1
|
Carrillo JA, Murakawa H, Sato M, Wang M. A new paradigm considering multicellular adhesion, repulsion and attraction represent diverse cellular tile patterns. PLoS Comput Biol 2025; 21:e1011909. [PMID: 40258228 PMCID: PMC12061426 DOI: 10.1371/journal.pcbi.1011909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Revised: 05/08/2025] [Accepted: 03/25/2025] [Indexed: 04/23/2025] Open
Abstract
Cell sorting by differential adhesion is one of the basic mechanisms explaining spatial organization of neurons in early stage brain development of fruit flies. The columnar arrangements of neurons determine the large-scale patterns in the fly visual center. Experimental studies indicate that hexagonal configurations regularly appear in the fly compound eye, which is connected to the visual center by photoreceptor axons, while tetragonal configurations can be induced in mutants. We need a mathematical framework to study the mechanisms of such a transition between hexagonal and tetragonal arrangements. Here, we propose a new mathematical model based on macroscopic approximations of agent-based models that produces a similar behavior changing from hexagonal to tetragonal steady configurations when medium-range repulsion and longer-range attraction between individuals are incorporated in previous successful models for cell sorting based on adhesion and volume constraints. We analyze the angular configurations of these patterns based on angle summary statistics and compare between experimental data and parameter fitted ARA (Adhesion-Repulsion-Attraction) models showing that intermediate patterns between hexagonal and tetragonal configuration are common in experimental data as well as in our ARA mathematical model. Our studies indicate an overall qualitative agreement of ARA models in tile patterning and pave the way for their quantitative studies. Our study opens up a new avenue to explore tile pattern transitions, found not only in the column arrangement in the brain, but also in the other related biological processes.
Collapse
Affiliation(s)
- José A. Carrillo
- Mathematical Institute, University of Oxford, Oxford, United Kingdom
| | - Hideki Murakawa
- Faculty of Advanced Science and Technology, Ryukoku University, Otsu, Shiga, Japan
| | - Makoto Sato
- Mathematical Neuroscience Unit, Institute for Frontier Science Initiative, Laboratory of Developmental Neurobiology, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Ishikawa, Japan
| | - Miaoxing Wang
- Mathematical Neuroscience Unit, Institute for Frontier Science Initiative, Laboratory of Developmental Neurobiology, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Ishikawa, Japan
| |
Collapse
|
2
|
Simon F, Holguera I, Chen YC, Malin J, Valentino P, Njoo-Deplante C, El-Danaf RN, Kapuralin K, Erclik T, Konstantinides N, Özel MN, Desplan C. Establishment of terminal selector combinations in optic lobe neurons. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.02.05.578975. [PMID: 38370610 PMCID: PMC10871188 DOI: 10.1101/2024.02.05.578975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
The medulla is the part of the Drosophila optic lobe with the greatest neuronal diversity, in which the identity of each neuronal type is specified in progenitors and newborn neurons via the integration of temporal, spatial, and Notch-driven patterning mechanisms. This identity is maintained in differentiating and adult neurons by the expression of neuronal type-specific combinations of terminal selectors, which are transcription factors expressed continuously during development and in the adult that are thought to control all neuronal type-specific gene expression. However, how the patterning mechanisms establish terminal selector expression is unknown. We have previously characterized the temporal and Notch origin of medulla neurons. Here we have used single-cell mRNA-sequencing to characterize their spatial origins and identified two new spatial subdomains. Together, this makes the medulla the first complex brain structure for which the patterning mechanisms specifying the identity of each neuronal type are known. This knowledge allowed us to identify correlations between patterning information, terminal selector expression and neuronal features. Our results suggest that different subsets of the patterning information accessible to a given neuronal type control the expression of each of its terminal selectors and of modules of terminal features, including neurotransmitter identity. Therefore, the evolution of new neuronal types could rely on the acquisition of modules of neuronal features predetermined by their developmental origin.
Collapse
Affiliation(s)
- Félix Simon
- Department of Biology, New York University, New York, NY 10003, USA
- Université Paris Cité, CNRS, Institut Jacques Monod, 75013 Paris, France
| | - Isabel Holguera
- Department of Biology, New York University, New York, NY 10003, USA
- Université Paris Cité, CNRS, Institut Jacques Monod, 75013 Paris, France
| | - Yen-Chung Chen
- Department of Biology, New York University, New York, NY 10003, USA
| | - Jennifer Malin
- Department of Biology, New York University, New York, NY 10003, USA
| | - Priscilla Valentino
- Department of Biology, University of Toronto Mississauga, Mississauga, ON L5L 1C6, Canada
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON M5S 1A1, Canada
| | | | - Rana Naja El-Danaf
- Center for Genomics and Systems Biology, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Katarina Kapuralin
- Center for Genomics and Systems Biology, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
- Faculty of Biotechnology and Drug Development, University of Rijeka, 51000 Rijeka, Croatia
| | - Ted Erclik
- Department of Biology, University of Toronto Mississauga, Mississauga, ON L5L 1C6, Canada
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON M5S 1A1, Canada
| | | | - Mehmet Neset Özel
- Stowers Institute for Medical Research, 1000 E 50th St, Kansas City, MO, 64110, USA
| | - Claude Desplan
- Department of Biology, New York University, New York, NY 10003, USA
- Center for Genomics and Systems Biology, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| |
Collapse
|
3
|
Holguera I, Chen YC, Chen YCD, Simon F, Gaffney A, Rodas J, Córdoba S, Desplan C. Temporal and Notch identity determine layer targeting and synapse location of medulla neurons. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.06.631439. [PMID: 39829863 PMCID: PMC11741259 DOI: 10.1101/2025.01.06.631439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
How specification mechanisms that generate neural diversity translate into specific neuronal targeting, connectivity, and function in the adult brain is not understood. In the medulla region of the Drosophila optic lobe, neural progenitors generate different neurons in a fixed order by sequentially expressing a series of temporal transcription factors as they age. Then, Notch signaling in intermediate progenitors further diversifies neuronal progeny. By establishing the birth order of medulla neurons, we found that their temporal identity correlates with the depth of neuropil targeting in the adult brain, for both local interneurons and projection neurons. We show that this temporal identity-dependent targeting of projection neurons unfolds early in development and is genetically determined. By leveraging the Electron Microscopy reconstruction of the adult fly brain, we determined the synapse location of medulla neurons in the different optic lobe neuropils and find that it is significantly associated with both their temporal identity and Notch status. Moreover, we show that all the putative medulla neurons with the same predicted function share similar neuropil synapse location, indicating that ensembles of neuropil layers encode specific visual functions. In conclusion, we show that temporal identity and Notch status of medulla neurons can predict their neuropil synapse location and visual function, linking their developmental patterning with their specific connectivity and functional features in the adult brain.
Collapse
Affiliation(s)
- I. Holguera
- Department of Biology, New York University, New York, NY 10003, USA
- Current address: Institut Jacques Monod, Centre National de la Recherche Scientifique-UMR7592-Université Paris Cité, Paris, France
| | - Y-C. Chen
- Department of Biology, New York University, New York, NY 10003, USA
| | - Y-C-D. Chen
- Department of Biology, New York University, New York, NY 10003, USA
| | - F. Simon
- Department of Biology, New York University, New York, NY 10003, USA
- Current address: Institut Jacques Monod, Centre National de la Recherche Scientifique-UMR7592-Université Paris Cité, Paris, France
| | - A.G. Gaffney
- Department of Biology, New York University, New York, NY 10003, USA
| | - J.D. Rodas
- Department of Biology, New York University, New York, NY 10003, USA
| | - S. Córdoba
- Department of Biology, New York University, New York, NY 10003, USA
| | - C. Desplan
- Department of Biology, New York University, New York, NY 10003, USA
- Center for Genomics and Systems Biology, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| |
Collapse
|
4
|
Matsliah A, Yu SC, Kruk K, Bland D, Burke AT, Gager J, Hebditch J, Silverman B, Willie KP, Willie R, Sorek M, Sterling AR, Kind E, Garner D, Sancer G, Wernet MF, Kim SS, Murthy M, Seung HS. Neuronal parts list and wiring diagram for a visual system. Nature 2024; 634:166-180. [PMID: 39358525 PMCID: PMC11446827 DOI: 10.1038/s41586-024-07981-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 08/21/2024] [Indexed: 10/04/2024]
Abstract
A catalogue of neuronal cell types has often been called a 'parts list' of the brain1, and regarded as a prerequisite for understanding brain function2,3. In the optic lobe of Drosophila, rules of connectivity between cell types have already proven to be essential for understanding fly vision4,5. Here we analyse the fly connectome to complete the list of cell types intrinsic to the optic lobe, as well as the rules governing their connectivity. Most new cell types contain 10 to 100 cells, and integrate information over medium distances in the visual field. Some existing type families (Tm, Li, and LPi)6-10 at least double in number of types. A new serpentine medulla (Sm) interneuron family contains more types than any other. Three families of cross-neuropil types are revealed. The consistency of types is demonstrated by analysing the distances in high-dimensional feature space, and is further validated by algorithms that select small subsets of discriminative features. We use connectivity to hypothesize about the functional roles of cell types in motion, object and colour vision. Connectivity with 'boundary types' that straddle the optic lobe and central brain is also quantified. We showcase the advantages of connectomic cell typing: complete and unbiased sampling, a rich array of features based on connectivity and reduction of the connectome to a substantially simpler wiring diagram of cell types, with immediate relevance for brain function and development.
Collapse
Affiliation(s)
- Arie Matsliah
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
| | - Szi-Chieh Yu
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
| | - Krzysztof Kruk
- Independent researcher, Kielce, Poland
- Eyewire, Boston, MA, USA
| | - Doug Bland
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
| | - Austin T Burke
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
| | - Jay Gager
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
| | - James Hebditch
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
| | - Ben Silverman
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
| | | | - Ryan Willie
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
| | - Marissa Sorek
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
- Eyewire, Boston, MA, USA
| | - Amy R Sterling
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
- Eyewire, Boston, MA, USA
| | - Emil Kind
- Institut für Biologie-Neurobiologie, Freie Universität Berlin, Berlin, Germany
| | - Dustin Garner
- Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, Santa Barbara, CA, USA
| | - Gizem Sancer
- Department of Neuroscience, Yale University, New Haven, CT, USA
| | - Mathias F Wernet
- Institut für Biologie-Neurobiologie, Freie Universität Berlin, Berlin, Germany
| | - Sung Soo Kim
- Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, Santa Barbara, CA, USA
| | - Mala Murthy
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA.
| | - H Sebastian Seung
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA.
- Computer Science Department, Princeton University, Princeton, NJ, USA.
| |
Collapse
|
5
|
Elagoz AM, Van Dijck M, Lassnig M, Seuntjens E. Embryonic development of a centralised brain in coleoid cephalopods. Neural Dev 2024; 19:8. [PMID: 38907272 PMCID: PMC11191162 DOI: 10.1186/s13064-024-00186-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 06/12/2024] [Indexed: 06/23/2024] Open
Abstract
The last common ancestor of cephalopods and vertebrates lived about 580 million years ago, yet coleoid cephalopods, comprising squid, cuttlefish and octopus, have evolved an extraordinary behavioural repertoire that includes learned behaviour and tool utilization. These animals also developed innovative advanced defence mechanisms such as camouflage and ink release. They have evolved unique life cycles and possess the largest invertebrate nervous systems. Thus, studying coleoid cephalopods provides a unique opportunity to gain insights into the evolution and development of large centralised nervous systems. As non-model species, molecular and genetic tools are still limited. However, significant insights have already been gained to deconvolve embryonic brain development. Even though coleoid cephalopods possess a typical molluscan circumesophageal bauplan for their central nervous system, aspects of its development are reminiscent of processes observed in vertebrates as well, such as long-distance neuronal migration. This review provides an overview of embryonic coleoid cephalopod research focusing on the cellular and molecular aspects of neurogenesis, migration and patterning. Additionally, we summarize recent work on neural cell type diversity in embryonic and hatchling cephalopod brains. We conclude by highlighting gaps in our knowledge and routes for future research.
Collapse
Affiliation(s)
- Ali M Elagoz
- Laboratory of Developmental Neurobiology, Department of Biology, KU Leuven, Leuven, Belgium.
| | - Marie Van Dijck
- Laboratory of Developmental Neurobiology, Department of Biology, KU Leuven, Leuven, Belgium
| | - Mark Lassnig
- Laboratory of Developmental Neurobiology, Department of Biology, KU Leuven, Leuven, Belgium
| | - Eve Seuntjens
- Laboratory of Developmental Neurobiology, Department of Biology, KU Leuven, Leuven, Belgium.
- Leuven Brain Institute, KU Leuven, Leuven, Belgium.
- Leuven Institute for Single Cell Omics, KU Leuven, Leuven, Belgium.
| |
Collapse
|
6
|
Malin JA, Chen YC, Simon F, Keefer E, Desplan C. Spatial patterning controls neuron numbers in the Drosophila visual system. Dev Cell 2024; 59:1132-1145.e6. [PMID: 38531357 PMCID: PMC11078608 DOI: 10.1016/j.devcel.2024.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 12/18/2023] [Accepted: 03/01/2024] [Indexed: 03/28/2024]
Abstract
Neurons must be made in the correct proportions to communicate with the appropriate synaptic partners and form functional circuits. In the Drosophila visual system, multiple subtypes of distal medulla (Dm) inhibitory interneurons are made in distinct, reproducible numbers-from 5 to 800 per optic lobe. These neurons are born from a crescent-shaped neuroepithelium called the outer proliferation center (OPC), which can be subdivided into specific domains based on transcription factor and growth factor expression. We fate mapped Dm neurons and found that more abundant neural types are born from larger neuroepithelial subdomains, while less abundant subtypes are born from smaller ones. Additionally, morphogenetic Dpp/BMP signaling provides a second layer of patterning that subdivides the neuroepithelium into smaller domains to provide more granular control of cell proportions. Apoptosis appears to play a minor role in regulating Dm neuron abundance. This work describes an underappreciated mechanism for the regulation of neuronal stoichiometry.
Collapse
Affiliation(s)
- Jennifer A Malin
- Department of Biology, New York University, New York, NY 10003, USA.
| | - Yen-Chung Chen
- Department of Biology, New York University, New York, NY 10003, USA
| | - Félix Simon
- Department of Biology, New York University, New York, NY 10003, USA
| | - Evelyn Keefer
- Department of Biology, New York University, New York, NY 10003, USA
| | - Claude Desplan
- Department of Biology, New York University, New York, NY 10003, USA.
| |
Collapse
|
7
|
Matsliah A, Yu SC, Kruk K, Bland D, Burke A, Gager J, Hebditch J, Silverman B, Willie K, Willie RW, Sorek M, Sterling AR, Kind E, Garner D, Sancer G, Wernet MF, Kim SS, Murthy M, Seung HS. Neuronal "parts list" and wiring diagram for a visual system. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.10.12.562119. [PMID: 37873160 PMCID: PMC10592826 DOI: 10.1101/2023.10.12.562119] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
A catalog of neuronal cell types has often been called a "parts list" of the brain, and regarded as a prerequisite for understanding brain function. In the optic lobe of Drosophila, rules of connectivity between cell types have already proven essential for understanding fly vision. Here we analyze the fly connectome to complete the list of cell types intrinsic to the optic lobe, as well as the rules governing their connectivity. We more than double the list of known types. Most new cell types contain between 10 and 100 cells, and integrate information over medium distances in the visual field. Some existing type families (Tm, Li, and LPi) at least double in number of types. We introduce a new Sm interneuron family, which contains more types than any other, and three new families of cross-neuropil types. Self-consistency of cell types is demonstrated through automatic assignment of cells to types by distance in high-dimensional feature space, and further validation is provided by algorithms that select small subsets of discriminative features. Cell types with similar connectivity patterns divide into clusters that are interpretable in terms of motion, object, and color vision. Our work showcases the advantages of connectomic cell typing: complete and unbiased sampling, a rich array of features based on connectivity, and reduction of the connectome to a drastically simpler wiring diagram of cell types, with immediate relevance for brain function and development.
Collapse
Affiliation(s)
| | - Szi-Chieh Yu
- Neuroscience Institute, Princeton University, USA
| | | | - Doug Bland
- Neuroscience Institute, Princeton University, USA
| | - Austin Burke
- Neuroscience Institute, Princeton University, USA
| | - Jay Gager
- Neuroscience Institute, Princeton University, USA
| | | | | | - Kyle Willie
- Neuroscience Institute, Princeton University, USA
| | | | | | | | - Emil Kind
- Institut für Biologie - Neurobiologie, Freie Universität B erlin, Germany
| | - Dustin Garner
- Molecular, Cellular, and Developmental Biology, Univ. C alifornia Santa Barbara, USA
| | - Gizem Sancer
- Institut für Biologie - Neurobiologie, Freie Universität B erlin, Germany
| | - Mathias F Wernet
- Institut für Biologie - Neurobiologie, Freie Universität B erlin, Germany
| | - Sung Soo Kim
- Molecular, Cellular, and Developmental Biology, Univ. C alifornia Santa Barbara, USA
| | - Mala Murthy
- Neuroscience Institute, Princeton University, USA
| | - H Sebastian Seung
- Neuroscience Institute, Princeton University, USA
- Computer Science Department, Princeton University, U SA
| |
Collapse
|
8
|
Ricquebourg R, Konstantinides N. [A temporal mechanism for the generation of neuronal diversity]. Med Sci (Paris) 2024; 40:251-257. [PMID: 38520100 DOI: 10.1051/medsci/2024012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/25/2024] Open
Abstract
One of the greatest challenges in neuroscience is to understand how a complex structure, such as the brain, is built. Spatial and temporal patternings of neuronal progenitors are responsible for the generation of most of the neuronal diversity observed in the brain. This review focuses on the temporal patterning of neuronal progenitors, i.e. the sequential expression of transcription factors that changes the capacity of stem cells to generate different neuronal types, and which is conserved in animals. Recent papers have offered a near complete understanding of the mechanism of temporal patterning in the developing visual system of Drosophila, and of how this contributes to the specification of diverse neuronal identities, which are then maintained by the sustained expression of downstream transcription factors. The insect visual system provides a unique model to study the evolution of neuronal cell types, as well as the evolution of neurodevelopmental mechanisms that generate them.
Collapse
|
9
|
Pollington HQ, Seroka AQ, Doe CQ. From temporal patterning to neuronal connectivity in Drosophila type I neuroblast lineages. Semin Cell Dev Biol 2023; 142:4-12. [PMID: 35659165 PMCID: PMC9938700 DOI: 10.1016/j.semcdb.2022.05.022] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 05/24/2022] [Accepted: 05/24/2022] [Indexed: 02/07/2023]
Abstract
The development of the central nervous system (CNS) in flies and mammals requires the production of distinct neurons in different locations and times. Here we review progress on how Drosophila stem cells (neuroblasts; NBs) generate distinct neurons over time. There are two types of NBs: type I and type II NBs (defined below); here we focus on type I NBs; type II NBs are reviewed elsewhere in this issue. Type I NBs generate neural diversity via the cascading expression of specific temporal transcription factors (TTFs). TTFs are sequentially expressed in neuroblasts and required for the identity of neurons born during each TTF expression window. In this way TTFs specify the "temporal identity" or birth-order dependent identity of neurons. Recent studies have shown that TTF expression in neuroblasts alter the identity of their progeny, including directing motor neurons to form proper connectivity to the proper muscle targets, independent of their birth-order. Similarly, optic lobe (OL) type I NBs express a series of TTFs that promote proper neuron morphology and targeting to the four OL neuropils. Together, these studies demonstrate how temporal identity is crucial in promoting proper circuit assembly within the Drosophila CNS. In addition, TTF orthologs in mouse are good candidates for specifying neuron types in the neocortex and retina. In this review we highlight the recent advances in understanding the role of TTFs in CNS circuit assembly in Drosophila and reflect on the conservation of these mechanisms in mammalian CNS development.
Collapse
Affiliation(s)
- Heather Q Pollington
- Institute of Neuroscience, Howard Hughes Medical Institute, University of Oregon, Eugene, OR 97403, USA
| | - Austin Q Seroka
- Institute of Neuroscience, Howard Hughes Medical Institute, University of Oregon, Eugene, OR 97403, USA
| | - Chris Q Doe
- Institute of Neuroscience, Howard Hughes Medical Institute, University of Oregon, Eugene, OR 97403, USA.
| |
Collapse
|
10
|
Sen SQ. Generating neural diversity through spatial and temporal patterning. Semin Cell Dev Biol 2023; 142:54-66. [PMID: 35738966 DOI: 10.1016/j.semcdb.2022.06.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 06/08/2022] [Accepted: 06/08/2022] [Indexed: 11/19/2022]
Abstract
The nervous system consists of a vast diversity of neurons and glia that are accurately assembled into functional circuits. What are the mechanisms that generate these diverse cell types? During development, an epithelial sheet with neurogenic potential is initially regionalised into spatially restricted domains of gene expression. From this, pools of neural stem cells (NSCs) with distinct molecular profiles and the potential to generate different neuron types, are specified. These NSCs then divide asymmetrically to self-renew and generate post-mitotic neurons or glia. As NSCs age, they experience transitions in gene expression, which further allows them to generate different neurons or glia over time. Versions of this general template of spatial and temporal patterning operate during the development of different parts of different nervous systems. Here, I cover our current knowledge of Drosophila brain and optic lobe development as well as the development of the vertebrate cortex and spinal cord within the framework of this above template. I highlight where our knowledge is lacking, where mechanisms beyond these might operate, and how the emergence of new technologies might help address unanswered questions.
Collapse
Affiliation(s)
- Sonia Q Sen
- Tata Institute for Genetics and Society, UAS-GKVK Campus, Bellary Road, Bangalore, India.
| |
Collapse
|
11
|
Currier TA, Pang MM, Clandinin TR. Visual processing in the fly, from photoreceptors to behavior. Genetics 2023; 224:iyad064. [PMID: 37128740 PMCID: PMC10213501 DOI: 10.1093/genetics/iyad064] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 03/22/2023] [Indexed: 05/03/2023] Open
Abstract
Originally a genetic model organism, the experimental use of Drosophila melanogaster has grown to include quantitative behavioral analyses, sophisticated perturbations of neuronal function, and detailed sensory physiology. A highlight of these developments can be seen in the context of vision, where pioneering studies have uncovered fundamental and generalizable principles of sensory processing. Here we begin with an overview of vision-guided behaviors and common methods for probing visual circuits. We then outline the anatomy and physiology of brain regions involved in visual processing, beginning at the sensory periphery and ending with descending motor control. Areas of focus include contrast and motion detection in the optic lobe, circuits for visual feature selectivity, computations in support of spatial navigation, and contextual associative learning. Finally, we look to the future of fly visual neuroscience and discuss promising topics for further study.
Collapse
Affiliation(s)
- Timothy A Currier
- Department of Neurobiology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Michelle M Pang
- Department of Neurobiology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Thomas R Clandinin
- Department of Neurobiology, Stanford University School of Medicine, Stanford, CA 94305, USA
| |
Collapse
|
12
|
Zhang Y, Lowe S, Ding AZ, Li X. Axon targeting of Drosophila medulla projection neurons requires diffusible Netrin and is coordinated with neuroblast temporal patterning. Cell Rep 2023; 42:112144. [PMID: 36821439 PMCID: PMC10155933 DOI: 10.1016/j.celrep.2023.112144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 10/19/2022] [Accepted: 02/07/2023] [Indexed: 02/24/2023] Open
Abstract
How axon guidance pathways are utilized in coordination with temporal and spatial patterning of neural progenitors to regulate neuropil assembly is not well understood. We study this question in the Drosophila medulla using the transmedullary (Tm) projection neurons that target lobula through the inner optic chiasm (IOC). We demonstrate that the Netrin pathway plays multiple roles in guidance of Tm axons and that temporal patterning of medulla neuroblasts determines pioneer versus follower Tm neurons during this process. Loss of Frazzled (Fra) in early-born pioneer Tm neurons leads to IOC defects, while loss of Fra from follower neurons does not affect the IOC. In the follower projection neurons, Fra is required in other targeting steps including lobula branch extension and layer-specific targeting. Furthermore, different from other identified scenarios of Netrin/Fra involved axon guidance in Drosophila, we demonstrate that diffusible Netrin is required for the correct axon targeting and optic lobe organization.
Collapse
Affiliation(s)
- Yu Zhang
- Department of Cell and Developmental Biology, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| | - Scott Lowe
- Department of Cell and Developmental Biology, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| | - Andrew Z Ding
- Department of Cell and Developmental Biology, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| | - Xin Li
- Department of Cell and Developmental Biology, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA.
| |
Collapse
|
13
|
Zhang Y, Lowe S, Ding AZ, Li X. Notch-dependent binary fate choice regulates the Netrin pathway to control axon guidance of Drosophila visual projection neurons. Cell Rep 2023; 42:112143. [PMID: 36821442 PMCID: PMC10124989 DOI: 10.1016/j.celrep.2023.112143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 10/22/2022] [Accepted: 02/07/2023] [Indexed: 02/24/2023] Open
Abstract
Notch-dependent binary fate choice between sister neurons is one of the mechanisms to generate neural diversity. How these upstream neural fate specification programs regulate downstream effector genes to control axon targeting and neuropil assembly remains less well understood. Here, we report that Notch-dependent binary fate choice in Drosophila medulla neurons is required to regulate the Netrin axon guidance pathway, which controls targeting of transmedullary (Tm) neurons to lobula. In medulla neurons of Notch-on hemilineage composed of mostly lobula-targeting neurons, Notch signaling is required to activate the expression of Netrin-B and repress the expression of its repulsive receptor Unc-5. Turning off Unc-5 is necessary for Tm neurons to target lobula. Furthermore, Netrin-B provided by Notch-on medulla neurons is required for correct targeting of Tm axons from later-generated medulla columns. Thus, the coordinate regulation of Netrin pathway components by Notch signaling ensures correct targeting of Tm axons and contributes to the neuropil assembly.
Collapse
Affiliation(s)
- Yu Zhang
- Department of Cell and Developmental Biology, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| | - Scott Lowe
- Department of Cell and Developmental Biology, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| | - Andrew Z Ding
- Department of Cell and Developmental Biology, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| | - Xin Li
- Department of Cell and Developmental Biology, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA.
| |
Collapse
|
14
|
Lee Y, Wang M, Imamura K, Sato M. Quantitative analysis of the roles of IRM cell adhesion molecules in column formation in the fly brain. Dev Growth Differ 2023; 65:37-47. [PMID: 36534021 DOI: 10.1111/dgd.12834] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 11/20/2022] [Accepted: 11/25/2022] [Indexed: 12/23/2022]
Abstract
The Drosophila visual center shows columnar structures, basic structural and functional units of the brain, that are shared with the mammalian cerebral cortex. Visual information received in the ommatidia in the compound eye is transmitted to the columns in the brain. However, the developmental mechanisms of column formation are largely unknown. The Irre Cell Recognition Module (IRM) proteins are a family of immunoglobulin cell adhesion molecules. The four Drosophila IRM proteins are localized to the developing columns, the structure of which is affected in IRM mutants, suggesting that IRM proteins are essential for column formation. Since IRM proteins are cell adhesion molecules, they may regulate cell adhesion between columnar neurons. To test this possibility, we specifically knocked down IRM genes in columnar neurons and examined the defects in column formation. We developed a system that automatically extracts the individual column images and quantifies the column shape. Using this system, we demonstrated that IRM genes play critical roles in regulating column shape in a core columnar neuron, Mi1. We also show that their expression in the other columnar neurons, Mi4 and T4/5, is essential, suggesting that the interactions between IRM proteins and multiple neurons shape the columns in the fly brain.
Collapse
Affiliation(s)
- Yunfei Lee
- Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - Miaoxing Wang
- Mathematical Neuroscience Unit, Institute for Frontier Science Initiative, Kanazawa, Japan
| | - Kousuke Imamura
- Faculty of Electrical, Information and Communication Engineering, Institute of Science and Engineering, Kanazawa University, Kanazawa, Japan
| | - Makoto Sato
- Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan.,Mathematical Neuroscience Unit, Institute for Frontier Science Initiative, Kanazawa, Japan
| |
Collapse
|
15
|
Özel MN, Gibbs CS, Holguera I, Soliman M, Bonneau R, Desplan C. Coordinated control of neuronal differentiation and wiring by sustained transcription factors. Science 2022; 378:eadd1884. [PMID: 36480601 DOI: 10.1126/science.add1884] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The large diversity of cell types in nervous systems presents a challenge in identifying the genetic mechanisms that encode it. Here, we report that nearly 200 distinct neurons in the Drosophila visual system can each be defined by unique combinations of on average 10 continuously expressed transcription factors. We show that targeted modifications of this terminal selector code induce predictable conversions of neuronal fates that appear morphologically and transcriptionally complete. Cis-regulatory analysis of open chromatin links one of these genes to an upstream patterning factor that specifies neuronal fates in stem cells. Experimentally validated network models describe the synergistic regulation of downstream effectors by terminal selectors and ecdysone signaling during brain wiring. Our results provide a generalizable framework of how specific fates are implemented in postmitotic neurons.
Collapse
Affiliation(s)
| | - Claudia Skok Gibbs
- Flatiron Institute, Center for Computational Biology, Simons Foundation, New York, NY 10010, USA.,Center for Data Science, New York University, New York, NY 10003, USA
| | - Isabel Holguera
- Department of Biology, New York University, New York, NY 10003, USA
| | - Mennah Soliman
- Department of Biology, New York University, New York, NY 10003, USA
| | - Richard Bonneau
- Department of Biology, New York University, New York, NY 10003, USA.,Flatiron Institute, Center for Computational Biology, Simons Foundation, New York, NY 10010, USA.,Center for Data Science, New York University, New York, NY 10003, USA
| | - Claude Desplan
- Department of Biology, New York University, New York, NY 10003, USA.,New York University Abu Dhabi, Saadiyat Island, Abu Dhabi, United Arab Emirates
| |
Collapse
|
16
|
Sato M, Suzuki T. Cutting edge technologies expose the temporal regulation of neurogenesis in the Drosophila nervous system. Fly (Austin) 2022; 16:222-232. [PMID: 35549651 PMCID: PMC9116403 DOI: 10.1080/19336934.2022.2073158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 04/28/2022] [Accepted: 04/28/2022] [Indexed: 11/23/2022] Open
Abstract
During the development of the central nervous system (CNS), extremely large numbers of neurons are produced in a regular fashion to form precise neural circuits. During this process, neural progenitor cells produce different neurons over time due to their intrinsic gene regulatory mechanisms as well as extrinsic mechanisms. The Drosophila CNS has played an important role in elucidating the temporal mechanisms that control neurogenesis over time. It has been shown that a series of temporal transcription factors are sequentially expressed in neural progenitor cells and regulate the temporal specification of neurons in the embryonic CNS. Additionally, similar mechanisms are found in the developing optic lobe and central brain in the larval CNS. However, it is difficult to elucidate the function of numerous molecules in many different cell types solely by molecular genetic approaches. Recently, omics analysis using single-cell RNA-seq and other methods has been used to study the Drosophila nervous system on a large scale and is making a significant contribution to the understanding of the temporal mechanisms of neurogenesis. In this article, recent findings on the temporal patterning of neurogenesis and the contributions of cutting-edge technologies will be reviewed.
Collapse
Affiliation(s)
- Makoto Sato
- Mathematical Neuroscience Unit, Institute for Frontier Science Initiative,Laboratory of Developmental Neurobiology, Graduate School of Medical Sciences, Kanazawa University, Ishikawa, Japan
| | - Takumi Suzuki
- College of Science, Department of Science, Ibaraki University, Ibaraki, Japan
| |
Collapse
|
17
|
Valentino P, Erclik T. Spalt and disco define the dorsal-ventral neuroepithelial compartments of the developing Drosophila medulla. Genetics 2022; 222:iyac145. [PMID: 36135799 PMCID: PMC9630984 DOI: 10.1093/genetics/iyac145] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 09/14/2022] [Indexed: 11/14/2022] Open
Abstract
Spatial patterning of neural stem cell populations is a powerful mechanism by which to generate neuronal diversity. In the developing Drosophila medulla, the symmetrically dividing neuroepithelial cells of the outer proliferation center crescent are spatially patterned by the nonoverlapping expression of 3 transcription factors: Vsx1 in the center, Optix in the adjacent arms, and Rx in the tips. These spatial genes compartmentalize the outer proliferation center and, together with the temporal patterning of neuroblasts, act to diversify medulla neuronal fates. The observation that the dorsal and ventral halves of the outer proliferation center also grow as distinct compartments, together with the fact that a subset of neuronal types is generated from only one half of the crescent, suggests that additional transcription factors spatially pattern the outer proliferation center along the dorsal-ventral axis. Here, we identify the spalt (salm and salr) and disco (disco and disco-r) genes as the dorsal-ventral patterning transcription factors of the outer proliferation center. Spalt and Disco are differentially expressed in the dorsal and ventral outer proliferation center from the embryo through to the third instar larva, where they cross-repress each other to form a sharp dorsal-ventral boundary. We show that hedgehog is necessary for Disco expression in the embryonic optic placode and that disco is subsequently required for the development of the ventral outer proliferation center and its neuronal progeny. We further demonstrate that this dorsal-ventral patterning axis acts independently of Vsx1-Optix-Rx and thus propose that Spalt and Disco represent a third outer proliferation center patterning axis that may act to further diversify medulla fates.
Collapse
Affiliation(s)
- Priscilla Valentino
- Department of Biology, University of Toronto Mississauga, Mississauga, ON L5L 1C6, Canada
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON M5S 1A1, Canada
| | - Ted Erclik
- Department of Biology, University of Toronto Mississauga, Mississauga, ON L5L 1C6, Canada
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON M5S 1A1, Canada
| |
Collapse
|
18
|
Nguyen PK, Cheng LY. Non-autonomous regulation of neurogenesis by extrinsic cues: a Drosophila perspective. OXFORD OPEN NEUROSCIENCE 2022; 1:kvac004. [PMID: 38596708 PMCID: PMC10913833 DOI: 10.1093/oons/kvac004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 03/20/2022] [Accepted: 03/23/2022] [Indexed: 04/11/2024]
Abstract
The formation of a functional circuitry in the central nervous system (CNS) requires the correct number and subtypes of neural cells. In the developing brain, neural stem cells (NSCs) self-renew while giving rise to progenitors that in turn generate differentiated progeny. As such, the size and the diversity of cells that make up the functional CNS depend on the proliferative properties of NSCs. In the fruit fly Drosophila, where the process of neurogenesis has been extensively investigated, extrinsic factors such as the microenvironment of NSCs, nutrients, oxygen levels and systemic signals have been identified as regulators of NSC proliferation. Here, we review decades of work that explores how extrinsic signals non-autonomously regulate key NSC characteristics such as quiescence, proliferation and termination in the fly.
Collapse
Affiliation(s)
- Phuong-Khanh Nguyen
- Peter MacCallum Cancer Centre, Melbourne, Victoria 3000, Australia
- Department of Anatomy and Physiology, The University of Melbourne, Victoria 3010, Australia
| | - Louise Y Cheng
- Peter MacCallum Cancer Centre, Melbourne, Victoria 3000, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Victoria 3010, Australia
- Department of Anatomy and Physiology, The University of Melbourne, Victoria 3010, Australia
| |
Collapse
|
19
|
Konstantinides N, Holguera I, Rossi AM, Escobar A, Dudragne L, Chen YC, Tran TN, Martínez Jaimes AM, Özel MN, Simon F, Shao Z, Tsankova NM, Fullard JF, Walldorf U, Roussos P, Desplan C. A complete temporal transcription factor series in the fly visual system. Nature 2022; 604:316-322. [PMID: 35388222 PMCID: PMC9074256 DOI: 10.1038/s41586-022-04564-w] [Citation(s) in RCA: 66] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 02/18/2022] [Indexed: 01/17/2023]
Abstract
The brain consists of thousands of neuronal types that are generated by stem cells producing different neuronal types as they age. In Drosophila, this temporal patterning is driven by the successive expression of temporal transcription factors (tTFs)1-6. Here we used single-cell mRNA sequencing to identify the complete series of tTFs that specify most Drosophila optic lobe neurons. We verify that tTFs regulate the progression of the series by activating the next tTF(s) and repressing the previous one(s), and also identify more complex mechanisms of regulation. Moreover, we establish the temporal window of origin and birth order of each neuronal type in the medulla and provide evidence that these tTFs are sufficient to explain the generation of all of the neuronal diversity in this brain region. Finally, we describe the first steps of neuronal differentiation and show that these steps are conserved in humans. We find that terminal differentiation genes, such as neurotransmitter-related genes, are present as transcripts, but not as proteins, in immature larval neurons. This comprehensive analysis of a temporal series of tTFs in the optic lobe offers mechanistic insights into how tTF series are regulated, and how they can lead to the generation of a complete set of neurons.
Collapse
Affiliation(s)
- Nikolaos Konstantinides
- Department of Biology, New York University, New York, NY, USA.
- Université de Paris, CNRS, Institut Jacques Monod, Paris, France.
| | - Isabel Holguera
- Department of Biology, New York University, New York, NY, USA
| | - Anthony M Rossi
- Department of Biology, New York University, New York, NY, USA
- Department of Neurobiology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | | | | | - Yen-Chung Chen
- Department of Biology, New York University, New York, NY, USA
| | - Thinh N Tran
- Department of Biology, New York University, New York, NY, USA
- Center for Genomics and Systems Biology, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| | | | | | - Félix Simon
- Department of Biology, New York University, New York, NY, USA
| | - Zhiping Shao
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, Institute for Genomics and Multiscale Biology, New York, NY, USA
| | - Nadejda M Tsankova
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Pathology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - John F Fullard
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, Institute for Genomics and Multiscale Biology, New York, NY, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Uwe Walldorf
- Developmental Biology, Saarland University, Homburg, Germany
| | - Panos Roussos
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, Institute for Genomics and Multiscale Biology, New York, NY, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Mental Illness Research, Education and Clinical Center (VISN 2 South), James J. Peters VA Medical Center, New York, NY, USA
| | - Claude Desplan
- Department of Biology, New York University, New York, NY, USA.
- Center for Genomics and Systems Biology, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates.
| |
Collapse
|
20
|
Chen YC, Konstantinides N. Integration of Spatial and Temporal Patterning in the Invertebrate and Vertebrate Nervous System. Front Neurosci 2022; 16:854422. [PMID: 35392413 PMCID: PMC8981590 DOI: 10.3389/fnins.2022.854422] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 02/15/2022] [Indexed: 11/25/2022] Open
Abstract
The nervous system is one of the most sophisticated animal tissues, consisting of thousands of interconnected cell types. How the nervous system develops its diversity from a few neural stem cells remains a challenging question. Spatial and temporal patterning mechanisms provide an efficient model through which diversity can be generated. The molecular mechanism of spatiotemporal patterning has been studied extensively in Drosophila melanogaster, where distinct sets of transcription factors define the spatial domains and temporal windows that give rise to different cell types. Similarly, in vertebrates, spatial domains defined by transcription factors produce different types of neurons in the brain and neural tube. At the same time, different cortical neuronal types are generated within the same cell lineage with a specific birth order. However, we still do not understand how the orthogonal information of spatial and temporal patterning is integrated into the progenitor and post-mitotic cells to combinatorially give rise to different neurons. In this review, after introducing spatial and temporal patterning in Drosophila and mice, we discuss possible mechanisms that neural progenitors may use to integrate spatial and temporal information. We finally review the functional implications of spatial and temporal patterning and conclude envisaging how small alterations of these mechanisms can lead to the evolution of new neuronal cell types.
Collapse
Affiliation(s)
- Yen-Chung Chen
- Department of Biology, New York University, New York, NY, United States
| | - Nikolaos Konstantinides
- Université de Paris, Centre National de la Recherche Scientifique, Institut Jacques Monod, Paris, France
| |
Collapse
|
21
|
Zhu H, Zhao SD, Ray A, Zhang Y, Li X. A comprehensive temporal patterning gene network in Drosophila medulla neuroblasts revealed by single-cell RNA sequencing. Nat Commun 2022; 13:1247. [PMID: 35273186 PMCID: PMC8913700 DOI: 10.1038/s41467-022-28915-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 02/12/2022] [Indexed: 12/24/2022] Open
Abstract
During development, neural progenitors are temporally patterned to sequentially generate a variety of neural types. In Drosophila neural progenitors called neuroblasts, temporal patterning is regulated by cascades of Temporal Transcription Factors (TTFs). However, known TTFs were mostly identified through candidate approaches and may not be complete. In addition, many fundamental questions remain concerning the TTF cascade initiation, progression, and termination. In this work, we use single-cell RNA sequencing of Drosophila medulla neuroblasts of all ages to identify a list of previously unknown TTFs, and experimentally characterize their roles in temporal patterning and neuronal specification. Our study reveals a comprehensive temporal gene network that patterns medulla neuroblasts from start to end. Furthermore, the speed of the cascade progression is regulated by Lola transcription factors expressed in all medulla neuroblasts. Our comprehensive study of the medulla neuroblast temporal cascade illustrates mechanisms that may be conserved in the temporal patterning of neural progenitors. During development, neural progenitors generate a variety of neural types sequentially. Here the authors examine gene expression patterns in Drosophila neural progenitors at single-cell level, and identify a gene regulatory network controlling the sequential generation of different neural types.
Collapse
Affiliation(s)
- Hailun Zhu
- Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Sihai Dave Zhao
- Department of Statistics, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.,Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Alokananda Ray
- Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Yu Zhang
- Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Xin Li
- Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.
| |
Collapse
|
22
|
Cellular diversity and gene expression profiles in the male and female brain of Aedes aegypti. BMC Genomics 2022; 23:119. [PMID: 35144549 PMCID: PMC8832747 DOI: 10.1186/s12864-022-08327-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 01/18/2022] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Aedes aegypti is a medically-important mosquito vector that transmits arboviruses including yellow fever, dengue, chikungunya, and Zika viruses to humans. The mosquito exhibits typical sexually dimorphic behaviors such as courtship, mating, host seeking, bloodfeeding, and oviposition. All these behaviors are mainly regulated by the brain; however, little is known about the function and neuron composition of the mosquito brain. In this study, we generated an initial atlas of the adult male and female brain of Ae. aegypti using 10xGenomics based single-nucleus RNA sequencing. RESULTS We identified 35 brain cell clusters in male and female brains, and 15 of those clusters were assigned to known cell types. Identified cell types include glia (astrocytes), Kenyon cells, (ventral) projection neurons, monoaminergic neurons, medulla neurons, and proximal medulla neurons. In addition, the cell type compositions of male and female brains were compared to each other showing that they were quantitatively distinct, as 17 out of 35 cell clusters varied significantly in their cell type proportions. Overall, the transcriptomes from each cell cluster looked very similar between the male and female brain as only up to 25 genes were differentially expressed in these clusters. The sex determination factor Nix was highly expressed in neurons and glia of the male brain, whereas doublesex (dsx) was expressed in all neuron and glia cell clusters of the male and female brain. CONCLUSIONS An initial cell atlas of the brain of the mosquito Ae. aegypti has been generated showing that the cellular compositions of the male and female brains of this hematophagous insect differ significantly from each other. Although some of the rare brain cell types have not been detected in our single biological replicate, this study provides an important basis for the further development of a complete brain cell atlas as well as a better understanding of the neurobiology of the brains of male and female mosquitoes and their sexually dimorphic behaviors.
Collapse
|
23
|
Neural specification, targeting, and circuit formation during visual system assembly. Proc Natl Acad Sci U S A 2021; 118:2101823118. [PMID: 34183440 DOI: 10.1073/pnas.2101823118] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Like other sensory systems, the visual system is topographically organized: Its sensory neurons, the photoreceptors, and their targets maintain point-to-point correspondence in physical space, forming a retinotopic map. The iterative wiring of circuits in the visual system conveniently facilitates the study of its development. Over the past few decades, experiments in Drosophila have shed light on the principles that guide the specification and connectivity of visual system neurons. In this review, we describe the main findings unearthed by the study of the Drosophila visual system and compare them with similar events in mammals. We focus on how temporal and spatial patterning generates diverse cell types, how guidance molecules distribute the axons and dendrites of neurons within the correct target regions, how vertebrates and invertebrates generate their retinotopic map, and the molecules and mechanisms required for neuronal migration. We suggest that basic principles used to wire the fly visual system are broadly applicable to other systems and highlight its importance as a model to study nervous system development.
Collapse
|
24
|
Douthit J, Hairston A, Lee G, Morrison CA, Holguera I, Treisman JE. R7 photoreceptor axon targeting depends on the relative levels of lost and found expression in R7 and its synaptic partners. eLife 2021; 10:65895. [PMID: 34003117 PMCID: PMC8205486 DOI: 10.7554/elife.65895] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 05/17/2021] [Indexed: 01/17/2023] Open
Abstract
As neural circuits form, growing processes select the correct synaptic partners through interactions between cell surface proteins. The presence of such proteins on two neuronal processes may lead to either adhesion or repulsion; however, the consequences of mismatched expression have rarely been explored. Here, we show that the Drosophila CUB-LDL protein Lost and found (Loaf) is required in the UV-sensitive R7 photoreceptor for normal axon targeting only when Loaf is also present in its synaptic partners. Although targeting occurs normally in loaf mutant animals, removing loaf from photoreceptors or expressing it in their postsynaptic neurons Tm5a/b or Dm9 in a loaf mutant causes mistargeting of R7 axons. Loaf localizes primarily to intracellular vesicles including endosomes. We propose that Loaf regulates the trafficking or function of one or more cell surface proteins, and an excess of these proteins on the synaptic partners of R7 prevents the formation of stable connections.
Collapse
Affiliation(s)
- Jessica Douthit
- Kimmel Center for Biology and Medicine at the Skirball Institute and Department of Cell Biology, NYU School of Medicine, New York, United States
| | - Ariel Hairston
- Kimmel Center for Biology and Medicine at the Skirball Institute and Department of Cell Biology, NYU School of Medicine, New York, United States
| | - Gina Lee
- Kimmel Center for Biology and Medicine at the Skirball Institute and Department of Cell Biology, NYU School of Medicine, New York, United States
| | - Carolyn A Morrison
- Kimmel Center for Biology and Medicine at the Skirball Institute and Department of Cell Biology, NYU School of Medicine, New York, United States
| | - Isabel Holguera
- Department of Biology, New York University, New York, United States
| | - Jessica E Treisman
- Kimmel Center for Biology and Medicine at the Skirball Institute and Department of Cell Biology, NYU School of Medicine, New York, United States
| |
Collapse
|
25
|
Intracellular trafficking of Notch orchestrates temporal dynamics of Notch activity in the fly brain. Nat Commun 2021; 12:2083. [PMID: 33828096 PMCID: PMC8027629 DOI: 10.1038/s41467-021-22442-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 03/16/2021] [Indexed: 12/03/2022] Open
Abstract
While Delta non-autonomously activates Notch in neighboring cells, it autonomously inactivates Notch through cis-inhibition, the molecular mechanism and biological roles of which remain elusive. The wave of differentiation in the Drosophila brain, the ‘proneural wave’, is an excellent model for studying Notch signaling in vivo. Here, we show that strong nonlinearity in cis-inhibition reproduces the second peak of Notch activity behind the proneural wave in silico. Based on this, we demonstrate that Delta expression induces a quick degradation of Notch in late endosomes and the formation of the twin peaks of Notch activity in vivo. Indeed, the amount of Notch is upregulated and the twin peaks are fused forming a single peak when the function of Delta or late endosomes is compromised. Additionally, we show that the second Notch peak behind the wavefront controls neurogenesis. Thus, intracellular trafficking of Notch orchestrates the temporal dynamics of Notch activity and the temporal patterning of neurogenesis. During Drosophila development, two peaks of Notch activity propagate across the neuroepithelium to generate neuroblasts. Here, the authors show Notch cis-inhibition under the control of intracellular Notch trafficking establishes these two peaks, which temporally control neurogenesis in the brain.
Collapse
|
26
|
Neuronal diversity and convergence in a visual system developmental atlas. Nature 2020; 589:88-95. [PMID: 33149298 PMCID: PMC7790857 DOI: 10.1038/s41586-020-2879-3] [Citation(s) in RCA: 140] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Accepted: 08/27/2020] [Indexed: 01/01/2023]
Abstract
Deciphering how neuronal diversity is established and maintained requires a detailed knowledge of neuronal gene expression throughout development. In contrast to mammalian brains1,2, the large neuronal diversity of the Drosophila optic lobes3 and its connectome4–6 are almost completely characterized. However, a molecular characterization of this diversity, particularly during development, has been lacking. We present novel insights into brain development through a nearly exhaustive description of the transcriptomic diversity of the optic lobes. We acquired the transcriptome of 275,000 single-cells at adult and five pupal stages, and developed a machine learning framework to assign them to almost 200 cell-types at all timepoints. We discovered two large neuronal populations that wrap neuropils during development but die just before adulthood, as well as neuronal subtypes that partition dorsal and ventral visual circuits by differential Wnt signaling throughout development. Moreover, we showed that neurons of the same type but produced days apart synchronize their transcriptomes shortly after being produced. We also resolved during synaptogenesis neuronal subtypes that converge to indistinguishable transcriptomic profiles in adults while greatly differing in morphology and connectivity. Our datasets almost completely account for the known neuronal diversity of the optic lobes and serve as a paradigm to understand brain development across species.
Collapse
|
27
|
Han X, Wang M, Liu C, Trush O, Takayama R, Akiyama T, Naito T, Tomomizu T, Imamura K, Sato M. DWnt4 and DWnt10 Regulate Morphogenesis and Arrangement of Columnar Units via Fz2/PCP Signaling in the Drosophila Brain. Cell Rep 2020; 33:108305. [PMID: 33113378 DOI: 10.1016/j.celrep.2020.108305] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 09/13/2020] [Accepted: 10/02/2020] [Indexed: 01/09/2023] Open
Abstract
Columns are structural and functional units of the brain. However, the mechanism of column formation remains unclear. The medulla of the fly visual center shares features with the mammalian cerebral cortex, such as columnar and layered structures, and provides a good opportunity to study the mechanisms of column formation. Column formation is initiated by three core neurons in the medulla, namely, Mi1, R8, and R7. The proper orientation of neurons is required for the orientation and arrangement of multiple columns. Their orientations may be under the control of planar cell polarity (PCP) signaling, because it is known to regulate the orientation of cells in two-dimensional tissue structures. In this study, we demonstrate that the ligands DWnt4 and DWnt10 expressed specifically in the ventral medulla and dorsal medulla, respectively, globally regulate the columnar arrangement and orientation of Mi1 and R8 terminals through Fz2/PCP signaling in a three-dimensional space.
Collapse
Affiliation(s)
- Xujun Han
- Mathematical Neuroscience Unit, Institute for Frontier Science Initiative, Kanazawa University, 13-1 Takaramachi, Kanazawa, Ishikawa 920-8640, Japan; Nano Life Science Institute, Kanazawa University, 13-1 Takaramachi, Kanazawa, Ishikawa 920-8640, Japan
| | - Miaoxing Wang
- Mathematical Neuroscience Unit, Institute for Frontier Science Initiative, Kanazawa University, 13-1 Takaramachi, Kanazawa, Ishikawa 920-8640, Japan
| | - Chuyan Liu
- Laboratory of Developmental Neurobiology, Graduate School of Medical Sciences, Kanazawa University, 13-1 Takaramachi, Kanazawa, Ishikawa 920-8640, Japan
| | - Olena Trush
- Laboratory of Developmental Neurobiology, Graduate School of Medical Sciences, Kanazawa University, 13-1 Takaramachi, Kanazawa, Ishikawa 920-8640, Japan
| | - Rie Takayama
- Mathematical Neuroscience Unit, Institute for Frontier Science Initiative, Kanazawa University, 13-1 Takaramachi, Kanazawa, Ishikawa 920-8640, Japan
| | - Takaaki Akiyama
- Division of Electrical Engineering and Computer Science, Graduate School of Natural Science and Technology, Kanazawa University, 13-1 Takaramachi, Kanazawa, Ishikawa 920-8640, Japan
| | - Toshiki Naito
- Graduate School of Frontier Science Initiative, Kanazawa University, 13-1 Takaramachi, Kanazawa, Ishikawa 920-8640, Japan
| | - Takeshi Tomomizu
- Graduate School of Frontier Science Initiative, Kanazawa University, 13-1 Takaramachi, Kanazawa, Ishikawa 920-8640, Japan
| | - Kousuke Imamura
- Faculty of Electrical, Information and Communication Engineering, Institute of Science and Engineering, Kanazawa University, 13-1 Takaramachi, Kanazawa, Ishikawa 920-8640, Japan
| | - Makoto Sato
- Mathematical Neuroscience Unit, Institute for Frontier Science Initiative, Kanazawa University, 13-1 Takaramachi, Kanazawa, Ishikawa 920-8640, Japan; Graduate School of Frontier Science Initiative, Kanazawa University, 13-1 Takaramachi, Kanazawa, Ishikawa 920-8640, Japan.
| |
Collapse
|
28
|
Baccino-Calace M, Prieto D, Cantera R, Egger B. Compartment and cell-type specific hypoxia responses in the developing Drosophila brain. Biol Open 2020; 9:9/8/bio053629. [PMID: 32816692 PMCID: PMC7449796 DOI: 10.1242/bio.053629] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Environmental factors such as the availability of oxygen are instructive cues that regulate stem cell maintenance and differentiation. We used a genetically encoded biosensor to monitor the hypoxic state of neural cells in the larval brain of Drosophila. The biosensor reveals brain compartment and cell-type specific levels of hypoxia. The values correlate with differential tracheolation that is observed throughout development between the central brain and the optic lobe. Neural stem cells in both compartments show the strongest hypoxia response while intermediate progenitors, neurons and glial cells reveal weaker responses. We demonstrate that the distance between a cell and the next closest tracheole is a good predictor of the hypoxic state of that cell. Our study indicates that oxygen availability appears to be the major factor controlling the hypoxia response in the developing Drosophila brain and that cell intrinsic and cell-type specific factors contribute to modulate the response in an unexpected manner. This article has an associated First Person interview with the first author of the paper. Summary: A fluorescent biosensor reveals cell type specific hypoxia levels in the Drosophila brain in unprecedented detail. It paves the way for further functional studies addressing the role of oxygen in neural stem cell maintenance and differentiation.
Collapse
Affiliation(s)
- Martin Baccino-Calace
- Developmental Neurobiology, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo 11600, Uruguay
| | - Daniel Prieto
- Developmental Neurobiology, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo 11600, Uruguay
| | - Rafael Cantera
- Developmental Neurobiology, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo 11600, Uruguay.,Zoology Department, Stockholm University, Stockholm 106 91, Sweden
| | - Boris Egger
- Department of Biology, University of Fribourg, Fribourg CH-1700, Switzerland
| |
Collapse
|
29
|
Liu C, Trush O, Han X, Wang M, Takayama R, Yasugi T, Hayashi T, Sato M. Dscam1 establishes the columnar units through lineage-dependent repulsion between sister neurons in the fly brain. Nat Commun 2020; 11:4067. [PMID: 32792493 PMCID: PMC7426427 DOI: 10.1038/s41467-020-17931-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Accepted: 07/24/2020] [Indexed: 11/15/2022] Open
Abstract
The brain is organized morphologically and functionally into a columnar structure. According to the radial unit hypothesis, neurons from the same lineage form a radial unit that contributes to column formation. However, the molecular mechanisms that link neuronal lineage and column formation remain elusive. Here, we show that neurons from the same lineage project to different columns under control of Down syndrome cell adhesion molecule (Dscam) in the fly brain. Dscam1 is temporally expressed in newly born neuroblasts and is inherited by their daughter neurons. The transient transcription of Dscam1 in neuroblasts enables the expression of the same Dscam1 splice isoform within cells of the same lineage, causing lineage-dependent repulsion. In the absence of Dscam1 function, neurons from the same lineage project to the same column. When the splice diversity of Dscam1 is reduced, column formation is significantly compromised. Thus, Dscam1 controls column formation through lineage-dependent repulsion. Columns are the functional and morphological unit of the brain, but how neurons assemble into this structure was unclear. Here, the authors show that Dscam gene rewires neurons that derive from the same stem cell to establish columns through the process of lineage-dependent repulsion.
Collapse
Affiliation(s)
- Chuyan Liu
- Laboratory of Developmental Neurobiology, Graduate School of Medical Sciences, Kanazawa University, 13-1 Takaramachi, Kanazawa, Ishikawa, 920-8640, Japan
| | - Olena Trush
- Laboratory of Developmental Neurobiology, Graduate School of Medical Sciences, Kanazawa University, 13-1 Takaramachi, Kanazawa, Ishikawa, 920-8640, Japan
| | - Xujun Han
- Mathematical Neuroscience Unit, Institute for Frontier Science Initiative, Kanazawa University, 13-1 Takaramachi, Kanazawa, Ishikawa, 920-8640, Japan
| | - Miaoxing Wang
- Mathematical Neuroscience Unit, Institute for Frontier Science Initiative, Kanazawa University, 13-1 Takaramachi, Kanazawa, Ishikawa, 920-8640, Japan
| | - Rie Takayama
- Mathematical Neuroscience Unit, Institute for Frontier Science Initiative, Kanazawa University, 13-1 Takaramachi, Kanazawa, Ishikawa, 920-8640, Japan
| | - Tetsuo Yasugi
- Mathematical Neuroscience Unit, Institute for Frontier Science Initiative, Kanazawa University, 13-1 Takaramachi, Kanazawa, Ishikawa, 920-8640, Japan
| | - Takashi Hayashi
- Mathematical Neuroscience Unit, Institute for Frontier Science Initiative, Kanazawa University, 13-1 Takaramachi, Kanazawa, Ishikawa, 920-8640, Japan
| | - Makoto Sato
- Laboratory of Developmental Neurobiology, Graduate School of Medical Sciences, Kanazawa University, 13-1 Takaramachi, Kanazawa, Ishikawa, 920-8640, Japan. .,Mathematical Neuroscience Unit, Institute for Frontier Science Initiative, Kanazawa University, 13-1 Takaramachi, Kanazawa, Ishikawa, 920-8640, Japan.
| |
Collapse
|
30
|
Yuan D, Ji X, Hao S, Gestrich JY, Duan W, Wang X, Xiang Y, Yang J, Hu P, Xu M, Liu L, Wei H. Lamina feedback neurons regulate the bandpass property of the flicker-induced orientation response in Drosophila. J Neurochem 2020; 156:59-75. [PMID: 32383496 DOI: 10.1111/jnc.15036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 04/28/2020] [Accepted: 04/30/2020] [Indexed: 11/28/2022]
Abstract
Natural scenes contain complex visual cues with specific features, including color, motion, flicker, and position. It is critical to understand how different visual features are processed at the early stages of visual perception to elicit appropriate cellular responses, and even behavioral output. Here, we studied the visual orientation response induced by flickering stripes in a novel behavioral paradigm in Drosophila melanogaster. We found that free walking flies exhibited bandpass orientation response to flickering stripes of different frequencies. The most sensitive frequency spectrum was confined to low frequencies of 2-4 Hz. Through genetic silencing, we showed that lamina L1 and L2 neurons, which receive visual inputs from R1 to R6 neurons, were the main components in mediating flicker-induced orientation behavior. Moreover, specific blocking of different types of lamina feedback neurons Lawf1, Lawf2, C2, C3, and T1 modulated orientation responses to flickering stripes of particular frequencies, suggesting that bandpass orientation response was generated through cooperative modulation of lamina feedback neurons. Furthermore, we found that lamina feedback neurons Lawf1 were glutamatergic. Thermal activation of Lawf1 neurons could suppress neural activities in L1 and L2 neurons, which could be blocked by the glutamate-gated chloride channel inhibitor picrotoxin (PTX). In summary, lamina monopolar neurons L1 and L2 are the primary components in mediating flicker-induced orientation response. Meanwhile, lamina feedback neurons cooperatively modulate the orientation response in a frequency-dependent way, which might be achieved through modulating neural activities of L1 and L2 neurons.
Collapse
Affiliation(s)
- Deliang Yuan
- State Key Laboratory of Brain and Cognitive Science, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, P. R. China.,College of Life Sciences, University of the Chinese Academy of Sciences, Beijing, P. R. China
| | - Xiaoxiao Ji
- State Key Laboratory of Brain and Cognitive Science, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, P. R. China.,College of Life Sciences, University of the Chinese Academy of Sciences, Beijing, P. R. China
| | - Shun Hao
- State Key Laboratory of Brain and Cognitive Science, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, P. R. China.,College of Life Sciences, University of the Chinese Academy of Sciences, Beijing, P. R. China
| | - Julia Yvonne Gestrich
- State Key Laboratory of Brain and Cognitive Science, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, P. R. China
| | - Wenlan Duan
- State Key Laboratory of Brain and Cognitive Science, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, P. R. China.,College of Life Sciences, University of the Chinese Academy of Sciences, Beijing, P. R. China
| | - Xinwei Wang
- State Key Laboratory of Brain and Cognitive Science, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, P. R. China.,College of Life Sciences, University of the Chinese Academy of Sciences, Beijing, P. R. China
| | - Yuanhang Xiang
- State Key Laboratory of Brain and Cognitive Science, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, P. R. China.,College of Life Sciences, University of the Chinese Academy of Sciences, Beijing, P. R. China
| | - Jihua Yang
- State Key Laboratory of Brain and Cognitive Science, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, P. R. China.,College of Life Sciences, University of the Chinese Academy of Sciences, Beijing, P. R. China
| | - Pengbo Hu
- State Key Laboratory of Brain and Cognitive Science, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, P. R. China.,College of Life Sciences, University of the Chinese Academy of Sciences, Beijing, P. R. China
| | - Mengbo Xu
- State Key Laboratory of Brain and Cognitive Science, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, P. R. China
| | - Li Liu
- State Key Laboratory of Brain and Cognitive Science, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, P. R. China.,College of Life Sciences, University of the Chinese Academy of Sciences, Beijing, P. R. China.,CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, P. R. China
| | - Hongying Wei
- State Key Laboratory of Brain and Cognitive Science, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, P. R. China.,College of Life Sciences, University of the Chinese Academy of Sciences, Beijing, P. R. China
| |
Collapse
|
31
|
Menon KP, Kulkarni V, Takemura SY, Anaya M, Zinn K. Interactions between Dpr11 and DIP-γ control selection of amacrine neurons in Drosophila color vision circuits. eLife 2019; 8:e48935. [PMID: 31692445 PMCID: PMC6879306 DOI: 10.7554/elife.48935] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 11/05/2019] [Indexed: 12/17/2022] Open
Abstract
Drosophila R7 UV photoreceptors (PRs) are divided into yellow (y) and pale (p) subtypes. yR7 PRs express the Dpr11 cell surface protein and are presynaptic to Dm8 amacrine neurons (yDm8) that express Dpr11's binding partner DIP-γ, while pR7 PRs synapse onto DIP-γ-negative pDm8. Dpr11 and DIP-γ expression patterns define 'yellow' and 'pale' color vision circuits. We examined Dm8 neurons in these circuits by electron microscopic reconstruction and expansion microscopy. DIP-γ and dpr11 mutations affect the morphologies of yDm8 distal ('home column') dendrites. yDm8 neurons are generated in excess during development and compete for presynaptic yR7 PRs, and interactions between Dpr11 and DIP-γ are required for yDm8 survival. These interactions also allow yDm8 neurons to select yR7 PRs as their appropriate home column partners. yDm8 and pDm8 neurons do not normally compete for survival signals or R7 partners, but can be forced to do so by manipulation of R7 subtype fate.
Collapse
Affiliation(s)
- Kaushiki P Menon
- Division of Biology and Biological EngineeringCalifornia Institute of TechnologyPasadenaUnited States
| | - Vivek Kulkarni
- Division of Biology and Biological EngineeringCalifornia Institute of TechnologyPasadenaUnited States
| | - Shin-ya Takemura
- Janelia Research CampusHoward Hughes Medical InstituteAshburnUnited States
| | - Michael Anaya
- Division of Biology and Biological EngineeringCalifornia Institute of TechnologyPasadenaUnited States
| | - Kai Zinn
- Division of Biology and Biological EngineeringCalifornia Institute of TechnologyPasadenaUnited States
| |
Collapse
|
32
|
N-Cadherin Orchestrates Self-Organization of Neurons within a Columnar Unit in the Drosophila Medulla. J Neurosci 2019; 39:5861-5880. [PMID: 31175213 DOI: 10.1523/jneurosci.3107-18.2019] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 05/09/2019] [Accepted: 05/15/2019] [Indexed: 02/07/2023] Open
Abstract
Columnar structure is a basic unit of the brain, but the mechanism underlying its development remains largely unknown. The medulla, the largest ganglion of the Drosophila melanogaster visual center, provides a unique opportunity to reveal the mechanisms of 3D organization of the columns. In this study, using N-cadherin (Ncad) as a marker, we reveal the donut-like columnar structures along the 2D layer in the larval medulla that evolves to form three distinct layers in pupal development. Column formation is initiated by three core neurons, R8, R7, and Mi1, which establish distinct concentric domains within a column. We demonstrate that Ncad-dependent relative adhesiveness of the core columnar neurons regulates their relative location within a column along a 2D layer in the larval medulla according to the differential adhesion hypothesis. We also propose the presence of mutual interactions among the three layers during formation of the 3D structures of the medulla columns.SIGNIFICANCE STATEMENT The columnar structure is a basic unit of the brain, but its developmental mechanism remains unknown. The medulla, the largest ganglion of the fly visual center, provides a unique opportunity to reveal the mechanisms of 3D organization of the columns. We reveal that column formation is initiated by three core neurons that establish distinct concentric domains within a column. We demonstrate the in vivo evidence of N-cadherin-dependent differential adhesion among the core columnar neurons within a column along a 2D layer in the larval medulla. The 2D larval columns evolve to form three distinct layers in the pupal medulla. We propose the presence of mutual interactions among the three layers during formation of the 3D structures of the medulla columns.
Collapse
|
33
|
Schilling T, Ali AH, Leonhardt A, Borst A, Pujol-Martí J. Transcriptional control of morphological properties of direction-selective T4/T5 neurons in Drosophila. Development 2019; 146:dev169763. [PMID: 30642835 PMCID: PMC6361130 DOI: 10.1242/dev.169763] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Accepted: 01/07/2019] [Indexed: 02/02/2023]
Abstract
In the Drosophila visual system, T4/T5 neurons represent the first stage of computation of the direction of visual motion. T4 and T5 neurons exist in four subtypes, each responding to motion in one of the four cardinal directions and projecting axons into one of the four lobula plate layers. However, all T4/T5 neurons share properties essential for sensing motion. How T4/T5 neurons acquire their properties during development is poorly understood. We reveal that the transcription factors SoxN and Sox102F control the acquisition of properties common to all T4/T5 neuron subtypes, i.e. the layer specificity of dendrites and axons. Accordingly, adult flies are motion blind after disruption of SoxN or Sox102F in maturing T4/T5 neurons. We further find that the transcription factors Ato and Dac are redundantly required in T4/T5 neuron progenitors for SoxN and Sox102F expression in T4/T5 neurons, linking the transcriptional programmes specifying progenitor identity to those regulating the acquisition of morphological properties in neurons. Our work will help to link structure, function and development in a neuronal type performing a computation that is conserved across vertebrate and invertebrate visual systems.
Collapse
Affiliation(s)
- Tabea Schilling
- Department of 'Circuits - Computation - Models', Max Planck Institute of Neurobiology, 82152 Martinsried, Germany
| | - Aicha H Ali
- Department of 'Circuits - Computation - Models', Max Planck Institute of Neurobiology, 82152 Martinsried, Germany
| | - Aljoscha Leonhardt
- Department of 'Circuits - Computation - Models', Max Planck Institute of Neurobiology, 82152 Martinsried, Germany
| | - Alexander Borst
- Department of 'Circuits - Computation - Models', Max Planck Institute of Neurobiology, 82152 Martinsried, Germany
| | - Jesús Pujol-Martí
- Department of 'Circuits - Computation - Models', Max Planck Institute of Neurobiology, 82152 Martinsried, Germany
| |
Collapse
|
34
|
Shinomiya K, Huang G, Lu Z, Parag T, Xu CS, Aniceto R, Ansari N, Cheatham N, Lauchie S, Neace E, Ogundeyi O, Ordish C, Peel D, Shinomiya A, Smith C, Takemura S, Talebi I, Rivlin PK, Nern A, Scheffer LK, Plaza SM, Meinertzhagen IA. Comparisons between the ON- and OFF-edge motion pathways in the Drosophila brain. eLife 2019; 8:40025. [PMID: 30624205 PMCID: PMC6338461 DOI: 10.7554/elife.40025] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Accepted: 01/02/2019] [Indexed: 02/03/2023] Open
Abstract
Understanding the circuit mechanisms behind motion detection is a long-standing question in visual neuroscience. In Drosophila melanogaster, recently discovered synapse-level connectomes in the optic lobe, particularly in ON-pathway (T4) receptive-field circuits, in concert with physiological studies, suggest a motion model that is increasingly intricate when compared with the ubiquitous Hassenstein-Reichardt model. By contrast, our knowledge of OFF-pathway (T5) has been incomplete. Here, we present a conclusive and comprehensive connectome that, for the first time, integrates detailed connectivity information for inputs to both the T4 and T5 pathways in a single EM dataset covering the entire optic lobe. With novel reconstruction methods using automated synapse prediction suited to such a large connectome, we successfully corroborate previous findings in the T4 pathway and comprehensively identify inputs and receptive fields for T5. Although the two pathways are probably evolutionarily linked and exhibit many similarities, we uncover interesting differences and interactions that may underlie their distinct functional properties.
Collapse
Affiliation(s)
- Kazunori Shinomiya
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| | - Gary Huang
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| | - Zhiyuan Lu
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States.,Department of Psychology and Neuroscience, Dalhousie University, Halifax, Canada
| | - Toufiq Parag
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States.,School of Engineering and Applied Sciences, Harvard University, Cambridge, United States
| | - C Shan Xu
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| | - Roxanne Aniceto
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| | - Namra Ansari
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| | - Natasha Cheatham
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| | - Shirley Lauchie
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| | - Erika Neace
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| | - Omotara Ogundeyi
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| | - Christopher Ordish
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| | - David Peel
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| | - Aya Shinomiya
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| | - Claire Smith
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| | - Satoko Takemura
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| | - Iris Talebi
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| | - Patricia K Rivlin
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| | - Aljoscha Nern
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| | - Louis K Scheffer
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| | - Stephen M Plaza
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| | - Ian A Meinertzhagen
- Department of Psychology and Neuroscience, Dalhousie University, Halifax, Canada
| |
Collapse
|
35
|
Ramon-Cañellas P, Peterson HP, Morante J. From Early to Late Neurogenesis: Neural Progenitors and the Glial Niche from a Fly's Point of View. Neuroscience 2018; 399:39-52. [PMID: 30578972 DOI: 10.1016/j.neuroscience.2018.12.014] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2018] [Revised: 12/06/2018] [Accepted: 12/12/2018] [Indexed: 12/15/2022]
Abstract
Drosophila melanogaster is an important model organism used to study the brain development of organisms ranging from insects to mammals. The central nervous system in fruit flies is formed primarily in two waves of neurogenesis, one of which occurs in the embryo and one of which occurs during larval stages. In order to understand neurogenesis, it is important to research the behavior of progenitor cells that give rise to the neural networks which make up the adult nervous system. This behavior has been shown to be influenced by different factors including interactions with other cells within the progenitor niche, or local tissue microenvironment. Glial cells form a crucial part of this niche and play an active role in the development of the brain. Although in the early years of neuroscience it was believed that glia were simply scaffolding for neurons and passive components of the nervous system, their importance is nowadays recognized. Recent discoveries in progenitors and niche cells have led to new understandings of how the developing brain shapes its diverse regions. In this review, we attempt to summarize the distinct neural progenitors and glia in the Drosophila melanogaster central nervous system, from embryo to late larval stages, and make note of homologous features in mammals. We also outline the recent advances in this field in order to define the impact that glial cells have on progenitor cell niches, and we finally emphasize the importance of communication between glia and progenitor cells for proper brain formation.
Collapse
Affiliation(s)
- Pol Ramon-Cañellas
- Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas (CSIC), and Universidad Miguel Hernández (UMH), Campus de Sant Joan, Apartado 18, 03550 Sant Joan, Alicante, Spain
| | - Hannah Payette Peterson
- Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas (CSIC), and Universidad Miguel Hernández (UMH), Campus de Sant Joan, Apartado 18, 03550 Sant Joan, Alicante, Spain
| | - Javier Morante
- Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas (CSIC), and Universidad Miguel Hernández (UMH), Campus de Sant Joan, Apartado 18, 03550 Sant Joan, Alicante, Spain.
| |
Collapse
|
36
|
Suzuki T, Liu C, Kato S, Nishimura K, Takechi H, Yasugi T, Takayama R, Hakeda-Suzuki S, Suzuki T, Sato M. Netrin Signaling Defines the Regional Border in the Drosophila Visual Center. iScience 2018; 8:148-160. [PMID: 30316037 PMCID: PMC6187055 DOI: 10.1016/j.isci.2018.09.021] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Revised: 08/13/2018] [Accepted: 09/24/2018] [Indexed: 11/21/2022] Open
Abstract
The brain consists of distinct domains defined by sharp borders. So far, the mechanisms of compartmentalization of developing tissues include cell adhesion, cell repulsion, and cortical tension. These mechanisms are tightly related to molecular machineries at the cell membrane. However, we and others demonstrated that Slit, a chemorepellent, is required to establish the borders in the fly brain. Here, we demonstrate that Netrin, a classic guidance molecule, is also involved in the compartmental subdivision in the fly brain. In Netrin mutants, many cells are intermingled with cells from the adjacent ganglia penetrating the ganglion borders, resulting in disorganized compartmental subdivisions. How do these guidance molecules regulate the compartmentalization? Our mathematical model demonstrates that a simple combination of known guidance properties of Slit and Netrin is sufficient to explain their roles in boundary formation. Our results suggest that Netrin indeed regulates boundary formation in combination with Slit in vivo. Netrin regulates boundary formation in combination with Slit in the fly brain Dual Netrin functions as attractant and repellent explain boundary formation
Collapse
Affiliation(s)
- Takumi Suzuki
- Mathematical Neuroscience Unit, Institute for Frontier Science Initiative, 13-1 Takaramachi Kanazawa-shi, Ishikawa 920-8640, Japan
| | - Chuyan Liu
- Graduate School of Medical Sciences, 13-1 Takaramachi Kanazawa-shi, Ishikawa 920-8640, Japan
| | - Satoru Kato
- School of Medical Sciences, Kanazawa University, 13-1 Takaramachi Kanazawa-shi, Ishikawa 920-8640, Japan
| | - Kohei Nishimura
- School of Medical Sciences, Kanazawa University, 13-1 Takaramachi Kanazawa-shi, Ishikawa 920-8640, Japan
| | - Hiroki Takechi
- School of Life Science and Technology, Tokyo Institute of Technology, Nagatsuta 4259, Yokohama, Kanagawa 226-8501, Japan
| | - Tetsuo Yasugi
- Mathematical Neuroscience Unit, Institute for Frontier Science Initiative, 13-1 Takaramachi Kanazawa-shi, Ishikawa 920-8640, Japan
| | - Rie Takayama
- Mathematical Neuroscience Unit, Institute for Frontier Science Initiative, 13-1 Takaramachi Kanazawa-shi, Ishikawa 920-8640, Japan
| | - Satoko Hakeda-Suzuki
- School of Life Science and Technology, Tokyo Institute of Technology, Nagatsuta 4259, Yokohama, Kanagawa 226-8501, Japan
| | - Takashi Suzuki
- School of Life Science and Technology, Tokyo Institute of Technology, Nagatsuta 4259, Yokohama, Kanagawa 226-8501, Japan
| | - Makoto Sato
- Mathematical Neuroscience Unit, Institute for Frontier Science Initiative, 13-1 Takaramachi Kanazawa-shi, Ishikawa 920-8640, Japan; Graduate School of Medical Sciences, 13-1 Takaramachi Kanazawa-shi, Ishikawa 920-8640, Japan; School of Medical Sciences, Kanazawa University, 13-1 Takaramachi Kanazawa-shi, Ishikawa 920-8640, Japan.
| |
Collapse
|
37
|
Sato M, Yasugi T, Trush O. Temporal patterning of neurogenesis and neural wiring in the fly visual system. Neurosci Res 2018; 138:49-58. [PMID: 30227165 DOI: 10.1016/j.neures.2018.09.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2018] [Revised: 08/13/2018] [Accepted: 08/13/2018] [Indexed: 12/21/2022]
Abstract
During neural development, a wide variety of neurons are produced in a highly coordinated manner and form complex and highly coordinated neural circuits. Temporal patterning of neuron type specification plays very important roles in orchestrating the production and wiring of neurons. The fly visual system, which is composed of the retina and the optic lobe of the brain, is an outstanding model system to study temporal patterning and wiring of the nervous system. All of the components of the fly visual system are topographically connected, and each ommatidial unit in the retina corresponds to a columnar unit in the optic lobe. In the retina, the wave of differentiation follows the morphogenetic furrow, which progresses in a posterior-to-anterior direction. At the same time, differentiation of the optic lobe also accompanies the wave of differentiation or temporally coordinated neurogenesis. Thus, temporal patterning plays important roles in establishing topographic connections throughout the fly visual system. In this article, we review how neuronal differentiation and connectivity are orchestrated in the fly visual system by temporal patterning mechanisms.
Collapse
Affiliation(s)
- Makoto Sato
- Mathematical Neuroscience Unit, Institute for Frontier Science Initiative, Japan; Lab of Developmental Neurobiology, Graduate School of Medical Sciences, Kanazawa University, Japan.
| | - Tetsuo Yasugi
- Mathematical Neuroscience Unit, Institute for Frontier Science Initiative, Japan
| | - Olena Trush
- Lab of Developmental Neurobiology, Graduate School of Medical Sciences, Kanazawa University, Japan
| |
Collapse
|
38
|
CORL Expression and Function in Insulin Producing Neurons Reversibly Influences Adult Longevity in Drosophila. G3-GENES GENOMES GENETICS 2018; 8:2979-2990. [PMID: 30006413 PMCID: PMC6118311 DOI: 10.1534/g3.118.200572] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
CORL proteins (known as SKOR in mice, Fussel in humans and fussel in Flybase) are a family of CNS specific proteins related to Sno/Ski oncogenes. Their developmental and adult roles are largely unknown. A Drosophila CORL (dCORL) reporter gene is expressed in all Drosophila insulin-like peptide 2 (dILP2) neurons of the pars intercerebralis (PI) of the larval and adult brain. The transcription factor Drifter is also expressed in the PI in a subset of dCORL and dILP2 expressing neurons and in several non-dILP2 neurons. dCORL mutant virgin adult brains are missing all dILP2 neurons that do not also express Drifter. This phenotype is also seen when expressing dCORL-RNAi in neurosecretory cells of the PI. dCORL mutant virgin adults of both sexes have a significantly shorter lifespan than their parental strain. This longevity defect is completely reversed by mating (lifespan increases over 50% for males and females). Analyses of dCORL mutant mated adult brains revealed a complete rescue of dILP2 neurons without Drifter. Taken together, the data suggest that dCORL participates in a neural network connecting the insulin signaling pathway, longevity and mating. The conserved sequence and CNS specificity of all CORL proteins imply that this network may be operating in mammals.
Collapse
|
39
|
Davie K, Janssens J, Koldere D, De Waegeneer M, Pech U, Kreft Ł, Aibar S, Makhzami S, Christiaens V, Bravo González-Blas C, Poovathingal S, Hulselmans G, Spanier KI, Moerman T, Vanspauwen B, Geurs S, Voet T, Lammertyn J, Thienpont B, Liu S, Konstantinides N, Fiers M, Verstreken P, Aerts S. A Single-Cell Transcriptome Atlas of the Aging Drosophila Brain. Cell 2018; 174:982-998.e20. [PMID: 29909982 PMCID: PMC6086935 DOI: 10.1016/j.cell.2018.05.057] [Citation(s) in RCA: 504] [Impact Index Per Article: 72.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Revised: 03/30/2018] [Accepted: 05/25/2018] [Indexed: 02/06/2023]
Abstract
The diversity of cell types and regulatory states in the brain, and how these change during aging, remains largely unknown. We present a single-cell transcriptome atlas of the entire adult Drosophila melanogaster brain sampled across its lifespan. Cell clustering identified 87 initial cell clusters that are further subclustered and validated by targeted cell-sorting. Our data show high granularity and identify a wide range of cell types. Gene network analyses using SCENIC revealed regulatory heterogeneity linked to energy consumption. During aging, RNA content declines exponentially without affecting neuronal identity in old brains. This single-cell brain atlas covers nearly all cells in the normal brain and provides the tools to study cellular diversity alongside other Drosophila and mammalian single-cell datasets in our unique single-cell analysis platform: SCope (http://scope.aertslab.org). These results, together with SCope, allow comprehensive exploration of all transcriptional states of an entire aging brain. A single-cell atlas of the adult fly brain during aging Network inference reveals regulatory states related to oxidative phosphorylation Cell identity is retained during aging despite exponential decline of gene expression SCope: An online tool to explore and compare single-cell datasets across species
Collapse
Affiliation(s)
- Kristofer Davie
- VIB Center for Brain & Disease Research, KU Leuven, Leuven 3000, Belgium; Department of Human Genetics KU Leuven, Leuven 3000, Belgium
| | - Jasper Janssens
- VIB Center for Brain & Disease Research, KU Leuven, Leuven 3000, Belgium; Department of Human Genetics KU Leuven, Leuven 3000, Belgium
| | - Duygu Koldere
- VIB Center for Brain & Disease Research, KU Leuven, Leuven 3000, Belgium; Department of Human Genetics KU Leuven, Leuven 3000, Belgium
| | - Maxime De Waegeneer
- VIB Center for Brain & Disease Research, KU Leuven, Leuven 3000, Belgium; Department of Human Genetics KU Leuven, Leuven 3000, Belgium
| | - Uli Pech
- VIB Center for Brain & Disease Research, KU Leuven, Leuven 3000, Belgium; Department of Neurosciences, KU Leuven, Leuven 3000, Belgium
| | - Łukasz Kreft
- VIB Bioinformatics Core, VIB, Ghent 9052, Belgium
| | - Sara Aibar
- VIB Center for Brain & Disease Research, KU Leuven, Leuven 3000, Belgium; Department of Human Genetics KU Leuven, Leuven 3000, Belgium
| | - Samira Makhzami
- VIB Center for Brain & Disease Research, KU Leuven, Leuven 3000, Belgium; Department of Human Genetics KU Leuven, Leuven 3000, Belgium
| | - Valerie Christiaens
- VIB Center for Brain & Disease Research, KU Leuven, Leuven 3000, Belgium; Department of Human Genetics KU Leuven, Leuven 3000, Belgium
| | - Carmen Bravo González-Blas
- VIB Center for Brain & Disease Research, KU Leuven, Leuven 3000, Belgium; Department of Human Genetics KU Leuven, Leuven 3000, Belgium
| | | | - Gert Hulselmans
- VIB Center for Brain & Disease Research, KU Leuven, Leuven 3000, Belgium; Department of Human Genetics KU Leuven, Leuven 3000, Belgium
| | - Katina I Spanier
- VIB Center for Brain & Disease Research, KU Leuven, Leuven 3000, Belgium; Department of Human Genetics KU Leuven, Leuven 3000, Belgium
| | - Thomas Moerman
- ESAT, KU Leuven, Leuven 3001, Belgium; Smart Applications and Innovation Services, IMEC, Leuven 3001, Belgium
| | | | - Sarah Geurs
- Department of Human Genetics KU Leuven, Leuven 3000, Belgium
| | - Thierry Voet
- Department of Human Genetics KU Leuven, Leuven 3000, Belgium
| | | | | | - Sha Liu
- VIB Center for Brain & Disease Research, KU Leuven, Leuven 3000, Belgium; Department of Neurosciences, KU Leuven, Leuven 3000, Belgium
| | | | - Mark Fiers
- VIB Center for Brain & Disease Research, KU Leuven, Leuven 3000, Belgium; Department of Neurosciences, KU Leuven, Leuven 3000, Belgium
| | - Patrik Verstreken
- VIB Center for Brain & Disease Research, KU Leuven, Leuven 3000, Belgium; Department of Neurosciences, KU Leuven, Leuven 3000, Belgium
| | - Stein Aerts
- VIB Center for Brain & Disease Research, KU Leuven, Leuven 3000, Belgium; Department of Human Genetics KU Leuven, Leuven 3000, Belgium.
| |
Collapse
|
40
|
Millard SS, Pecot MY. Strategies for assembling columns and layers in the Drosophila visual system. Neural Dev 2018; 13:11. [PMID: 29875010 PMCID: PMC5991427 DOI: 10.1186/s13064-018-0106-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Accepted: 04/24/2018] [Indexed: 11/23/2022] Open
Abstract
A striking feature of neural circuit structure is the arrangement of neurons into regularly spaced ensembles (i.e. columns) and neural connections into parallel layers. These patterns of organization are thought to underlie precise synaptic connectivity and provide a basis for the parallel processing of information. In this article we discuss in detail specific findings that contribute to a framework for understanding how columns and layers are assembled in the Drosophila visual system, and discuss their broader implications.
Collapse
Affiliation(s)
- S. Sean Millard
- School of Biomedical Sciences, The University of Queensland, Brisbane, QLD 4072 Australia
| | - Matthew Y. Pecot
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115 USA
| |
Collapse
|
41
|
Peng J, Santiago IJ, Ahn C, Gur B, Tsui CK, Su Z, Xu C, Karakhanyan A, Silies M, Pecot MY. Drosophila Fezf coordinates laminar-specific connectivity through cell-intrinsic and cell-extrinsic mechanisms. eLife 2018. [PMID: 29513217 PMCID: PMC5854465 DOI: 10.7554/elife.33962] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Laminar arrangement of neural connections is a fundamental feature of neural circuit organization. Identifying mechanisms that coordinate neural connections within correct layers is thus vital for understanding how neural circuits are assembled. In the medulla of the Drosophila visual system neurons form connections within ten parallel layers. The M3 layer receives input from two neuron types that sequentially innervate M3 during development. Here we show that M3-specific innervation by both neurons is coordinated by Drosophila Fezf (dFezf), a conserved transcription factor that is selectively expressed by the earlier targeting input neuron. In this cell, dFezf instructs layer specificity and activates the expression of a secreted molecule (Netrin) that regulates the layer specificity of the other input neuron. We propose that employment of transcriptional modules that cell-intrinsically target neurons to specific layers, and cell-extrinsically recruit other neurons is a general mechanism for building layered networks of neural connections.
Collapse
Affiliation(s)
- Jing Peng
- Department of Neurobiology, Harvard Medical School, Boston, United States
| | - Ivan J Santiago
- Department of Neurobiology, Harvard Medical School, Boston, United States
| | - Curie Ahn
- Department of Neurobiology, Harvard Medical School, Boston, United States
| | - Burak Gur
- European Neuroscience Institute, Göttingen, Germany
| | - C Kimberly Tsui
- Department of Genetics, Stanford University, Stanford, United States
| | - Zhixiao Su
- Department of Neurobiology, Harvard Medical School, Boston, United States
| | - Chundi Xu
- Department of Neurobiology, Harvard Medical School, Boston, United States
| | - Aziz Karakhanyan
- Department of Neurobiology, Harvard Medical School, Boston, United States
| | | | - Matthew Y Pecot
- Department of Neurobiology, Harvard Medical School, Boston, United States
| |
Collapse
|
42
|
Hara Y, Sudo T, Togane Y, Akagawa H, Tsujimura H. Cell death in neural precursor cells and neurons before neurite formation prevents the emergence of abnormal neural structures in the Drosophila optic lobe. Dev Biol 2018; 436:28-41. [PMID: 29447906 DOI: 10.1016/j.ydbio.2018.02.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Revised: 01/15/2018] [Accepted: 02/07/2018] [Indexed: 11/30/2022]
Abstract
Programmed cell death is a conserved strategy for neural development both in vertebrates and invertebrates and is recognized at various developmental stages in the brain from neurogenesis to adulthood. To understand the development of the central nervous system, it is essential to reveal not only molecular mechanisms but also the role of neural cell death (Pinto-Teixeira et al., 2016). To understand the role of cell death in neural development, we investigated the effect of inhibition of cell death on optic lobe development. Our data demonstrate that, in the optic lobe of Drosophila, cell death occurs in neural precursor cells and neurons before neurite formation and functions to prevent various developmental abnormalities. When neuronal cell death was inhibited by an effector caspase inhibitor, p35, multiple abnormal neuropil structures arose during optic lobe development-e.g., enlarged or fused neuropils, misrouted neurons and abnormal neurite lumps. Inhibition of cell death also induced morphogenetic defects in the lamina and medulla development-e.g., failures in the separation of the lamina and medulla cortices and the medulla rotation. These defects were reproduced in the mutant of an initiator caspase, dronc. If cell death was a mechanism for removing the abnormal neuropil structures, we would also expect to observe them in mutants defective for corpse clearance. However, they were not observed in these mutants. When dead cell-membranes were visualized with Apoliner, they were observed only in cortices and not in neuropils. These results suggest that the cell death occurs before mature neurite formation. Moreover, we found that inhibition of cell death induced ectopic neuroepithelial cells, neuroblasts and ganglion mother cells in late pupal stages, at sites where the outer and inner proliferation centers were located at earlier developmental stages. Caspase-3 activation was observed in the neuroepithelial cells and neuroblasts in the proliferation centers. These results indicate that cell death is required for elimination of the precursor cells composing the proliferation centers. This study substantiates an essential role of early neural cell death for ensuring normal development of the central nervous system.
Collapse
Affiliation(s)
- Yusuke Hara
- Developmental Biology, Tokyo University of Agriculture and Technology, Japan; Graduate School of Life Sciences, Tohoku University, Japan.
| | - Tatsuya Sudo
- Developmental Biology, Tokyo University of Agriculture and Technology, Japan
| | - Yu Togane
- Developmental Biology, Tokyo University of Agriculture and Technology, Japan
| | - Hiromi Akagawa
- Developmental Biology, Tokyo University of Agriculture and Technology, Japan
| | - Hidenobu Tsujimura
- Developmental Biology, Tokyo University of Agriculture and Technology, Japan
| |
Collapse
|
43
|
Clark DA, Demb JB. Parallel Computations in Insect and Mammalian Visual Motion Processing. Curr Biol 2017; 26:R1062-R1072. [PMID: 27780048 DOI: 10.1016/j.cub.2016.08.003] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Sensory systems use receptors to extract information from the environment and neural circuits to perform subsequent computations. These computations may be described as algorithms composed of sequential mathematical operations. Comparing these operations across taxa reveals how different neural circuits have evolved to solve the same problem, even when using different mechanisms to implement the underlying math. In this review, we compare how insect and mammalian neural circuits have solved the problem of motion estimation, focusing on the fruit fly Drosophila and the mouse retina. Although the two systems implement computations with grossly different anatomy and molecular mechanisms, the underlying circuits transform light into motion signals with strikingly similar processing steps. These similarities run from photoreceptor gain control and spatiotemporal tuning to ON and OFF pathway structures, motion detection, and computed motion signals. The parallels between the two systems suggest that a limited set of algorithms for estimating motion satisfies both the needs of sighted creatures and the constraints imposed on them by metabolism, anatomy, and the structure and regularities of the visual world.
Collapse
Affiliation(s)
- Damon A Clark
- Department of Molecular, Cellular, and Developmental Biology and Department of Physics, Yale University, New Haven, CT 06511, USA.
| | - Jonathan B Demb
- Department of Ophthalmology and Visual Science and Department of Cellular and Molecular Physiology, Yale University, New Haven, CT 06511, USA.
| |
Collapse
|
44
|
Salazar-Gatzimas E, Chen J, Creamer MS, Mano O, Mandel HB, Matulis CA, Pottackal J, Clark DA. Direct Measurement of Correlation Responses in Drosophila Elementary Motion Detectors Reveals Fast Timescale Tuning. Neuron 2017; 92:227-239. [PMID: 27710784 DOI: 10.1016/j.neuron.2016.09.017] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2016] [Revised: 05/22/2016] [Accepted: 08/29/2016] [Indexed: 10/20/2022]
Abstract
Animals estimate visual motion by integrating light intensity information over time and space. The integration requires nonlinear processing, which makes motion estimation circuitry sensitive to specific spatiotemporal correlations that signify visual motion. Classical models of motion estimation weight these correlations to produce direction-selective signals. However, the correlational algorithms they describe have not been directly measured in elementary motion-detecting neurons (EMDs). Here, we employed stimuli to directly measure responses to pairwise correlations in Drosophila's EMD neurons, T4 and T5. Activity in these neurons was required for behavioral responses to pairwise correlations and was predictive of those responses. The pattern of neural responses in the EMDs was inconsistent with one classical model of motion detection, and the timescale and selectivity of correlation responses constrained the temporal filtering properties in potential models. These results reveal how neural responses to pairwise correlations drive visual behavior in this canonical motion-detecting circuit.
Collapse
Affiliation(s)
| | - Juyue Chen
- Interdepartmental Neuroscience Program, Yale University, New Haven, CT 06511, USA
| | - Matthew S Creamer
- Interdepartmental Neuroscience Program, Yale University, New Haven, CT 06511, USA
| | - Omer Mano
- Department of Molecular Cellular and Developmental Biology, Yale University, New Haven, CT 06511, USA
| | - Holly B Mandel
- Department of Molecular Cellular and Developmental Biology, Yale University, New Haven, CT 06511, USA
| | | | - Joseph Pottackal
- Interdepartmental Neuroscience Program, Yale University, New Haven, CT 06511, USA
| | - Damon A Clark
- Interdepartmental Neuroscience Program, Yale University, New Haven, CT 06511, USA; Department of Molecular Cellular and Developmental Biology, Yale University, New Haven, CT 06511, USA; Department of Physics, Yale University, New Haven, CT 06511, USA.
| |
Collapse
|
45
|
Suzuki T, Sato M. Inter-progenitor pool wiring: An evolutionarily conserved strategy that expands neural circuit diversity. Dev Biol 2017; 431:101-110. [PMID: 28958816 DOI: 10.1016/j.ydbio.2017.09.029] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Revised: 09/15/2017] [Accepted: 09/23/2017] [Indexed: 11/28/2022]
Abstract
Diversification of neuronal types is key to establishing functional variations in neural circuits. The first critical step to generate neuronal diversity is to organize the compartmental domains of developing brains into spatially distinct neural progenitor pools. Neural progenitors in each pool then generate a unique set of diverse neurons through specific spatiotemporal specification processes. In this review article, we focus on an additional mechanism, 'inter-progenitor pool wiring', that further expands the diversity of neural circuits. After diverse types of neurons are generated in one progenitor pool, a fraction of these neurons start migrating toward a remote brain region containing neurons that originate from another progenitor pool. Finally, neurons of different origins are intermingled and eventually form complex but precise neural circuits. The developing cerebral cortex of mammalian brains is one of the best examples of inter-progenitor pool wiring. However, Drosophila visual system development has revealed similar mechanisms in invertebrate brains, suggesting that inter-progenitor pool wiring is an evolutionarily conserved strategy that expands neural circuit diversity. Here, we will discuss how inter-progenitor pool wiring is accomplished in mammalian and fly brain systems.
Collapse
Affiliation(s)
- Takumi Suzuki
- Lab of Developmental Neurobiology, Graduate School of Medical Sciences, Mathematical Neuroscience Unit, Institute for Frontier Science Initiative, Kanazawa University, 13-1, Takaramachi, Kanazawa, Ishikawa 920-8640, Japan
| | - Makoto Sato
- Lab of Developmental Neurobiology, Graduate School of Medical Sciences, Mathematical Neuroscience Unit, Institute for Frontier Science Initiative, Kanazawa University, 13-1, Takaramachi, Kanazawa, Ishikawa 920-8640, Japan.
| |
Collapse
|
46
|
Apitz H, Salecker I. Retinal determination genes coordinate neuroepithelial specification and neurogenesis modes in the Drosophila optic lobe. Development 2017; 143:2431-42. [PMID: 27381228 PMCID: PMC4958324 DOI: 10.1242/dev.135004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Accepted: 05/18/2016] [Indexed: 12/15/2022]
Abstract
Differences in neuroepithelial patterning and neurogenesis modes contribute to area-specific diversifications of neural circuits. In the Drosophila visual system, two neuroepithelia, the outer (OPC) and inner (IPC) proliferation centers, generate neuron subtypes for four ganglia in several ways. Whereas neuroepithelial cells in the medial OPC directly convert into neuroblasts, in an IPC subdomain they generate migratory progenitors by epithelial-mesenchymal transition that mature into neuroblasts in a second proliferative zone. The molecular mechanisms that regulate the identity of these neuroepithelia, including their neurogenesis modes, remain poorly understood. Analysis of Polycomblike revealed that loss of Polycomb group-mediated repression of the Hox gene Abdominal-B (Abd-B) caused the transformation of OPC to IPC neuroepithelial identity. This suggests that the neuroepithelial default state is IPC-like, whereas OPC identity is derived. Ectopic Abd-B blocks expression of the highly conserved retinal determination gene network members Eyes absent (Eya), Sine oculis (So) and Homothorax (Hth). These factors are essential for OPC specification and neurogenesis control. Finally, eya and so are also sufficient to confer OPC-like identity, and, in parallel with hth, the OPC-specific neurogenesis mode on the IPC. Summary: Polycomb-mediated repression of the Abd-B Hox gene controls expression of retinal determination genes and hence identity of the Drosophila optic lobe neuroepithelia.
Collapse
Affiliation(s)
- Holger Apitz
- The Francis Crick Institute, Mill Hill Laboratory, London NW7 1AA, UK
| | - Iris Salecker
- The Francis Crick Institute, Mill Hill Laboratory, London NW7 1AA, UK
| |
Collapse
|
47
|
Richier B, Vijandi CDM, Mackensen S, Salecker I. Lapsyn controls branch extension and positioning of astrocyte-like glia in the Drosophila optic lobe. Nat Commun 2017; 8:317. [PMID: 28827667 PMCID: PMC5567088 DOI: 10.1038/s41467-017-00384-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Accepted: 06/21/2017] [Indexed: 11/09/2022] Open
Abstract
Astrocytes have diverse, remarkably complex shapes in different brain regions. Their branches closely associate with neurons. Despite the importance of this heterogeneous glial cell type for brain development and function, the molecular cues controlling astrocyte branch morphogenesis and positioning during neural circuit assembly remain largely unknown. We found that in the Drosophila visual system, astrocyte-like medulla neuropil glia (mng) variants acquire stereotypic morphologies with columnar and layered branching patterns in a stepwise fashion from mid-metamorphosis onwards. Using knockdown and loss-of-function analyses, we uncovered a previously unrecognized role for the transmembrane leucine-rich repeat protein Lapsyn in regulating mng development. lapsyn is expressed in mng and cell-autonomously required for branch extension into the synaptic neuropil and anchoring of cell bodies at the neuropil border. Lapsyn works in concert with the fibroblast growth factor (FGF) pathway to promote branch morphogenesis, while correct positioning is essential for mng survival mediated by gliotrophic FGF signaling. How glial cells, such as astrocytes, acquire their characteristic morphology during development is poorly understood. Here the authors describe the morphogenesis of astrocyte-like glia in the Drosophila optic lobe, and through a RNAi screen, they identify a transmembrane LRR protein–Lapsyn–that plays a critical role in this process.
Collapse
Affiliation(s)
- Benjamin Richier
- The Francis Crick Institute, Visual Circuit Assembly Laboratory, 1 Midland Road, London, NW1 1AT, UK.,The Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QN, UK
| | | | - Stefanie Mackensen
- The Francis Crick Institute, Visual Circuit Assembly Laboratory, 1 Midland Road, London, NW1 1AT, UK.,University of Münster, Institute of Neuro- and Behavioral Biology, Badestr. 9, 48149, Muenster, Germany
| | - Iris Salecker
- The Francis Crick Institute, Visual Circuit Assembly Laboratory, 1 Midland Road, London, NW1 1AT, UK.
| |
Collapse
|
48
|
Ngo KT, Andrade I, Hartenstein V. Spatio-temporal pattern of neuronal differentiation in the Drosophila visual system: A user's guide to the dynamic morphology of the developing optic lobe. Dev Biol 2017; 428:1-24. [PMID: 28533086 PMCID: PMC5825191 DOI: 10.1016/j.ydbio.2017.05.008] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Revised: 05/08/2017] [Accepted: 05/09/2017] [Indexed: 11/20/2022]
Abstract
Visual information processing in animals with large image forming eyes is carried out in highly structured retinotopically ordered neuropils. Visual neuropils in Drosophila form the optic lobe, which consists of four serially arranged major subdivisions; the lamina, medulla, lobula and lobula plate; the latter three of these are further subdivided into multiple layers. The visual neuropils are formed by more than 100 different cell types, distributed and interconnected in an invariant highly regular pattern. This pattern relies on a protracted sequence of developmental steps, whereby different cell types are born at specific time points and nerve connections are formed in a tightly controlled sequence that has to be coordinated among the different visual neuropils. The developing fly visual system has become a highly regarded and widely studied paradigm to investigate the genetic mechanisms that control the formation of neural circuits. However, these studies are often made difficult by the complex and shifting patterns in which different types of neurons and their connections are distributed throughout development. In the present paper we have reconstructed the three-dimensional architecture of the Drosophila optic lobe from the early larva to the adult. Based on specific markers, we were able to distinguish the populations of progenitors of the four optic neuropils and map the neurons and their connections. Our paper presents sets of annotated confocal z-projections and animated 3D digital models of these structures for representative stages. The data reveal the temporally coordinated growth of the optic neuropils, and clarify how the position and orientation of the neuropils and interconnecting tracts (inner and outer optic chiasm) changes over time. Finally, we have analyzed the emergence of the discrete layers of the medulla and lobula complex using the same markers (DN-cadherin, Brp) employed to systematically explore the structure and development of the central brain neuropil. Our work will facilitate experimental studies of the molecular mechanisms regulating neuronal fate and connectivity in the fly visual system, which bears many fundamental similarities with the retina of vertebrates.
Collapse
Affiliation(s)
- Kathy T Ngo
- Department of Molecular, Cell, and Developmental Biology, United States
| | - Ingrid Andrade
- Department of Molecular, Cell, and Developmental Biology, United States
| | - Volker Hartenstein
- Department of Molecular, Cell, and Developmental Biology, United States; Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA, United States.
| |
Collapse
|
49
|
Turetzek N, Khadjeh S, Schomburg C, Prpic NM. Rapid diversification of homothorax expression patterns after gene duplication in spiders. BMC Evol Biol 2017; 17:168. [PMID: 28709396 PMCID: PMC5513375 DOI: 10.1186/s12862-017-1013-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Accepted: 07/04/2017] [Indexed: 01/09/2023] Open
Abstract
Background Gene duplications provide genetic material for the evolution of new morphological and physiological features. One copy can preserve the original gene functions while the second copy may evolve new functions (neofunctionalisation). Gene duplications may thus provide new genes involved in evolutionary novelties. Results We have studied the duplicated homeobox gene homothorax (hth) in the spider species Parasteatoda tepidariorum and Pholcus phalangioides and have compared these data with previously published data from additional spider species. We show that the expression pattern of hth1 is highly conserved among spiders, consistent with the notion that this gene copy preserves the original hth functions. By contrast, hth2 has a markedly different expression profile especially in the prosomal appendages. The pattern in the pedipalps and legs consists of several segmental rings, suggesting a possible role of hth2 in limb joint development. Intriguingly, however, the hth2 pattern is much less conserved between the species than hth1 and shows a species specific pattern in each species investigated so far. Conclusions We hypothesise that the hth2 gene has gained a new patterning function after gene duplication, but has then undergone a second phase of diversification of its new role in the spider clade. The evolution of hth2 may thus provide an interesting example for a duplicated gene that has not only contributed to genetic diversity through neofunctionalisation, but beyond that has been able to escape evolutionary conservation after neofunctionalisation thus forming the basis for further genetic diversification. Electronic supplementary material The online version of this article (doi:10.1186/s12862-017-1013-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Natascha Turetzek
- Abteilung für Entwicklungsbiologie, Johann-Friedrich-Blumenbach-Institut für Zoologie und Anthropologie, Georg-August-Universität, Göttingen, Germany.,Göttingen Center for Molecular Biosciences (GZMB), Ernst-Caspari-Haus, Göttingen, Germany.,Current address: Georg-August-Universität Göttingen, Johann-Friedrich-Blumenbach-Institut für Zoologie und Anthropologie, Abteilung Zelluläre Neurobiologie, 37077, Göttingen, Germany
| | - Sara Khadjeh
- Abteilung für Entwicklungsbiologie, Johann-Friedrich-Blumenbach-Institut für Zoologie und Anthropologie, Georg-August-Universität, Göttingen, Germany.,Göttingen Center for Molecular Biosciences (GZMB), Ernst-Caspari-Haus, Göttingen, Germany.,Present address: Clinic for Cardiology and Pneumology, University Medical Center Göttingen (UMG), Georg-August-University, Göttingen, Germany
| | - Christoph Schomburg
- Abteilung für Entwicklungsbiologie, Johann-Friedrich-Blumenbach-Institut für Zoologie und Anthropologie, Georg-August-Universität, Göttingen, Germany.,Göttingen Center for Molecular Biosciences (GZMB), Ernst-Caspari-Haus, Göttingen, Germany
| | - Nikola-Michael Prpic
- Abteilung für Entwicklungsbiologie, Johann-Friedrich-Blumenbach-Institut für Zoologie und Anthropologie, Georg-August-Universität, Göttingen, Germany. .,Göttingen Center for Molecular Biosciences (GZMB), Ernst-Caspari-Haus, Göttingen, Germany.
| |
Collapse
|
50
|
Takemura SY, Nern A, Chklovskii DB, Scheffer LK, Rubin GM, Meinertzhagen IA. The comprehensive connectome of a neural substrate for 'ON' motion detection in Drosophila. eLife 2017; 6. [PMID: 28432786 PMCID: PMC5435463 DOI: 10.7554/elife.24394] [Citation(s) in RCA: 134] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Accepted: 04/13/2017] [Indexed: 12/11/2022] Open
Abstract
Analysing computations in neural circuits often uses simplified models because the actual neuronal implementation is not known. For example, a problem in vision, how the eye detects image motion, has long been analysed using Hassenstein-Reichardt (HR) detector or Barlow-Levick (BL) models. These both simulate motion detection well, but the exact neuronal circuits undertaking these tasks remain elusive. We reconstructed a comprehensive connectome of the circuits of Drosophila's motion-sensing T4 cells using a novel EM technique. We uncover complex T4 inputs and reveal that putative excitatory inputs cluster at T4's dendrite shafts, while inhibitory inputs localize to the bases. Consistent with our previous study, we reveal that Mi1 and Tm3 cells provide most synaptic contacts onto T4. We are, however, unable to reproduce the spatial offset between these cells reported previously. Our comprehensive connectome reveals complex circuits that include candidate anatomical substrates for both HR and BL types of motion detectors.
Collapse
Affiliation(s)
- Shin-Ya Takemura
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| | - Aljoscha Nern
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| | - Dmitri B Chklovskii
- Simons Center for Data Analysis, Simons Foundation, New York, United States.,Neuroscience Institute, NYU Medical Center, New York, United States
| | - Louis K Scheffer
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| | - Gerald M Rubin
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| | - Ian A Meinertzhagen
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States.,Department of Psychology and Neuroscience, Dalhousie University, Halifax, Canada
| |
Collapse
|