- Bakhtier Vasiev
- Department of Mathematical Sciences, University of Liverpool, Liverpool, United Kingdom
| |
Collapse
|
47
|
Clark E, Akam M. Odd-paired controls frequency doubling in Drosophila segmentation by altering the pair-rule gene regulatory network. eLife 2016; 5:e18215. [PMID: 27525481 PMCID: PMC5035143 DOI: 10.7554/elife.18215] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Accepted: 08/14/2016] [Indexed: 01/08/2023] Open
Abstract
The Drosophila embryo transiently exhibits a double-segment periodicity, defined by the expression of seven 'pair-rule' genes, each in a pattern of seven stripes. At gastrulation, interactions between the pair-rule genes lead to frequency doubling and the patterning of 14 parasegment boundaries. In contrast to earlier stages of Drosophila anteroposterior patterning, this transition is not well understood. By carefully analysing the spatiotemporal dynamics of pair-rule gene expression, we demonstrate that frequency-doubling is precipitated by multiple coordinated changes to the network of regulatory interactions between the pair-rule genes. We identify the broadly expressed but temporally patterned transcription factor, Odd-paired (Opa/Zic), as the cause of these changes, and show that the patterning of the even-numbered parasegment boundaries relies on Opa-dependent regulatory interactions. Our findings indicate that the pair-rule gene regulatory network has a temporally modulated topology, permitting the pair-rule genes to play stage-specific patterning roles.
Collapse
Affiliation(s)
- Erik Clark
- Laboratory for Development and Evolution, Department of Zoology, University of Cambridge, Cambridge, United Kingdom
| | - Michael Akam
- Laboratory for Development and Evolution, Department of Zoology, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
48
|
Ma J, He F, Xie G, Deng WM. Maternal AP determinants in the Drosophila oocyte and embryo. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2016; 5:562-81. [PMID: 27253156 DOI: 10.1002/wdev.235] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Revised: 02/24/2016] [Accepted: 03/13/2016] [Indexed: 12/12/2022]
Abstract
An animal embryo cannot initiate its journey of forming a new life on its own. It must rely on maternally provided resources and inputs to kick-start its developmental process. In Drosophila, the initial polarities of the embryo along both the anterior-posterior (AP) and dorsal-ventral (DV) axes are also specified by maternal determinants. Over the past several decades, genetic and molecular studies have identified and characterized such determinants, as well as the zygotic genetic regulatory networks that control patterning in the early embryo. Extensive studies of oogenesis have also led to a detailed knowledge of the cellular and molecular interactions that control the formation of a mature egg. Despite these efforts, oogenesis and embryogenesis have been studied largely as separate problems, except for qualitative aspects with regard to maternal regulation of the asymmetric localization of maternal determinants. Can oogenesis and embryogenesis be viewed from a unified perspective at a quantitative level, and can that improve our understanding of how robust embryonic patterning is achieved? Here, we discuss the basic knowledge of the regulatory mechanisms controlling oogenesis and embryonic patterning along the AP axis. We explore properties of the maternal Bicoid gradient in relation to embryo size in search for a unified framework for robust AP patterning. WIREs Dev Biol 2016, 5:562-581. doi: 10.1002/wdev.235 For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
- Jun Ma
- Division of Biomedical Informatics, Cincinnati Children's Research Foundation, Cincinnati, OH, USA.,Division of Developmental Biology, Cincinnati Children's Research Foundation, Cincinnati, OH, USA
| | - Feng He
- Division of Biomedical Informatics, Cincinnati Children's Research Foundation, Cincinnati, OH, USA
| | - Gengqiang Xie
- Department of Biological Science, Florida State University, Tallahassee, FL, USA
| | - Wu-Min Deng
- Department of Biological Science, Florida State University, Tallahassee, FL, USA
| |
Collapse
|
49
|
Bozorgui B, Teimouri H, Kolomeisky AB. Theoretical analysis of degradation mechanisms in the formation of morphogen gradients. J Chem Phys 2016; 143:025102. [PMID: 26178130 DOI: 10.1063/1.4926461] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Fundamental biological processes of development of tissues and organs in multicellular organisms are governed by various signaling molecules, which are called morphogens. It is known that spatial and temporal variations in the concentration profiles of signaling molecules, which are frequently referred as morphogen gradients, lead to a cell differentiation via activating specific genes in a concentration-dependent manner. It is widely accepted that the establishment of the morphogen gradients involves multiple biochemical reactions and diffusion processes. One of the critical elements in the formation of morphogen gradients is a degradation of signaling molecules. We develop a new theoretical approach that provides a comprehensive description of the degradation mechanisms. It is based on the idea that the degradation works as an effective potential that drives the signaling molecules away from the source region. Utilizing the method of first-passage processes, the dynamics of the formation of morphogen gradients for various degradation mechanisms is explicitly evaluated. It is found that linear degradation processes lead to a dynamic behavior specified by times to form the morphogen gradients that depend linearly on the distance from the source. This is because the effective potential due to the degradation is quite strong. At the same time, nonlinear degradation mechanisms yield a quadratic scaling in the morphogen gradients formation times since the effective potentials are much weaker. Physical-chemical explanations of these phenomena are presented.
Collapse
Affiliation(s)
- Behnaz Bozorgui
- Department of Chemistry and Center for Theoretical Biological Physics, Rice University, Houston, Texas 77005-1892, USA
| | - Hamid Teimouri
- Department of Chemistry and Center for Theoretical Biological Physics, Rice University, Houston, Texas 77005-1892, USA
| | - Anatoly B Kolomeisky
- Department of Chemistry and Center for Theoretical Biological Physics, Rice University, Houston, Texas 77005-1892, USA
| |
Collapse
|
50
|
Xie J, Hu GH. Hydrodynamic modeling of Bicoid morphogen gradient formation in Drosophila embryo. Biomech Model Mechanobiol 2016; 15:1765-1773. [DOI: 10.1007/s10237-016-0796-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2015] [Accepted: 05/04/2016] [Indexed: 12/13/2022]
|