1
|
Wordeman L, Wagenbach M, Vicente JJ. MCAK/Kif2C centromeric activity level tunes K-fiber stability. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.16.638494. [PMID: 40027728 PMCID: PMC11870468 DOI: 10.1101/2025.02.16.638494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
MCAK/Kif2C is a microtubule-depolymerizing kinesin that is implicated in the correction of chromosome attachment errors. When this protein is eliminated from kinetochores, cells exhibit delayed congression and a modest increase in chromosome mis-segregation. Curiously, MCAK/Kif2C overexpression (OE) promotes these same defects. These mitotic delays are restricted to prometaphase and can be rescued by modulating MCAK/Kif2C activity solely at the centromere. Both excessive depletion and surplus levels of centromeric MCAK/Kif2C increased inter-kinetochore distances (IKDs) commensurate with an increase in acetylated tubulin in the spindle, a readout for k-fiber stability. Because both high and low levels of centromere-associated MCAK/Kif2C increased k-fiber stability, we conclude that this is the likely mechanism for the increased chromosome segregation errors observed in both these antagonistic conditions. Loss of centromeric MCAK/Kif2C delayed the conversion from lateral to end-on motility was delayed in MCAK/Kif2C-depleted cells. This likely represents the key activity that MCAK/Kif2C imparts to the centromere which, when present at consistently incorrect levels, slows k-fiber turnover and congression.
Collapse
Affiliation(s)
- Linda Wordeman
- Department of Neurobiology and Biophysics, University of Washington School of Medicine, Seattle, WA, USA
| | - Mike Wagenbach
- Department of Neurobiology and Biophysics, University of Washington School of Medicine, Seattle, WA, USA
| | - Juan Jesus Vicente
- Department of Neurobiology and Biophysics, University of Washington School of Medicine, Seattle, WA, USA
| |
Collapse
|
2
|
Wang W, Shi Z, Zhang D, Hou W, Ma H, Liu X, Zhang Y, Zhu J, Yang Z, Jia B, Xu Q, Zhang Y, Zhang M. Kinesin motor KIF16A regulates microtubule stability and actin-dependent spindle migration in mouse oocyte meiosis. FASEB J 2024; 38:e23750. [PMID: 38888878 DOI: 10.1096/fj.202400989r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 05/22/2024] [Accepted: 06/06/2024] [Indexed: 06/20/2024]
Abstract
Kif16A, a member of the kinesin-3 family of motor proteins, has been shown to play crucial roles in inducing mitotic arrest, apoptosis, and mitotic cell death. However, its roles during oocyte meiotic maturation have not been fully defined. In this study, we report that Kif16A exhibits unique accumulation on the spindle apparatus and colocalizes with microtubule fibers during mouse oocyte meiotic maturation. Targeted depletion of Kif16A using gene-targeting siRNA disrupts the progression of the meiotic cell cycle. Furthermore, Kif16A depletion leads to aberrant spindle assembly and chromosome misalignment in oocytes. Our findings also indicate that Kif16A depletion reduces tubulin acetylation levels and compromises microtubule resistance to depolymerizing drugs, suggesting its crucial role in microtubule stability maintenance. Notably, we find that the depletion of Kif16A results in a notably elevated incidence of defective kinetochore-microtubule attachments and the absence of BubR1 localization at kinetochores, suggesting a critical role for Kif16A in the activation of the spindle assembly checkpoint (SAC) activity. Additionally, we observe that Kif16A is indispensable for proper actin filament distribution, thereby impacting spindle migration. In summary, our findings demonstrate that Kif16A plays a pivotal role in regulating microtubule and actin dynamics crucial for ensuring both spindle assembly and migration during mouse oocyte meiotic maturation.
Collapse
Affiliation(s)
- Wei Wang
- College of Animal Science and Technology, Anhui Agricultural University, Key Laboratory of Local Livestock and Poultry Genetical Resource Conservation and Breeding of Anhui Province, Hefei, China
| | - Zhenhu Shi
- College of Animal Science and Technology, Anhui Agricultural University, Key Laboratory of Local Livestock and Poultry Genetical Resource Conservation and Breeding of Anhui Province, Hefei, China
| | - Dandan Zhang
- Department of Reproductive Medicine, General Hospital of Wanbei Coal Group, Key Laboratory of Reproductive Medicine and Embryo of Suzhou City, Suzhou, China
| | - Wenwen Hou
- Center of Reproductive Medicine, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, China
| | - Huijie Ma
- College of Animal Science and Technology, Anhui Agricultural University, Key Laboratory of Local Livestock and Poultry Genetical Resource Conservation and Breeding of Anhui Province, Hefei, China
| | - Xinyu Liu
- College of Animal Science and Technology, Anhui Agricultural University, Key Laboratory of Local Livestock and Poultry Genetical Resource Conservation and Breeding of Anhui Province, Hefei, China
| | - Yongteng Zhang
- College of Animal Science and Technology, Anhui Agricultural University, Key Laboratory of Local Livestock and Poultry Genetical Resource Conservation and Breeding of Anhui Province, Hefei, China
| | - Jinbao Zhu
- College of Animal Science and Technology, Anhui Agricultural University, Key Laboratory of Local Livestock and Poultry Genetical Resource Conservation and Breeding of Anhui Province, Hefei, China
| | - Zaishan Yang
- College of Animal Science and Technology, Anhui Agricultural University, Key Laboratory of Local Livestock and Poultry Genetical Resource Conservation and Breeding of Anhui Province, Hefei, China
| | - Bo Jia
- College of Animal Science and Technology, Anhui Agricultural University, Key Laboratory of Local Livestock and Poultry Genetical Resource Conservation and Breeding of Anhui Province, Hefei, China
| | - Qimei Xu
- College of Animal Science and Technology, Anhui Agricultural University, Key Laboratory of Local Livestock and Poultry Genetical Resource Conservation and Breeding of Anhui Province, Hefei, China
| | - Yunhai Zhang
- College of Animal Science and Technology, Anhui Agricultural University, Key Laboratory of Local Livestock and Poultry Genetical Resource Conservation and Breeding of Anhui Province, Hefei, China
| | - Mianqun Zhang
- College of Animal Science and Technology, Anhui Agricultural University, Key Laboratory of Local Livestock and Poultry Genetical Resource Conservation and Breeding of Anhui Province, Hefei, China
| |
Collapse
|
3
|
Rémillard-Labrosse G, Cohen S, Boucher É, Gagnon K, Vasilev F, Mihajlović AI, FitzHarris G. Oocyte and embryo culture under oil profoundly alters effective concentrations of small molecule inhibitors. Front Cell Dev Biol 2024; 12:1337937. [PMID: 38544820 PMCID: PMC10966923 DOI: 10.3389/fcell.2024.1337937] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 02/19/2024] [Indexed: 11/11/2024] Open
Abstract
Culture of oocytes and embryos in media under oil is a cornerstone of fertility treatment, and extensively employed in experimental investigation of early mammalian development. It has been noted anecdotally by some that certain small molecule inhibitors might lose activity in oil-covered culture systems, presumably by drug partitioning into the oil. Here we took a pseudo-pharmacological approach to appraise this formally using mouse oocytes and embryos. Using different culture dish designs with defined media:oil volume ratios, we show that the EC50 of the widely employed microtubule poison nocodazole shifts as a function of the media:oil ratio, such that nocodazole concentrations that prevent cell division in oil-free culture fail to in oil-covered media drops. Relatively subtle changes in culture dish design lead to measurable changes in EC50. This effect is not specific to one type of culture oil, and can be readily observed both in oocyte and embryo culture experiments. We subsequently applied a similar approach to a small panel of widely employed cell cycle-related inhibitors, finding that most lose activity in standard oil-covered oocyte/embryo culture systems. Our data suggest that loss of small molecule activity in oil-covered oocyte and embryo culture is a widespread phenomenon with potentially far-reaching implications for data reproducibility, and we recommend avoiding oil-covered culture for experiments employing inhibitors/drugs wherever possible.
Collapse
Affiliation(s)
| | - Sydney Cohen
- Centre de Recherche du Centre Hospitalier de I’Université de Montréal (CRCHUM), Montréal, QC, Canada
| | - Éliane Boucher
- Centre de Recherche du Centre Hospitalier de I’Université de Montréal (CRCHUM), Montréal, QC, Canada
| | - Kéryanne Gagnon
- Centre de Recherche du Centre Hospitalier de I’Université de Montréal (CRCHUM), Montréal, QC, Canada
| | - Filip Vasilev
- Centre de Recherche du Centre Hospitalier de I’Université de Montréal (CRCHUM), Montréal, QC, Canada
| | - Aleksandar I. Mihajlović
- Centre de Recherche du Centre Hospitalier de I’Université de Montréal (CRCHUM), Montréal, QC, Canada
| | - Greg FitzHarris
- Centre de Recherche du Centre Hospitalier de I’Université de Montréal (CRCHUM), Montréal, QC, Canada
- Department of Obstetrics and Gynaecology, Université de Montréal, Montréal, QC, Canada
- Department of Pathology and Cell Biology, Université de Montréal, Montréal, QC, Canada
| |
Collapse
|
4
|
Huang X, Zhao F, Wu Q, Wang Z, Ren H, Zhang Q, Wang Z, Xu J. KIF2C Facilitates Tumor Growth and Metastasis in Pancreatic Ductal Adenocarcinoma. Cancers (Basel) 2023; 15:1502. [PMID: 36900292 PMCID: PMC10000478 DOI: 10.3390/cancers15051502] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 02/16/2023] [Accepted: 02/19/2023] [Indexed: 03/06/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a highly lethal cancer with a poor prognosis. For PDAC, an increase in the survival time of patients and a reduction mortality have not yet successfully been achieved. In many research works, Kinesin family member 2C (KIF2C) is highly expressed in several tumors. Nevertheless, the role of KIF2C in pancreatic cancer is unknown. In this study, we found that KIF2C expression is significantly upregulated in human PDAC tissues and cell lines such as ASPC-1 and MIA-PaCa2. Moreover, KIF2C upregulation is associated with a poor prognosis when combining the expression of KIF2C with clinical information. Through cell functional assays and the construction of animal models, we showed that KIF2C promotes PDAC cell proliferation, migration, invasion, and metastasis, both in vitro and in vivo. Finally, the results of sequencing showed that the overexpression of KIF2C causes a decrease in some proinflammatory factors and chemokines. The cell cycle detection indicated that the pancreatic cancer cells in the overexpressed group had abnormal proliferation in the G2 and S phases. These results revealed the potential of KIF2C as a therapeutic target for the treatment of PDAC.
Collapse
Affiliation(s)
- Xing Huang
- Department of General Surgery, Shengjing Hospital, China Medical University, Shenyang 110004, China
| | - Feng Zhao
- Department of Stem Cells and Regenerative Medicine, China Medical University, Shenyang 110122, China
| | - Quan Wu
- Department of Pathology, Shengjing Hospital, China Medical University, Shenyang 110004, China
| | - Zitong Wang
- Department of Pathology, Shengjing Hospital, China Medical University, Shenyang 110004, China
| | - Haiyue Ren
- Department of Pathology, Shengjing Hospital, China Medical University, Shenyang 110004, China
| | - Qiqi Zhang
- Department of Pathology, Shengjing Hospital, China Medical University, Shenyang 110004, China
| | - Zhe Wang
- Department of Pathology, Shengjing Hospital, China Medical University, Shenyang 110004, China
| | - Jin Xu
- Department of General Surgery, Shengjing Hospital, China Medical University, Shenyang 110004, China
| |
Collapse
|
5
|
Suebthawinkul C, Babayev E, Zhou LT, Lee HC, Duncan FE. Quantitative morphokinetic parameters identify novel dynamics of oocyte meiotic maturation and cumulus expansion†. Biol Reprod 2022; 107:1097-1112. [PMID: 35810327 PMCID: PMC9562117 DOI: 10.1093/biolre/ioac139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Revised: 05/30/2022] [Accepted: 06/30/2022] [Indexed: 12/05/2022] Open
Abstract
Meiotic maturation and cumulus expansion are essential for the generation of a developmentally competent gamete, and both processes can be recapitulated in vitro. We used a closed time-lapse incubator (EmbryoScope+™) to establish morphokinetic parameters of meiotic progression and cumulus expansion in mice and correlated these outcomes with egg ploidy. The average time to germinal vesicle breakdown (GVBD), time to first polar body extrusion (PBE), and duration of meiosis I were 0.91 ± 0.01, 8.82 ± 0.06, and 7.93 ± 0.06 h, respectively. The overall rate of cumulus layer expansion was 0.091 ± 0.002 μm/min, and the velocity of expansion peaked during the first 8 h of in vitro maturation (IVM) and then slowed. IVM of oocytes exposed to Nocodazole, a microtubule disrupting agent, and cumulus oocyte complexes (COCs) to 4-methylumbelliferone, a hyaluronan synthesis inhibitor, resulted in a dose-dependent perturbation of morphokinetics, thereby validating the system. The incidence of euploidy following IVM was >90% for both denuded oocytes and intact COCs. No differences were observed between euploid and aneuploid eggs with respect to time to GVBD (0.90 ± 0.22 vs. 0.97 ± 0.19 h), time to PBE (8.89 ± 0.98 vs. 9.10 ± 1.42 h), duration of meiosis I (8.01 ± 0.91 vs. 8.13 ± 1.38 h), and overall rate and kinetics of cumulus expansion (0.089 ± 0.02 vs 0.088 ± 0.03 μm/min) (P > 0.05). These morphokinetic parameters provide novel quantitative and non-invasive metrics for the evaluation of meiotic maturation and cumulus expansion and will enable screening compounds that modulate these processes.
Collapse
Affiliation(s)
- Chanakarn Suebthawinkul
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
- Department of Obstetrics and Gynecology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Elnur Babayev
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Luhan Tracy Zhou
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Hoi Chang Lee
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Francesca E Duncan
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| |
Collapse
|
6
|
Distinct classes of lagging chromosome underpin age-related oocyte aneuploidy in mouse. Dev Cell 2021; 56:2273-2283.e3. [PMID: 34428397 DOI: 10.1016/j.devcel.2021.07.022] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 06/07/2021] [Accepted: 07/29/2021] [Indexed: 12/18/2022]
Abstract
Chromosome segregation errors that cause oocyte aneuploidy increase in frequency with maternal age and are considered a major contributing factor of age-related fertility decline in females. Lagging anaphase chromosomes are a common age-associated phenomenon in oocytes, but whether anaphase laggards actually missegregate and cause aneuploidy is unclear. Here, we show that lagging chromosomes in mouse oocytes comprise two mechanistically distinct classes of chromosome motion that we refer to as "class-I" and "class-II" laggards. We use imaging approaches and mechanistic interventions to dissociate the two classes and find that whereas class-II laggards are largely benign, class-I laggards frequently directly lead to aneuploidy. Most notably, a controlled prolongation of meiosis I specifically lessens class-I lagging to prevent aneuploidy. Our data thus reveal lagging chromosomes to be a cause of age-related aneuploidy in mouse oocytes and suggest that manipulating the cell cycle could increase the yield of useful oocytes in some contexts.
Collapse
|
7
|
Yu L, Zhang H, Guan X, Qin D, Zhou J, Wu X. Loss of ESRP1 blocks mouse oocyte development and leads to female infertility. Development 2021; 148:dev196931. [PMID: 33318146 DOI: 10.1242/dev.196931] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 11/24/2020] [Indexed: 01/08/2023]
Abstract
Alternative splicing (AS) contributes to gene diversification, but the AS program during germline development remains largely undefined. Here, we interrupted pre-mRNA splicing events controlled by epithelial splicing regulatory protein 1 (ESRP1) and found that it induced female infertility in mice. Esrp1 deletion perturbed spindle organization, chromosome alignment and metaphase-to-anaphase transformation in oocytes. The first polar body extrusion was blocked during oocyte meiosis owing to abnormal activation of spindle assembly checkpoint and insufficiency of anaphase-promoting complex/cyclosome in Esrp1-knockout oocytes. Esrp1-knockout hampered follicular development and ovulation; eventually, premature ovarian failure occurred in six-month-old Esrp1-knockout mouse. Using single-cell RNA-seq analysis, 528 aberrant AS events of maternal mRNA transcripts were revealed and were preferentially associated with microtubule cytoskeletal organization. Notably, we found that loss of ESRP1 disturbed a comprehensive set of gene-splicing sites - including those within Trb53bp1, Rac1, Bora, Kif2c, Kif23, Ndel1, Kif3a, Cenpa and Lsm14b - that potentially caused abnormal spindle organization. Collectively, our findings provide the first report elucidating the ESRP1-mediated AS program of maternal mRNA transcripts, which may contribute to oocyte meiosis and female fertility in mice.
Collapse
Affiliation(s)
- Luping Yu
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Huiru Zhang
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Xuebing Guan
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Dongdong Qin
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Jian Zhou
- Department of Pediatric Laboratory, Wuxi Children's Hospital Affiliated to Nanjing Medical University, Wuxi, Jiangsu 214023, China
| | - Xin Wu
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu 210029, China
| |
Collapse
|
8
|
So C, Seres KB, Steyer AM, Mönnich E, Clift D, Pejkovska A, Möbius W, Schuh M. A liquid-like spindle domain promotes acentrosomal spindle assembly in mammalian oocytes. Science 2020; 364:364/6447/eaat9557. [PMID: 31249032 DOI: 10.1126/science.aat9557] [Citation(s) in RCA: 120] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Accepted: 05/02/2019] [Indexed: 12/22/2022]
Abstract
Mammalian oocytes segregate chromosomes with a microtubule spindle that lacks centrosomes, but the mechanisms by which acentrosomal spindles are organized and function are largely unclear. In this study, we identify a conserved subcellular structure in mammalian oocytes that forms by phase separation. This structure, which we term the liquid-like meiotic spindle domain (LISD), permeates the spindle poles and forms dynamic protrusions that extend well beyond the spindle. The LISD selectively concentrates multiple microtubule regulatory factors and allows them to diffuse rapidly within the spindle volume. Disruption of the LISD via different means disperses these factors and leads to severe spindle assembly defects. Our data suggest a model whereby the LISD promotes meiotic spindle assembly by serving as a reservoir that sequesters and mobilizes microtubule regulatory factors in proximity to spindle microtubules.
Collapse
Affiliation(s)
- Chun So
- Department of Meiosis, Max Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany
| | - K Bianka Seres
- Department of Meiosis, Max Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany.,Medical Research Council Laboratory of Molecular Biology, Cambridge CB2 0QH, UK.,Bourn Hall Clinic, Cambridge CB23 2TN, UK
| | - Anna M Steyer
- Electron Microscopy Core Unit, Department of Neurogenetics, Max Planck Institute for Experimental Medicine, 37075 Göttingen, Germany.,Cluster of Excellence Nanoscale Microscopy and Molecular Physiology of the Brain (CNMPB), 37073 Göttingen, Germany
| | - Eike Mönnich
- Department of Meiosis, Max Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany
| | - Dean Clift
- Medical Research Council Laboratory of Molecular Biology, Cambridge CB2 0QH, UK
| | - Anastasija Pejkovska
- Department of Meiosis, Max Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany
| | - Wiebke Möbius
- Electron Microscopy Core Unit, Department of Neurogenetics, Max Planck Institute for Experimental Medicine, 37075 Göttingen, Germany.,Cluster of Excellence Nanoscale Microscopy and Molecular Physiology of the Brain (CNMPB), 37073 Göttingen, Germany
| | - Melina Schuh
- Department of Meiosis, Max Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany. .,Medical Research Council Laboratory of Molecular Biology, Cambridge CB2 0QH, UK
| |
Collapse
|
9
|
Abstract
Chromosome segregation errors in human oocytes lead to aneuploid embryos that cause infertility and birth defects. Here we provide an overview of the chromosome-segregation process in the mammalian oocyte, highlighting mechanistic differences between oocytes and somatic cells that render oocytes so prone to segregation error. These differences include the extremely large size of the oocyte cytoplasm, the unique geometry of meiosis-I chromosomes, idiosyncratic function of the spindle assembly checkpoint, and dramatically altered oocyte cell-cycle control and spindle assembly, as compared to typical somatic cells. We summarise recent work suggesting that aging leads to a further deterioration in fidelity of chromosome segregation by impacting multiple components of the chromosome-segregation machinery. In addition, we compare and contrast recent results from mouse and human oocytes, which exhibit overlapping defects to differing extents. We conclude that the striking propensity of the oocyte to mis-segregate chromosomes reflects the unique challenges faced by the spindle in a highly unusual cellular environment.
Collapse
Affiliation(s)
- Aleksandar I Mihajlović
- Centre Recherche CHUM and Department OBGYN, Université de Montreal, Montreal, Quebec, Canada
| | - Greg FitzHarris
- Centre Recherche CHUM and Department OBGYN, Université de Montreal, Montreal, Quebec, Canada.
| |
Collapse
|
10
|
Akera T, Trimm E, Lampson MA. Molecular Strategies of Meiotic Cheating by Selfish Centromeres. Cell 2019; 178:1132-1144.e10. [PMID: 31402175 DOI: 10.1016/j.cell.2019.07.001] [Citation(s) in RCA: 87] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Revised: 01/11/2019] [Accepted: 06/25/2019] [Indexed: 10/26/2022]
Abstract
Asymmetric division in female meiosis creates selective pressure favoring selfish centromeres that bias their transmission to the egg. This centromere drive can explain the paradoxical rapid evolution of both centromere DNA and centromere-binding proteins despite conserved centromere function. Here, we define a molecular pathway linking expanded centromeres to histone phosphorylation and recruitment of microtubule destabilizing factors, leading to detachment of selfish centromeres from spindle microtubules that would direct them to the polar body. Exploiting centromere divergence between species, we show that selfish centromeres in two hybrid mouse models use the same molecular pathway but modulate it differently to enrich destabilizing factors. Our results indicate that increasing microtubule destabilizing activity is a general strategy for drive in both models, but centromeres have evolved distinct mechanisms to increase that activity. Furthermore, we show that drive depends on slowing meiotic progression, suggesting that selfish centromeres can be suppressed by regulating meiotic timing.
Collapse
Affiliation(s)
- Takashi Akera
- Department of Biology, School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Emily Trimm
- Department of Biology, School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Michael A Lampson
- Department of Biology, School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
11
|
Cell-Size-Independent Spindle Checkpoint Failure Underlies Chromosome Segregation Error in Mouse Embryos. Curr Biol 2019; 29:865-873.e3. [PMID: 30773364 DOI: 10.1016/j.cub.2018.12.042] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 11/23/2018] [Accepted: 12/21/2018] [Indexed: 12/31/2022]
Abstract
Chromosome segregation errors during mammalian preimplantation development cause "mosaic" embryos comprising a mixture of euploid and aneuploid cells, which reduce the potential for a successful pregnancy [1-5], but why these errors are common is unknown. In most cells, chromosome segregation error is averted by the spindle assembly checkpoint (SAC), which prevents anaphase-promoting complex (APC/C) activation and anaphase onset until chromosomes are aligned with kinetochores attached to spindle microtubules [6, 7], but little is known about the SAC's role in the early mammalian embryo. In C. elegans, the SAC is weak in early embryos, and it strengthens during early embryogenesis as a result of progressively lessening cell size [8, 9]. Here, using live imaging, micromanipulation, gene knockdown, and pharmacological approaches, we show that this is not the case in mammalian embryos. Misaligned chromosomes in the early mouse embryo can recruit SAC components to mount a checkpoint signal, but this signal fails to prevent anaphase onset, leading to high levels of chromosome segregation error. We find that failure of the SAC to prolong mitosis is not attributable to cell size. We show that mild chemical inhibition of APC/C can extend mitosis, thereby allowing more time for correct chromosome alignment and reducing segregation errors. SAC-APC/C disconnect thus presents a mechanistic explanation for frequent chromosome segregation errors in early mammalian embryos. Moreover, our data provide proof of principle that modulation of the SAC-APC/C axis can increase the likelihood of error-free chromosome segregation in cultured mammalian embryos.
Collapse
|
12
|
Electrical-assisted microinjection for analysis of fertilization and cell division in mammalian oocytes and early embryos. Methods Cell Biol 2018. [PMID: 29804681 DOI: 10.1016/bs.mcb.2018.03.036] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Abstract
Microinjection is an essential approach in the study of mammalian oocytes and early embryos, and is useful for the introduction of many molecules and reagents. Whereas microinjection into germinal vesicle stage oocytes is relatively simple using various microinjection setups, metaphase-II mouse eggs are notoriously fragile, and nondamaging microinjection can be difficult to achieve. Here we describe a microinjection method that is based on electrophysiology, which vastly reduces microinjection damage, especially in metaphase-II eggs. When optimized, this approach allows for over 90% oocyte survival, increasing confidence in experimental results.
Collapse
|
13
|
Haverfield J, Dean NL, Nöel D, Rémillard-Labrosse G, Paradis V, Kadoch IJ, FitzHarris G. Tri-directional anaphases as a novel chromosome segregation defect in human oocytes. Hum Reprod 2018; 32:1293-1303. [PMID: 28449121 DOI: 10.1093/humrep/dex083] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Accepted: 04/07/2017] [Indexed: 12/17/2022] Open
Abstract
STUDY QUESTION What are the chromosome segregation errors in human oocyte meiosis-I that may underlie oocyte aneuploidy? SUMMARY ANSWER Multiple modes of chromosome segregation error were observed, including tri-directional anaphases, which we attribute to loss of bipolar spindle structure at anaphase-I. WHAT IS KNOWN ALREADY Oocyte aneuploidy is common and associated with infertility, but mechanistic information on the chromosome segregation errors underlying these defects is scarce. Lagging chromosomes were recently reported as a possible mechanism by which segregation errors occur. STUDY DESIGN, SIZE, DURATION Long-term confocal imaging of chromosome dynamics in 50 human oocytes collected between January 2015 and May 2016. PARTICIPANTS/MATERIALS, SETTING, METHODS Germinal vesicle (GV) stage oocytes were collected from women undergoing intracytoplasmic sperm injection cycles and also CD1 mice. Oocytes were microinjected with complementary RNAs to label chromosomes, and in a subset of oocytes, the meiotic spindle. Oocytes were imaged live through meiosis-I using confocal microscopy. 3D image reconstruction was used to classify chromosome segregation phenotypes at anaphase-I. Segregation phenotypes were related to spindle dynamics and cell cycle timings. MAIN RESULTS AND THE ROLE OF CHANCE Most (87%) mouse oocytes segregated chromosomes with no obvious defects. We found that 20% of human oocytes segregated chromosomes bi-directionally with no lagging chromosomes. The rest were categorised as bi-directional anaphase with lagging chromosomes (20%), bi-directional anaphase with chromatin mass separation (34%) or tri-directional anaphase (26%). Segregation errors correlated with chromosome misalignment prior to anaphase. Spindles were tripolar when tri-directional anaphases occurred. Anaphase phenotypes did not correlate with meiosis-I duration (P = 0.73). LARGE SCALE DATA Not applicable. LIMITATIONS, REASONS FOR CAUTION Oocytes were recovered at GV stage after gonadotrophin-stimulation, and the usual oocyte quality caveats apply. Whilst the possibility that imaging may affect oocyte physiology cannot be formally excluded, detailed controls and justifications are presented. WIDER IMPLICATIONS OF THE FINDINGS This is one of the first reports of live imaging of chromosome dynamics in human oocytes, introducing tri-directional anaphases as a novel potential mechanism for oocyte aneuploidy. STUDY FUNDING/COMPETING INTEREST(S) This study was funded by grants from Fondation Jean-Louis Lévesque (Canada), CIHR (MOP142334) and CFI (32711) to GF. JH is supported by Postdoctoral Fellowships from The Lalor Foundation and CIHR (146703). The authors have no conflict of interest.
Collapse
Affiliation(s)
- Jenna Haverfield
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), University of Montréal, 900 Rue St Denis, Montréal, Québec, Canada H2X 0A9.,Department of Obstetrics and Gynaecology, University of Montréal, Montréal, Québec, Canada H3T 1J4
| | - Nicola L Dean
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), University of Montréal, 900 Rue St Denis, Montréal, Québec, Canada H2X 0A9.,Clinique de Procréation Assistée (CPA) du CHUM, Montréal, Québec, Canada H2L 4S8
| | - Diana Nöel
- Clinique de Procréation Assistée (CPA) du CHUM, Montréal, Québec, Canada H2L 4S8
| | - Gaudeline Rémillard-Labrosse
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), University of Montréal, 900 Rue St Denis, Montréal, Québec, Canada H2X 0A9
| | - Veronique Paradis
- Clinique de Procréation Assistée (CPA) du CHUM, Montréal, Québec, Canada H2L 4S8
| | - Isaac-Jacques Kadoch
- Department of Obstetrics and Gynaecology, University of Montréal, Montréal, Québec, Canada H3T 1J4.,Clinique de Procréation Assistée (CPA) du CHUM, Montréal, Québec, Canada H2L 4S8
| | - Greg FitzHarris
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), University of Montréal, 900 Rue St Denis, Montréal, Québec, Canada H2X 0A9.,Department of Obstetrics and Gynaecology, University of Montréal, Montréal, Québec, Canada H3T 1J4
| |
Collapse
|
14
|
Nakagawa S, FitzHarris G. Quantitative Microinjection of Morpholino Antisense Oligonucleotides into Mouse Oocytes to Examine Gene Function in Meiosis-I. Methods Mol Biol 2018; 1457:217-30. [PMID: 27557584 DOI: 10.1007/978-1-4939-3795-0_16] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Specific protein depletion is a powerful approach for assessing individual gene function in cellular processes, and has been extensively employed in recent years in mammalian oocyte meiosis-I. Conditional knockout mice and RNA interference (RNAi) methods such as siRNA or dsRNA microinjection are among several approaches to have been applied in this system over the past decade. RNAi by microinjection of Morpholino antisense Oligonucleotides (MO), in particular, has proven highly popular and tractable in many studies, since MOs have high specificity of interaction, low cell toxicity, and are more stable than other microinjected RNAi molecules. Here, we describe a method of MO microinjection into the mouse germinal vesicle-stage (GV) oocyte followed by a simple immunofluorescence approach for examination of gene function in meiosis-I.
Collapse
Affiliation(s)
- Shoma Nakagawa
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal, 900 Rue St. Denis, Montreal, QC, Canada, H2X 0A9
| | - Greg FitzHarris
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal, 900 Rue St. Denis, Montreal, QC, Canada, H2X 0A9. .,Department of Obstetrics and Gynecology, Université de Montréal, 3175, Ch. Côte-Sainte-Catherine, Montréal, QC, Canada, H3T 1C5.
| |
Collapse
|
15
|
Camlin NJ, McLaughlin EA, Holt JE. Motoring through: the role of kinesin superfamily proteins in female meiosis. Hum Reprod Update 2017; 23:409-420. [PMID: 28431155 DOI: 10.1093/humupd/dmx010] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Accepted: 04/01/2017] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND The kinesin motor protein family consists of 14 distinct subclasses and 45 kinesin proteins in humans. A large number of these proteins, or their orthologues, have been shown to possess essential function(s) in both the mitotic and the meiotic cell cycle. Kinesins have important roles in chromosome separation, microtubule dynamics, spindle formation, cytokinesis and cell cycle progression. This article contains a review of the literature with respect to the role of kinesin motor proteins in female meiosis in model species. Throughout, we discuss the function of each class of kinesin proteins during oocyte meiosis, and where such data are not available their role in mitosis is considered. Finally, the review highlights the potential clinical importance of this family of proteins for human oocyte quality. OBJECTIVE AND RATIONALE To examine the role of kinesin motor proteins in oocyte meiosis. SEARCH METHODS A search was performed on the Pubmed database for journal articles published between January 1970 and February 2017. Search terms included 'oocyte kinesin' and 'meiosis kinesin' in addition to individual kinesin names with the terms oocyte or meiosis. OUTCOMES Within human cells 45 kinesin motor proteins have been discovered, with the role of only 13 of these proteins, or their orthologues, investigated in female meiosis. Furthermore, of these kinesins only half have been examined in mammalian oocytes, despite alterations occurring in gene transcripts or protein expression with maternal ageing, cryopreservation or behavioral conditions, such as binge drinking, for many of them. WIDER IMPLICATIONS Kinesin motor proteins have distinct and important roles throughout oocyte meiosis in many non-mammalian model species. However, the functions these proteins have in mammalian meiosis, particularly in humans, are less clear owing to lack of research. This review brings to light the need for more experimental investigation of kinesin motor proteins, particularly those associated with maternal ageing, cryopreservation or exposure to environmental toxicants.
Collapse
Affiliation(s)
- Nicole J Camlin
- School of Environmental and Life Sciences, University of Newcastle, Callaghan, NSW 2308, Australia.,Priority Research Centre for Reproductive Science, University of Newcastle, Callaghan, NSW 2308, Australia
| | - Eileen A McLaughlin
- School of Environmental and Life Sciences, University of Newcastle, Callaghan, NSW 2308, Australia.,Priority Research Centre for Reproductive Science, University of Newcastle, Callaghan, NSW 2308, Australia.,School of Biological Sciences, University of Auckland, Auckland 1010, New Zealand
| | - Janet E Holt
- Priority Research Centre for Reproductive Science, University of Newcastle, Callaghan, NSW 2308, Australia.,School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, NSW 2308, Australia
| |
Collapse
|
16
|
Maternal age-dependent APC/C-mediated decrease in securin causes premature sister chromatid separation in meiosis II. Nat Commun 2017; 8:15346. [PMID: 28516917 PMCID: PMC5454377 DOI: 10.1038/ncomms15346] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Accepted: 03/21/2017] [Indexed: 12/27/2022] Open
Abstract
Sister chromatid attachment during meiosis II (MII) is maintained by securin-mediated inhibition of separase. In maternal ageing, oocytes show increased inter-sister kinetochore distance and premature sister chromatid separation (PSCS), suggesting aberrant separase activity. Here, we find that MII oocytes from aged mice have less securin than oocytes from young mice and that this reduction is mediated by increased destruction by the anaphase promoting complex/cyclosome (APC/C) during meiosis I (MI) exit. Inhibition of the spindle assembly checkpoint (SAC) kinase, Mps1, during MI exit in young oocytes replicates this phenotype. Further, over-expression of securin or Mps1 protects against the age-related increase in inter-sister kinetochore distance and PSCS. These findings show that maternal ageing compromises the oocyte SAC–APC/C axis leading to a decrease in securin that ultimately causes sister chromatid cohesion loss. Manipulating this axis and/or increasing securin may provide novel therapeutic approaches to alleviating the risk of oocyte aneuploidy in maternal ageing. Sister chromatid cohesion during meiosis II (MII), maintained by securin-mediated inhibition of separase, is reduced in aged mouse oocytes. Here the authors show that, in MII oocytes, securin levels are reduced by increased destruction by the anaphase promoting complex/cyclosome.
Collapse
|
17
|
Gigant E, Stefanutti M, Laband K, Gluszek-Kustusz A, Edwards F, Lacroix B, Maton G, Canman JC, Welburn JPI, Dumont J. Inhibition of ectopic microtubule assembly by the kinesin-13 KLP-7 prevents chromosome segregation and cytokinesis defects in oocytes. Development 2017; 144:1674-1686. [PMID: 28289130 DOI: 10.1242/dev.147504] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Accepted: 03/07/2017] [Indexed: 01/02/2023]
Abstract
In most species, oocytes lack centrosomes. Accurate meiotic spindle assembly and chromosome segregation - essential to prevent miscarriage or developmental defects - thus occur through atypical mechanisms that are not well characterized. Using quantitative in vitro and in vivo functional assays in the C. elegans oocyte, we provide novel evidence that the kinesin-13 KLP-7 promotes destabilization of the whole cellular microtubule network. By counteracting ectopic microtubule assembly and disorganization of the microtubule network, this function is strictly required for spindle organization, chromosome segregation and cytokinesis in meiotic cells. Strikingly, when centrosome activity was experimentally reduced, the absence of KLP-7 or the mammalian kinesin-13 protein MCAK (KIF2C) also resulted in ectopic microtubule asters during mitosis in C. elegans zygotes or HeLa cells, respectively. Our results highlight the general function of kinesin-13 microtubule depolymerases in preventing ectopic, spontaneous microtubule assembly when centrosome activity is defective or absent, which would otherwise lead to spindle microtubule disorganization and aneuploidy.
Collapse
Affiliation(s)
- Emmanuelle Gigant
- Institut Jacques Monod, CNRS, UMR 7592, University Paris Diderot, Sorbonne Paris Cité, Paris F-75205, France
| | - Marine Stefanutti
- Institut Jacques Monod, CNRS, UMR 7592, University Paris Diderot, Sorbonne Paris Cité, Paris F-75205, France
| | - Kimberley Laband
- Institut Jacques Monod, CNRS, UMR 7592, University Paris Diderot, Sorbonne Paris Cité, Paris F-75205, France
| | - Agata Gluszek-Kustusz
- Wellcome Trust Centre for Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3JR, Scotland, UK
| | - Frances Edwards
- Institut Jacques Monod, CNRS, UMR 7592, University Paris Diderot, Sorbonne Paris Cité, Paris F-75205, France
| | - Benjamin Lacroix
- Institut Jacques Monod, CNRS, UMR 7592, University Paris Diderot, Sorbonne Paris Cité, Paris F-75205, France
| | - Gilliane Maton
- Institut Jacques Monod, CNRS, UMR 7592, University Paris Diderot, Sorbonne Paris Cité, Paris F-75205, France
| | - Julie C Canman
- Columbia University, Department of Pathology and Cell Biology, New York, NY 10032, USA
| | - Julie P I Welburn
- Wellcome Trust Centre for Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3JR, Scotland, UK
| | - Julien Dumont
- Institut Jacques Monod, CNRS, UMR 7592, University Paris Diderot, Sorbonne Paris Cité, Paris F-75205, France
| |
Collapse
|
18
|
Ritter A, Kreis NN, Louwen F, Wordeman L, Yuan J. Molecular insight into the regulation and function of MCAK. Crit Rev Biochem Mol Biol 2016; 51:228-45. [DOI: 10.1080/10409238.2016.1178705] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
19
|
Connolly AA, Sugioka K, Chuang CH, Lowry JB, Bowerman B. KLP-7 acts through the Ndc80 complex to limit pole number in C. elegans oocyte meiotic spindle assembly. J Cell Biol 2015; 210:917-32. [PMID: 26370499 PMCID: PMC4576866 DOI: 10.1083/jcb.201412010] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
KLP-7/MCAK regulates kinetochore–microtubule attachment and spindle tension to promote the coalescence of early spindle pole foci, which produces a bipolar structure during the acentrosomal process of oocyte meiotic spindle assembly in C. elegans. During oocyte meiotic cell division in many animals, bipolar spindles assemble in the absence of centrosomes, but the mechanisms that restrict pole assembly to a bipolar state are unknown. We show that KLP-7, the single mitotic centromere–associated kinesin (MCAK)/kinesin-13 in Caenorhabditis elegans, is required for bipolar oocyte meiotic spindle assembly. In klp-7(−) mutants, extra microtubules accumulated, extra functional spindle poles assembled, and chromosomes frequently segregated as three distinct masses during meiosis I anaphase. Moreover, reducing KLP-7 function in monopolar klp-18(−) mutants often restored spindle bipolarity and chromosome segregation. MCAKs act at kinetochores to correct improper kinetochore–microtubule (k–MT) attachments, and depletion of the Ndc-80 kinetochore complex, which binds microtubules to mediate kinetochore attachment, restored bipolarity in klp-7(−) mutant oocytes. We propose a model in which KLP-7/MCAK regulates k–MT attachment and spindle tension to promote the coalescence of early spindle pole foci that produces a bipolar structure during the acentrosomal process of oocyte meiotic spindle assembly.
Collapse
Affiliation(s)
- Amy A Connolly
- Institute of Molecular Biology, University of Oregon, Eugene, OR 97403
| | - Kenji Sugioka
- Institute of Molecular Biology, University of Oregon, Eugene, OR 97403
| | - Chien-Hui Chuang
- Institute of Molecular Biology, University of Oregon, Eugene, OR 97403
| | - Joshua B Lowry
- Institute of Molecular Biology, University of Oregon, Eugene, OR 97403
| | - Bruce Bowerman
- Institute of Molecular Biology, University of Oregon, Eugene, OR 97403
| |
Collapse
|
20
|
The KLP-7 Residue S546 Is a Putative Aurora Kinase Site Required for Microtubule Regulation at the Centrosome in C. elegans. PLoS One 2015; 10:e0132593. [PMID: 26168236 PMCID: PMC4500558 DOI: 10.1371/journal.pone.0132593] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2014] [Accepted: 06/16/2015] [Indexed: 12/20/2022] Open
Abstract
Regulation of microtubule dynamics is essential for many cellular processes, including proper assembly and function of the mitotic spindle. The kinesin-13 microtubule-depolymerizing enzymes provide one mechanism to regulate microtubule behaviour temporally and spatially. Vertebrate MCAK locates to chromatin, kinetochores, spindle poles, microtubule tips, and the cytoplasm, implying that the regulation of kinesin-13 activity and subcellular targeting is complex. Phosphorylation of kinesin-13 by Aurora kinase inhibits microtubule depolymerization activity and some Aurora phosphorylation sites on kinesin-13 are required for subcellular localization. Herein, we determine that a C. elegans deletion mutant klp-7(tm2143) causes meiotic and mitotic defects that are consistent with an increase in the amount of microtubules in the cytoplasmic and spindle regions of meiotic embryos, and an increase in microtubules emanating from centrosomes. We show that KLP-7 is phosphorylated by Aurora A and Aurora B kinases in vitro, and that the phosphorylation by Aurora A is stimulated by TPXL-1. Using a structure-function approach, we establish that one putative Aurora kinase site, S546, within the C-terminal part of the core domain is required for the function, but not subcellular localization, of KLP-7 in vivo. Furthermore, FRAP analysis reveals microtubule-dependent differences in the turnover of KLP-7(S546A) and KLP-7(S546E) mutant proteins at the centrosome, suggesting a possible mechanism for the regulation of KLP-7 by Aurora kinase.
Collapse
|
21
|
Fellmeth JE, Gordon D, Robins CE, Scott RT, Treff NR, Schindler K. Expression and characterization of three Aurora kinase C splice variants found in human oocytes. Mol Hum Reprod 2015; 21:633-44. [PMID: 25995441 PMCID: PMC4518136 DOI: 10.1093/molehr/gav026] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Accepted: 05/14/2015] [Indexed: 12/31/2022] Open
Abstract
Chromosome segregation is an extensively choreographed process yet errors still occur frequently in female meiosis, leading to implantation failure, miscarriage or offspring with developmental disorders. Aurora kinase C (AURKC) is a component of the chromosome passenger complex and is highly expressed in gametes. Studies in mouse oocytes indicate that AURKC is required to regulate chromosome segregation during meiosis I; however, little is known about the functional significance of AURKC in human oocytes. Three splice variants of AURKC exist in testis tissue. To determine which splice variants human oocytes express, we performed quantitative real-time PCR using single oocytes and found expression of all three variants. To evaluate the functional differences between the variants, we created green fluorescent protein-tagged constructs of each variant to express in oocytes from Aurkc(-/-) mice. By quantifying metaphase chromosome alignment, cell cycle progression, phosphorylation of INCENP and microtubule attachments to kinetochores, we found that AURKC_v1 was the most capable of the variants at supporting metaphase I chromosome segregation. AURKC_v3 localized to chromosomes properly and supported cell cycle progression to metaphase II, but its inability to correct erroneous microtubule attachments to kinetochores meant that chromosome segregation was not as accurate compared with the other two variants. Finally, when we expressed the three variants simultaneously, error correction was more robust than when they were expressed on their own. Therefore, oocytes express three variants of AURKC that are not functionally equivalent in supporting meiosis, but fully complement meiosis when expressed simultaneously.
Collapse
Affiliation(s)
- Jessica E Fellmeth
- Department of Genetics, Rutgers University, 145 Bevier Road, Piscataway, NJ 08854, USA
| | - Derek Gordon
- Department of Genetics, Rutgers University, 145 Bevier Road, Piscataway, NJ 08854, USA
| | - Christian E Robins
- Reproductive Medicine Associates of New Jersey, Basking Ridge, NJ 07960, USA
| | - Richard T Scott
- Reproductive Medicine Associates of New Jersey, Basking Ridge, NJ 07960, USA
| | - Nathan R Treff
- Department of Genetics, Rutgers University, 145 Bevier Road, Piscataway, NJ 08854, USA Reproductive Medicine Associates of New Jersey, Basking Ridge, NJ 07960, USA
| | - Karen Schindler
- Department of Genetics, Rutgers University, 145 Bevier Road, Piscataway, NJ 08854, USA
| |
Collapse
|
22
|
Nabti I, Marangos P, Bormann J, Kudo NR, Carroll J. Dual-mode regulation of the APC/C by CDK1 and MAPK controls meiosis I progression and fidelity. ACTA ACUST UNITED AC 2014; 204:891-900. [PMID: 24637322 PMCID: PMC3998794 DOI: 10.1083/jcb.201305049] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
MAPK and Cdk1 play compensatory roles in suppressing APC/C activity early in prometaphase, thereby allowing accumulation of APC/C substrates essential for meiosis I. Female meiosis is driven by the activities of two major kinases, cyclin-dependent kinase 1 (Cdk1) and mitogen-activated protein kinase (MAPK). To date, the role of MAPK in control of meiosis is thought to be restricted to maintaining metaphase II arrest through stabilizing Cdk1 activity. In this paper, we find that MAPK and Cdk1 play compensatory roles to suppress the anaphase-promoting complex/cyclosome (APC/C) activity early in prometaphase, thereby allowing accumulation of APC/C substrates essential for meiosis I. Furthermore, inhibition of MAPK around the onset of APC/C activity at the transition from meiosis I to meiosis II led to accelerated completion of meiosis I and an increase in aneuploidy at metaphase II. These effects appear to be mediated via a Cdk1/MAPK-dependent stabilization of the spindle assembly checkpoint, which when inhibited leads to increased APC/C activity. These findings demonstrate new roles for MAPK in the regulation of meiosis in mammalian oocytes.
Collapse
Affiliation(s)
- Ibtissem Nabti
- Department of Cell and Developmental Biology, University College London, London WC1E 6BT, England, UK
| | | | | | | | | |
Collapse
|
23
|
Shomper M, Lappa C, FitzHarris G. Kinetochore microtubule establishment is defective in oocytes from aged mice. Cell Cycle 2014; 13:1171-9. [PMID: 24553117 DOI: 10.4161/cc.28046] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Errors in chromosome segregation in mammalian oocytes increase in number with advancing maternal age, and are a major cause of pregnancy loss. Why chromosome segregation errors are more common in oocytes from older females remains poorly understood. In mitosis, accurate chromosome segregation is enabled by attachment of kinetochores to microtubules from appropriate spindle poles, and erroneous attachments increase the likelihood of mis-segregation. Whether attachment errors are responsible for age-related oocyte aneuploidy is unknown. Here we report that oocytes from naturally aged mice exhibit substantially increased chromosome misalignment, and fewer kinetochore pairs that make stable end-on attachments to the appropriate spindle poles compared with younger oocytes. The profile of mis-attachments exhibited is consistent with the types of chromosome segregation error observed in aged oocytes. Loss of chromosome cohesion, which is a feature of oocytes from older females, causes altered kinetochore geometry in meiosis-I. However, this has only a minor impact upon MT attachment, indicating that cohesion loss is not the primary cause of aneuploidy in meiosis-I. In meiosis-II, on the other hand, age-related cohesion loss plays a direct role in errors, since prematurely individualized sister chromatids misalign and misattach to spindle MTs. Thus, whereas cohesion loss leading to precocious sister chromatid separation is a direct cause of errors in meiosis-II, cohesion loss plays a more minor role in the etiology of aneuploidy in meiosis-I. Our data introduce altered MT-kinetochore interactions as a lesion that explains aneuploidy in meiosis-I in older females.
Collapse
Affiliation(s)
- Maria Shomper
- Cell and Developmental Biology; University College London; London, UK
| | - Christina Lappa
- Cell and Developmental Biology; University College London; London, UK
| | - Greg FitzHarris
- Cell and Developmental Biology; University College London; London, UK
| |
Collapse
|
24
|
Toms D, Tsoi S, Dobrinsky J, Dyck MK, Li J. The effects of glial cell line-derived neurotrophic factor on the in vitro matured porcine oocyte transcriptome. Mol Reprod Dev 2014; 81:217-29. [DOI: 10.1002/mrd.22288] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2013] [Accepted: 11/26/2013] [Indexed: 12/21/2022]
Affiliation(s)
- Derek Toms
- Department of Animal and Poultry Science; University of Guelph; Guelph Canada
| | - Stephen Tsoi
- Department of Agricultural; Food and Nutritional Science; University of Alberta; Edmonton Canada
| | - John Dobrinsky
- International Center of Biotechnology; Minitube of America; Mt. Horeb Wisconsin
| | - Michael K. Dyck
- Department of Agricultural; Food and Nutritional Science; University of Alberta; Edmonton Canada
| | - Julang Li
- Department of Animal and Poultry Science; University of Guelph; Guelph Canada
| |
Collapse
|
25
|
Howe K, FitzHarris G. Recent insights into spindle function in mammalian oocytes and early embryos. Biol Reprod 2013; 89:71. [PMID: 23966320 DOI: 10.1095/biolreprod.113.112151] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Errors in chromosome segregation in oocytes and early embryos lead to embryo aneuploidy, which contributes to early pregnancy loss. At the heart of chromosome segregation is the spindle, a dynamic biomechanical machine fashioned from microtubules, which is tasked with gathering and sorting chromosomes and dispatching them to the daughter cells at the time of cell division. Understanding the causes of segregation error in the oocyte and early embryo will undoubtedly hinge on a thorough understanding of the mechanism of spindle assembly and function in these highly specialized cellular environments. The recent advent of live imaging approaches to observe chromosome segregation in real-time in oocytes and embryos, paired with gene-silencing techniques and specific inhibition for assessing the function of a protein of interest, has led to a substantial advance in our understanding of chromosome segregation in early mammalian development. These studies have uncovered numerous mechanistic differences between oocytes, embryos, and traditional model systems. In addition, a flurry of recent studies using naturally aged mice as the model for human aging have begun to shed light on the increased levels of aneuploidy seen in embryos from older mothers. Here we review these recent developments and consider what has been learned about the causes of chromosome missegregation in early development.
Collapse
Affiliation(s)
- Katie Howe
- Department of Cell and Developmental Biology, University College London, London, United Kingdom
| | | |
Collapse
|
26
|
Abstract
The microtubule (MT) cytoskeleton supports a broad range of cellular functions, from providing tracks for intracellular transport, to supporting movement of cilia and flagella, to segregating chromosomes in mitosis. These functions are facilitated by the organizational and dynamic plasticity of MT networks. An important class of enzymes that alters MT dynamics is the depolymerizing kinesin-like proteins, which use their catalytic activities to regulate MT end dynamics. In this review, we discuss four topics surrounding these MT-depolymerizing kinesins. We provide a historical overview of studies focused on these motors and discuss their phylogeny. In the second half, we discuss their enzymology and biophysics and give an overview of their known cellular functions. This discussion highlights the fact that MT-depolymerizing kinesins exhibit a diverse range of design principles, which in turn increases their functional versatility in cells.
Collapse
Affiliation(s)
- Claire E Walczak
- Medical Sciences, Indiana University, Bloomington, Indiana 47405;
| | | | | |
Collapse
|
27
|
Howe K, FitzHarris G. A non-canonical mode of microtubule organization operates throughout pre-implantation development in mouse. Cell Cycle 2013; 12:1616-24. [PMID: 23624836 DOI: 10.4161/cc.24755] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
In dividing animal cells, the centrosome, comprising centrioles and surrounding pericentriolar-material (PCM), is the major interphase microtubule-organizing center (MTOC), arranging a polarized array of microtubules (MTs) that controls cellular architecture. The mouse embryo is a unique setting for investigating the role of centrosomes in MT organization, since the early embryo is acentrosomal, and centrosomes emerge de novo during early cleavages. Here we use embryos from a GFP::CETN2 transgenic mouse to observe the emergence of centrosomes and centrioles in embryos, and show that unfocused acentriolar centrosomes first form in morulae (~16-32-cell stage) and become focused at the blastocyst stage (~64-128 cells) concomitant with the emergence of centrioles. We then used high-resolution microscopy and dynamic tracking of MT growth events in live embryos to examine the impact of centrosome emergence upon interphase MT dynamics. We report that pre-implantation mouse embryos of all stages employ a non-canonical mode of MT organization that generates a complex array of randomly oriented MTs that are preferentially nucleated adjacent to nuclear and plasmalemmal membranes and cell-cell interfaces. Surprisingly, however, cells of the early embryo continue to employ this mode of interphase MT organization even after the emergence of centrosomes. Centrosomes are found at MT-sparse sites and have no detectable impact upon interphase MT dynamics. To our knowledge, the early embryo is unique among proliferating cells in adopting an acentrosomal mode of MT organization despite the presence of centrosomes, revealing that the transition to a canonical mode of interphase MT organization remains incomplete prior to implantation.
Collapse
Affiliation(s)
- Katie Howe
- Department of Cell and Developmental Biology, University College London, London, UK
| | | |
Collapse
|
28
|
Abstract
Chromosomal spreads are an established method to assess ploidy in different cell types. However, many traditional chromosome-spreading techniques require dissolution of the cell and can only be used to assess hyperploidy because of potential chromosome loss inherent in the procedure. Here we describe a method to evaluate chromosome numbers in intact eggs so that both hyperploidy and hypoploidy can be accurately detected.
Collapse
|
29
|
Ribeiro-Varandas E, Viegas W, Sofia Pereira H, Delgado M. Bisphenol A at concentrations found in human serum induces aneugenic effects in endothelial cells. Mutat Res 2012; 751:27-33. [PMID: 23142537 DOI: 10.1016/j.mrgentox.2012.10.007] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2012] [Revised: 08/17/2012] [Accepted: 10/21/2012] [Indexed: 12/21/2022]
Abstract
Bisphenol A (BPA) is an endocrine disrupting chemical to which humans are exposed. Continuous environmental exposure to BPA leads to its detection in the majority of individuals from developed countries, with serum concentrations ranging from 0.5 to 10ng/ml in the general population and much higher when associated with occupational exposure. In this work, human umbilical vascular endothelial cells (HUVEC) and human colon adenocarcinona (HT29) cell lines were used to represent endothelial and digestive-tract tissues, which are in direct contact to BPA in vivo. Our results demonstrate that BPA has cell-type differential effects. Notably, BPA concentrations commonly found in humans induce micronucleus formation and interfere with cell-division processes in endothelial cells, resulting in mitotic abnormalities. We also found that BPA induces up-regulation of two genes encoding proteins associated with chromosome segregation, namely CDCA8 (borealin/cell division cycle A8) and SGOL2 (shugoshin-like2). Taken together, the aneugenic effects observed in endothelial cells (HUVECs) substantiate increasing concerns about BPA exposure at levels currently detected in humans.
Collapse
Affiliation(s)
- Edna Ribeiro-Varandas
- CBAA-Genetics, Instituto Superior de Agronomia, Technical University of Lisbon, Portugal
| | | | | | | |
Collapse
|
30
|
Microtubule-depolymerizing kinesin KLP10A restricts the length of the acentrosomal meiotic spindle in Drosophila females. Genetics 2012; 192:431-40. [PMID: 22865737 DOI: 10.1534/genetics.112.143503] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
During cell division, a bipolar array of microtubules forms the spindle through which the forces required for chromosome segregation are transmitted. Interestingly, the spindle as a whole is stable enough to support these forces even though it is composed of dynamic microtubules, which are constantly undergoing periods of growth and shrinkage. Indeed, the regulation of microtubule dynamics is essential to the integrity and function of the spindle. We show here that a member of an important class of microtubule-depolymerizing kinesins, KLP10A, is required for the proper organization of the acentrosomal meiotic spindle in Drosophila melanogaster oocytes. In the absence of KLP10A, microtubule length is not controlled, resulting in extraordinarily long and disorganized spindles. In addition, the interactions between chromosomes and spindle microtubules are disturbed and can result in the loss of contact. These results indicate that the regulation of microtubule dynamics through KLP10A plays a critical role in restricting the length and maintaining bipolarity of the acentrosomal meiotic spindle and in promoting the contacts that the chromosomes make with microtubules required for meiosis I segregation.
Collapse
|
31
|
Shao H, Ma C, Zhang X, Li R, Miller AL, Bement WM, Liu XJ. Aurora B regulates spindle bipolarity in meiosis in vertebrate oocytes. Cell Cycle 2012; 11:2672-80. [PMID: 22751439 DOI: 10.4161/cc.21016] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Aurora B (Aur-B) plays multiple roles in mitosis, of which the best known are to ensure bi-orientation of sister chromatids by destabilizing incorrectly attached kinetochore microtubules and to participate in cytokinesis. Studies in Xenopus egg extracts, however, have indicated that Aur-B and the chromosome passenger complex play an important role in stabilizing chromosome-associated spindle microtubules. Aur-B stabilizes spindle microtubules in the egg extracts by inhibiting the catastrophe kinesin MCAK. Whether or not Aur-B plays a similar role in intact oocytes remains unknown. Here we have employed a dominant-negative Aur-B mutant (Aur-B122R, in which the ATP-binding lysine(122) is replaced with arginine) to investigate the function of Aur-B in spindle assembly in Xenopus oocytes undergoing meiosis. Overexpression of Aur-B122R results in short bipolar spindles or monopolar spindles, with higher concentrations of Aur-B122R producing mostly the latter. Simultaneous inhibition of MCAK translation in oocytes overexpressing Aur-B122R results in suppression of monopolar phenotype, suggesting that Aur-B regulates spindle bipolarity by inhibiting MCAK. Furthermore, recombinant MCAK-4A protein, which lacks all four Aur-B phosphoryaltion sites and is therefore insensitive to Aur-B inhibition but not wild-type MCAK, recapitulated the monopolar phenotype in the oocytes. These results suggest that in vertebrate oocytes that lack centrosomes, one major function of Aur-B is to stabilize chromosome-associated spindle microtubules to ensure spindle bipolarity.
Collapse
Affiliation(s)
- Hua Shao
- Ottawa Hospital Research Institute, Ottawa Hospital Civic Campus, Ottawa, ON, Canada
| | | | | | | | | | | | | |
Collapse
|
32
|
Liu XJ. Polar body emission. Cytoskeleton (Hoboken) 2012; 69:670-85. [PMID: 22730245 DOI: 10.1002/cm.21041] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2012] [Revised: 05/15/2012] [Accepted: 05/21/2012] [Indexed: 12/13/2022]
Abstract
Generation of a haploid female germ cell, the egg, consists of two rounds of asymmetric cell division (meiosis I and meiosis II), yielding two diminutive and nonviable polar bodies and a large haploid egg. Animal eggs are also unique in the lack of centrioles and therefore form meiotic spindles without the pre-existence of the two dominant microtubule organizing centers (centrosomes) found in mitosis. Meiotic spindle assembly is further complicated by the unique requirement of sister chromatid mono-oriented in meiosis I. Nonetheless, the eggs appear to adopt many of the same proteins and mechanisms described in mitosis, with necessary modifications to accommodate their special needs. Unraveling these special modifications will not only help understanding animal reproduction, but should also enhance our understanding of cell division in general.
Collapse
Affiliation(s)
- X Johné Liu
- Chronic Disease Program, Ottawa Hospital Research Institute, Ottawa Hospital Civic Campus, 1053 Carling Avenue, Ottawa, K1Y 4E9, Canada.
| |
Collapse
|
33
|
Merriman JA, Jennings PC, McLaughlin EA, Jones KT. Effect of aging on superovulation efficiency, aneuploidy rates, and sister chromatid cohesion in mice aged up to 15 months. Biol Reprod 2012; 86:49. [PMID: 22053097 DOI: 10.1095/biolreprod.111.095711] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Human eggs are highly aneuploid, with female age being the only known risk factor. Here this aging phenomenon was further studied in Swiss CD1 mice aged between 1 and 15 mo. The mean number of eggs ± SEM recovered from mice following superovulation peaked at 22.5 ± 3.8 eggs/oviduct in 3-mo-old females, decreasing markedly between 6 and 9 mo old, and was only 2.1 ± 0.2 eggs/oviduct by 15 mo. Measurement of aneuploidy in these eggs revealed a low rate, ∼3-4%, in mice aged 1 and 3 mo, rising to 12.5% by 9 mo old and to 37.5% at 12 mo. Fifteen-month-old mice had the highest rate of aneuploidy, peaking at 60%. The in situ chromosome counting technique used here allowed us to measure with accuracy the distance between the kinetochores in the sister chromatids of the eggs analyzed for aneuploidy. We observed that this distance increased in eggs from older females, from 0.38 ± 0.01 μm at 1 mo old to 0.82 ± 0.03 μm by 15 mo. Furthermore, in 3- to 12-mo-old females, aneuploid eggs had significantly larger interkinetochore distances than euploid eggs from the same age, and measurements were similar to eggs from the oldest mice. However, the association between aneuploidy and interkinetochore distance was not observed at the oldest, 15-mo age, despite such measurements being maximal. We conclude that in aging CD1 mice, a reduction in the ovulated egg number precedes a rise in aneuploidy and, furthermore, except at very advanced ages, increased interkinetochore distance is associated with aneuploidy.
Collapse
Affiliation(s)
- Julie A Merriman
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, New South Wales, Australia
| | | | | | | |
Collapse
|
34
|
Sun SC, Kim NH. Spindle assembly checkpoint and its regulators in meiosis. Hum Reprod Update 2011; 18:60-72. [DOI: 10.1093/humupd/dmr044] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
|
35
|
Tatone C, Heizenrieder T, Di Emidio G, Treffon P, Amicarelli F, Seidel T, Eichenlaub-Ritter U. Evidence that carbonyl stress by methylglyoxal exposure induces DNA damage and spindle aberrations, affects mitochondrial integrity in mammalian oocytes and contributes to oocyte ageing. Hum Reprod 2011; 26:1843-59. [PMID: 21558076 DOI: 10.1093/humrep/der140] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
BACKGROUND Highly reactive carbonyl compounds formed during glycolysis, such as methylglyoxal (MG), can lead to the formation of 'advanced glycation end products' (AGE) and carbonyl stress. Toxic AGEs are suspected to accumulate and play a role in reducing quality and developmental potential of mammalian oocytes of aged females and in PCOS and diabetic patients. Whether and how MG and AGE affect young and aged oocytes at the cellular level is unknown. METHODS The study consists of three parts. In Part A expression of MG-detoxifying enzymes glyoxalases 1 and 2 was analysed by RT-PCR at different stages of maturation in denuded oocytes (DO), cumulus-enclosed oocytes (CEO) and metaphase (M)II oocytes of the CD-1 mouse to obtain information on stage-specific susceptibility to carbonyl stress. DO and CEO from young and aged females and from stimulated cycles were exposed to MG during maturation in vitro to assess also age-related changes in sensitivity to carbonyl stress induced by MG. Induction of apoptosis by MG on in vitro maturing DO was assessed by terminal deoxynucleotidyl transferase-mediated dUDP nick-end labelling test. In Part B of the study, DO from large antral follicles of ovaries of adult, young MF-1 mice in late diestrous were exposed to MG to assess direct influences of MG and AGEs formed during continuous exposure to MG on rate and kinetics of maturation to MII, on DNA integrity (by γ-H2AX staining) in the germinal vesicle (GV) stage, and on spindle formation and chromosome alignment (by tubulin and pericentrin immunofluorescence and polarization microscopy), and chromosome segregation (by C-banding) during in vitro maturation. Since MG and AGEs can affect functionality of mitochondria in Part C, mitochondrial distribution and membrane potential was studied using JC-1 probe. Expression of a redox-sensitive mito-Grx1-roGFP2 protein in mitochondria of maturing oocytes by confocal laser scanning microscopy was employed to determine the inner mitochondrial glutathion (GSH)/glutathion disulfide (GSSG)-dependent redox potential. RESULTS Part A revealed that mRNA for glyoxalases decreases during meiotic maturation. Importantly, cumulus from aged mice in CEO obtained from stimulated cycles does not protect oocytes efficiently from MG-induced meiotic arrest during in vitro maturation. Part B showed that the MG-induced meiotic delay or arrest is associated with significant rises in spindle aberrations, chromosome congression failure and aberrant telophase I in oocytes. MG exposure of meiotically arrested GV-stage oocytes significantly increases the numbers of γ-H2AX spots in the nucleus suggesting increased DNA damage, while MG exposure during maturation affects chromatin condensation and induces chromosome lagging at anaphase I. Moreover, Part C revealed that carbonyl stress by chronic exposure to MG is associated with delays in changes in mitochondrial distribution and altered inner-mitochondrial GSH/GSSG redox potential, which might be particularly relevant for cytoskeletal dynamics as well as processes after fertilization. Sensitivity to a meiotic block by MG appears dependent on the genetic background. CONCLUSIONS The sensitivity to carbonyl stress by MG appears to increase with maternal age. Since MG-exposure induces DNA damage, meiotic delay, spindle aberrations, anaphase I lagging and epimutation, aged oocytes are particularly at risk for such disturbances in the absence of efficient protection by cumulus. Furthermore, disturbances in mitochondrial distribution and redox regulation may be especially critical for fertilization and developmental competence of oocytes exposed to MG and carbonyl stress before or during maturation, for instance, in aged females, or in PCOS or diabetic patients, in agreement with recent suggestions of correlations between poor follicular and embryonic development, lower pregnancy rate and presence of toxic AGEs in serum, irrespective of age.
Collapse
Affiliation(s)
- Carla Tatone
- Department of Health Sciences, University of L'Aquila, Via Vetoio, 67100 L'Aquila, Italy
| | | | | | | | | | | | | |
Collapse
|
36
|
Kaláb P, Solc P, Motlík J. The role of RanGTP gradient in vertebrate oocyte maturation. Results Probl Cell Differ 2011; 53:235-67. [PMID: 21630149 DOI: 10.1007/978-3-642-19065-0_12] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The maturation of vertebrate oocyte into haploid gamete, the egg, consists of two specialized asymmetric cell divisions with no intervening S-phase. Ran GTPase has an essential role in relaying the active role of chromosomes in their own segregation by the meiotic process. In addition to its conserved role as a key regulator of macromolecular transport between nucleus and cytoplasm, Ran has important functions during cell division, including in mitotic spindle assembly and in the assembly of nuclear envelope at the exit from mitosis. The cellular functions of Ran are mediated by RanGTP interactions with nuclear transport receptors (NTRs) related to importin β and depend on the existence of chromosome-centered RanGTP gradient. Live imaging with FRET biosensors indeed revealed the existence of RanGTP gradient throughout mouse oocyte maturation. NTR-dependent transport of cell cycle regulators including cyclin B1, Wee2, and Cdc25B between the oocyte cytoplasm and germinal vesicle (GV) is required for normal resumption of meiosis. After GVBD in mouse oocytes, RanGTP gradient is required for timely meiosis I (MI) spindle assembly and provides long-range signal directing egg cortex differentiation. However, RanGTP gradient is not required for MI spindle migration and may be dispensable for MI spindle function in chromosome segregation. In contrast, MII spindle assembly and function in maturing mouse and Xenopus laevis eggs depend on RanGTP gradient, similar to X. laevis MII-derived egg extracts.
Collapse
Affiliation(s)
- Petr Kaláb
- Laboratory of Cellular and Molecular Biology, National Cancer Institute, NIH, Bethesda, MD 20892-4256, USA.
| | | | | |
Collapse
|