1
|
Choi H, Zhou L, Zhao Y, Dean J. RNA helicase D1PAS1 resolves R-loops and forms a complex for mouse pachytene piRNA biogenesis required for male fertility. Nucleic Acids Res 2024; 52:11973-11994. [PMID: 39162228 PMCID: PMC11514495 DOI: 10.1093/nar/gkae712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Accepted: 08/06/2024] [Indexed: 08/21/2024] Open
Abstract
During meiosis, RNA polymerase II transcribes pachytene piRNA precursors with unusually long and unspliced transcripts from discrete autosomal loci in the mouse genome. Despite the importance of piRNA for male fertility and a well-defined maturation process, the transcriptional machinery remains poorly understood. Here, we document that D1PAS1, an ATP-dependent RNA helicase, is critical for pachytene piRNA expression from multiple genomic loci and subsequent translocation into the cytoplasm to ensure mature piRNA biogenesis. Depletion of D1PAS1 in gene-edited mice results in the accumulation of R-loops in pachytene spermatocytes, leading to DNA-damage-induced apoptosis, disruption of piRNA biogenesis, spermatogenic arrest, and male infertility. Transcriptome, genome-wide R-loop profiling, and proteomic analyses document that D1PAS1 regulates pachytene piRNA transcript elongation and termination. D1PAS1 subsequently forms a complex with nuclear export components to ensure pachytene piRNA precursor translocation from the nucleus to the cytoplasm for processing into small non-coding RNAs. Thus, our study defines D1PAS1 as a specific transcription activator that promotes R-loop unwinding and is a critical factor in pachytene piRNA biogenesis.
Collapse
Affiliation(s)
- Heejin Choi
- Laboratory of Cellular and Developmental Biology, NIDDK, National Institutes of Health, Bethesda, MD 20892, USA
| | - Lecong Zhou
- Laboratory of Cellular and Developmental Biology, NIDDK, National Institutes of Health, Bethesda, MD 20892, USA
| | - Yangu Zhao
- Laboratory of Cellular and Developmental Biology, NIDDK, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jurrien Dean
- Laboratory of Cellular and Developmental Biology, NIDDK, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
2
|
Lim S, Liu Y, Rhie BH, Kim C, Ryu HY, Ahn SH. Sus1 maintains a normal lifespan through regulation of TREX-2 complex-mediated mRNA export. Aging (Albany NY) 2022; 14:4990-5012. [PMID: 35771153 PMCID: PMC9271307 DOI: 10.18632/aging.204146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 06/14/2022] [Indexed: 11/29/2022]
Abstract
Eukaryotic gene expression requires multiple cellular events, including transcription and RNA processing and transport. Sus1, a common subunit in both the Spt-Ada-Gcn5 acetyltransferase (SAGA) and transcription and export complex-2 (TREX-2) complexes, is a key factor in coupling transcription activation to mRNA nuclear export. Here, we report that the SAGA DUB module and TREX-2 distinctly regulate yeast replicative lifespan in a Sir2-dependent and -independent manner, respectively. The growth and lifespan impaired by SUS1 loss depend on TREX-2 but not on the SAGA DUB module. Notably, an increased dose of the mRNA export factors Mex67 and Dbp5 rescues the growth defect, shortened lifespan, and nuclear accumulation of poly(A)+ RNA in sus1Δ cells, suggesting that boosting the mRNA export process restores the mRNA transport defect and the growth and lifespan damage in sus1Δ cells. Moreover, Sus1 is required for the proper association of Mex67 and Dbp5 with the nuclear rim. Together, these data indicate that Sus1 links transcription and mRNA nuclear export to the lifespan control pathway, suggesting that prevention of an abnormal accumulation of nuclear RNA is necessary for maintenance of a normal lifespan.
Collapse
Affiliation(s)
- Suji Lim
- Department of Molecular and Life Science, College of Science and Convergence Technology, Hanyang University, Ansan, Gyeonggi-do 15588, Republic of Korea
| | - Yan Liu
- Department of Molecular and Life Science, College of Science and Convergence Technology, Hanyang University, Ansan, Gyeonggi-do 15588, Republic of Korea
| | - Byung-Ho Rhie
- Department of Molecular and Life Science, College of Science and Convergence Technology, Hanyang University, Ansan, Gyeonggi-do 15588, Republic of Korea
| | - Chun Kim
- Department of Molecular and Life Science, College of Science and Convergence Technology, Hanyang University, Ansan, Gyeonggi-do 15588, Republic of Korea
| | - Hong-Yeoul Ryu
- BK21 Plus KNU Creative BioResearch Group, School of Life Sciences, College of National Sciences, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Seong Hoon Ahn
- Department of Molecular and Life Science, College of Science and Convergence Technology, Hanyang University, Ansan, Gyeonggi-do 15588, Republic of Korea
| |
Collapse
|
3
|
Zhang G, Yu T, Parhad SS, Ho S, Weng Z, Theurkauf WE. piRNA-independent transposon silencing by the Drosophila THO complex. Dev Cell 2021; 56:2623-2635.e5. [PMID: 34547226 DOI: 10.1016/j.devcel.2021.08.021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 06/18/2021] [Accepted: 08/27/2021] [Indexed: 12/19/2022]
Abstract
piRNAs guide Piwi/Panoramix-dependent H3K9me3 chromatin modification and transposon silencing during Drosophila germline development. The THO RNA export complex is composed of Hpr1, Tho2, and Thoc5-7. Null thoc7 mutations, which displace Thoc5 and Thoc6 from a Tho2-Hpr1 subcomplex, reduce expression of a subset of germline piRNAs and increase transposon expression, suggesting that THO silences transposons by promoting piRNA biogenesis. Here, we show that the thoc7-null mutant combination increases transposon transcription but does not reduce anti-sense piRNAs targeting half of the transcriptionally activated transposon families. These mutations also fail to reduce piRNA-guided H3K9me3 chromatin modification or block Panoramix-dependent silencing of a reporter transgene, and unspliced transposon transcripts co-precipitate with THO through a Piwi- and Panoramix-independent mechanism. Mutations in piwi also dominantly enhance germline defects associated with thoc7-null alleles. THO thus functions in a piRNA-independent transposon-silencing pathway, which acts cooperatively with Piwi to support germline development.
Collapse
Affiliation(s)
- Gen Zhang
- Program in Molecular Medicine, University of Massachusetts Medical School, 373 Plantation Street, Worcester, MA 01605, USA
| | - Tianxiong Yu
- Program in Bioinformatics and Integrative Biology, University of Massachusetts Medical School, 373 Plantation Street, Worcester, MA 01605, USA; Department of Bioinformatics, School of Life Sciences and Technology, Tongji University, Shanghai, People's Republic of China
| | - Swapnil S Parhad
- Program in Molecular Medicine, University of Massachusetts Medical School, 373 Plantation Street, Worcester, MA 01605, USA
| | - Samantha Ho
- Program in Molecular Medicine, University of Massachusetts Medical School, 373 Plantation Street, Worcester, MA 01605, USA
| | - Zhiping Weng
- Program in Bioinformatics and Integrative Biology, University of Massachusetts Medical School, 373 Plantation Street, Worcester, MA 01605, USA.
| | - William E Theurkauf
- Program in Molecular Medicine, University of Massachusetts Medical School, 373 Plantation Street, Worcester, MA 01605, USA.
| |
Collapse
|
4
|
Yu T, Fan K, Özata DM, Zhang G, Fu Y, Theurkauf WE, Zamore PD, Weng Z. Long first exons and epigenetic marks distinguish conserved pachytene piRNA clusters from other mammalian genes. Nat Commun 2021; 12:73. [PMID: 33397987 PMCID: PMC7782496 DOI: 10.1038/s41467-020-20345-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 11/17/2020] [Indexed: 02/06/2023] Open
Abstract
In the male germ cells of placental mammals, 26-30-nt-long PIWI-interacting RNAs (piRNAs) emerge when spermatocytes enter the pachytene phase of meiosis. In mice, pachytene piRNAs derive from ~100 discrete autosomal loci that produce canonical RNA polymerase II transcripts. These piRNA clusters bear 5' caps and 3' poly(A) tails, and often contain introns that are removed before nuclear export and processing into piRNAs. What marks pachytene piRNA clusters to produce piRNAs, and what confines their expression to the germline? We report that an unusually long first exon (≥ 10 kb) or a long, unspliced transcript correlates with germline-specific transcription and piRNA production. Our integrative analysis of transcriptome, piRNA, and epigenome datasets across multiple species reveals that a long first exon is an evolutionarily conserved feature of pachytene piRNA clusters. Furthermore, a highly methylated promoter, often containing a low or intermediate level of CG dinucleotides, correlates with germline expression and somatic silencing of pachytene piRNA clusters. Pachytene piRNA precursor transcripts bind THOC1 and THOC2, THO complex subunits known to promote transcriptional elongation and mRNA nuclear export. Together, these features may explain why the major sources of pachytene piRNA clusters specifically generate these unique small RNAs in the male germline of placental mammals.
Collapse
Affiliation(s)
- Tianxiong Yu
- Department of Thoracic Surgery, Clinical Translational Research Center, Shanghai Pulmonary Hospital, The School of Life Sciences and Technology, Tongji University, 200092, Shanghai, China
- Program in Bioinformatics and Integrative Biology, University of Massachusetts Medical School, Worcester, MA, 01605, USA
| | - Kaili Fan
- Department of Thoracic Surgery, Clinical Translational Research Center, Shanghai Pulmonary Hospital, The School of Life Sciences and Technology, Tongji University, 200092, Shanghai, China
- Program in Bioinformatics and Integrative Biology, University of Massachusetts Medical School, Worcester, MA, 01605, USA
| | - Deniz M Özata
- RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, MA, 01605, USA
| | - Gen Zhang
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, 01605, USA
| | - Yu Fu
- Program in Bioinformatics and Integrative Biology, University of Massachusetts Medical School, Worcester, MA, 01605, USA
- Bioinformatics Program, Boston University, 44 Cummington Mall, Boston, MA, 02215, USA
- Oncology Drug Discovery Unit, Takeda Pharmaceuticals, Cambridge, MA, 02139, USA
| | - William E Theurkauf
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, 01605, USA.
| | - Phillip D Zamore
- RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, MA, 01605, USA.
| | - Zhiping Weng
- Department of Thoracic Surgery, Clinical Translational Research Center, Shanghai Pulmonary Hospital, The School of Life Sciences and Technology, Tongji University, 200092, Shanghai, China.
- Program in Bioinformatics and Integrative Biology, University of Massachusetts Medical School, Worcester, MA, 01605, USA.
| |
Collapse
|
5
|
Zhang G, Tu S, Yu T, Zhang XO, Parhad SS, Weng Z, Theurkauf WE. Co-dependent Assembly of Drosophila piRNA Precursor Complexes and piRNA Cluster Heterochromatin. Cell Rep 2019; 24:3413-3422.e4. [PMID: 30257203 DOI: 10.1016/j.celrep.2018.08.081] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 07/20/2018] [Accepted: 08/24/2018] [Indexed: 10/28/2022] Open
Abstract
In Drosophila, the piRNAs that guide germline transposon silencing are produced from heterochromatic clusters marked by the HP1 homolog Rhino. We show that Rhino promotes cluster transcript association with UAP56 and the THO complex, forming RNA-protein assemblies that are unique to piRNA precursors. UAP56 and THO are ubiquitous RNA-processing factors, and null alleles of uap56 and the THO subunit gene tho2 are lethal. However, uap56sz15 and mutations in the THO subunit genes thoc5 and thoc7 are viable but sterile and disrupt piRNA biogenesis. The uap56sz15 allele reduces UAP56 binding to THO, and the thoc5 and thoc7 mutations disrupt interactions among the remaining THO subunits and UAP56 binding to the core THO subunit Hpr1. These mutations also reduce Rhino binding to clusters and trigger Rhino binding to ectopic sites across the genome. Rhino thus promotes assembly of piRNA precursor complexes, and these complexes restrict Rhino at cluster heterochromatin.
Collapse
Affiliation(s)
- Gen Zhang
- Program in Molecular Medicine, University of Massachusetts Medical School, 373 Plantation Street, Worcester, MA 01605, USA
| | - Shikui Tu
- Program in Bioinformatics and Integrative Biology, University of Massachusetts Medical School, 373 Plantation Street, Worcester, MA 01605, USA
| | - Tianxiong Yu
- Program in Bioinformatics and Integrative Biology, University of Massachusetts Medical School, 373 Plantation Street, Worcester, MA 01605, USA
| | - Xiao-Ou Zhang
- Program in Bioinformatics and Integrative Biology, University of Massachusetts Medical School, 373 Plantation Street, Worcester, MA 01605, USA
| | - Swapnil S Parhad
- Program in Molecular Medicine, University of Massachusetts Medical School, 373 Plantation Street, Worcester, MA 01605, USA
| | - Zhiping Weng
- Program in Bioinformatics and Integrative Biology, University of Massachusetts Medical School, 373 Plantation Street, Worcester, MA 01605, USA.
| | - William E Theurkauf
- Program in Molecular Medicine, University of Massachusetts Medical School, 373 Plantation Street, Worcester, MA 01605, USA.
| |
Collapse
|
6
|
Raich N, Mahmoudi S, Emre D, Karess RE. Mad1 influences interphase nucleoplasm organization and chromatin regulation in Drosophila. Open Biol 2018; 8:rsob.180166. [PMID: 30333236 PMCID: PMC6223205 DOI: 10.1098/rsob.180166] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Accepted: 09/21/2018] [Indexed: 12/15/2022] Open
Abstract
The Drosophila Mad1 spindle checkpoint protein helps organize several nucleoplasmic components, and flies lacking Mad1 present changes in gene expression reflecting altered chromatin conformation. In interphase, checkpoint protein Mad1 is usually described as localizing to the inner nuclear envelope by binding the nucleoporin Tpr, an interaction believed to contribute to proper mitotic regulation. Whether Mad1 has other nuclear interphase functions is unknown. We found in Drosophila that Mad1 is present in nuclei of both mitotic and postmitotic tissues. Three proteins implicated in various aspects of chromatin organization co-immunoprecipitated with Mad1 from fly embryos: Mtor/Tpr, the SUMO peptidase Ulp1 and Raf2, a subunit of a Polycomb-like complex. In primary spermatocytes, all four proteins colocalized in a previously undescribed chromatin-associated structure called here a MINT (Mad1-containing IntraNuclear Territory). MINT integrity required all four proteins. In mad1 mutant spermatocytes, the other proteins were no longer confined to chromatin domains but instead dispersed throughout the nucleoplasm. mad1 flies also presented phenotypes indicative of excessive chromatin of heterochromatic character during development of somatic tissues. Together these results suggest that Drosophila Mad1, by helping organize its interphase protein partners in the nucleoplasm, contributes to proper chromatin regulation.
Collapse
Affiliation(s)
- Natacha Raich
- CNRS, Institut Jacques Monod, UMR7592, Université Paris Diderot, Sorbonne Paris Cité, Paris Cedex 13 75205, France
| | - Souhir Mahmoudi
- CNRS, Institut Jacques Monod, UMR7592, Université Paris Diderot, Sorbonne Paris Cité, Paris Cedex 13 75205, France
| | - Doruk Emre
- CNRS, Institut Jacques Monod, UMR7592, Université Paris Diderot, Sorbonne Paris Cité, Paris Cedex 13 75205, France
| | - Roger E Karess
- CNRS, Institut Jacques Monod, UMR7592, Université Paris Diderot, Sorbonne Paris Cité, Paris Cedex 13 75205, France
| |
Collapse
|
7
|
Abstract
Gametogenesis represents the most dramatic cellular differentiation pathways in both female and male flies. At the genome level, meiosis ensures that diploid germ cells become haploid gametes. At the epigenome level, extensive changes are required to turn on and shut off gene expression in a precise spatiotemporally controlled manner. Research applying conventional molecular genetics and cell biology, in combination with rapidly advancing genomic tools have helped us to investigate (1) how germ cells maintain lineage specificity throughout their adult reproductive lifetime; (2) what molecular mechanisms ensure proper oogenesis and spermatogenesis, as well as protect genome integrity of the germline; (3) how signaling pathways contribute to germline-soma communication; and (4) if such communication is important. In this chapter, we highlight recent discoveries that have improved our understanding of these questions. On the other hand, restarting a new life cycle upon fertilization is a unique challenge faced by gametes, raising questions that involve intergenerational and transgenerational epigenetic inheritance. Therefore, we also discuss new developments that link changes during gametogenesis to early embryonic development-a rapidly growing field that promises to bring more understanding to some fundamental questions regarding metazoan development.
Collapse
|
8
|
Laktionov PP, Maksimov DA, Romanov SE, Antoshina PA, Posukh OV, White-Cooper H, Koryakov DE, Belyakin SN. Genome-wide analysis of gene regulation mechanisms during Drosophila spermatogenesis. Epigenetics Chromatin 2018; 11:14. [PMID: 29609617 PMCID: PMC5879934 DOI: 10.1186/s13072-018-0183-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Accepted: 03/22/2018] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND During Drosophila spermatogenesis, testis-specific meiotic arrest complex (tMAC) and testis-specific TBP-associated factors (tTAF) contribute to activation of hundreds of genes required for meiosis and spermiogenesis. Intriguingly, tMAC is paralogous to the broadly expressed complex Myb-MuvB (MMB)/dREAM and Mip40 protein is shared by both complexes. tMAC acts as a gene activator in spermatocytes, while MMB/dREAM was shown to repress gene activity in many cell types. RESULTS Our study addresses the intricate interplay between tMAC, tTAF, and MMB/dREAM during spermatogenesis. We used cell type-specific DamID to build the DNA-binding profiles of Cookie monster (tMAC), Cannonball (tTAF), and Mip40 (MMB/dREAM and tMAC) proteins in male germline cells. Incorporating the whole transcriptome analysis, we characterized the regulatory effects of these proteins and identified their gene targets. This analysis revealed that tTAFs complex is involved in activation of achi, vis, and topi meiosis arrest genes, implying that tTAFs may indirectly contribute to the regulation of Achi, Vis, and Topi targets. To understand the relationship between tMAC and MMB/dREAM, we performed Mip40 DamID in tTAF- and tMAC-deficient mutants demonstrating meiosis arrest phenotype. DamID profiles of Mip40 were highly dynamic across the stages of spermatogenesis and demonstrated a strong dependence on tMAC in spermatocytes. Integrative analysis of our data indicated that MMB/dREAM represses genes that are not expressed in spermatogenesis, whereas tMAC recruits Mip40 for subsequent gene activation in spermatocytes. CONCLUSIONS Discovered interdependencies allow to formulate a renewed model for tMAC and tTAFs action in Drosophila spermatogenesis demonstrating how tissue-specific genes are regulated.
Collapse
Affiliation(s)
- Petr P Laktionov
- Institute of Molecular and Cellular Biology SB RAS, 8/2 Lavrentyev Ave, Novosibirsk, Russia, 630090
| | - Daniil A Maksimov
- Institute of Molecular and Cellular Biology SB RAS, 8/2 Lavrentyev Ave, Novosibirsk, Russia, 630090
| | - Stanislav E Romanov
- Institute of Molecular and Cellular Biology SB RAS, 8/2 Lavrentyev Ave, Novosibirsk, Russia, 630090
| | - Polina A Antoshina
- Institute of Molecular and Cellular Biology SB RAS, 8/2 Lavrentyev Ave, Novosibirsk, Russia, 630090
| | - Olga V Posukh
- Institute of Molecular and Cellular Biology SB RAS, 8/2 Lavrentyev Ave, Novosibirsk, Russia, 630090
| | | | - Dmitry E Koryakov
- Institute of Molecular and Cellular Biology SB RAS, 8/2 Lavrentyev Ave, Novosibirsk, Russia, 630090.,Novosibirsk State University, Novosibirsk, Russia, 630090
| | - Stepan N Belyakin
- Institute of Molecular and Cellular Biology SB RAS, 8/2 Lavrentyev Ave, Novosibirsk, Russia, 630090. .,Novosibirsk State University, Novosibirsk, Russia, 630090.
| |
Collapse
|
9
|
Cruz-Becerra G, Juárez M, Valadez-Graham V, Zurita M. Analysis of Drosophila p8 and p52 mutants reveals distinct roles for the maintenance of TFIIH stability and male germ cell differentiation. Open Biol 2016; 6:rsob.160222. [PMID: 27805905 PMCID: PMC5090060 DOI: 10.1098/rsob.160222] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Accepted: 09/18/2016] [Indexed: 11/17/2022] Open
Abstract
Eukaryotic gene expression is activated by factors that interact within complex machinery to initiate transcription. An important component of this machinery is the DNA repair/transcription factor TFIIH. Mutations in TFIIH result in three human syndromes: xeroderma pigmentosum, Cockayne syndrome and trichothiodystrophy. Transcription and DNA repair defects have been linked to some clinical features of these syndromes. However, how mutations in TFIIH affect specific developmental programmes, allowing organisms to develop with particular phenotypes, is not well understood. Here, we show that mutations in the p52 and p8 subunits of TFIIH have a moderate effect on the gene expression programme in the Drosophila testis, causing germ cell differentiation arrest in meiosis, but no Polycomb enrichment at the promoter of the affected differentiation genes, supporting recent data that disagree with the current Polycomb-mediated repression model for regulating gene expression in the testis. Moreover, we found that TFIIH stability is not compromised in p8 subunit-depleted testes that show transcriptional defects, highlighting the role of p8 in transcription. Therefore, this study reveals how defects in TFIIH affect a specific cell differentiation programme and contributes to understanding the specific syndrome manifestations in TFIIH-afflicted patients.
Collapse
Affiliation(s)
- Grisel Cruz-Becerra
- Departamento de Genética del Desarrollo, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av Universidad 2001, Cuernavaca Morelos 62250, Mexico
| | - Mandy Juárez
- Departamento de Genética del Desarrollo, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av Universidad 2001, Cuernavaca Morelos 62250, Mexico
| | - Viviana Valadez-Graham
- Departamento de Genética del Desarrollo, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av Universidad 2001, Cuernavaca Morelos 62250, Mexico
| | - Mario Zurita
- Departamento de Genética del Desarrollo, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av Universidad 2001, Cuernavaca Morelos 62250, Mexico
| |
Collapse
|
10
|
Hur JK, Luo Y, Moon S, Ninova M, Marinov GK, Chung YD, Aravin AA. Splicing-independent loading of TREX on nascent RNA is required for efficient expression of dual-strand piRNA clusters in Drosophila. Genes Dev 2016; 30:840-55. [PMID: 27036967 PMCID: PMC4826399 DOI: 10.1101/gad.276030.115] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2015] [Accepted: 03/07/2016] [Indexed: 11/25/2022]
Abstract
In this study, Hur et al. identified a novel function for the TREX complex, which is critical for pre-mRNA processing and mRNA nuclear export. They found that Thoc5 and other TREX components are essential for the biogenesis of noncoding RNA and delineate a novel mechanism for TREX loading on nascent RNA. The conserved THO/TREX (transcription/export) complex is critical for pre-mRNA processing and mRNA nuclear export. In metazoa, TREX is loaded on nascent RNA transcribed by RNA polymerase II in a splicing-dependent fashion; however, how TREX functions is poorly understood. Here we show that Thoc5 and other TREX components are essential for the biogenesis of piRNA, a distinct class of small noncoding RNAs that control expression of transposable elements (TEs) in the Drosophila germline. Mutations in TREX lead to defects in piRNA biogenesis, resulting in derepression of multiple TE families, gametogenesis defects, and sterility. TREX components are enriched on piRNA precursors transcribed from dual-strand piRNA clusters and colocalize in distinct nuclear foci that overlap with sites of piRNA transcription. The localization of TREX in nuclear foci and its loading on piRNA precursor transcripts depend on Cutoff, a protein associated with chromatin of piRNA clusters. Finally, we show that TREX is required for accumulation of nascent piRNA precursors. Our study reveals a novel splicing-independent mechanism for TREX loading on nascent RNA and its importance in piRNA biogenesis.
Collapse
Affiliation(s)
- Junho K Hur
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California 91125, USA
| | - Yicheng Luo
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California 91125, USA
| | - Sungjin Moon
- Department of Life Science, University of Seoul, Seoul 130-743, Korea
| | - Maria Ninova
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California 91125, USA
| | - Georgi K Marinov
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California 91125, USA
| | - Yun D Chung
- Department of Life Science, University of Seoul, Seoul 130-743, Korea
| | - Alexei A Aravin
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California 91125, USA
| |
Collapse
|
11
|
Lu C, Fuller MT. Recruitment of Mediator Complex by Cell Type and Stage-Specific Factors Required for Tissue-Specific TAF Dependent Gene Activation in an Adult Stem Cell Lineage. PLoS Genet 2015; 11:e1005701. [PMID: 26624996 PMCID: PMC4666660 DOI: 10.1371/journal.pgen.1005701] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Accepted: 11/04/2015] [Indexed: 01/08/2023] Open
Abstract
Onset of terminal differentiation in adult stem cell lineages is commonly marked by robust activation of new transcriptional programs required to make the appropriate differentiated cell type(s). In the Drosophila male germ line stem cell lineage, the switch from proliferating spermatogonia to spermatocyte is accompanied by one of the most dramatic transcriptional changes in the fly, as over 1000 new transcripts turn on in preparation for meiosis and spermatid differentiation. Here we show that function of the coactivator complex Mediator is required for activation of hundreds of new transcripts in the spermatocyte program. Mediator appears to act in a sequential hierarchy, with the testis activating Complex (tMAC), a cell type specific form of the Mip/dREAM general repressor, required to recruit Mediator subunits to the chromatin, and Mediator function required to recruit the testis TAFs (tTAFs), spermatocyte specific homologs of subunits of TFIID. Mediator, tMAC and the tTAFs co-regulate expression of a major set of spermatid differentiation genes. The Mediator subunit Med22 binds the tMAC component Topi when the two are coexpressed in S2 cells, suggesting direct recruitment. Loss of Med22 function in spermatocytes causes meiosis I maturation arrest male infertility, similar to loss of function of the tMAC subunits or the tTAFs. Our results illuminate how cell type specific versions of the Mip/dREAM complex and the general transcription machinery cooperate to drive selective gene activation during differentiation in stem cell lineages. Selective gene expression is crucial to making different cell types over the course of the development of an organism. In stem cell lineages, precursor cells terminally differentiate into defined cell types, with onset of terminal differentiation associated with activation of stage- and cell type-specific transcriptional programs. When spermatogonia initiate differentiation and become spermatocytes in the Drosophila male germ line, they undergo the most dramatic transcriptional changes that occur in the fly, as over 1000 new transcripts turn on in preparation for meiosis and the striking morphological changes that produce sperm. This robust spermatocyte transcription program requires cooperative action of a testis-specific protein complex, tMAC and the testis-specific basal transcription machinery TFIID. Here we show that the transcriptional co-activator complex, Mediator is key in connecting the two classes of players. We found that Mediator is recruited to spermatocyte chromatin through the interaction of its subunit, Med22 and a putative transcription activator in tMAC. Recruitment of Mediator is then required for proper localization and function of the testis-specific TFIID complex to initiate gene transcription for spermatid differentiation, illuminating how transcription factors and cell type-specific versions of the general transcription machinery cooperate to drive gene activation during differentiation in adult stem cell lineages.
Collapse
Affiliation(s)
- Chenggang Lu
- Departments of Developmental Biology and of Genetics, Stanford University School of Medicine, Stanford, California, United States of America
| | - Margaret T. Fuller
- Departments of Developmental Biology and of Genetics, Stanford University School of Medicine, Stanford, California, United States of America
- * E-mail:
| |
Collapse
|
12
|
Francisco-Mangilet AG, Karlsson P, Kim MH, Eo HJ, Oh SA, Kim JH, Kulcheski FR, Park SK, Manavella PA. THO2, a core member of the THO/TREX complex, is required for microRNA production in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2015; 82:1018-1029. [PMID: 25976549 DOI: 10.1111/tpj.12874] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2015] [Accepted: 05/05/2015] [Indexed: 05/03/2023]
Abstract
The THO/TREX complex mediates transport of nascent mRNAs from the nucleus towards the cytoplasm in animals, and has a role in small interfering RNA-dependent processes in plants. Here we describe five mutant alleles of Arabidopsis thaliana THO2, which encodes a core subunit of the plant THO/TREX complex. tho2 mutants present strong developmental defects resembling those in plants compromised in microRNA (miRNA) activity. In agreement, not only were the levels of siRNAs reduced in tho2 mutants, but also those of mature miRNAs. As a consequence, a feedback mechanism is triggered, increasing the amount of miRNA precursors, and finally causing accumulation of miRNA-targeted mRNAs. Yeast two-hybrid experiments and confocal microscopy showed that THO2 does not appear to interact with any of the known miRNA biogenesis components, but rather with the splicing machinery, implying an indirect role of THO2 in small RNA biogenesis. Using an RNA immunoprecipitation approach, we found that THO2 interacts with miRNA precursors, and that tho2 mutants fail to recruit such precursors into the miRNA-processing complex, explaining the reduction in miRNA production in this mutant background. We also detected alterations in the splicing pattern of genes encoding serine/arginine-rich proteins in tho2 mutants, supporting a previously unappreciated role of the THO/TREX complex in alternative splicing.
Collapse
Affiliation(s)
| | - Patricia Karlsson
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, D-72076, Tübingen, Germany
| | - Myung-Hee Kim
- School of Applied Biosciences, Kyungpook National University, Daegu, 702-701, Korea
| | - Hyeon Ju Eo
- School of Applied Biosciences, Kyungpook National University, Daegu, 702-701, Korea
| | - Sung Aeong Oh
- School of Applied Biosciences, Kyungpook National University, Daegu, 702-701, Korea
| | - Jeong Hoe Kim
- Department of Biology, Kyungpook National University, Daegu, 702-701, Korea
| | | | - Soon Ki Park
- School of Applied Biosciences, Kyungpook National University, Daegu, 702-701, Korea
- National Academy of Agricultural Science, Rural Development Administration, Jeonju, 560-500, Korea
| | - Pablo Andrés Manavella
- Instituto de Agrobiotecnología del Litoral, Universidad Nacional del Litoral/CONICET, 3000, Santa Fe, Argentina
| |
Collapse
|
13
|
Lim C, Tarayrah L, Chen X. Transcriptional regulation during Drosophila spermatogenesis. SPERMATOGENESIS 2014; 2:158-166. [PMID: 23087835 PMCID: PMC3469439 DOI: 10.4161/spmg.21775] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Drosophila spermatogenesis has become a paradigmatic system for the study of mechanisms that regulate adult stem cell maintenance, proliferation and differentiation. The dramatic cellular differentiation process from germline stem cell (GSC) to mature sperm is accompanied by dynamic changes in gene expression, which are regulated at transcriptional, post-transcriptional (including translational) and post-translational levels. Post-transcriptional regulation has been proposed as a unique feature of germ cells. However, recent studies have provided new insights into transcriptional regulation during Drosophila spermatogenesis. Both signaling pathways and epigenetic mechanisms act to orchestrate the transcriptional regulation of distinct genes at different germ cell differentiation stages. Many of the regulatory pathways that control male gamete differentiation in Drosophila are conserved in mammals. Therefore, studies using Drosophila spermatogenesis will provide insight into the molecular mechanisms that regulate mammalian germ cell differentiation pathways.
Collapse
Affiliation(s)
- Cindy Lim
- Department of Biology; The Johns Hopkins University; Baltimore, MD USA
| | | | | |
Collapse
|
14
|
Sitaram P, Hainline SG, Lee LA. Cytological analysis of spermatogenesis: live and fixed preparations of Drosophila testes. J Vis Exp 2014:e51058. [PMID: 24473184 DOI: 10.3791/51058] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Drosophila melanogaster is a powerful model system that has been widely used to elucidate a variety of biological processes. For example, studies of both the female and male germ lines of Drosophila have contributed greatly to the current understanding of meiosis as well as stem cell biology. Excellent protocols are available in the literature for the isolation and imaging of Drosophila ovaries and testes(3-12). Herein, methods for the dissection and preparation of Drosophila testes for microscopic analysis are described with an accompanying video demonstration. A protocol for isolating testes from the abdomen of adult males and preparing slides of live tissue for analysis by phase-contrast microscopy as well as a protocol for fixing and immunostaining testes for analysis by fluorescence microscopy are presented. These techniques can be applied in the characterization of Drosophila mutants that exhibit defects in spermatogenesis as well as in the visualization of subcellular localizations of proteins.
Collapse
Affiliation(s)
- Poojitha Sitaram
- Department of Cell and Developmental Biology, Vanderbilt University Medical Center
| | | | | |
Collapse
|
15
|
Lu C, Kim J, Fuller MT. The polyubiquitin gene Ubi-p63E is essential for male meiotic cell cycle progression and germ cell differentiation in Drosophila. Development 2013; 140:3522-31. [PMID: 23884444 DOI: 10.1242/dev.098947] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The ubiquitin proteasome system (UPS) regulates many biological pathways by post-translationally ubiquitylating proteins for degradation. Although maintaining a dynamic balance between free ubiquitin and ubiquitylated proteins is key to UPS function, the mechanisms that regulate ubiquitin homeostasis in different tissues through development are not clear. Here we show, via analysis of the magellan (magn) complementation group, that loss of function of the Drosophila polyubiquitin Ubi-p63E results specifically in meiotic arrest sterility in males. Ubi-p63E contributes predominantly to maintaining the free ubiquitin pool in testes. The function of Ubi-p63E is required cell-autonomously for proper meiotic chromatin condensation, cell cycle progression and spermatid differentiation. magn mutant germ cells develop normally to the spermatocyte stage but arrest at the G2/M transition of meiosis I, with lack of protein expression of the key meiotic cell cycle regulators Boule and Cyclin B. Loss of Ubi-p63E function did not strongly affect the spermatocyte transcription program regulated by the testis TBP-associated factor (tTAF) or meiosis arrest complex (tMAC) genes. Knocking down proteasome function specifically in spermatocytes caused a different meiotic arrest phenotype, suggesting that the magn phenotype might not result from general defects in protein degradation. Our results suggest a conserved role of polyubiquitin genes in male meiosis and a potential mechanism leading to meiosis I maturation arrest.
Collapse
Affiliation(s)
- Chenggang Lu
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA 94305-5329, USA
| | | | | |
Collapse
|
16
|
Caporilli S, Yu Y, Jiang J, White-Cooper H. The RNA export factor, Nxt1, is required for tissue specific transcriptional regulation. PLoS Genet 2013; 9:e1003526. [PMID: 23754955 PMCID: PMC3674997 DOI: 10.1371/journal.pgen.1003526] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2012] [Accepted: 04/08/2013] [Indexed: 01/19/2023] Open
Abstract
The highly conserved, Nxf/Nxt (TAP/p15) RNA nuclear export pathway is important for export of most mRNAs from the nucleus, by interacting with mRNAs and promoting their passage through nuclear pores. Nxt1 is essential for viability; using a partial loss of function allele, we reveal a role for this gene in tissue specific transcription. We show that many Drosophila melanogaster testis-specific mRNAs require Nxt1 for their accumulation. The transcripts that require Nxt1 also depend on a testis-specific transcription complex, tMAC. We show that loss of Nxt1 leads to reduced transcription of tMAC targets. A reporter transcript from a tMAC-dependent promoter is under-expressed in Nxt1 mutants, however the same transcript accumulates in mutants if driven by a tMAC-independent promoter. Thus, in Drosophila primary spermatocytes, the transcription factor used to activate expression of a transcript, rather than the RNA sequence itself or the core transcription machinery, determines whether this expression requires Nxt1. We additionally find that transcripts from intron-less genes are more sensitive to loss of Nxt1 function than those from intron-containing genes and propose a mechanism in which transcript processing feeds back to increase activity of a tissue specific transcription complex.
Collapse
Affiliation(s)
- Simona Caporilli
- School of Biosciences, Cardiff University, Cardiff, United Kingdom
| | - Yachuan Yu
- School of Biosciences, Cardiff University, Cardiff, United Kingdom
| | - Jianqiao Jiang
- School of Biosciences, Cardiff University, Cardiff, United Kingdom
| | | |
Collapse
|
17
|
Moon S, Chung YD. p53 and PI3K/AKT signalings are up-regulated in flies with defects in the THO complex. Mol Cells 2013; 35:261-8. [PMID: 23475424 PMCID: PMC3887910 DOI: 10.1007/s10059-013-0009-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2013] [Revised: 01/24/2013] [Accepted: 01/28/2013] [Indexed: 12/11/2022] Open
Abstract
The THO complex (THO) is an evolutionary conserved protein required for the formation of export-competent mRNP. The growing evidence indicates that the metazoan THO plays important roles in cell differentiation and cellular stress response. But the underlying mechanisms are poorly understood. Herein we examined the relevance of THO to cellular signaling pathways involved in cell differentiation and cellular stress response. When we examined the endogenous p53 level in the testis, it was sustained much longer during spermatogenesis in the THO mutant compared to that of wild-type. In flies with impaired THO, overexpression of p53 by eye-specific GAL4 not only enhanced p53-mediated retinal degeneration, but p53 level was also elevated compared to the control flies. Since the body size of the THO mutant flies was significantly larger than control flies, we also examined whether the PI3K/AKT signaling is enhanced in the mutant flies. The results showed that the endogenous level of phosphorylated AKT, which is the active form, was highly elevated in the THO mutants. Taken together our results suggested that both p53 and PI3K/AKT signalings are up-regulated in the flies with impaired THO.
Collapse
Affiliation(s)
- Sungjin Moon
- Department of Life Science, University of Seoul, Seoul 130–743,
Korea
| | - Yun Doo Chung
- Department of Life Science, University of Seoul, Seoul 130–743,
Korea
| |
Collapse
|
18
|
White-Cooper H, Caporilli S. Transcriptional and post-transcriptional regulation of Drosophila germline stem cells and their differentiating progeny. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2013; 786:47-61. [PMID: 23696351 DOI: 10.1007/978-94-007-6621-1_4] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
In this chapter we will concentrate on the transcriptional and translational regulations that govern the development and differentiation of male germline cells. Our focus will be on the processes that occur during differentiation, that distinguish the differentiating population of cells from their stem cell parents. We discuss how these defining features are established as cells transit from a stem cell character to that of a fully committed differentiating cell. The focus will be on how GSCs differentiate, via spermatogonia, to spermatocytes. We will achieve this by first describing the transcriptional activity in the differentiating spermatocytes, cataloguing the known transcriptional regulators in these cells and then investigating how the transcription programme is set up by processes in the progentior cells. This process is particularly interesting to study from a stem cell perspective as the male GSCs are unipotent, so lineage decisions in differentiating progeny of stem cells, which occurs in many other stem cell systems, do not impinge on the behaviour of these cells.
Collapse
|