1
|
Kumar S, Fan X, Pattam H, Yan K, Liaw EJ, Ji J, Zaltz E, Song P, Jiang Y, Nishizaki Y, Higashi Y, Cai CL, Lu W. ZEB2 signaling is essential for ureteral smooth muscle cell differentiation and maintenance. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.23.639741. [PMID: 40060690 PMCID: PMC11888343 DOI: 10.1101/2025.02.23.639741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 03/16/2025]
Abstract
Mowat-Wilson Syndrome (MWS) is a multiple congenital anomaly syndrome caused by mutations in the ZEB2, which plays a critical role in cell fate determination and differentiation during development. Congenital anomalies of the kidney and urinary tract (CAKUT) have been reported in MWS patients. However, the role of ZEB2 in urinary tract development and the cellular and molecular mechanism underlining the CAKUT phenotypes in MWS remains unknown. We performed ZEB2 protein expression analysis in the developing mouse ureter. We generated Zeb2 ureteral mesenchyme-specific conditional knockout mice by crossing Zeb2 floxed mice with Tbx18Cre mice (Zeb2 cKO) and analyzed the urinary tract phenotypes in Zeb2 cKO mice and wild-type littermate controls by gross and histological examination. Ureteral cellular and molecular phenotypes were studied using TAGLN, ACTA2, FOXD1, POSTN, CDH1, TBX18, and SOX9 ureteral cell-specific markers. We found that ZEB2 is expressed in TBX18+ ureteral mesenchymal cells during mouse ureter development. Deletion of Zeb2 in developing ureteral mesenchymal cells causes hydroureter and hydronephrosis phenotypes, leading to obstructive uropathy, kidney failure, and early mortality. Cellular and molecular marker analyses showed that the TAGLN+ACTA2+ ureteral smooth muscle cells (SMCs) layer is not formed in Zeb2 cKO mice at E15.5, but the FOXD1+ and POSTN+ tunica adventitia cells layer is significantly expanded compared to wild-type controls. CDH1+ urothelium cells are reduced considerably in the Zeb2 cKO ureters at E15.5. Mechanistically, we found that Zeb2 cKO mice have significantly decreased TBX18 expression but an increased SOX9 expression in the developing ureter at E14.5 and E15.5 compared to wild-type littermate controls. Our results show that ZEB2 is essential for ureter development by maintaining ureteral mesenchymal cell differentiation into normal ureteral SMCs. Our study also shed new light on the pathological mechanism underlying the developmental abnormalities of the urinary tract phenotypes in MWS patients.
Collapse
Affiliation(s)
- Sudhir Kumar
- Nephrology Section, Department of Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston Medical Center, Boston, Massachusetts, 02118, USA
| | - Xueping Fan
- Nephrology Section, Department of Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston Medical Center, Boston, Massachusetts, 02118, USA
| | - Harshita Pattam
- Nephrology Section, Department of Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston Medical Center, Boston, Massachusetts, 02118, USA
| | - Kun Yan
- Nephrology Section, Department of Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston Medical Center, Boston, Massachusetts, 02118, USA
| | - Easton Jinhun Liaw
- Nephrology Section, Department of Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston Medical Center, Boston, Massachusetts, 02118, USA
| | - Jiayi Ji
- Nephrology Section, Department of Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston Medical Center, Boston, Massachusetts, 02118, USA
| | - Emily Zaltz
- Nephrology Section, Department of Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston Medical Center, Boston, Massachusetts, 02118, USA
| | - Paul Song
- Nephrology Section, Department of Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston Medical Center, Boston, Massachusetts, 02118, USA
| | - Yuqiao Jiang
- Nephrology Section, Department of Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston Medical Center, Boston, Massachusetts, 02118, USA
| | - Yuriko Nishizaki
- Laboratory of Biochemistry, Department of Health and Pharmaceutical Sciences, Yokohama University of Pharmacy, Yokohama, Kanagawa, Japan
| | - Yujiro Higashi
- Institute for Developmental Research, Aichi Human Service Center, Kasugai, Aichi, Japan
| | - Chen-Leng Cai
- Center for Developmental and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Weining Lu
- Nephrology Section, Department of Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston Medical Center, Boston, Massachusetts, 02118, USA
| |
Collapse
|
2
|
Di Fabrizio D, Tavolario I, Rossi L, Nino F, Bindi E, Cobellis G. Combined Minimally Invasive Treatment of Pyeloureteral Junction Obstruction and Primary Obstructive Megaureter in Children: Case Report and Literature Review. CHILDREN (BASEL, SWITZERLAND) 2024; 11:407. [PMID: 38671628 PMCID: PMC11049338 DOI: 10.3390/children11040407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 03/14/2024] [Accepted: 03/27/2024] [Indexed: 04/28/2024]
Abstract
INTRODUCTION In children, the association of ipsilateral pyeloureteral junction obstruction (PUJO) and ureterovesical junction obstruction (UVJO) is a rare malformation with a non-standardized treatment. We report a case of PUJO and UVJO treated by a combined minimally invasive surgical treatment to resolve the double urinary obstruction. The current literature was also reviewed. CASE REPORT AND REVIEW A two-month-old boy, without antenatal and postnatal signs of urinary tract anomalies, was hospitalized presenting right hydronephrosis, perirenal fluid effusion, and ascites. An acute pelvic rupture was suspected, and a retrograde pyelogram was performed, showing a primary obstructive megaureter (POM) associated with a corkscrew pyeloureteral junction. The impossibility to place a double J catheter through the pyeloureteral junction led us to achieve percutaneous nephrostomy and an abdominal drain placement. Three months later, the patient underwent a combined high-pressure balloon ureterovesical junction dilation and retroperitoneoscopic Anderson Hynes one-trocar-assisted pyeloplasty (OTAP). The literature search identified 110 children experiencing double urinary tract obstruction. All authors agreed on the difficulty to diagnose both obstructions preoperatively, but there is still no consensus on which obstruction should be relieved earlier, because the alteration in urinary vascularity during a double surgery could damage the ureter. CONCLUSIONS The simultaneous occurrence of UPJO and UVJO is rare, with a challenging diagnosis. Prompt identification and timely surgical intervention are crucial to mitigate the risk of renal function loss attributable to obstruction and infection. Drawing from our expertise and the analysis of the existing literature, we propose employing a simultaneous double minimally invasive strategy in order to optimize the preservation of ureteral vascularity. This approach entails performing a minimally invasive pyeloplasty for the PUJ and utilizing high-pressure balloon dilatation for the UVJ.
Collapse
Affiliation(s)
- Donatella Di Fabrizio
- Pediatric Surgery Unit, Salesi Children’s Hospital, 60123 Ancona, Italy; (I.T.); (L.R.); (F.N.); (E.B.); (G.C.)
| | - Irene Tavolario
- Pediatric Surgery Unit, Salesi Children’s Hospital, 60123 Ancona, Italy; (I.T.); (L.R.); (F.N.); (E.B.); (G.C.)
| | - Lorenzo Rossi
- Pediatric Surgery Unit, Salesi Children’s Hospital, 60123 Ancona, Italy; (I.T.); (L.R.); (F.N.); (E.B.); (G.C.)
| | - Fabiano Nino
- Pediatric Surgery Unit, Salesi Children’s Hospital, 60123 Ancona, Italy; (I.T.); (L.R.); (F.N.); (E.B.); (G.C.)
| | - Edoardo Bindi
- Pediatric Surgery Unit, Salesi Children’s Hospital, 60123 Ancona, Italy; (I.T.); (L.R.); (F.N.); (E.B.); (G.C.)
- Department of Specialized Clinical and Odontostomatological Sciences, University Politecnica of Marche, 60121 Ancona, Italy
| | - Giovanni Cobellis
- Pediatric Surgery Unit, Salesi Children’s Hospital, 60123 Ancona, Italy; (I.T.); (L.R.); (F.N.); (E.B.); (G.C.)
- Department of Specialized Clinical and Odontostomatological Sciences, University Politecnica of Marche, 60121 Ancona, Italy
| |
Collapse
|
3
|
Khan K, Ahram DF, Liu YP, Westland R, Sampogna RV, Katsanis N, Davis EE, Sanna-Cherchi S. Multidisciplinary approaches for elucidating genetics and molecular pathogenesis of urinary tract malformations. Kidney Int 2022; 101:473-484. [PMID: 34780871 PMCID: PMC8934530 DOI: 10.1016/j.kint.2021.09.034] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 09/15/2021] [Accepted: 09/30/2021] [Indexed: 12/28/2022]
Abstract
Advances in clinical diagnostics and molecular tools have improved our understanding of the genetically heterogeneous causes underlying congenital anomalies of kidney and urinary tract (CAKUT). However, despite a sharp incline of CAKUT reports in the literature within the past 2 decades, there remains a plateau in the genetic diagnostic yield that is disproportionate to the accelerated ability to generate robust genome-wide data. Explanations for this observation include (i) diverse inheritance patterns with incomplete penetrance and variable expressivity, (ii) rarity of single-gene drivers such that large sample sizes are required to meet the burden of proof, and (iii) multigene interactions that might produce either intra- (e.g., copy number variants) or inter- (e.g., effects in trans) locus effects. These challenges present an opportunity for the community to implement innovative genetic and molecular avenues to explain the missing heritability and to better elucidate the mechanisms that underscore CAKUT. Here, we review recent multidisciplinary approaches at the intersection of genetics, genomics, in vivo modeling, and in vitro systems toward refining a blueprint for overcoming the diagnostic hurdles that are pervasive in urinary tract malformation cohorts. These approaches will not only benefit clinical management by reducing age at molecular diagnosis and prompting early evaluation for comorbid features but will also serve as a springboard for therapeutic development.
Collapse
Affiliation(s)
- Kamal Khan
- Center for Human Disease Modeling, Duke University, Durham, North Carolina, USA.,Stanley Manne Children’s Research Institute, Ann & Robert H. Lurie Children’s Hospital of Chicago, Chicago, Illinois, USA (current address)
| | - Dina F. Ahram
- Division of Nephrology, Columbia University, New York, USA
| | - Yangfan P. Liu
- Center for Human Disease Modeling, Duke University, Durham, North Carolina, USA
| | - Rik Westland
- Division of Nephrology, Columbia University, New York, USA.,Department of Pediatric Nephrology, Amsterdam UMC- Emma Children’s Hospital, Amsterdam, NL
| | | | - Nicholas Katsanis
- Center for Human Disease Modeling, Duke University, Durham, North Carolina, USA; Stanley Manne Children's Research Institute, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, Illinois, USA (current address); Department of Pediatrics, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA; Department of Cell and Developmental Biology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA.
| | - Erica E. Davis
- Center for Human Disease Modeling, Duke University, Durham, North Carolina, USA.,Stanley Manne Children’s Research Institute, Ann & Robert H. Lurie Children’s Hospital of Chicago, Chicago, Illinois, USA (current address).,Department of Pediatrics and Department of Cell and Molecular Biology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA.,To whom correspondence should be addressed: ADDRESS CORRESPONDENCE TO: Simone Sanna-Cherchi, MD, Division of Nephrology, Columbia University, College of Physicians and Surgeons, New York, NY 10032, USA; Phone: 212-851-4925; Fax: 212-851-5461; . Erica E. Davis, PhD, Stanley Manne Children’s Research Institute, Ann & Robert H. Lurie Children’s Hospital of Chicago, Chicago, IL 60611, USA; Phone: 312-503-7662; Fax: 312-503-7343; , Nicholas Katsanis, PhD, Stanley Manne Children’s Research Institute, Ann & Robert H. Lurie Children’s Hospital of Chicago, Chicago, IL 60611, USA; Phone: 312-503-7339; Fax: 312-503-7343;
| | - Simone Sanna-Cherchi
- Department of Medicine, Division of Nephrology, Columbia University Irving Medical Center, New York, New York, USA.
| |
Collapse
|
4
|
Xu J, Li J, Ramakrishnan A, Yan H, Shen L, Xu PX. Six1 and Six2 of the Sine Oculis Homeobox Subfamily are Not Functionally Interchangeable in Mouse Nephron Formation. Front Cell Dev Biol 2022; 10:815249. [PMID: 35178390 PMCID: PMC8844495 DOI: 10.3389/fcell.2022.815249] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 01/05/2022] [Indexed: 11/25/2022] Open
Abstract
The vertebrate Six1 and Six2 arose by gene duplication from the Drosophila sine oculis and have since diverged in their developmental expression patterns. Both genes are expressed in nephron progenitors of human fetal kidneys, and mutations in SIX1 or SIX2 cause branchio-oto-renal syndrome or renal hypodysplasia respectively. Since ∼80% of SIX1 target sites are shared by SIX2, it is speculated that SIX1 and SIX2 may be functionally interchangeable by targeting common downstream genes. In contrast, in mouse kidneys, Six1 expression in the metanephric mesenchyme lineage overlaps with Six2 only transiently, while Six2 expression is maintained in the nephron progenitors throughout development. This non-overlapping expression between Six1 and Six2 in mouse nephron progenitors promoted us to examine if Six1 can replace Six2. Surprisingly, forced expression of Six1 failed to rescue Six2-deficient kidney phenotype. We found that Six1 mediated Eya1 nuclear translocation and inhibited premature epithelialization of the progenitors but failed to rescue the proliferation defects and cell death caused by Six2-knockout. Genome-wide binding analyses showed that Six1 selectively occupied a small subset of Six2 target sites, but many Six2-bound loci crucial to the renewal and differentiation of nephron progenitors lacked Six1 occupancy. Altogether, these data indicate that Six1 cannot substitute Six2 to drive nephrogenesis in mouse kidneys, thus demonstrating that the difference in physiological roles of Six1 and Six2 in kidney development stems from both transcriptional regulations of the genes and divergent biochemical properties of the proteins.
Collapse
Affiliation(s)
- Jinshu Xu
- Department of Genetics and Genomic Sciences, New York, NY, United States
| | - Jun Li
- Department of Genetics and Genomic Sciences, New York, NY, United States
| | | | - Hanen Yan
- Department of Genetics and Genomic Sciences, New York, NY, United States
| | - Li Shen
- Department of Neurosciences, New York, NY, United States
| | - Pin-Xian Xu
- Department of Genetics and Genomic Sciences, New York, NY, United States.,Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| |
Collapse
|
5
|
Proteomic analysis identifies ZMYM2 as endogenous binding partner of TBX18 protein in 293 and A549 cells. Biochem J 2021; 479:91-109. [PMID: 34935912 DOI: 10.1042/bcj20210642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 12/15/2021] [Accepted: 12/21/2021] [Indexed: 11/17/2022]
Abstract
The TBX18 transcription factor regulates patterning and differentiation programs in the primordia of many organs yet the molecular complexes in which TBX18 resides to exert its crucial transcriptional function in these embryonic contexts have remained elusive. Here, we used 293 and A549 cells as an accessible cell source to search for endogenous protein interaction partners of TBX18 by an unbiased proteomic approach. We tagged endogenous TBX18 by CRISPR/Cas9 targeted genome editing with a triple FLAG peptide, and identified by anti-FLAG affinity purification and subsequent LC-MS analysis the ZMYM2 protein to be statistically enriched together with TBX18 in both 293 and A549 nuclear extracts. Using a variety of assays, we confirmed binding of TBX18 to ZMYM2, a component of the CoREST transcriptional corepressor complex. Tbx18 is coexpressed with Zmym2 in the mesenchymal compartment of the developing ureter of the mouse, and mutations in TBX18and in ZMYM2 were recently linked to congenital anomalies in the kidney and urinary tract (CAKUT) in line with a possible in vivo relevance of TBX18-ZMYM2 protein interaction in ureter development.
Collapse
|
6
|
Li J, Xu J, Jiang H, Zhang T, Ramakrishnan A, Shen L, Xu PX. Chromatin Remodelers Interact with Eya1 and Six2 to Target Enhancers to Control Nephron Progenitor Cell Maintenance. J Am Soc Nephrol 2021; 32:2815-2833. [PMID: 34716243 PMCID: PMC8806105 DOI: 10.1681/asn.2021040525] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 08/26/2021] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND Eya1 is a critical regulator of nephron progenitor cell specification and interacts with Six2 to promote NPC self-renewal. Haploinsufficiency of these genes causes kidney hypoplasia. However, how the Eya1-centered network operates remains unknown. METHODS We engineered a 2×HA-3×Flag-Eya1 knock-in mouse line and performed coimmunoprecipitation with anti-HA or -Flag to precipitate the multitagged-Eya1 and its associated proteins. Loss-of-function, transcriptome profiling, and genome-wide binding analyses for Eya1's interacting chromatin-remodeling ATPase Brg1 were carried out. We assayed the activity of the cis-regulatory elements co-occupied by Brg1/Six2 in vivo. RESULTS Eya1 and Six2 interact with the Brg1-based SWI/SNF complex during kidney development. Knockout of Brg1 results in failure of metanephric mesenchyme formation and depletion of nephron progenitors, which has been linked to loss of Eya1 expression. Transcriptional profiling shows conspicuous downregulation of important regulators for nephrogenesis in Brg1-deficient cells, including Lin28, Pbx1, and Dchs1-Fat4 signaling, but upregulation of podocyte lineage, oncogenic, and cell death-inducing genes, many of which Brg1 targets. Genome-wide binding analysis identifies Brg1 occupancy to a distal enhancer of Eya1 that drives nephron progenitor-specific expression. We demonstrate that Brg1 enrichment to two distal intronic enhancers of Pbx1 and a proximal promoter region of Mycn requires Six2 activity and that these Brg1/Six2-bound enhancers govern nephron progenitor-specific expression in response to Six2 activity. CONCLUSIONS Our results reveal an essential role for Brg1, its downstream pathways, and its interaction with Eya1-Six2 in mediating the fine balance among the self-renewal, differentiation, and survival of nephron progenitors.
Collapse
Affiliation(s)
- Jun Li
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Jinshu Xu
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Huihui Jiang
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Ting Zhang
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Aarthi Ramakrishnan
- Department of Neurosciences, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Li Shen
- Department of Neurosciences, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Pin-Xian Xu
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York,Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, New York
| |
Collapse
|
7
|
Development of a novel prognostic signature for predicting the overall survival of bladder cancer patients. Biosci Rep 2021; 40:224923. [PMID: 32441304 PMCID: PMC7286875 DOI: 10.1042/bsr20194432] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 05/13/2020] [Accepted: 05/14/2020] [Indexed: 12/21/2022] Open
Abstract
Background: Bladder cancer is one of the most common malignancies. So far, no effective biomarker for bladder cancer prognosis has been identified. Aberrant DNA methylation is frequently observed in the bladder cancer and holds considerable promise as a biomarker for predicting the overall survival (OS) of patients. Materials and methods: We downloaded the DNA methylation and transcriptome data for bladder cancer from The Cancer Genome Atlas (TCGA), a public database, screened hypo-methylated and up-regulated genes, similarly, hyper-methylation with low expression genes, then retrieved the relevant methylation sites. Cox regression analysis was used to identify a nine-methylation site signature of a training group. Predictive ability was validated in a test group by receiver operating characteristic (ROC) analysis. Results: We identified nine bladder cancer-specific methylation sites as potential prognostic biomarkers and established a risk score system based on the methylation site signature to evaluate the OS. The performance of the signature was accurate, with area under curve was 0.73 in the training group and 0.71 in the test group. Taking clinical features into consideration, we constructed a nomogram consisting of the nine-methylation site signature and patients’ clinical variables, and found that the signature was an independent risk factor. Conclusions: Overall, the significant nine methylation sites could be novel prediction biomarkers, which could aid in treatment and also predict the overall survival likelihoods of bladder cancer patients.
Collapse
|
8
|
Li J, Zhang T, Ramakrishnan A, Fritzsch B, Xu J, Wong EYM, Loh YHE, Ding J, Shen L, Xu PX. Dynamic changes in cis-regulatory occupancy by Six1 and its cooperative interactions with distinct cofactors drive lineage-specific gene expression programs during progressive differentiation of the auditory sensory epithelium. Nucleic Acids Res 2020; 48:2880-2896. [PMID: 31956913 PMCID: PMC7102962 DOI: 10.1093/nar/gkaa012] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 12/16/2019] [Accepted: 01/17/2020] [Indexed: 12/23/2022] Open
Abstract
The transcription factor Six1 is essential for induction of sensory cell fate and formation of auditory sensory epithelium, but how it activates gene expression programs to generate distinct cell-types remains unknown. Here, we perform genome-wide characterization of Six1 binding at different stages of auditory sensory epithelium development and find that Six1-binding to cis-regulatory elements changes dramatically at cell-state transitions. Intriguingly, Six1 pre-occupies enhancers of cell-type-specific regulators and effectors before their expression. We demonstrate in-vivo cell-type-specific activity of Six1-bound novel enhancers of Pbx1, Fgf8, Dusp6, Vangl2, the hair-cell master regulator Atoh1 and a cascade of Atoh1's downstream factors, including Pou4f3 and Gfi1. A subset of Six1-bound sites carry consensus-sequences for its downstream factors, including Atoh1, Gfi1, Pou4f3, Gata3 and Pbx1, all of which physically interact with Six1. Motif analysis identifies RFX/X-box as one of the most significantly enriched motifs in Six1-bound sites, and we demonstrate that Six1-RFX proteins cooperatively regulate gene expression through binding to SIX:RFX-motifs. Six1 targets a wide range of hair-bundle regulators and late Six1 deletion disrupts hair-bundle polarity. This study provides a mechanistic understanding of how Six1 cooperates with distinct cofactors in feedforward loops to control lineage-specific gene expression programs during progressive differentiation of the auditory sensory epithelium.
Collapse
Affiliation(s)
- Jun Li
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Ting Zhang
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Aarthi Ramakrishnan
- Department of Neurosciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Bernd Fritzsch
- Department of Biology, University of Iowa, Iowa, IA 52242-1324
| | - Jinshu Xu
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Elaine Y M Wong
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Yong-Hwee Eddie Loh
- Department of Neurosciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Jianqiang Ding
- Department of Infectious Diseases, Shunde Hospital, Southern Medical University, Shunde 528308, Guangdong, China
| | - Li Shen
- Department of Neurosciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Pin-Xian Xu
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.,Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| |
Collapse
|
9
|
Forneris N, Burlak C. Xenotransplantation literature update, May/June 2019. Xenotransplantation 2019; 26:e12547. [PMID: 31392783 DOI: 10.1111/xen.12547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Accepted: 07/24/2019] [Indexed: 11/30/2022]
Affiliation(s)
- Nicole Forneris
- Department of Surgery, University of Minnesota Medical School, Minneapolis, Minnesota
| | - Christopher Burlak
- Department of Surgery, University of Minnesota Medical School, Minneapolis, Minnesota
| |
Collapse
|
10
|
Wang J, Liu M, Zhao L, Li Y, Zhang M, Jin Y, Xiong Q, Liu X, Zhang L, Jiang H, Chen Q, Wang C, You Z, Yang H, Cao C, Dai Y, Li R. Disabling of nephrogenesis in porcine embryos via CRISPR/Cas9-mediated SIX1 and SIX4 gene targeting. Xenotransplantation 2019; 26:e12484. [PMID: 30623494 DOI: 10.1111/xen.12484] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 10/24/2018] [Accepted: 12/06/2018] [Indexed: 12/20/2022]
Abstract
SIX1 and SIX4 genes play critical roles in kidney development. We evaluated the effect of these genes on pig kidney development by generating SIX1-/- and SIX1-/- /SIX4-/- pig foetuses using CRISPR/Cas9 and somatic cell nuclear transfer. We obtained 3 SIX1-/- foetuses and 16 SIX1-/- /SIX4-/- foetuses at different developmental stages. The SIX1-/- foetuses showed a migration block of the left kidney and a smaller size for both kidneys. The ureteric bud failed to form the normal branching and collecting system. Abnormal expressions of kidney development-related genes (downregulation of PAX2, PAX8, and BMP4 and upregulation of EYA1 and SALL1) were also observed in SIX1-/- foetal kidneys and confirmed in vitro in porcine kidney epithelial cells (PK15) following SIX1 gene deletion. The SIX1-/- /SIX4-/- foetuses exhibited more severe phenotypes, with most foetuses showing retarded development at early stages of gestation. The kidney developed only to the initial stage of metanephros formation. These results demonstrated that SIX1 and SIX4 are key genes for porcine metanephros development. The creation of kidney-deficient porcine foetuses provides a platform for generating human kidneys inside pigs using blastocyst complementation.
Collapse
Affiliation(s)
- Junzheng Wang
- Jiangsu Key Laboratory of Xenotransplantation, Nanjing Medical University, Nanjing, China
| | - Manling Liu
- Jiangsu Key Laboratory of Xenotransplantation, Nanjing Medical University, Nanjing, China
| | - Lihua Zhao
- Jiangsu Key Laboratory of Xenotransplantation, Nanjing Medical University, Nanjing, China
| | - Yanru Li
- Jiangsu Key Laboratory of Xenotransplantation, Nanjing Medical University, Nanjing, China.,State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China
| | - Manling Zhang
- Jiangsu Key Laboratory of Xenotransplantation, Nanjing Medical University, Nanjing, China.,Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing, China
| | - Yong Jin
- Jiangsu Key Laboratory of Xenotransplantation, Nanjing Medical University, Nanjing, China.,Department of Nephrology, The Affiliated Sir Run Run Hospital, Nanjing Medical University, Nanjing, China
| | - Qiang Xiong
- Jiangsu Key Laboratory of Xenotransplantation, Nanjing Medical University, Nanjing, China
| | - Xiaorui Liu
- Jiangsu Key Laboratory of Xenotransplantation, Nanjing Medical University, Nanjing, China
| | - Lining Zhang
- Jiangsu Key Laboratory of Xenotransplantation, Nanjing Medical University, Nanjing, China
| | - Haibin Jiang
- Jiangsu Key Laboratory of Xenotransplantation, Nanjing Medical University, Nanjing, China
| | - Qiaoyu Chen
- Jiangsu Key Laboratory of Xenotransplantation, Nanjing Medical University, Nanjing, China
| | - Chenyu Wang
- Jiangsu Key Laboratory of Xenotransplantation, Nanjing Medical University, Nanjing, China
| | - Zhihuan You
- Jiangsu Key Laboratory of Xenotransplantation, Nanjing Medical University, Nanjing, China
| | - Haiyuan Yang
- Jiangsu Key Laboratory of Xenotransplantation, Nanjing Medical University, Nanjing, China.,Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing, China
| | - Changchun Cao
- Department of Nephrology, The Affiliated Sir Run Run Hospital, Nanjing Medical University, Nanjing, China
| | - Yifan Dai
- Jiangsu Key Laboratory of Xenotransplantation, Nanjing Medical University, Nanjing, China.,State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China.,Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing, China
| | - Rongfeng Li
- Jiangsu Key Laboratory of Xenotransplantation, Nanjing Medical University, Nanjing, China.,State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China.,Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing, China
| |
Collapse
|
11
|
Rivera-Reyes R, Kleppa MJ, Kispert A. Proteomic analysis identifies transcriptional cofactors and homeobox transcription factors as TBX18 binding proteins. PLoS One 2018; 13:e0200964. [PMID: 30071041 PMCID: PMC6071992 DOI: 10.1371/journal.pone.0200964] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Accepted: 05/30/2018] [Indexed: 01/04/2023] Open
Abstract
The TBX18 transcription factor is a crucial developmental regulator of several organ systems in mice, and loss of its transcriptional repression activity causes dilative nephropathies in humans. The molecular complexes with which TBX18 regulates transcription are poorly understood prompting us to use an unbiased proteomic approach to search for protein interaction partners. Using overexpressed dual tagged TBX18 as bait, we identified by tandem purification and subsequent LC-MS analysis TBX18 binding proteins in 293 cells. Clustering of functional annotations of the identified proteins revealed a highly significant enrichment of transcriptional cofactors and homeobox transcription factors. Using nuclear recruitment assays as well as GST pull-downs, we validated CBFB, GAR1, IKZF2, NCOA5, SBNO2 and CHD7 binding to the T-box of TBX18 in vitro. From these transcriptional cofactors, CBFB, CHD7 and IKZF2 enhanced the transcriptional repression of TBX18, while NCOA5 and SBNO2 dose-dependently relieved it. All tested homeobox transcription factors interacted with the T-box of TBX18 in pull-down assays, with members of the Pbx and Prrx subfamilies showing coexpression with Tbx18 in the developing ureter of the mouse. In summary, we identified and characterized new TBX18 binding partners that may influence the transcriptional activity of TBX18 in vivo.
Collapse
Affiliation(s)
| | - Marc-Jens Kleppa
- Institut für Molekularbiologie, Medizinische Hochschule Hannover, Hannover, Germany
| | - Andreas Kispert
- Institut für Molekularbiologie, Medizinische Hochschule Hannover, Hannover, Germany
- * E-mail:
| |
Collapse
|
12
|
Retinoic acid signaling maintains epithelial and mesenchymal progenitors in the developing mouse ureter. Sci Rep 2017; 7:14803. [PMID: 29093497 PMCID: PMC5665985 DOI: 10.1038/s41598-017-14790-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Accepted: 10/16/2017] [Indexed: 12/27/2022] Open
Abstract
The differentiated cell types of the mature ureter arise from the distal ureteric bud epithelium and its surrounding mesenchyme. Uncommitted epithelial cells first become intermediate cells from which both basal and superficial cells develop. Mesenchymal progenitors give rise to separated layers of adventitial fibrocytes, smooth muscle cells and lamina propria fibrocytes. How progenitor expansion and differentiation are balanced is poorly understood. Here, we addressed the role of retinoic acid (RA) signaling in these programs. Using expression analysis of components and target genes, we show that pathway activity is restricted to the mesenchymal and epithelial progenitor pools. Inhibition of RA signaling in ureter explant cultures resulted in tissue hypoplasia with a relative expansion of smooth muscle cells at the expense of lamina propria fibroblasts in the mesenchyme, and of superficial cells at the expense of intermediate cells in the ureteric epithelium. Administration of RA led to a slight reduction of smooth muscle cells, and almost completely prevented differentiation of intermediate cells into basal and superficial cells. We identified cellular programs and transcriptional targets of RA signaling that may account for this activity. We conclude that RA signaling is required and sufficient to maintain mesenchymal and epithelial progenitors in early ureter development.
Collapse
|
13
|
Vivante A, Mann N, Yonath H, Weiss AC, Getwan M, Kaminski MM, Bohnenpoll T, Teyssier C, Chen J, Shril S, van der Ven AT, Ityel H, Schmidt JM, Widmeier E, Bauer SB, Sanna-Cherchi S, Gharavi AG, Lu W, Magen D, Shukrun R, Lifton RP, Tasic V, Stanescu HC, Cavaillès V, Kleta R, Anikster Y, Dekel B, Kispert A, Lienkamp SS, Hildebrandt F. A Dominant Mutation in Nuclear Receptor Interacting Protein 1 Causes Urinary Tract Malformations via Dysregulation of Retinoic Acid Signaling. J Am Soc Nephrol 2017; 28:2364-2376. [PMID: 28381549 DOI: 10.1681/asn.2016060694] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Accepted: 02/20/2017] [Indexed: 12/31/2022] Open
Abstract
Congenital anomalies of the kidney and urinary tract (CAKUT) are the most common cause of CKD in the first three decades of life. However, for most patients with CAKUT, the causative mutation remains unknown. We identified a kindred with an autosomal dominant form of CAKUT. By whole-exome sequencing, we identified a heterozygous truncating mutation (c.279delG, p.Trp93fs*) of the nuclear receptor interacting protein 1 gene (NRIP1) in all seven affected members. NRIP1 encodes a nuclear receptor transcriptional cofactor that directly interacts with the retinoic acid receptors (RARs) to modulate retinoic acid transcriptional activity. Unlike wild-type NRIP1, the altered NRIP1 protein did not translocate to the nucleus, did not interact with RARα, and failed to inhibit retinoic acid-dependent transcriptional activity upon expression in HEK293 cells. Notably, we also showed that treatment with retinoic acid enhanced NRIP1 binding to RARα RNA in situ hybridization confirmed Nrip1 expression in the developing urogenital system of the mouse. In explant cultures of embryonic kidney rudiments, retinoic acid stimulated Nrip1 expression, whereas a pan-RAR antagonist strongly reduced it. Furthermore, mice heterozygous for a null allele of Nrip1 showed a CAKUT-spectrum phenotype. Finally, expression and knockdown experiments in Xenopus laevis confirmed an evolutionarily conserved role for NRIP1 in renal development. These data indicate that dominant NRIP1 mutations can cause CAKUT by interference with retinoic acid transcriptional signaling, shedding light on the well documented association between abnormal vitamin A levels and renal malformations in humans, and suggest a possible gene-environment pathomechanism in this disease.
Collapse
Affiliation(s)
- Asaf Vivante
- Departments of Medicine and.,Talpiot Medical Leadership Program, Sheba Medical Center, Tel-Hashomer, Israel
| | | | - Hagith Yonath
- Department of Internal Medicine A and Genetics Institute, Sheba Medical Center and Sackler Faculty of Medicine Tel Aviv University, Tel Aviv, Israel
| | - Anna-Carina Weiss
- Institut für Molekularbiologie, Medizinische Hochschule Hannover, Hannover, Germany
| | - Maike Getwan
- Department of Medicine, Renal Division, University Medical Center, Faculty of Medicine, and
| | - Michael M Kaminski
- Department of Medicine, Renal Division, University Medical Center, Faculty of Medicine, and
| | - Tobias Bohnenpoll
- Institut für Molekularbiologie, Medizinische Hochschule Hannover, Hannover, Germany
| | - Catherine Teyssier
- Institut de Recherche en Cancérologie de Montpellier (IRCM), Montpellier, France; Institut National de la Santé et de la Recherche Médicale (INSERM), Montpellier, France; Université Montpellier, Montpellier, France; Institut régional du Cancer de Montpellier, Montpellier, France
| | | | | | | | | | | | - Eugen Widmeier
- Departments of Medicine and.,Department of Medicine, Renal Division, University Medical Center, Faculty of Medicine, and
| | - Stuart B Bauer
- Urology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts
| | | | - Ali G Gharavi
- Division of Nephrology, Columbia University, New York, New York
| | - Weining Lu
- Renal Section, Department of Medicine, Boston University Medical Center, Boston, Massachusetts
| | - Daniella Magen
- Pediatric Nephrology Institute, Rambam Health Care Campus, and Technion-Israel Institute of Technology, Haifa, Israel
| | - Rachel Shukrun
- Department of Pediatrics, Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Tel-Hashomer, Israel and Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Richard P Lifton
- Department of Human Genetics, Yale University School of Medicine, New Haven, Connecticut.,Howard Hughes Medical Institute, Chevy Chase, Maryland
| | - Velibor Tasic
- Department of Pediatric Nephrology, Medical Faculty Skopje, University Children's Hospital, Skopje, Macedonia; and
| | - Horia C Stanescu
- Centre for Nephrology, University College London, London, United Kingdom
| | - Vincent Cavaillès
- Institut de Recherche en Cancérologie de Montpellier (IRCM), Montpellier, France; Institut National de la Santé et de la Recherche Médicale (INSERM), Montpellier, France; Université Montpellier, Montpellier, France; Institut régional du Cancer de Montpellier, Montpellier, France
| | - Robert Kleta
- Centre for Nephrology, University College London, London, United Kingdom
| | - Yair Anikster
- Department of Pediatrics, Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Tel-Hashomer, Israel and Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Benjamin Dekel
- Department of Pediatrics, Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Tel-Hashomer, Israel and Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Andreas Kispert
- Institut für Molekularbiologie, Medizinische Hochschule Hannover, Hannover, Germany
| | - Soeren S Lienkamp
- Department of Medicine, Renal Division, University Medical Center, Faculty of Medicine, and.,Center for Biological Signaling Studies (BIOSS), Albert Ludwig University, Freiburg, Germany
| | | |
Collapse
|
14
|
Abstract
T-box (Tbx) genes encode an ancient group of transcription factors that play important roles in patterning, specification, proliferation, and differentiation programs in vertebrate organogenesis. This is testified by severe organ malformation syndromes in mice homozygous for engineered null alleles of specific T-box genes and by the large number of human inherited organ-specific diseases that have been linked to mutations in these genes. One of the organ systems that has not been associated with loss of specific T-box gene function in human disease for long is the excretory system. However, this has changed with the finding that mutations in TBX18, a member of a vertebrate-specific subgroup within the Tbx1-subfamily of T-box transcription factor genes, cause congenital anomalies of the kidney and urinary tract, predominantly hydroureter and ureteropelvic junction obstruction. Gene expression analyses, loss-of-function studies, and lineage tracing in the mouse suggest a primary role for this transcription factor in specifying the ureteric mesenchyme in the common anlage of the kidney, the ureter, and the bladder. We review the function of Tbx18 in ureterogenesis and discuss the body of evidence that Tbx18 and other members of the T-box gene family, namely, Tbx1, Tbx2, Tbx3, and Tbx20, play additional roles in development and homeostasis of other components of the excretory system in vertebrates.
Collapse
|
15
|
Bolt CC, Negi S, Guimarães-Camboa N, Zhang H, Troy JM, Lu X, Kispert A, Evans SM, Stubbs L. Tbx18 Regulates the Differentiation of Periductal Smooth Muscle Stroma and the Maintenance of Epithelial Integrity in the Prostate. PLoS One 2016; 11:e0154413. [PMID: 27120339 PMCID: PMC4847854 DOI: 10.1371/journal.pone.0154413] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2016] [Accepted: 04/13/2016] [Indexed: 11/18/2022] Open
Abstract
The T-box transcription factor TBX18 is essential to mesenchymal cell differentiation in several tissues and Tbx18 loss-of-function results in dramatic organ malformations and perinatal lethality. Here we demonstrate for the first time that Tbx18 is required for the normal development of periductal smooth muscle stromal cells in prostate, particularly in the anterior lobe, with a clear impact on prostate health in adult mice. Prostate abnormalities are only subtly apparent in Tbx18 mutants at birth; to examine postnatal prostate development we utilized a relatively long-lived hypomorphic mutant and a novel conditional Tbx18 allele. Similar to the ureter, cells that fail to express Tbx18 do not condense normally into smooth muscle cells of the periductal prostatic stroma. However, in contrast to ureter, the periductal stromal cells in mutant prostate assume a hypertrophic, myofibroblastic state and the adjacent epithelium becomes grossly disorganized. To identify molecular events preceding the onset of this pathology, we compared gene expression in the urogenital sinus (UGS), from which the prostate develops, in Tbx18-null and wild type littermates at two embryonic stages. Genes that regulate cell proliferation, smooth muscle differentiation, prostate epithelium development, and inflammatory response were significantly dysregulated in the mutant urogenital sinus around the time that Tbx18 is first expressed in the wild type UGS, suggesting a direct role in regulating those genes. Together, these results argue that Tbx18 is essential to the differentiation and maintenance of the prostate periurethral mesenchyme and that it indirectly regulates epithelial differentiation through control of stromal-epithelial signaling.
Collapse
Affiliation(s)
- C. Chase Bolt
- Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America, 61801
- Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America, 61801
| | - Soumya Negi
- Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America, 61801
- Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America, 61801
| | - Nuno Guimarães-Camboa
- Skaggs School of Pharmacy, Department of Medicine, and Department of Pharmacology, University of California San Diego, La Jolla, CA, United States of America, 92037
| | - Huimin Zhang
- Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America, 61801
- Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America, 61801
| | - Joseph M. Troy
- Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America, 61801
- Illinois Informatics Institute, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America, 61801
| | - Xiaochen Lu
- Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America, 61801
- Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America, 61801
| | - Andreas Kispert
- Institut für Molekularbiologie, OE5250, Medizinische Hochschule Hannover, Carl-Neuberg-Str. 1, D-30625 Hannover, Germany
| | - Sylvia M. Evans
- Skaggs School of Pharmacy, Department of Medicine, and Department of Pharmacology, University of California San Diego, La Jolla, CA, United States of America, 92037
| | - Lisa Stubbs
- Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America, 61801
- Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America, 61801
- Illinois Informatics Institute, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America, 61801
- * E-mail:
| |
Collapse
|
16
|
Vivante A, Kleppa MJ, Schulz J, Kohl S, Sharma A, Chen J, Shril S, Hwang DY, Weiss AC, Kaminski MM, Shukrun R, Kemper MJ, Lehnhardt A, Beetz R, Sanna-Cherchi S, Verbitsky M, Gharavi AG, Stuart HM, Feather SA, Goodship JA, Goodship THJ, Woolf AS, Westra SJ, Doody DP, Bauer SB, Lee RS, Adam RM, Lu W, Reutter HM, Kehinde EO, Mancini EJ, Lifton RP, Tasic V, Lienkamp SS, Jüppner H, Kispert A, Hildebrandt F. Mutations in TBX18 Cause Dominant Urinary Tract Malformations via Transcriptional Dysregulation of Ureter Development. Am J Hum Genet 2015; 97:291-301. [PMID: 26235987 DOI: 10.1016/j.ajhg.2015.07.001] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Accepted: 07/07/2015] [Indexed: 12/22/2022] Open
Abstract
Congenital anomalies of the kidneys and urinary tract (CAKUT) are the most common cause of chronic kidney disease in the first three decades of life. Identification of single-gene mutations that cause CAKUT permits the first insights into related disease mechanisms. However, for most cases the underlying defect remains elusive. We identified a kindred with an autosomal-dominant form of CAKUT with predominant ureteropelvic junction obstruction. By whole exome sequencing, we identified a heterozygous truncating mutation (c.1010delG) of T-Box transcription factor 18 (TBX18) in seven affected members of the large kindred. A screen of additional families with CAKUT identified three families harboring two heterozygous TBX18 mutations (c.1570C>T and c.487A>G). TBX18 is essential for developmental specification of the ureteric mesenchyme and ureteric smooth muscle cells. We found that all three TBX18 altered proteins still dimerized with the wild-type protein but had prolonged protein half life and exhibited reduced transcriptional repression activity compared to wild-type TBX18. The p.Lys163Glu substitution altered an amino acid residue critical for TBX18-DNA interaction, resulting in impaired TBX18-DNA binding. These data indicate that dominant-negative TBX18 mutations cause human CAKUT by interference with TBX18 transcriptional repression, thus implicating ureter smooth muscle cell development in the pathogenesis of human CAKUT.
Collapse
Affiliation(s)
- Asaf Vivante
- Department of Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA; Talpiot Medical Leadership Program, Sheba Medical Center, Tel-Hashomer 52621, Israel
| | - Marc-Jens Kleppa
- Institut für Molekularbiologie, Medizinische Hochschule Hannover 30625, Germany
| | - Julian Schulz
- Department of Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Stefan Kohl
- Department of Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Amita Sharma
- Pediatric Nephrology Unit and Endocrine Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Jing Chen
- Department of Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Shirlee Shril
- Department of Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Daw-Yang Hwang
- Department of Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA; Division of Nephrology, Department of Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Anna-Carina Weiss
- Institut für Molekularbiologie, Medizinische Hochschule Hannover 30625, Germany
| | - Michael M Kaminski
- Department of Medicine, Renal Division, University of Freiburg Medical Center, 79106 Freiburg, Germany
| | - Rachel Shukrun
- Department of Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Markus J Kemper
- Department of Pediatrics, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Anja Lehnhardt
- Department of Pediatrics, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Rolf Beetz
- Center for Pediatric and Adolescent Medicine, University Medical Clinic, 55131 Mainz, Germany
| | | | - Miguel Verbitsky
- Department of Medicine, Columbia University, New York, NY 10023, USA
| | - Ali G Gharavi
- Department of Medicine, Columbia University, New York, NY 10023, USA
| | - Helen M Stuart
- Institute of Human Development, Faculty of Medical and Human Sciences, University of Manchester, Manchester Academic Health Science Centre and the Royal Manchester Children's and St Mary's Hospitals, Manchester M13 9WL, UK
| | | | - Judith A Goodship
- Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne NE1 3BZ, UK
| | - Timothy H J Goodship
- Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne NE1 3BZ, UK
| | - Adrian S Woolf
- Institute of Human Development, Faculty of Medical and Human Sciences, University of Manchester, Manchester Academic Health Science Centre and the Royal Manchester Children's and St Mary's Hospitals, Manchester M13 9WL, UK
| | - Sjirk J Westra
- Pediatric Radiology Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Daniel P Doody
- Department of Pediatric Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Stuart B Bauer
- Department of Urology, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Richard S Lee
- Department of Urology, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Rosalyn M Adam
- Department of Urology, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Weining Lu
- Renal Section, Department of Medicine, Boston University Medical Center, Boston, MA 02118, USA
| | - Heiko M Reutter
- Department of Neonatology, Children's Hospital, University of Bonn, 53127 Bonn, Germany
| | - Elijah O Kehinde
- Division of Urology, Department of Surgery, Kuwait University, 13110 Safat, Kuwait
| | - Erika J Mancini
- Division of Structural Biology, The Wellcome Trust Centre for Human Genetics, University of Oxford, Headington, Oxford OX3 7BN, UK; School of Life Sciences, University of Sussex, Brighton BN1 9QD, UK
| | - Richard P Lifton
- Department of Human Genetics, Yale University School of Medicine, New Haven, CT 06510, USA; Howard Hughes Medical Institute
| | - Velibor Tasic
- Medical School Skopje, University Children's Hospital, 1000 Skopje, Macedonia
| | - Soeren S Lienkamp
- Department of Medicine, Renal Division, University of Freiburg Medical Center, 79106 Freiburg, Germany; Center for Biological Signaling Studies (BIOSS), 79104 Freiburg, Germany
| | - Harald Jüppner
- Pediatric Nephrology Unit and Endocrine Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Andreas Kispert
- Institut für Molekularbiologie, Medizinische Hochschule Hannover 30625, Germany
| | - Friedhelm Hildebrandt
- Department of Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA; Howard Hughes Medical Institute.
| |
Collapse
|
17
|
Ureter growth and differentiation. Semin Cell Dev Biol 2014; 36:21-30. [DOI: 10.1016/j.semcdb.2014.07.014] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2014] [Revised: 07/22/2014] [Accepted: 07/22/2014] [Indexed: 12/25/2022]
|
18
|
SIX1 gene: absence of mutations in children with isolated congenital anomalies of kidney and urinary tract. J Nephrol 2014; 27:667-71. [DOI: 10.1007/s40620-014-0112-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2014] [Accepted: 05/13/2014] [Indexed: 11/30/2022]
|
19
|
Smad4 regulates ureteral smooth muscle cell differentiation during mouse embryogenesis. PLoS One 2014; 9:e104503. [PMID: 25127126 PMCID: PMC4134214 DOI: 10.1371/journal.pone.0104503] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2014] [Accepted: 07/14/2014] [Indexed: 12/03/2022] Open
Abstract
Proper formation of ureteral smooth muscle cells (SMCs) during embryogenesis is essential for ureter peristalsis that propels urine from the kidney to the bladder in mammals. Currently the molecular factors that regulate differentiation of ureteral mesenchymal cells into SMCs are incompletely understood. A recent study has reported that Smad4 deficiency reduces the number of ureteral SMCs. However, its precise role in the ureteral smooth muscle development remains largely unknown. Here, we used Tbx18:Cre knock-in mouse line to delete Smad4 to examine its requirement in the development of ureteral mesenchyme and SMC differentiation. We found that mice with specific deletion of Smad4 in Tbx18-expressing ureteral mesenchyme exhibited hydroureter and hydronephrosis at embryonic day (E) 16.5, and the mutant mesenchymal cells failed to differentiate into SMCs with increased apoptosis and decreased proliferation. Molecular markers for SMCs including alpha smooth muscle actin (α-SMA) and smooth muscle myosin heavy chain (SM-MHC) were absent in the mutant ureters. Moreover, disruption of Smad4 significantly reduced the expression of genes, including Sox9, Tbx18 and Myocardin associated with SMC differentiation. These findings suggest that Smad4 is essential for initiating the SMC differentiation program during ureter development.
Collapse
|
20
|
A distant downstream enhancer directs essential expression of Tbx18 in urogenital tissues. Dev Biol 2014; 392:483-93. [PMID: 24854998 DOI: 10.1016/j.ydbio.2014.05.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2013] [Revised: 05/09/2014] [Accepted: 05/12/2014] [Indexed: 11/22/2022]
Abstract
The vertebrate T-box transcription factor gene Tbx18 performs a vital role in development of multiple organ systems. Tbx18 insufficiency manifests as recessive phenotypes in the upper urinary system, cardiac venous pole, inner ear, and axial skeleton; homozygous null mutant animals die perinatally. Here, we report a new regulatory mutation of Tbx18, a reciprocal translocation breaking 78kbp downstream of the gene. 12Gso homozygotes present urinary and vertebral defects very similar to those associated with Tbx18-null mutations, but 12Gso is clearly not a global null allele since homozygotes survive into adulthood. We show that 12Gso down-regulates Tbx18 expression in a manner that is both spatially- and temporally-specific; combined with other data, the mutation points particularly to the presence of an essential urogenital enhancer located near the translocation breakpoint site. In support of this hypothesis, we identify a distal enhancer element, ECR1, which is active in developing urogenital and other tissues; we propose that disruption of this element leads to premature loss of Tbx18 function in 12Gso mutant mice. These data reveal a long-range regulatory architecture extending far downstream of Tbx18, identify a novel and likely essential urogenital enhancer, and introduce a new tool for dissecting postnatal phenotypes associated with dysregulation of Tbx18.
Collapse
|
21
|
Xu J, Nie X, Cai X, Cai CL, Xu PX. Tbx18 is essential for normal development of vasculature network and glomerular mesangium in the mammalian kidney. Dev Biol 2014; 391:17-31. [PMID: 24727670 DOI: 10.1016/j.ydbio.2014.04.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2013] [Revised: 03/11/2014] [Accepted: 04/06/2014] [Indexed: 11/18/2022]
Abstract
Tbx18 has been shown to be essential for ureteral development. However, it remains unclear whether it plays a direct role in kidney development. Here we addressed this by focusing on examining the pattern and contribution of Tbx18+ cells in the kidney and its role in kidney vascular development. Expression studies and genetic lineage tracing revealed that Tbx18 is expressed in renal capsule, vascular smooth muscle cells and pericytes and glomerular mesangial cells in the kidney and that Tbx18-expressing progenitors contribute to these cell types. Examination of Tbx18(-/-) kidneys revealed large reduction in vasculature density and dilation of glomerular capillary loops. While SMA+ cells were reduced in the mutant, PDGFRβ+ cells were seen in early capillary loop renal corpuscles in the mutant, but fewer than in the controls, and further development of the mesangium failed. Analysis of kidney explants cultured from E12.5 excluded the possibility that the defects observed in the mutant were caused by ureter obstruction. Reduced proliferation in glomerular tuft and increased apoptosis in perivascular mesenchyme were observed in Tbx18(-/-) kidneys. Thus, our analyses have identified a novel role of Tbx18 in kidney vasculature development.
Collapse
Affiliation(s)
- Jinshu Xu
- Departments of Genetics and Genomic Sciences, New York, NY 10029, USA
| | - Xuguang Nie
- Departments of Genetics and Genomic Sciences, New York, NY 10029, USA
| | - Xiaoqiang Cai
- Developmental Biology and Regenerative Medicine, New York, NY 10029, USA
- Center for Molecular Cardiology, New York, NY 10029, USA
- Black Family Stem Cell Institute, Mount Sinai School of Medicine, New York, NY 10029, USA
| | - Chen-Leng Cai
- Developmental Biology and Regenerative Medicine, New York, NY 10029, USA
- Center for Molecular Cardiology, New York, NY 10029, USA
- Black Family Stem Cell Institute, Mount Sinai School of Medicine, New York, NY 10029, USA
| | - Pin-Xian Xu
- Departments of Genetics and Genomic Sciences, New York, NY 10029, USA
- Developmental Biology and Regenerative Medicine, New York, NY 10029, USA
| |
Collapse
|
22
|
Wu W, Ren Z, Li P, Yu D, Chen J, Huang R, Liu H. Six1: A critical transcription factor in tumorigenesis. Int J Cancer 2014; 136:1245-53. [DOI: 10.1002/ijc.28755] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2013] [Revised: 01/15/2014] [Accepted: 01/20/2014] [Indexed: 12/16/2022]
Affiliation(s)
- Wangjun Wu
- Department of Animal Genetics; Breeding and Reproduction; College of Animal Science and Technology; Nanjing Agricultural University; Nanjing China
- Huaian Academy of Nanjing Agricultural University; Huaian Jiangsu China
| | - Zhuqing Ren
- Key Laboratory of Swine Genetics and Breeding; Ministry of Agriculture; Key Lab of Agriculture Animal Genetics; Breeding and Reproduction; Ministry of Education; College of Animal Science; Huazhong Agricultural University; Wuhan Hubei China
| | - Pinghua Li
- Department of Animal Genetics; Breeding and Reproduction; College of Animal Science and Technology; Nanjing Agricultural University; Nanjing China
| | - Debing Yu
- Department of Animal Genetics; Breeding and Reproduction; College of Animal Science and Technology; Nanjing Agricultural University; Nanjing China
| | - Jie Chen
- Department of Animal Genetics; Breeding and Reproduction; College of Animal Science and Technology; Nanjing Agricultural University; Nanjing China
| | - Ruihua Huang
- Department of Animal Genetics; Breeding and Reproduction; College of Animal Science and Technology; Nanjing Agricultural University; Nanjing China
| | - Honglin Liu
- Department of Animal Genetics; Breeding and Reproduction; College of Animal Science and Technology; Nanjing Agricultural University; Nanjing China
| |
Collapse
|
23
|
Lindau TA, Cardoso ACV, Rossi NF, Giacheti CM. Anatomical Changes and Audiological Profile in Branchio-oto-renal Syndrome: A Literature Review. Int Arch Otorhinolaryngol 2013; 18:68-76. [PMID: 25992067 PMCID: PMC4296951 DOI: 10.1055/s-0033-1358659] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2013] [Accepted: 09/04/2013] [Indexed: 01/26/2023] Open
Abstract
Introduction Branchio-oto-renal (BOR) syndrome is an autosomal-dominant genetic condition with high penetrance and variable expressivity, with an estimated prevalence of 1 in 40,000. Approximately 40% of the patients with the syndrome have mutations in the gene EYA1, located at chromosomal region 8q13.3, and 5% have mutations in the gene SIX5 in chromosome region 19q13. The phenotype of this syndrome is characterized by preauricular fistulas; structural malformations of the external, middle, and inner ears; branchial fistulas; renal disorders; cleft palate; and variable type and degree of hearing loss. Aim Hearing loss is part of BOR syndrome phenotype. The aim of this study was to present a literature review on the anatomical aspects and audiological profile of BOR syndrome. Data Synthesis Thirty-four studies were selected for analysis. Some aspects when specifying the phenotype of BOR syndrome are controversial, especially those issues related to the audiological profile in which there was variability on auditory standard, hearing loss progression, and type and degree of the hearing loss. Mixed loss was the most common type of hearing loss among the studies; however, there was no consensus among studies regarding the degree of the hearing loss.
Collapse
Affiliation(s)
- Tâmara Andrade Lindau
- Department of Speech Pathology, Universidade Estadual Paulista - UNESP, Marília, São Paulo, Brazil
| | | | - Natalia Freitas Rossi
- Department of Speech Pathology, Universidade Estadual Paulista - UNESP, Marília, São Paulo, Brazil
| | - Célia Maria Giacheti
- Department of Speech Pathology, Universidade Estadual Paulista - UNESP, Marília, São Paulo, Brazil
| |
Collapse
|
24
|
Kaltenbrun E, Greco TM, Slagle CE, Kennedy LM, Li T, Cristea IM, Conlon FL. A Gro/TLE-NuRD corepressor complex facilitates Tbx20-dependent transcriptional repression. J Proteome Res 2013; 12:5395-409. [PMID: 24024827 DOI: 10.1021/pr400818c] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The cardiac transcription factor Tbx20 has a critical role in the proper morphogenetic development of the vertebrate heart, and its misregulation has been implicated in human congenital heart disease. Although it is established that Tbx20 exerts its function in the embryonic heart through positive and negative regulation of distinct gene programs, it is unclear how Tbx20 mediates proper transcriptional regulation of its target genes. Here, using a combinatorial proteomic and bioinformatic approach, we present the first characterization of Tbx20 transcriptional protein complexes. We have systematically investigated Tbx20 protein-protein interactions by immunoaffinity purification of tagged Tbx20 followed by proteomic analysis using GeLC-MS/MS, gene ontology classification, and functional network analysis. We demonstrate that Tbx20 is associated with a chromatin remodeling network composed of TLE/Groucho corepressors, members of the Nucleosome Remodeling and Deacetylase (NuRD) complex, the chromatin remodeling ATPases RUVBL1/RUVBL2, and the T-box repressor Tbx18. We determined that the interaction with TLE corepressors is mediated via an eh1 binding motif in Tbx20. Moreover, we demonstrated that ablation of this motif results in a failure to properly assemble the repression network and disrupts Tbx20 function in vivo. Importantly, we validated Tbx20-TLE interactions in the mouse embryonic heart, and identified developmental genes regulated by Tbx20-TLE binding, thereby confirming a primary role for a Tbx20-TLE repressor complex in embryonic heart development. Together, these studies suggest a model in which Tbx20 associates with a Gro/TLE-NuRD repressor complex to prevent inappropriate gene activation within the forming heart.
Collapse
Affiliation(s)
- Erin Kaltenbrun
- Departments of Biology and ‡Genetics, University of North Carolina , Chapel Hill, North Carolina 27599, United States
| | | | | | | | | | | | | |
Collapse
|
25
|
Abrogation of Eya1/Six1 disrupts the saccular phase of lung morphogenesis and causes remodeling. Dev Biol 2013; 382:110-23. [PMID: 23895934 DOI: 10.1016/j.ydbio.2013.07.019] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2013] [Revised: 06/27/2013] [Accepted: 07/22/2013] [Indexed: 11/24/2022]
Abstract
The Eya1 gene encodes a transcriptional co-activator that acts with Six1 to control the development of different organs. However, Six1-Eya1 interactions and functional roles in mesenchymal cell proliferation and differentiation as well as alveolarization during the saccular stage of lung development are still unknown. Herein, we provide the first evidence that Six1 and Eya1 act together to regulate mesenchymal development as well as alveolarization during the saccular phase of lung morphogenesis. Deletion of either or both Six1 and Eya1 genes results in a severe saccular phenotype, including defects of mesenchymal cell development and remodeling of the distal lung septae and arteries. Mutant lung histology at the saccular phase shows mesenchymal and saccular wall thickening, and abnormal proliferation of α-smooth muscle actin-positive cells, as well as increased mesenchymal/fibroblast cell differentiation, which become more sever when deleting both genes. Our study indicates that SHH but not TGF-β signaling pathway is a central mediator for the histologic alterations described in the saccular phenotype of Eya1(-/-) or Six1(-/-) lungs. Indeed, genetic reduction of SHH activity in vivo or inhibition of its activity in vitro substantially rescues lung mesenchymal and alveolar phenotype of mutant mice at the saccular phase. These findings uncover novel functions for Six1-Eya1-SHH pathway during the saccular phase of lung morphogenesis, providing a conceptual framework for future mechanistic and translational studies in this area.
Collapse
|
26
|
Novel and functional variants within the TBX18 gene promoter in ventricular septal defects. Mol Cell Biochem 2013; 382:121-6. [DOI: 10.1007/s11010-013-1725-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2013] [Accepted: 05/29/2013] [Indexed: 01/31/2023]
|
27
|
Xu PX. The EYA-SO/SIX complex in development and disease. Pediatr Nephrol 2013; 28:843-54. [PMID: 22806561 PMCID: PMC6592036 DOI: 10.1007/s00467-012-2246-1] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2012] [Revised: 06/10/2012] [Accepted: 06/12/2012] [Indexed: 10/28/2022]
Abstract
Eyes absent (EYA) and Sine oculis (SO/SIX) proteins function as transcriptional activation complexes and play essential roles in organogenesis during embryonic development in regulating cell proliferation and survival and coordination of particular differentiation programs. Mutations of the Eya and So/Six genes cause profound developmental defects in organisms as diverse as flies, frogs, fish, mice, and humans. EYA proteins also possess an intrinsic phosphatase activity, which is essential for normal development. Here, we review crucial roles of EYA and SO/SIX in development and disease in mice and humans.
Collapse
Affiliation(s)
- Pin-Xian Xu
- Department of Genetics and Genomic Sciences and Developmental and Regenerative Biology, Mount Sinai School of Medicine, New York, NY 10029, USA.
| |
Collapse
|
28
|
TSHZ3 and SOX9 regulate the timing of smooth muscle cell differentiation in the ureter by reducing myocardin activity. PLoS One 2013; 8:e63721. [PMID: 23671695 PMCID: PMC3646048 DOI: 10.1371/journal.pone.0063721] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2012] [Accepted: 04/11/2013] [Indexed: 11/24/2022] Open
Abstract
Smooth muscle cells are of key importance for the proper functioning of different visceral organs including those of the urogenital system. In the mouse ureter, the two transcriptional regulators TSHZ3 and SOX9 are independently required for initiation of smooth muscle differentiation from uncommitted mesenchymal precursor cells. However, it has remained unclear whether TSHZ3 and SOX9 act independently or as part of a larger regulatory network. Here, we set out to characterize the molecular function of TSHZ3 in the differentiation of the ureteric mesenchyme. Using a yeast-two-hybrid screen, we identified SOX9 as an interacting protein. We show that TSHZ3 also binds to the master regulator of the smooth muscle program, MYOCD, and displaces it from the coregulator SRF, thereby disrupting the activation of smooth muscle specific genes. We found that the initiation of the expression of smooth muscle specific genes in MYOCD-positive ureteric mesenchyme coincides with the down regulation of Sox9 expression, identifying SOX9 as a possible negative regulator of smooth muscle cell differentiation. To test this hypothesis, we prolonged the expression of Sox9 in the ureteric mesenchyme in vivo. We found that Sox9 does not affect Myocd expression but significantly reduces the expression of MYOCD/SRF-dependent smooth muscle genes, suggesting that down-regulation of Sox9 is a prerequisite for MYOCD activity. We propose that the dynamic expression of Sox9 and the interaction between TSHZ3, SOX9 and MYOCD provide a mechanism that regulates the pace of progression of the myogenic program in the ureter.
Collapse
|
29
|
Haraguchi R, Matsumaru D, Nakagata N, Miyagawa S, Suzuki K, Kitazawa S, Yamada G. The hedgehog signal induced modulation of bone morphogenetic protein signaling: an essential signaling relay for urinary tract morphogenesis. PLoS One 2012; 7:e42245. [PMID: 22860096 PMCID: PMC3408458 DOI: 10.1371/journal.pone.0042245] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2012] [Accepted: 07/02/2012] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Congenital diseases of the urinary tract are frequently observed in infants. Such diseases present a number of developmental anomalies such as hydroureter and hydronephrosis. Although some genetically-modified mouse models of growth factor signaling genes reproduce urinary phenotypes, the pathogenic mechanisms remain obscure. Previous studies suggest that a portion of the cells in the external genitalia and bladder are derived from peri-cloacal mesenchymal cells that receive Hedgehog (Hh) signaling in the early developmental stages. We hypothesized that defects in such progenitor cells, which give rise to urinary tract tissues, may be a cause of such diseases. METHODOLOGY/PRINCIPAL FINDINGS To elucidate the pathogenic mechanisms of upper urinary tract malformations, we analyzed a series of Sonic hedgehog (Shh) deficient mice. Shh(-/-) displayed hydroureter and hydronephrosis phenotypes and reduced expression of several developmental markers. In addition, we suggested that Shh modulation at an early embryonic stage is responsible for such phenotypes by analyzing the Shh conditional mutants. Tissue contribution assays of Hh-responsive cells revealed that peri-cloacal mesenchymal cells, which received Hh signal secreted from cloacal epithelium, could contribute to the ureteral mesenchyme. Gain- and loss-of-functional mutants for Hh signaling revealed a correlation between Hh signaling and Bone morphogenetic protein (Bmp) signaling. Finally, a conditional ablation of Bmp receptor type IA (BmprIA) gene was examined in Hh-responsive cell lineages. This system thus made it possible to analyze the primary functions of the growth factor signaling relay. The defective Hh-to-Bmp signaling relay resulted in severe urinary tract phenotypes with a decrease in the number of Hh-responsive cells. CONCLUSIONS/SIGNIFICANCE This study identified the essential embryonic stages for the pathogenesis of urinary tract phenotypes. These results suggested that Hh-responsive mesenchymal Bmp signaling maintains the population of peri-cloacal mesenchyme cells, which is essential for the development of the ureter and the upper urinary tract.
Collapse
Affiliation(s)
- Ryuma Haraguchi
- Department of Developmental Genetics, Institute of Advanced Medicine, Wakayama Medical University, Wakayama, Japan
| | | | | | | | | | | | | |
Collapse
|
30
|
Yu J, Valerius MT, Duah M, Staser K, Hansard JK, Guo JJ, McMahon J, Vaughan J, Faria D, Georgas K, Rumballe B, Ren Q, Krautzberger AM, Junker JP, Thiagarajan RD, Machanick P, Gray PA, van Oudenaarden A, Rowitch DH, Stiles CD, Ma Q, Grimmond SM, Bailey TL, Little MH, McMahon AP. Identification of molecular compartments and genetic circuitry in the developing mammalian kidney. Development 2012; 139:1863-73. [PMID: 22510988 DOI: 10.1242/dev.074005] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
Lengthy developmental programs generate cell diversity within an organotypic framework, enabling the later physiological actions of each organ system. Cell identity, cell diversity and cell function are determined by cell type-specific transcriptional programs; consequently, transcriptional regulatory factors are useful markers of emerging cellular complexity, and their expression patterns provide insights into the regulatory mechanisms at play. We performed a comprehensive genome-scale in situ expression screen of 921 transcriptional regulators in the developing mammalian urogenital system. Focusing on the kidney, analysis of regional-specific expression patterns identified novel markers and cell types associated with development and patterning of the urinary system. Furthermore, promoter analysis of synexpressed genes predicts transcriptional control mechanisms that regulate cell differentiation. The annotated informational resource (www.gudmap.org) will facilitate functional analysis of the mammalian kidney and provides useful information for the generation of novel genetic tools to manipulate emerging cell populations.
Collapse
Affiliation(s)
- Jing Yu
- Department of Stem Cell and Regenerative Biology, Department of Molecular and Cellular Biology, Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02138, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Congenital anomalies of the kidney and urinary tract: a genetic disorder? Int J Nephrol 2012; 2012:909083. [PMID: 22685656 PMCID: PMC3363415 DOI: 10.1155/2012/909083] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2011] [Accepted: 03/21/2012] [Indexed: 02/07/2023] Open
Abstract
Congenital anomalies of the kidney and urinary tract (CAKUTs) occur in 3–6 per 1000 live births, account for the most cases of pediatric end-stage kidney disease (ESKD), and predispose an individual to hypertension and cardiovascular disease throughout life. Although CAKUTs are a part of many known syndromes, only few single-candidate causative genes have been implicated so far in nonsyndromic cases of human CAKUT. Evidence from mouse models supports the hypothesis that non-syndromic human CAKUT may be caused by single-gene defects. Because increasing numbers of children with CAKUT are surviving to adulthood, better understanding of the molecular pathogenesis of CAKUT, development of new strategies aiming at prevention of CAKUT, preservation of renal function, and avoidance of associated cardiovascular morbidity are needed. In this paper, we will focus on the knowledge derived from the study of syndromic and non-syndromic forms of CAKUT in humans and mouse mutants to discuss the role of genetic, epigenetic, and in utero environmental factors in the pathogenesis of non-syndromic forms of CAKUT in children with particular emphasis on the genetic contributions to CAKUT.
Collapse
|
32
|
Ahmed M, Wong EYM, Sun J, Xu J, Wang F, Xu PX. Eya1-Six1 interaction is sufficient to induce hair cell fate in the cochlea by activating Atoh1 expression in cooperation with Sox2. Dev Cell 2012; 22:377-90. [PMID: 22340499 DOI: 10.1016/j.devcel.2011.12.006] [Citation(s) in RCA: 186] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2011] [Revised: 11/04/2011] [Accepted: 12/14/2011] [Indexed: 12/24/2022]
Abstract
Inner-ear hair cell differentiation requires Atoh1 function, while Eya1, Six1, and Sox2 are coexpressed in sensory progenitors and mutations in these genes cause sensorineural hearing loss. However, how these genes are linked functionally and the transcriptional networks controlling hair cell induction remain unclear. Here, we show (1) that Eya1/Six1 are necessary for hair cell development, and their coexpression in mouse cochlear explants is sufficient to induce hair cell fate in the nonsensory epithelium expressing low-level Sox2 by activating not only Atoh1-dependent but also Atoh1-independent pathways and (2) that both pathways induce Pou4f3 to promote hair cell differentiation. Sox2 cooperates with Eya1/Six1 to synergistically activate Atoh1 transcription via direct binding to the conserved Sox- and Six-binding sites in Atoh1 enhancers, and these proteins physically interact. Our findings demonstrate that direct and cooperative interactions between the Sox2, Six1, and Eya1 proteins coordinate Atoh1 expression to specify hair cell fate.
Collapse
Affiliation(s)
- Mohi Ahmed
- Department of Genetics and Genomic Sciences, Mount Sinai School of Medicine, New York, NY 10029, USA
| | | | | | | | | | | |
Collapse
|
33
|
Paces-Fessy M, Fabre M, Lesaulnier C, Cereghini S. Hnf1b and Pax2 cooperate to control different pathways in kidney and ureter morphogenesis. Hum Mol Genet 2012; 21:3143-55. [DOI: 10.1093/hmg/dds141] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
|
34
|
Song R, Preston G, Khalili A, El-Dahr SS, Yosypiv IV. Angiotensin II regulates growth of the developing papillas ex vivo. Am J Physiol Renal Physiol 2012; 302:F1112-20. [PMID: 22301625 DOI: 10.1152/ajprenal.00435.2011] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
We tested the hypothesis that lack of angiotensin (ANG) II production in angiotensinogen (AGT)-deficient mice or pharmacologic antagonism of ANG II AT(1) receptor (AT(1)R) impairs growth of the developing papillas ex vivo, thus contributing to the hypoplastic renal medulla phenotype observed in AGT- or AT(1)R-null mice. Papillas were dissected from Hoxb7(GFP+) or AGT(+/+), (+/-), (-/-) mouse metanephroi on postnatal day P3 and grown in three-dimentional collagen matrix gels in the presence of media (control), ANG II (10(-5) M), or the specific AT(1)R antagonist candesartan (10(-6) M) for 24 h. Percent reduction in papillary length was attenuated in AGT(+/+) and in AGT(+/-) compared with AGT(-/-) (-18.4 ± 1.3 vs. -32.2 ± 1.6%, P < 0.05, -22.8 ± 1.3 vs. -32.2 ± 1.6%, P < 0.05, respectively). ANG II blunted the decrease in papilla length observed in respective media-treated controls in Hoxb7(GFP+) (-1.5 ± 0.3 vs. -10.0 ± 1.4%, P < 0.05) or AGT(+/+), (+/-), and (-/-) papillas (-12.8 ± 0.7 vs. -18.4 ± 1.3%, P < 0.05, -16.8 ± 1.1 vs. -23 ± 1.2%, P < 0.05; -26.2 ± 1.6 vs. -32.2 ± 1.6%, P < 0.05, respectively). In contrast, percent decrease in the length of Hoxb7(GFP+) papillas in the presence of the AT(1)R antagonist candesartan was higher compared with control (-24.3 ± 2.1 vs. -10.5 ± 1.8%, P < 0.05). The number of proliferating phospho-histone H3 (pH3)-positive collecting duct cells was lower, whereas the number of caspase 3-positive cells undergoing apoptosis was higher in candesartan- vs. media-treated papillas (pH3: 12 ± 1.4 vs. 21 ± 2.1, P < 0.01; caspase 3: 3.8 ± 0.5 vs. 1.7 ± 0.2, P < 0.01). Using quantitative RT-PCR, we demonstrate that AT(1)R signaling regulates the expression of genes implicated in morphogenesis of the renal medulla. We conclude that AT(1)R prevents shrinkage of the developing papillas observed ex vivo via control of Wnt7b, FGF7, β-catenin, calcineurin B1, and α3 integrin gene expression, collecting duct cell proliferation, and survival.
Collapse
Affiliation(s)
- Renfang Song
- Division of Pediatric Nephrology, Department of Pediatrics, Hypertension, and Renal Center of Excellence, Tulane University Health Sciences Center, New Orleans, LA 70112, USA
| | | | | | | | | |
Collapse
|
35
|
Henson RJ, McHughes K. Infant with failed hearing screening: considerations for the PNP in primary care. J Pediatr Health Care 2011; 25:399-404. [PMID: 22018431 DOI: 10.1016/j.pedhc.2011.06.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2010] [Revised: 06/05/2011] [Accepted: 06/09/2011] [Indexed: 11/25/2022]
|
36
|
Bell SM, Zhang L, Mendell A, Xu Y, Haitchi HM, Lessard JL, Whitsett JA. Kruppel-like factor 5 is required for formation and differentiation of the bladder urothelium. Dev Biol 2011; 358:79-90. [PMID: 21803035 DOI: 10.1016/j.ydbio.2011.07.020] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2011] [Revised: 07/08/2011] [Accepted: 07/09/2011] [Indexed: 12/20/2022]
Abstract
Kruppel-like transcription factor 5 (Klf5) was detected in the developing and mature murine bladder urothelium. Herein we report a critical role of KLF5 in the formation and terminal differentiation of the urothelium. The Shh(GfpCre) transgene was used to delete the Klf5(floxed) alleles from bladder epithelial cells causing prenatal hydronephrosis, hydroureter, and vesicoureteric reflux. The bladder urothelium failed to stratify and did not express terminal differentiation markers characteristic of basal, intermediate, and umbrella cells including keratins 20, 14, and 5, and the uroplakins. The effects of Klf5 deletion were unique to the developing bladder epithelium since maturation of the epithelium comprising the bladder neck and urethra was unaffected by the lack of KLF5. mRNA analysis identified reductions in Pparγ, Grhl3, Elf3, and Ovol1expression in Klf5 deficient fetal bladders supporting their participation in a transcriptional network regulating bladder urothelial differentiation. KLF5 regulated expression of the mGrhl3 promoter in transient transfection assays. The absence of urothelial Klf5 altered epithelial-mesenchymal signaling leading to the formation of an ectopic alpha smooth muscle actin positive layer of cells subjacent to the epithelium and a thinner detrusor muscle that was not attributable to disruption of SHH signaling, a known mediator of detrusor morphogenesis. Deletion of Klf5 from the developing bladder urothelium blocked epithelial cell differentiation, impaired bladder morphogenesis and function causing hydroureter and hydronephrosis at birth.
Collapse
Affiliation(s)
- Sheila M Bell
- Perinatal Institute of Cincinnati Children's Hospital Medical Center, Division of Neonatology-Perinatal-Pulmonary Biology, University of Cincinnati College of Medicine, 3333 Burnet Avenue, Cincinnati, OH 45229, USA
| | | | | | | | | | | | | |
Collapse
|
37
|
El-Hashash AHK, Alam DA, Turcatel G, Rogers O, Li S, Bellusci S, Warburton D. Six1 transcription factor is critical for coordination of epithelial, mesenchymal and vascular morphogenesis in the mammalian lung. Dev Biol 2011; 353:242-58. [PMID: 21385574 PMCID: PMC3114882 DOI: 10.1016/j.ydbio.2011.02.031] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2010] [Revised: 02/23/2011] [Accepted: 02/28/2011] [Indexed: 01/12/2023]
Abstract
Six1 is a member of the six-homeodomain family of transcription factors. Six1 is expressed in multiple embryonic cell types and plays important roles in proliferation, differentiation and survival of precursor cells of different organs, yet its function during lung development was hitherto unknown. Herein we show that Six1(-/-) lungs are severely hypoplastic with greatly reduced epithelial branching and increased mesenchymal cellularity. Six1 is expressed at the distal epithelial tips of branching tubules as well as in the surrounding distal mesenchyme. Six1(-/-) lung epithelial cells show increased expression of differentiation markers, but loss of progenitor cell markers. Six1 overexpression in MLE15 lung epithelial cells in vitro inhibited cell differentiation, but increases the expression of progenitor cell markers. In addition, Six1(-/-) embryos and newborn mice exhibit mesenchymal overproliferation, decreased Fgf10 expression and severe defects in the smooth muscle component of the bronchi and major pulmonary vessels. These defects lead to rupture of major vessels in mutant lungs after birth. Treatment of Six1(-/-) epithelial explants in culture with recombinant Fgf10 protein restores epithelial branching. As Shh expression is abnormally increased in Six1(-/-) lungs, we also treated mutant mesenchymal explants with recombinant Shh protein and found that these explants were competent to respond to Shh and continued to grow in culture. Furthermore, inhibition of Shh signaling with cyclopamine stimulated Six1(-/-) lungs to grow and branch in culture. This study provides the first evidence for the requirement of Six1 in coordinating Shh-Fgf10 signaling in embryonic lung to ensure proper levels of proliferation and differentiation along the proximodistal axis of epithelial, mesenchymal and endothelial cells. These findings uncover novel and essential functions for Six1 as a critical coordinator of Shh-Fgf10 signaling during embryonic lung development. We propose that Six1 is hence critical for coordination of proper lung epithelial, mesenchymal and vascular development.
Collapse
Affiliation(s)
- Ahmed HK El-Hashash
- Developmental Biology and Regenerative Medicine Program, Saban Research Institute, Childrens Hospital Los Angeles, Keck School of Medicine of University of Southern California, 4650 Sunset Boulevard MS35, Los Angeles, CA 90027, USA
| | - Denise Al Alam
- Developmental Biology and Regenerative Medicine Program, Saban Research Institute, Childrens Hospital Los Angeles, Keck School of Medicine of University of Southern California, 4650 Sunset Boulevard MS35, Los Angeles, CA 90027, USA
| | - Gianluca Turcatel
- Developmental Biology and Regenerative Medicine Program, Saban Research Institute, Childrens Hospital Los Angeles, Keck School of Medicine of University of Southern California, 4650 Sunset Boulevard MS35, Los Angeles, CA 90027, USA
| | - Orquidea Rogers
- Developmental Biology and Regenerative Medicine Program, Saban Research Institute, Childrens Hospital Los Angeles, Keck School of Medicine of University of Southern California, 4650 Sunset Boulevard MS35, Los Angeles, CA 90027, USA
| | - Sean Li
- Children’s Hospital Boston, Harvard Medical School, USA
| | - Saverio Bellusci
- Developmental Biology and Regenerative Medicine Program, Saban Research Institute, Childrens Hospital Los Angeles, Keck School of Medicine of University of Southern California, 4650 Sunset Boulevard MS35, Los Angeles, CA 90027, USA
| | - David Warburton
- Developmental Biology and Regenerative Medicine Program, Saban Research Institute, Childrens Hospital Los Angeles, Keck School of Medicine of University of Southern California, 4650 Sunset Boulevard MS35, Los Angeles, CA 90027, USA
| |
Collapse
|
38
|
Nie X, Xu J, El-Hashash A, Xu PX. Six1 regulates Grem1 expression in the metanephric mesenchyme to initiate branching morphogenesis. Dev Biol 2011; 352:141-51. [PMID: 21281623 PMCID: PMC3113441 DOI: 10.1016/j.ydbio.2011.01.027] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2010] [Revised: 01/18/2011] [Accepted: 01/22/2011] [Indexed: 01/17/2023]
Abstract
Urinary tract morphogenesis requires subdivision of the ureteric bud (UB) into the intra-renal collecting system and the extra-renal ureter, by responding to signals in its surrounding mesenchyme. BMP4 is a mesenchymal regulator promoting ureter development, while GREM1 is necessary to negatively regulate BMP4 activity to induce UB branching. However, the mechanisms that regulate the GREM1-BMP4 signaling are unknown. Previous studies have shown that Six1-deficient mice lack kidneys, but form ureters. Here, we show that the tip cells of Six1(-/-) UB fail to form an ampulla for branching. Instead, the UB elongates within Tbx18- and Bmp4-expressing mesenchyme. We find that the expression of Grem1 in the metanephric mesenchyme (MM) is Six1-dependent. Treatment of Six1(-/-) kidney rudiments with GREM1 protein restores ampulla formation and branching morphogenesis. Furthermore, we demonstrate that genetic reduction of BMP4 levels in Six1(-/-) (Six1(-/-); Bmp4(+/-)) embryos restores urinary tract morphogenesis and kidney formation. This study uncovers an essential function for Six1 in the MM as an upstream regulator of Grem1 in initiating branching morphogenesis.
Collapse
Affiliation(s)
- Xuguang Nie
- Department of Genetics and Genomic Sciences, Mount Sinai School of Medicine of NYU, New York, NY10029, USA
| | - Jinshu Xu
- Department of Genetics and Genomic Sciences, Mount Sinai School of Medicine of NYU, New York, NY10029, USA
| | - Ahmed El-Hashash
- Department of Genetics and Genomic Sciences, Mount Sinai School of Medicine of NYU, New York, NY10029, USA
| | - Pin-Xian Xu
- Department of Genetics and Genomic Sciences, Mount Sinai School of Medicine of NYU, New York, NY10029, USA
- Developmental and Regenerative Biology, Mount Sinai School of Medicine of NYU, New York, NY10029, USA
| |
Collapse
|
39
|
Genetics of congenital anomalies of the kidney and urinary tract. Pediatr Nephrol 2011; 26:353-64. [PMID: 20798957 DOI: 10.1007/s00467-010-1629-4] [Citation(s) in RCA: 109] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2010] [Revised: 07/08/2010] [Accepted: 07/13/2010] [Indexed: 01/08/2023]
Abstract
Congenital anomalies of the kidney and urinary tract (CAKUT) occur in 1 in 500 births and are a major cause of morbidity in children. Notably, CAKUT account for the most cases of pediatric end-stage renal disease and predispose the individual to hypertension and cardiovascular disease throughout life. Although some forms of CAKUT are a part of a syndrome or are associated with a positive family history, most cases of renal system anomalies are sporadic and isolated to the urinary tract. Broad phenotypic spectrum of CAKUT and variability in genotype-phenotype correlation indicate that pathogenesis of CAKUT is a complex process that depends on interplay of many factors. This review focuses on the genetic mechanisms (single-gene mutations, modifier genes) leading to renal system anomalies in humans and discusses emerging insights into the role of epigenetics, in utero environmental factors, and micro-RNAs (miRNAs) in the pathogenesis of CAKUT. Common gene networks that function in defined temporospatial fashion to orchestrate renal system morphogenesis are highlighted. Derangements in cellular, molecular, and morphogenetic mechanisms that direct normal renal system development are emphasized as a major cause of CAKUT. Integrated understanding of how morphogenetic process disruptions are linked to CAKUT will enable improved diagnosis, treatment, and prevention of congenital renal system anomalies and their consequences.
Collapse
|
40
|
El-Hashash AHK, Alam DA, Turcatel G, Bellusci S, Warburton D. Eyes absent 1 (Eya1) is a critical coordinator of epithelial, mesenchymal and vascular morphogenesis in the mammalian lung. Dev Biol 2011; 350:112-26. [PMID: 21129374 PMCID: PMC3022116 DOI: 10.1016/j.ydbio.2010.11.022] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2010] [Revised: 11/10/2010] [Accepted: 11/19/2010] [Indexed: 01/12/2023]
Abstract
The proper level of proliferation and differentiation along the proximodistal axis is crucial for lung organogenesis. Elucidation of the factors that control these processes will therefore provide important insights into embryonic lung development and regeneration. Eya1 is a transcription factor/protein phosphatase that regulates cell lineage specification and proliferation. Yet its functions during lung development are unknown. In this paper we show that Eya1(-/-) lungs are severely hypoplastic with reduced epithelial branching and increased mesenchymal cellularity. Eya1 is expressed at the distal epithelial tips of branching tubules as well as in the surrounding distal mesenchyme. Eya1(-/-) lung epithelial cells show loss of progenitor cell markers with increased expression of differentiation markers and cell cycle exit. In addition, Eya1(-/-) embryos and newborn mice exhibit severe defects in the smooth muscle component of the bronchi and major pulmonary vessels with decreased Fgf10 expression. These defects lead to rupture of the major vessels and hemorrhage into the lungs after birth. Treatment of Eya1(-/-) epithelial explants in culture with recombinant Fgf10 stimulates epithelial branching. Since Shh expression and activity are abnormally increased in Eya1(-/-) lungs, we tested whether genetically lowering Shh activity could rescue the Eya1(-/-) lung phenotype. Indeed, genetic reduction of Shh partially rescues Eya1(-/-) lung defects while restoring Fgf10 expression. This study provides the first evidence that Eya1 regulates Shh signaling in embryonic lung, thus ensuring the proper level of proliferation and differentiation along the proximodistal axis of epithelial, mesenchymal and endothelial cells. These findings uncover novel functions for Eya1 as a critical upstream coordinator of Shh-Fgf10 signaling during embryonic lung development. We conclude, therefore, that Eya1 function is critical for proper coordination of lung epithelial, mesenchymal and vascular development.
Collapse
Affiliation(s)
- Ahmed HK El-Hashash
- Developmental Biology and Regenerative Medicine Program, Saban Research Institute, Childrens Hospital Los Angeles, Keck School of Medicine of University of Southern California, 4650 Sunset Boulevard MS35, Los Angeles, CA 90027, USA
| | - Denise Al Alam
- Developmental Biology and Regenerative Medicine Program, Saban Research Institute, Childrens Hospital Los Angeles, Keck School of Medicine of University of Southern California, 4650 Sunset Boulevard MS35, Los Angeles, CA 90027, USA
| | - Gianluca Turcatel
- Developmental Biology and Regenerative Medicine Program, Saban Research Institute, Childrens Hospital Los Angeles, Keck School of Medicine of University of Southern California, 4650 Sunset Boulevard MS35, Los Angeles, CA 90027, USA
| | - Saverio Bellusci
- Developmental Biology and Regenerative Medicine Program, Saban Research Institute, Childrens Hospital Los Angeles, Keck School of Medicine of University of Southern California, 4650 Sunset Boulevard MS35, Los Angeles, CA 90027, USA
| | - David Warburton
- Developmental Biology and Regenerative Medicine Program, Saban Research Institute, Childrens Hospital Los Angeles, Keck School of Medicine of University of Southern California, 4650 Sunset Boulevard MS35, Los Angeles, CA 90027, USA
| |
Collapse
|
41
|
Kiefer SM, Robbins L, Stumpff KM, Lin C, Ma L, Rauchman M. Sall1-dependent signals affect Wnt signaling and ureter tip fate to initiate kidney development. Development 2010; 137:3099-106. [PMID: 20702564 DOI: 10.1242/dev.037812] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Development of the metanephric kidney depends on precise control of branching of the ureteric bud. Branching events represent terminal bifurcations that are thought to depend on unique patterns of gene expression in the tip compared with the stalk and are influenced by mesenchymal signals. The metanephric mesenchyme-derived signals that control gene expression at the ureteric bud tip are not well understood. In mouse Sall1 mutants, the ureteric bud grows out and invades the metanephric mesenchyme, but it fails to initiate branching despite tip-specific expression of Ret and Wnt11. The stalk-specific marker Wnt9b and the beta-catenin downstream target Axin2 are ectopically expressed in the mutant ureteric bud tips, suggesting that upregulated canonical Wnt signaling disrupts ureter branching in this mutant. In support of this hypothesis, ureter arrest is rescued by lowering beta-catenin levels in the Sall1 mutant and is phenocopied by ectopic expression of a stabilized beta-catenin in the ureteric bud. Furthermore, transgenic overexpression of Wnt9b in the ureteric bud causes reduced branching in multiple founder lines. These studies indicate that Sall1-dependent signals from the metanephric mesenchyme are required to modulate ureteric bud tip Wnt patterning in order to initiate branching.
Collapse
Affiliation(s)
- Susan M Kiefer
- John Cochran Veterans Affairs Medical Center, St Louis, MO 63106, USA
| | | | | | | | | | | |
Collapse
|