1
|
Jaiswal P, Kimmel AR. Diverse Roles of the Multiple Phosphodiesterases in the Regulation of Cyclic Nucleotide Signaling in Dictyostelium. Cells 2025; 14:522. [PMID: 40214475 PMCID: PMC11988041 DOI: 10.3390/cells14070522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2025] [Revised: 03/27/2025] [Accepted: 03/28/2025] [Indexed: 04/14/2025] Open
Abstract
Dictyostelium is a unique model used to study the complex and interactive cyclic nucleotide signaling pathways that regulate multicellular development. Dictyostelium grow as individual single cells, but in the absence of nutrients, they initiate a multicellular developmental program. Central to this is secreted cAMP, a primary GPCR-response signal. Activated cAMP receptors at the cell surface direct a number of downstream signaling pathways, including synthesis of the intracellular second messengers cAMP and cGMP. These, in turn, activate a series of downstream targets that direct chemotaxis within extracellular cAMP gradients, multicellular aggregation, and, ultimately, cell-specific gene expression, morphogenesis, and cytodifferentiation. Extracellular cAMP and intracellular cAMP and cGMP exhibit rapid fluctuations in concentrations and are, thus, subject to exquisite regulation by both synthesis and degradation. The Dictyostelium genome encodes seven phosphodiesterases (PDEs) that degrade cyclic nucleotides to nucleotide 5'-monophosphates. Each PDE has a distinct structure, substrate specificity, regulatory input, cellular localization, and developmentally regulated expression pattern. The intra- or extra-cellular localizations and enzymatic specificities for cAMP or cGMP are essential for degradative precision at different developmental stages. We discuss the diverse PDEs, the nucleotide cyclases, and the target proteins for cAMP and cGMP in Dictyostelium. We further outline the major molecular, cellular, and developmental events regulated by cyclic nucleotide signaling, with emphasis on the input of each PDE and consequence of loss-of-function mutations. Finally, we relate the structures and functions of the Dictyostelium PDEs with those of humans and in the context of potential therapeutic understandings.
Collapse
Affiliation(s)
| | - Alan R. Kimmel
- Laboratory of Cellular and Developmental Biology, National Institute of Diabetes and Digestive and Kidney Diseases, The National Institutes of Health, Bethesda, MD 20892, USA;
| |
Collapse
|
2
|
Baumgardner K, Lin C, Firtel RA, Lacal J. Phosphodiesterase PdeD, dynacortin, and a Kelch repeat-containing protein are direct GSK3 substrates in Dictyostelium that contribute to chemotaxis towards cAMP. Environ Microbiol 2019; 20:1888-1903. [PMID: 29626371 DOI: 10.1111/1462-2920.14126] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Revised: 03/29/2018] [Accepted: 04/01/2018] [Indexed: 01/25/2023]
Abstract
The migration of cells according to a diffusible chemical signal in their environment is called chemotaxis, and the slime mold Dictyostelium discoideum is widely used for the study of eukaryotic chemotaxis. Dictyostelium must sense chemicals, such as cAMP, secreted during starvation to move towards the sources of the signal. Previous work demonstrated that the gskA gene encodes the Dictyostelium homologue of glycogen synthase kinase 3 (GSK3), a highly conserved serine/threonine kinase, which plays a major role in the regulation of Dictyostelium chemotaxis. Cells lacking the GskA substrates Daydreamer and GflB exhibited chemotaxis defects less severe than those exhibited by gskA- (GskA null) cells, suggesting that additional GskA substrates might be involved in chemotaxis. Using phosphoproteomics we identify the GskA substrates PdeD, dynacortin and SogA and characterize the phenotypes of their respective null cells in response to the chemoattractant cAMP. All three chemotaxis phenotypes are defective, and in addition, we determine that carboxylesterase D2 is a common downstream effector of GskA, its direct substrates PdeD, GflB and the kinases GlkA and YakA, and that it also contributes to cell migration. Our findings identify new GskA substrates in cAMP signalling and break down the essential role of GskA in myosin II regulation.
Collapse
Affiliation(s)
- Kimberly Baumgardner
- Section of Cell and Developmental Biology, Division of Biological Sciences, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0380, USA
| | - Connie Lin
- Section of Cell and Developmental Biology, Division of Biological Sciences, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0380, USA
| | - Richard A Firtel
- Section of Cell and Developmental Biology, Division of Biological Sciences, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0380, USA
| | - Jesus Lacal
- Section of Cell and Developmental Biology, Division of Biological Sciences, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0380, USA.,Department of Microbiology and Genetics, University of Salamanca, Campus Miguel de Unamuno, Salamanca, 37007, Spain
| |
Collapse
|
3
|
Saga Y, Iwade Y, Araki T, Ishikawa M, Kawata T. Analysis of DrkA kinase's role in STATa activation. Genes Cells 2019; 24:422-435. [PMID: 31002205 DOI: 10.1111/gtc.12686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 04/09/2019] [Accepted: 04/11/2019] [Indexed: 11/28/2022]
Abstract
Dictyostelium STATa is a homologue of metazoan signal transducers and activators of transcription (STATs) and is important for morphogenesis. STATa is activated by phosphorylation on Tyr702 when cells are exposed to extracellular cAMP. Although two tyrosine kinase-like (TKL) proteins, Pyk2 and Pyk3, have been definitively identified as STATc kinases, no kinase is known for STATa activation. Based on homology to the previously identified tyrosine-selective TKLs, we identified DrkA, a member of the TKL family and the Dictyostelium receptor-like kinase (DRK) subfamily, as a candidate STATa kinase. The drkA gene is almost exclusively expressed in prestalk A (pstA) cells, where STATa is activated. Transient over-expression of DrkA increased STATa phosphorylation, although over-expression of the protein causes a severe growth defect and cell death. Furthermore, recombinant DrkA protein is auto-phosphorylated on tyrosine and threonine residues, and an in vitro kinase assay shows that DrkA can phosphorylate STATa on Tyr702 in a STATa-SH2 (phosphotyrosine binding) domain-dependent manner. These observations strongly suggest that DrkA is one of the key regulators of STATa tyrosine phosphorylation and is consistent with it being the kinase that directly activates STATa.
Collapse
Affiliation(s)
- Yukika Saga
- Department of Biology, Faculty of Science, Toho University, Funabashi, Japan
| | - Yumi Iwade
- Department of Biology, Faculty of Science, Toho University, Funabashi, Japan
| | - Tsuyoshi Araki
- Division of Cell and Developmental Biology, JBC/WTB/MSI Complex, School of Life Sciences, University of Dundee, Dundee, UK.,Department of Materials and Life Sciences, Sophia University, Tokyo, Japan
| | - Megumi Ishikawa
- Department of Biology, Faculty of Science, Toho University, Funabashi, Japan
| | - Takefumi Kawata
- Department of Biology, Faculty of Science, Toho University, Funabashi, Japan
| |
Collapse
|
4
|
Kawabe Y, Morio T, Tanaka Y, Schaap P. Glycogen synthase kinase 3 promotes multicellular development over unicellular encystation in encysting Dictyostelia. EvoDevo 2018; 9:12. [PMID: 29760875 PMCID: PMC5941370 DOI: 10.1186/s13227-018-0101-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Accepted: 04/29/2018] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Glycogen synthase kinase 3 (GSK3) regulates many cell fate decisions in animal development. In multicellular structures of the group 4 dictyostelid Dictyostelium discoideum, GSK3 promotes spore over stalk-like differentiation. We investigated whether, similar to other sporulation-inducing genes such as cAMP-dependent protein kinase (PKA), this role of GSK3 is derived from an ancestral role in encystation of unicellular amoebas. RESULTS We deleted GSK3 in Polysphondylium pallidum, a group 2 dictyostelid which has retained encystation as an alternative survival strategy. Loss of GSK3 inhibited cytokinesis of cells in suspension, as also occurs in D. discoideum, but did not affect spore or stalk differentiation in P. pallidum. However, gsk3- amoebas entered into encystation under conditions that in wild type favour aggregation and fruiting body formation. The gsk3- cells were hypersensitive to osmolytes, which are known to promote encystation, and to cyst-inducing factors that are secreted during starvation. GSK3 was not itself regulated by these factors, but inhibited their effects. CONCLUSIONS Our data show that GSK3 has a deeply conserved role in controlling cytokinesis, but not spore differentiation in Dictyostelia. Instead, in P. pallidum, one of many Dictyostelia that like their solitary ancestors can still encyst to survive starvation, GSK3 promotes multicellular development into fruiting bodies over unicellular encystment.
Collapse
Affiliation(s)
- Yoshinori Kawabe
- 0000 0004 0397 2876grid.8241.fSchool of Life Sciences, University of Dundee, MSI/WTB Complex, Dow Street, Dundee, DD15EH UK ,0000 0001 2369 4728grid.20515.33Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8572 Japan
| | - Takahiro Morio
- 0000 0001 2369 4728grid.20515.33Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8572 Japan
| | - Yoshimasa Tanaka
- 0000 0001 2369 4728grid.20515.33Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8572 Japan
| | - Pauline Schaap
- 0000 0004 0397 2876grid.8241.fSchool of Life Sciences, University of Dundee, MSI/WTB Complex, Dow Street, Dundee, DD15EH UK
| |
Collapse
|
5
|
Lacal Romero J, Shen Z, Baumgardner K, Wei J, Briggs SP, Firtel RA. The Dictyostelium GSK3 kinase GlkA coordinates signal relay and chemotaxis in response to growth conditions. Dev Biol 2018; 435:56-72. [PMID: 29355521 DOI: 10.1016/j.ydbio.2018.01.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Revised: 01/11/2018] [Accepted: 01/11/2018] [Indexed: 12/21/2022]
Abstract
GSK3 plays a central role in orchestrating key biological signaling pathways, including cell migration. Here, we identify GlkA as a GSK3 family kinase with functions that overlap with and are distinct from those of GskA. We show that GlkA, as previously shown for GskA, regulates the cell's cytoskeleton through MyoII assembly and control of Ras and Rap1 function, leading to aberrant cell migration. However, there are both qualitative and quantitative differences in the regulation of Ras and Rap1 and their downstream effectors, including PKB, PKBR1, and PI3K, with glkA- cells exhibiting a more severe chemotaxis phenotype than gskA- cells. Unexpectedly, the severe glkA- phenotypes, but not those of gskA-, are only exhibited when cells are grown attached to a substratum but not in suspension, suggesting that GlkA functions as a key kinase of cell attachment signaling. Using proteomic iTRAQ analysis we show that there are quantitative differences in the pattern of protein expression depending on the growth conditions in wild-type cells. We find that GlkA expression affects the cell's proteome during vegetative growth and development, with many of these changes depending on whether the cells are grown attached to a substratum or in suspension. These changes include key cytoskeletal and signaling proteins known to be essential for proper chemotaxis and signal relay during the aggregation stage of Dictyostelium development.
Collapse
Affiliation(s)
- Jesus Lacal Romero
- Section of Cell and Developmental Biology, Division of Biological Sciences, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0380, USA
| | - Zhouxin Shen
- Section of Cell and Developmental Biology, Division of Biological Sciences, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0380, USA
| | - Kimberly Baumgardner
- Section of Cell and Developmental Biology, Division of Biological Sciences, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0380, USA
| | - Jing Wei
- JadeBio, Inc., 505 Coast Boulevard South Suite 206, La Jolla, CA 92037, USA
| | - Steven P Briggs
- Section of Cell and Developmental Biology, Division of Biological Sciences, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0380, USA
| | - Richard A Firtel
- Section of Cell and Developmental Biology, Division of Biological Sciences, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0380, USA.
| |
Collapse
|
6
|
The multicellularity genes of dictyostelid social amoebas. Nat Commun 2016; 7:12085. [PMID: 27357338 PMCID: PMC4931340 DOI: 10.1038/ncomms12085] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Accepted: 05/27/2016] [Indexed: 11/09/2022] Open
Abstract
The evolution of multicellularity enabled specialization of cells, but required novel signalling mechanisms for regulating cell differentiation. Early multicellular organisms are mostly extinct and the origins of these mechanisms are unknown. Here using comparative genome and transcriptome analysis across eight uni- and multicellular amoebozoan genomes, we find that 80% of proteins essential for the development of multicellular Dictyostelia are already present in their unicellular relatives. This set is enriched in cytosolic and nuclear proteins, and protein kinases. The remaining 20%, unique to Dictyostelia, mostly consists of extracellularly exposed and secreted proteins, with roles in sensing and recognition, while several genes for synthesis of signals that induce cell-type specialization were acquired by lateral gene transfer. Across Dictyostelia, changes in gene expression correspond more strongly with phenotypic innovation than changes in protein functional domains. We conclude that the transition to multicellularity required novel signals and sensors rather than novel signal processing mechanisms. Unicellular social amoebae aggregate to form a multicellular life stage, making them a model system for the evolution of multicellularity. Here, Glöckner et al. use a comparative genomic and transcriptomic approach to determine the origin of the genes essential for multicellularity in the social amoebae.
Collapse
|
7
|
Rodriguez Pino M, Castillo B, Kim B, Kim LW. PP2A/B56 and GSK3/Ras suppress PKB activity during Dictyostelium chemotaxis. Mol Biol Cell 2015; 26:4347-57. [PMID: 26424797 PMCID: PMC4666131 DOI: 10.1091/mbc.e14-06-1130] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2014] [Accepted: 09/21/2015] [Indexed: 01/22/2023] Open
Abstract
We have previously shown that the Dictyostelium protein phosphatase 2A regulatory subunit B56, encoded by psrA, modulates Dictyostelium cell differentiation through negatively affecting glycogen synthase kinase 3 (GSK3) function. Our follow-up research uncovered that B56 preferentially associated with GDP forms of RasC and RasD, but not with RasG in vitro, and psrA(-) cells displayed inefficient activation of multiple Ras species, decreased random motility, and inefficient chemotaxis toward cAMP and folic acid gradient. Surprisingly, psrA(-) cells displayed aberrantly high basal and poststimulus phosphorylation of Dictyostelium protein kinase B (PKB) kinase family member PKBR1 and PKB substrates. Expression of constitutively active Ras mutants or inhibition of GSK3 in psrA(-) cells increased activities of both PKBR1 and PKBA, but only the PKBR1 activity was increased in wild-type cells under the equivalent conditions, indicating that either B56- or GSK3-mediated suppressive mechanism is sufficient to maintain low PKBA activity, but both mechanisms are necessary for suppressing PKBR1. Finally, cells lacking RasD or RasC displayed normal PKBR1 regulation under GSK3-inhibiting conditions, indicating that RasC or RasD proteins are essential for GSK3-mediated PKBR1 inhibition. In summary, B56 constitutes inhibitory circuits for PKBA and PKBR1 and thus heavily affects Dictyostelium chemotaxis.
Collapse
Affiliation(s)
| | - Boris Castillo
- Department of Biological Sciences, Florida International University, Miami, FL 33199
| | - Bohye Kim
- Department of Biological Sciences, Florida International University, Miami, FL 33199
| | - Lou W Kim
- Department of Biological Sciences, Florida International University, Miami, FL 33199 Biochemistry PhD Program, Florida International University, Miami, FL 33199 Biomolecular Sciences Institutes, Florida International University, Miami, FL 33199
| |
Collapse
|
8
|
Mohamed W, Ray S, Brazill D, Baskar R. Absence of catalytic domain in a putative protein kinase C (PkcA) suppresses tip dominance in Dictyostelium discoideum. Dev Biol 2015; 405:10-20. [PMID: 26183108 DOI: 10.1016/j.ydbio.2015.05.021] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2014] [Revised: 04/06/2015] [Accepted: 05/28/2015] [Indexed: 12/22/2022]
Abstract
A number of organisms possess several isoforms of protein kinase C but little is known about the significance of any specific isoform during embryogenesis and development. To address this we characterized a PKC ortholog (PkcA; DDB_G0288147) in Dictyostelium discoideum. pkcA expression switches from prestalk in mound to prespore in slug, indicating a dynamic expression pattern. Mutants lacking the catalytic domain of PkcA (pkcA(-)) did not exhibit tip dominance. A striking phenotype of pkcA- was the formation of an aggregate with a central hollow, and aggregates later fragmented to form small mounds, each becoming a fruiting body. Optical density wave patterns of cAMP in the late aggregates showed several cAMP wave generation centers. We attribute these defects in pkcA(-) to impaired cAMP signaling, altered cell motility and decreased expression of the cell adhesion molecules - CadA and CsaA. pkcA(-) slugs showed ectopic expression of ecmA in the prespore region. Further, the use of a PKC-specific inhibitor, GF109203X that inhibits the activity of catalytic domain phenocopied pkcA(-).
Collapse
Affiliation(s)
- Wasima Mohamed
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, India
| | - Sibnath Ray
- Department of Biological Sciences, Center for Translational and Basic Research, Hunter College and The Graduate Center of the City University of New York, New York, NY 10065, USA
| | - Derrick Brazill
- Department of Biological Sciences, Center for Translational and Basic Research, Hunter College and The Graduate Center of the City University of New York, New York, NY 10065, USA
| | - Ramamurthy Baskar
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, India.
| |
Collapse
|
9
|
Kuhn M, Hyman AA, Beyer A. Coiled-coil proteins facilitated the functional expansion of the centrosome. PLoS Comput Biol 2014; 10:e1003657. [PMID: 24901223 PMCID: PMC4046923 DOI: 10.1371/journal.pcbi.1003657] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2014] [Accepted: 04/15/2014] [Indexed: 12/16/2022] Open
Abstract
Repurposing existing proteins for new cellular functions is recognized as a main mechanism of evolutionary innovation, but its role in organelle evolution is unclear. Here, we explore the mechanisms that led to the evolution of the centrosome, an ancestral eukaryotic organelle that expanded its functional repertoire through the course of evolution. We developed a refined sequence alignment technique that is more sensitive to coiled coil proteins, which are abundant in the centrosome. For proteins with high coiled-coil content, our algorithm identified 17% more reciprocal best hits than BLAST. Analyzing 108 eukaryotic genomes, we traced the evolutionary history of centrosome proteins. In order to assess how these proteins formed the centrosome and adopted new functions, we computationally emulated evolution by iteratively removing the most recently evolved proteins from the centrosomal protein interaction network. Coiled-coil proteins that first appeared in the animal–fungi ancestor act as scaffolds and recruit ancestral eukaryotic proteins such as kinases and phosphatases to the centrosome. This process created a signaling hub that is crucial for multicellular development. Our results demonstrate how ancient proteins can be co-opted to different cellular localizations, thereby becoming involved in novel functions. The centrosome helps cells to divide, and is important for the development of animals. It has its evolutionary origins in the basal body, which was present in the last common ancestor of all eukaryotes. Here, we study how the evolution of novel proteins helped the formation of the centrosome. Coiled-coil proteins are important for the function of the centrosome. But, they have repeating patterns that can confuse existing methods for finding related proteins. We refined these methods by adjusting for the special properties of the coiled-coil regions. This enabled us to find more distant relatives of centrosomal proteins. We then tested how novel proteins affect the protein interaction network of the centrosome. We did this by removing the most novel proteins step by step. At each stage, we observed how the remaining proteins are connected to the centriole, the core of the centrosome. We found that coiled-coil proteins that first occurred in the ancestor of fungi and animals help to recruit older proteins. By being recruited to the centrosome, these older proteins acquired new functions. We thus now have a clearer picture of how the centrosome became such an important part of animal cells.
Collapse
Affiliation(s)
- Michael Kuhn
- Biotechnology Center, TU Dresden, Dresden, Germany
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Anthony A. Hyman
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
- * E-mail: (AAH); (AB)
| | - Andreas Beyer
- Biotechnology Center, TU Dresden, Dresden, Germany
- University of Cologne, Cologne, Germany
- * E-mail: (AAH); (AB)
| |
Collapse
|
10
|
Kölsch V, Shen Z, Lee S, Plak K, Lotfi P, Chang J, Charest PG, Romero JL, Jeon TJ, Kortholt A, Briggs SP, Firtel RA. Daydreamer, a Ras effector and GSK-3 substrate, is important for directional sensing and cell motility. Mol Biol Cell 2012; 24:100-14. [PMID: 23135995 PMCID: PMC3541958 DOI: 10.1091/mbc.e12-04-0271] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Daydreamer (DydA), a new Mig10/RIAM/lamellipodin family adaptor protein, is a Ras effector required for cell polarization and directional movement during chemotaxis. DydA is phosphorylated by glycogen synthase kinase-3, which is required for some, but not all, of DydA's functions. gskA− cells exhibit very strong chemotactic phenotypes, a subset of which are exhibited by dydA− cells. How independent signaling pathways are integrated to holistically control a biological process is not well understood. We have identified Daydreamer (DydA), a new member of the Mig10/RIAM/lamellipodin (MRL) family of adaptor proteins that localizes to the leading edge of the cell. DydA is a putative Ras effector that is required for cell polarization and directional movement during chemotaxis. dydA− cells exhibit elevated F-actin and assembled myosin II (MyoII), increased and extended phosphoinositide-3-kinase (PI3K) activity, and extended phosphorylation of the activation loop of PKB and PKBR1, suggesting that DydA is involved in the negative regulation of these pathways. DydA is phosphorylated by glycogen synthase kinase-3 (GSK-3), which is required for some, but not all, of DydA's functions, including the proper regulation of PKB and PKBR1 and MyoII assembly. gskA− cells exhibit very strong chemotactic phenotypes, as previously described, but exhibit an increased rate of random motility. gskA− cells have a reduced MyoII response and a reduced level of phosphatidylinositol (3,4,5)-triphosphate production, but a highly extended recruitment of PI3K to the plasma membrane and highly extended kinetics of PKB and PKBR1 activation. Our results demonstrate that GSK-3 function is essential for chemotaxis, regulating multiple substrates, and that one of these effectors, DydA, plays a key function in the dynamic regulation of chemotaxis.
Collapse
Affiliation(s)
- Verena Kölsch
- Section of Cell and Developmental Biology, Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093-0380, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Identification of the kinase that activates a nonmetazoan STAT gives insights into the evolution of phosphotyrosine-SH2 domain signaling. Proc Natl Acad Sci U S A 2012; 109:E1931-7. [PMID: 22699506 DOI: 10.1073/pnas.1202715109] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
SH2 domains are integral to many animal signaling pathways. By interacting with specific phosphotyrosine residues, they provide regulatable protein-protein interaction domains. Dictyostelium is the only nonmetazoan with functionally characterized SH2 domains, but the cognate tyrosine kinases are unknown. There are no orthologs of the animal tyrosine kinases, but there are very many tyrosine kinase-like kinases (TKLs), a group of kinases which, despite their family name, are classified mainly as serine-threonine kinases. STATs are transcription factors that dimerize via phosphotyrosine-SH2 domain interactions. STATc is activated by phosphorylation on Tyr922 when cells are exposed to the prestalk inducer differentiation inducing factor (DIF-1), a chlorinated hexaphenone. We show that in a null mutant for Pyk2, a tyrosine-specific TKL, exposure to DIF-1 does not activate STATc. Conversely, overexpression of Pyk2 causes constitutive STATc activation. Pyk2 phosphorylates STATc on Tyr922 in vitro and complexes with STATc both in vitro and in vivo. This demonstration that a TKL directly activates a STAT has significant implications for understanding the evolutionary origins of SH2 domain-phosphotyrosine signaling. It also has mechanistic implications. Our previous work suggested that a predicted constitutive STATc tyrosine kinase activity is counterbalanced in vivo by the DIF-1-regulated activity of PTP3, a Tyr922 phosphatase. Here we show that the STATc-Pyk2 complex is formed constitutively by an interaction between the STATc SH2 domain and phosphotyrosine residues on Pyk2 that are generated by autophosphorylation. Also, as predicted, Pyk2 is constitutively active as a STATc kinase. This observation provides further evidence for this highly atypical, possibly ancestral, STAT regulation mechanism.
Collapse
|
12
|
Tang W, Zhang Y, Xu W, Harden TK, Sondek J, Sun L, Li L, Wu D. A PLCβ/PI3Kγ-GSK3 signaling pathway regulates cofilin phosphatase slingshot2 and neutrophil polarization and chemotaxis. Dev Cell 2012; 21:1038-50. [PMID: 22172670 DOI: 10.1016/j.devcel.2011.10.023] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2010] [Revised: 10/20/2011] [Accepted: 10/29/2011] [Indexed: 01/11/2023]
Abstract
Neutrophils, in response to a chemoattractant gradient, undergo dynamic F-actin remodeling, a process important for their directional migration or chemotaxis. However, signaling mechanisms for chemoattractants to regulate the process are incompletely understood. Here, we characterized chemoattractant-activated signaling mechanisms that regulate cofilin dephosphorylation and actin cytoskeleton reorganization and are critical for neutrophil polarization and chemotaxis. In neutrophils, chemoattractants induced phosphorylation and inhibition of GSK3 via both PLCβ-PKC and PI3Kγ-AKT pathways, leading to the attenuation of GSK3-mediated phosphorylation and inhibition of the cofilin phosphatase slingshot2 and an increase in dephosphorylated, active cofilin. The relative contribution of this GSK3-mediated pathway to neutrophil chemotaxis regulation depended on neutrophil polarity preset by integrin-induced polarization of PIP5K1C. Therefore, our study characterizes a signaling mechanism for chemoattractant-induced actin cytoskeleton remodeling and elucidates its context-dependent role in regulating neutrophil polarization and chemotaxis.
Collapse
Affiliation(s)
- Wenwen Tang
- Department of Pharmacology and Vascular Biology and Therapeutic Program, Yale University School of Medicine, New Haven, CT 06520, USA
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Veeranki S, Hwang SH, Sun T, Kim B, Kim L. LKB1 regulates development and the stress response in Dictyostelium. Dev Biol 2011; 360:351-7. [PMID: 22020250 PMCID: PMC3227681 DOI: 10.1016/j.ydbio.2011.10.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2010] [Revised: 09/18/2011] [Accepted: 10/04/2011] [Indexed: 10/16/2022]
Abstract
The serine/threonine kinase LKB1 is a master kinase that regulates a number of critical events such as cell transformation, polarization, development, stress response, and energy metabolism in metazoa. After multiple unsuccessful attempts of generating Dictyostelium lkb1-null cells, an RNAi-based knockdown approach proved effective. Depletion of lkb1 with a knockdown construct displayed severe reduction in prespore cell differentiation and precocious induction of prestalk cells, which were reminiscent of cells lacking GSK3. Similar to gsk3(-) cells, lkb1 depleted cells displayed lower GSK3 activity than wild type cells during development and compromised cAMP-mediated inhibition of the DIF-1 mediated ecmB induction. In response to stress insult, the kinase activity of LKB1, but not that of GSK3, increased. Therefore, LKB1 positively functions at the upstream of GSK3 during development and responds to stress insults independently from GSK3.
Collapse
Affiliation(s)
- Sudhakar Veeranki
- Department of Biological Sciences, Florida International University, Miami, FL, USA 33199
| | - Seon-Hee Hwang
- Department of Biological Sciences, Florida International University, Miami, FL, USA 33199
| | - Tong Sun
- Department of Biological Sciences, Florida International University, Miami, FL, USA 33199
| | - Bohye Kim
- Department of Biological Sciences, Florida International University, Miami, FL, USA 33199
| | - Leung Kim
- Department of Biological Sciences, Florida International University, Miami, FL, USA 33199
| |
Collapse
|
14
|
Tyrosine phosphorylation-mediated signaling pathways in dictyostelium. JOURNAL OF SIGNAL TRANSDUCTION 2011; 2011:894351. [PMID: 21776390 PMCID: PMC3135261 DOI: 10.1155/2011/894351] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/27/2010] [Accepted: 02/21/2011] [Indexed: 01/21/2023]
Abstract
While studies on metazoan cell proliferation, cell differentiation, and cytokine signaling laid the foundation of the current paradigms of tyrosine kinase signaling, similar studies using lower eukaryotes have provided invaluable insight for the understanding of mammalian pathways, such as Wnt and STAT pathways. Dictyostelium is one of the leading lower eukaryotic model systems where stress-induced cellular responses, Wnt-like pathways, and STAT-mediated pathways are well investigated. These Dictyostelium pathways will be reviewed together with their mammalian counterparts to facilitate the comparative understanding of these variant and noncanonical pathways.
Collapse
|