1
|
Wardaszka-Pianka P, Kuzniewska B, GumiNska N, Hojka-Osinska A, Puchalska M, Milek J, Stawikowska A, Krawczyk P, Pauzin FP, Wojtowicz T, Radwanska K, Bramham CR, Dziembowski A, Dziembowska M. Terminal nucleotidyltransferase Tent2 microRNA A-tailing enzyme regulates excitatory/inhibitory balance in the hippocampus. RNA (NEW YORK, N.Y.) 2025; 31:756-771. [PMID: 40101932 DOI: 10.1261/rna.080240.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Accepted: 02/25/2025] [Indexed: 03/20/2025]
Abstract
One of the posttranscriptional mechanisms regulating the stability of RNA molecules involves the addition of nontemplated nucleotides to their 3' ends, a process known as RNA tailing. To systematically investigate the physiological consequences of terminal nucleotidyltransferase TENT2 absence on RNA 3' end modifications in the mouse hippocampus, we developed a new Tent2 knockout mouse. Electrophysiological measurements revealed increased excitability in Tent2 KO hippocampal neurons, and behavioral analyses showed decreased anxiety and improved fear extinction in these mice. At the molecular level, we observed changes in miRNAs' monoadenylation in Tent2 KO mouse hippocampus, but found no effect of the TENT2 loss on the mRNAs' total poly(A) tail length, as measured by direct nanopore RNA sequencing. Moreover, differential expression analysis revealed transcripts related to synaptic transmission to be downregulated in the hippocampus of Tent2 knockout mice. These changes may explain the observed behavioral and electrophysiological alterations. Our data thus establish a link between TENT2-dependent miRNA tailing and the balance of inhibitory and excitatory neurotransmission.
Collapse
Affiliation(s)
| | - Bozena Kuzniewska
- Department of Animal Physiology, Faculty of Biology, University of Warsaw, 02-096 Warsaw, Poland
| | - Natalia GumiNska
- Laboratory of RNA Biology, International Institute of Molecular and Cell Biology, 02-109 Warsaw, Poland
| | - Anna Hojka-Osinska
- Bioinformatics Facility, International Institute of Molecular and Cell Biology, 02-109 Warsaw, Poland
| | - Monika Puchalska
- Laboratory of Molecular Basis of Behavior, Nencki Institute of Experimental Biology, 02-093 Warsaw, Poland
| | - Jacek Milek
- Department of Animal Physiology, Faculty of Biology, University of Warsaw, 02-096 Warsaw, Poland
| | - Aleksandra Stawikowska
- Department of Animal Physiology, Faculty of Biology, University of Warsaw, 02-096 Warsaw, Poland
| | - Pawel Krawczyk
- Laboratory of RNA Biology, International Institute of Molecular and Cell Biology, 02-109 Warsaw, Poland
| | - Francois P Pauzin
- Department of Biomedicine, University of Bergen, 5007 Bergen, Norway
- Mohn Research Center for the Brain, University of Bergen, 5007 Bergen, Norway
| | - Tomasz Wojtowicz
- Laboratory of Cell Biophysics, Nencki Institute of Experimental Biology, 02-093 Warsaw, Poland
| | - Kasia Radwanska
- Laboratory of Molecular Basis of Behavior, Nencki Institute of Experimental Biology, 02-093 Warsaw, Poland
| | - Clive R Bramham
- Department of Biomedicine, University of Bergen, 5007 Bergen, Norway
- Mohn Research Center for the Brain, University of Bergen, 5007 Bergen, Norway
| | - Andrzej Dziembowski
- Laboratory of RNA Biology, International Institute of Molecular and Cell Biology, 02-109 Warsaw, Poland
| | - Magdalena Dziembowska
- Department of Animal Physiology, Faculty of Biology, University of Warsaw, 02-096 Warsaw, Poland
| |
Collapse
|
2
|
Najera P, Dratler OA, Mai AB, Elizarraras M, Vanchinathan R, Gonzales CA, Meisel RP. Testis- and ovary-expressed polo-like kinase transcripts and gene duplications affect male fertility when expressed in the Drosophila melanogaster germline. G3 (BETHESDA, MD.) 2025; 15:jkae273. [PMID: 39566185 PMCID: PMC11708218 DOI: 10.1093/g3journal/jkae273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Accepted: 10/22/2024] [Indexed: 11/22/2024]
Abstract
Polo-like kinases (Plks) are essential for spindle attachment to the kinetochore during prophase and the subsequent dissociation after anaphase in both mitosis and meiosis. There are structural differences in the spindle apparatus among mitosis, male meiosis, and female meiosis. It is therefore possible that alleles of Plk genes could improve kinetochore attachment or dissociation in spermatogenesis or oogenesis, but not both. These opposing effects could result in sexually antagonistic selection at Plk loci. In addition, Plk genes have been independently duplicated in many different evolutionary lineages within animals. This raises the possibility that Plk gene duplication may resolve sexual conflicts over mitotic and meiotic functions. We investigated this hypothesis by comparing the evolution, gene expression, and functional effects of the single Plk gene in Drosophila melanogaster (polo) and the duplicated Plks in D. pseudoobscura (Dpse-polo and Dpse-polo-dup1). Dpse-polo-dup1 is expressed primarily in testis, while other Drosophila Plk genes have broader expression profiles. We found that the protein-coding sequence of Dpse-polo-dup1 is evolving significantly faster than a canonical polo gene across all functional domains, yet the essential structure of the encoded protein has been retained. We present additional evidence that the faster evolution of Dpse-polo-dup1 is driven by the adaptive fixation of amino acid substitutions. We also found that over or ectopic expression of polo or Dpse-polo in the D. melanogaster male germline resulted in greater male infertility than expression of Dpse-polo-dup1. Last, expression of Dpse-polo or an ovary-derived transcript of polo in the male germline caused males to sire female-biased broods, suggesting that some Plk transcripts can affect the meiotic transmission of the sex chromosomes in the male germline. However, there was no sex bias in the progeny when Dpse-polo-dup1 was ectopically expressed, or a testis-derived transcript of polo was overexpressed in the D. melanogaster male germline. Our results therefore suggest that Dpse-polo-dup1 may have experienced positive selection to improve its regulation of the male meiotic spindle, resolving sexual conflict over meiotic Plk functions. Alternatively, Dpse-polo-dup1 may encode a hypomorphic Plk that has reduced deleterious effects when overexpressed in the male germline. Similarly, testis transcripts of D. melanogaster polo may be optimized for regulating the male meiotic spindle, and we provide evidence that the untranslated regions of the polo transcript may be involved in sex-specific germline functions.
Collapse
Affiliation(s)
- Paola Najera
- Department of Biology and Biochemistry, University of Houston, Houston, TX 77204, USA
| | - Olivia A Dratler
- Department of Biology and Biochemistry, University of Houston, Houston, TX 77204, USA
| | - Alexander B Mai
- Department of Biology and Biochemistry, University of Houston, Houston, TX 77204, USA
| | - Miguel Elizarraras
- Department of Biology and Biochemistry, University of Houston, Houston, TX 77204, USA
| | - Rahul Vanchinathan
- Department of Biology and Biochemistry, University of Houston, Houston, TX 77204, USA
| | | | - Richard P Meisel
- Department of Biology and Biochemistry, University of Houston, Houston, TX 77204, USA
| |
Collapse
|
3
|
Brouze M, Czarnocka-Cieciura A, Gewartowska O, Kusio-Kobiałka M, Jachacy K, Szpila M, Tarkowski B, Gruchota J, Krawczyk P, Mroczek S, Borsuk E, Dziembowski A. TENT5-mediated polyadenylation of mRNAs encoding secreted proteins is essential for gametogenesis in mice. Nat Commun 2024; 15:5331. [PMID: 38909026 PMCID: PMC11193744 DOI: 10.1038/s41467-024-49479-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 05/31/2024] [Indexed: 06/24/2024] Open
Abstract
Cytoplasmic polyadenylation plays a vital role in gametogenesis; however, the participating enzymes and substrates in mammals remain unclear. Using knockout and knock-in mouse models, we describe the essential role of four TENT5 poly(A) polymerases in mouse fertility and gametogenesis. TENT5B and TENT5C play crucial yet redundant roles in oogenesis, with the double knockout of both genes leading to oocyte degeneration. Additionally, TENT5B-GFP knock-in females display a gain-of-function infertility effect, with multiple chromosomal aberrations in ovulated oocytes. TENT5C and TENT5D both regulate different stages of spermatogenesis, as shown by the sterility in males following the knockout of either gene. Finally, Tent5a knockout substantially lowers fertility, although the underlying mechanism is not directly related to gametogenesis. Through direct RNA sequencing, we discovered that TENT5s polyadenylate mRNAs encoding endoplasmic reticulum-targeted proteins essential for gametogenesis. Sequence motif analysis and reporter mRNA assays reveal that the presence of an endoplasmic reticulum-leader sequence represents the primary determinant of TENT5-mediated regulation.
Collapse
Affiliation(s)
- Michał Brouze
- Laboratory of RNA Biology, International Institute of Molecular and Cell Biology, Warsaw, 02-109, Poland
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, 02-106, Poland
| | | | - Olga Gewartowska
- Laboratory of RNA Biology, International Institute of Molecular and Cell Biology, Warsaw, 02-109, Poland
- Genome Engineering Facility, International Institute of Molecular and Cell Biology, Warsaw, 02-109, Poland
- Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, Warsaw, 02-106, Poland
| | - Monika Kusio-Kobiałka
- Laboratory of RNA Biology, International Institute of Molecular and Cell Biology, Warsaw, 02-109, Poland
| | - Kamil Jachacy
- Laboratory of RNA Biology, International Institute of Molecular and Cell Biology, Warsaw, 02-109, Poland
- Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, Warsaw, 02-106, Poland
| | - Marcin Szpila
- Genome Engineering Facility, International Institute of Molecular and Cell Biology, Warsaw, 02-109, Poland
- Laboratory of Embryology, Institute of Developmental Biology and Biomedical Research, Faculty of Biology, University of Warsaw, Warsaw, 02-096, Poland
| | - Bartosz Tarkowski
- Laboratory of RNA Biology, International Institute of Molecular and Cell Biology, Warsaw, 02-109, Poland
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, 02-106, Poland
| | - Jakub Gruchota
- Laboratory of RNA Biology, International Institute of Molecular and Cell Biology, Warsaw, 02-109, Poland
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, 02-106, Poland
| | - Paweł Krawczyk
- Laboratory of RNA Biology, International Institute of Molecular and Cell Biology, Warsaw, 02-109, Poland
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, 02-106, Poland
| | - Seweryn Mroczek
- Laboratory of RNA Biology, International Institute of Molecular and Cell Biology, Warsaw, 02-109, Poland
- Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, Warsaw, 02-106, Poland
| | - Ewa Borsuk
- Laboratory of RNA Biology, International Institute of Molecular and Cell Biology, Warsaw, 02-109, Poland
- Laboratory of Embryology, Institute of Developmental Biology and Biomedical Research, Faculty of Biology, University of Warsaw, Warsaw, 02-096, Poland
| | - Andrzej Dziembowski
- Laboratory of RNA Biology, International Institute of Molecular and Cell Biology, Warsaw, 02-109, Poland.
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, 02-106, Poland.
- Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, Warsaw, 02-106, Poland.
- Laboratory of Embryology, Institute of Developmental Biology and Biomedical Research, Faculty of Biology, University of Warsaw, Warsaw, 02-096, Poland.
| |
Collapse
|
4
|
Liu XP, Liu CY, Feng YJ, Guo XK, Zhang LS, Wang MQ, Li YY, Zeng FR, Nolan T, Mao JJ. Male vitellogenin regulates gametogenesis through a testis-enriched big protein in Chrysopa pallens. INSECT MOLECULAR BIOLOGY 2024; 33:17-28. [PMID: 37707297 DOI: 10.1111/imb.12873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 08/30/2023] [Indexed: 09/15/2023]
Abstract
In insects, vitellogenin (Vg) is generally viewed as a female-specific protein. Its primary function is to supply nutrition to developing embryos. Here, we reported Vg from the male adults of a natural predator, Chrysopa pallens. The male Vg was depleted by RNAi. Mating with Vg-deficient male downregulated female Vg expression, suppressed ovarian development and decreased reproductive output. Whole-organism transcriptome analysis after male Vg knockdown showed no differential expression of the known spermatogenesis-related regulators and seminal fluid protein genes, but a sharp downregulation of an unknown gene, which encodes a testis-enriched big protein (Vcsoo). Separate knockdown of male Vg and Vcsoo disturbed the assembly of spermatid cytoplasmic organelles in males and suppressed the expansion of ovary germarium in mated females. These results demonstrated that C. pallens male Vg signals through the downstream Vcsoo and regulates male and female reproduction.
Collapse
Affiliation(s)
- Xiao-Ping Liu
- Key Laboratory of Natural Enemy Insects, Ministry of Agriculture and Rural Affairs, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, People's Republic of China
| | - Chang-Yan Liu
- Institute of Food Crops, Hubei Academy of Agricultural Sciences/Hubei Key Laboratory of Food Crop Germplasm and Genetic, Wuhan, People's Republic of China
| | - Yan-Jiao Feng
- Key Laboratory of Natural Enemy Insects, Ministry of Agriculture and Rural Affairs, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, People's Republic of China
| | - Xing-Kai Guo
- Key Laboratory of Natural Enemy Insects, Ministry of Agriculture and Rural Affairs, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, People's Republic of China
| | - Li-Sheng Zhang
- Key Laboratory of Natural Enemy Insects, Ministry of Agriculture and Rural Affairs, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, People's Republic of China
| | - Meng-Qing Wang
- Key Laboratory of Natural Enemy Insects, Ministry of Agriculture and Rural Affairs, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, People's Republic of China
| | - Yu-Yan Li
- Key Laboratory of Natural Enemy Insects, Ministry of Agriculture and Rural Affairs, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, People's Republic of China
| | - Fan-Rong Zeng
- Key Laboratory of Natural Enemy Insects, Ministry of Agriculture and Rural Affairs, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, People's Republic of China
| | - Tony Nolan
- Liverpool School of Tropical Medicine, Liverpool, UK
| | - Jian-Jun Mao
- Key Laboratory of Natural Enemy Insects, Ministry of Agriculture and Rural Affairs, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, People's Republic of China
| |
Collapse
|
5
|
Yin Z, Ding G, Xue Y, Yu X, Dong J, Huang J, Ma J, He F. A postmeiotically bifurcated roadmap of honeybee spermatogenesis marked by phylogenetically restricted genes. PLoS Genet 2023; 19:e1011081. [PMID: 38048317 PMCID: PMC10721206 DOI: 10.1371/journal.pgen.1011081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 12/14/2023] [Accepted: 11/22/2023] [Indexed: 12/06/2023] Open
Abstract
Haploid males of hymenopteran species produce gametes through an abortive meiosis I followed by meiosis II that can either be symmetric or asymmetric in different species. Thus, one spermatocyte could give rise to two spermatids with either equal or unequal amounts of cytoplasm. It is currently unknown what molecular features accompany these postmeiotic sperm cells especially in species with asymmetric meiosis II such as bees. Here we present testis single-cell RNA sequencing datasets from the honeybee (Apis mellifera) drones of 3 and 14 days after emergence (3d and 14d). We show that, while 3d testes exhibit active, ongoing spermatogenesis, 14d testes only have late-stage spermatids. We identify a postmeiotic bifurcation in the transcriptional roadmap during spermatogenesis, with cells progressing toward the annotated spermatids (SPT) and small spermatids (sSPT), respectively. Despite an overall similarity in their transcriptomic profiles, sSPTs express the fewest genes and the least RNA content among all the sperm cell types. Intriguingly, sSPTs exhibit a relatively high expression level for Hymenoptera-restricted genes and a high mutation load, suggesting that the special meiosis II during spermatogenesis in the honeybee is accompanied by phylogenetically young gene activities.
Collapse
Affiliation(s)
- Zhiyong Yin
- Center for Genetic Medicine, the Fourth Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Guiling Ding
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, China
- Key Laboratory for Insect-Pollinator Biology of the Ministry of Agriculture and Rural Affairs, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yingdi Xue
- Center for Genetic Medicine, the Fourth Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Xianghui Yu
- Center for Genetic Medicine, the Fourth Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Jie Dong
- Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Jiaxing Huang
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, China
- Key Laboratory for Insect-Pollinator Biology of the Ministry of Agriculture and Rural Affairs, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jun Ma
- Center for Genetic Medicine, the Fourth Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Women’s Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Institute of Genetics, Zhejiang University International School of Medicine, Hangzhou, Zhejiang, China
- Zhejiang Provincial Key Laboratory of Genetic and Developmental Disorder, Hangzhou, Zhejiang, China
| | - Feng He
- Center for Genetic Medicine, the Fourth Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Women’s Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Institute of Genetics, Zhejiang University International School of Medicine, Hangzhou, Zhejiang, China
- Zhejiang Provincial Key Laboratory of Genetic and Developmental Disorder, Hangzhou, Zhejiang, China
| |
Collapse
|
6
|
Wen X, Irshad A, Jin H. The Battle for Survival: The Role of RNA Non-Canonical Tails in the Virus-Host Interaction. Metabolites 2023; 13:1009. [PMID: 37755289 PMCID: PMC10537345 DOI: 10.3390/metabo13091009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 09/09/2023] [Accepted: 09/12/2023] [Indexed: 09/28/2023] Open
Abstract
Terminal nucleotidyltransferases (TENTs) could generate a 'mixed tail' or 'U-rich tail' consisting of different nucleotides at the 3' end of RNA by non-templated nucleotide addition to protect or degrade cellular messenger RNA. Recently, there has been increasing evidence that the decoration of virus RNA terminus with a mixed tail or U-rich tail is a critical way to affect viral RNA stability in virus-infected cells. This paper first briefly introduces the cellular function of the TENT family and non-canonical tails, then comprehensively reviews their roles in virus invasion and antiviral immunity, as well as the significance of the TENT family in antiviral therapy. This review will contribute to understanding the role and mechanism of non-canonical RNA tailing in survival competition between the virus and host.
Collapse
Affiliation(s)
| | | | - Hua Jin
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, No. 5 South Zhongguancun Street, Beijing 100081, China; (X.W.); (A.I.)
| |
Collapse
|
7
|
Rouhana L, Edgar A, Hugosson F, Dountcheva V, Martindale MQ, Ryan JF. Cytoplasmic Polyadenylation Is an Ancestral Hallmark of Early Development in Animals. Mol Biol Evol 2023; 40:msad137. [PMID: 37288606 PMCID: PMC10284499 DOI: 10.1093/molbev/msad137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 04/18/2023] [Accepted: 06/05/2023] [Indexed: 06/09/2023] Open
Abstract
Differential regulation of gene expression has produced the astonishing diversity of life on Earth. Understanding the origin and evolution of mechanistic innovations for control of gene expression is therefore integral to evolutionary and developmental biology. Cytoplasmic polyadenylation is the biochemical extension of polyadenosine at the 3'-end of cytoplasmic mRNAs. This process regulates the translation of specific maternal transcripts and is mediated by the Cytoplasmic Polyadenylation Element-Binding Protein family (CPEBs). Genes that code for CPEBs are amongst a very few that are present in animals but missing in nonanimal lineages. Whether cytoplasmic polyadenylation is present in non-bilaterian animals (i.e., sponges, ctenophores, placozoans, and cnidarians) remains unknown. We have conducted phylogenetic analyses of CPEBs, and our results show that CPEB1 and CPEB2 subfamilies originated in the animal stem lineage. Our assessment of expression in the sea anemone, Nematostella vectensis (Cnidaria), and the comb jelly, Mnemiopsis leidyi (Ctenophora), demonstrates that maternal expression of CPEB1 and the catalytic subunit of the cytoplasmic polyadenylation machinery (GLD2) is an ancient feature that is conserved across animals. Furthermore, our measurements of poly(A)-tail elongation reveal that key targets of cytoplasmic polyadenylation are shared between vertebrates, cnidarians, and ctenophores, indicating that this mechanism orchestrates a regulatory network that is conserved throughout animal evolution. We postulate that cytoplasmic polyadenylation through CPEBs was a fundamental innovation that contributed to animal evolution from unicellular life.
Collapse
Affiliation(s)
- Labib Rouhana
- Department of Biology, University of Massachusetts Boston, Boston, MA, USA
| | - Allison Edgar
- Whitney Laboratory for Marine Bioscience, University of Florida, St. Augustine, FL, USA
| | - Fredrik Hugosson
- Whitney Laboratory for Marine Bioscience, University of Florida, St. Augustine, FL, USA
| | - Valeria Dountcheva
- Department of Biology, University of Massachusetts Boston, Boston, MA, USA
| | - Mark Q Martindale
- Whitney Laboratory for Marine Bioscience, University of Florida, St. Augustine, FL, USA
- Department of Biology, University of Florida, Gainesville, FL, USA
| | - Joseph F Ryan
- Whitney Laboratory for Marine Bioscience, University of Florida, St. Augustine, FL, USA
- Department of Biology, University of Florida, Gainesville, FL, USA
| |
Collapse
|
8
|
Chung CZ, Balasuriya N, Siddika T, Frederick MI, Heinemann IU. Gld2 activity and RNA specificity is dynamically regulated by phosphorylation and interaction with QKI-7. RNA Biol 2021; 18:397-408. [PMID: 34288801 DOI: 10.1080/15476286.2021.1952540] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Abstract
In the cell, RNA abundance is dynamically controlled by transcription and decay rates. Posttranscriptional nucleotide addition at the RNA 3' end is a means of regulating mRNA and RNA stability and activity, as well as marking RNAs for degradation. The human nucleotidyltransferase Gld2 polyadenylates mRNAs and monoadenylates microRNAs, leading to an increase in RNA stability. The broad substrate range of Gld2 and its role in controlling RNA stability make the regulation of Gld2 activity itself imperative. Gld2 activity can be regulated by post-translational phosphorylation via the oncogenic kinase Akt1 and other kinases, leading to either increased or almost abolished enzymatic activity, and here we confirm that Akt1 phosphorylates Gld2 in a cellular context. Another means to control Gld2 RNA specificity and activity is the interaction with RNA binding proteins. Known interactors are QKI-7 and CPEB, which recruit Gld2 to specific miRNAs and mRNAs. We investigate the interplay between five phosphorylation sites in the N-terminal domain of Gld2 and three RNA binding proteins. We found that the activity and RNA specificity of Gld2 is dynamically regulated by this network. Binding of QKI-7 or phosphorylation at S62 relieves the autoinhibitory function of the Gld2 N-terminal domain. Binding of QKI-7 to a short peptide sequence within the N-terminal domain can also override the deactivation caused by Akt1 phosphorylation at S116. Our data revealed that Gld2 substrate specificity and activity can be dynamically regulated to match the cellular need of RNA stabilization and turnover.
Collapse
Affiliation(s)
- Christina Z Chung
- Department of Biochemistry, Schulich School of Medicine and Dentistry, the University of Western Ontario, London, Canada
| | - Nileeka Balasuriya
- Department of Biochemistry, Schulich School of Medicine and Dentistry, the University of Western Ontario, London, Canada
| | - Tarana Siddika
- Department of Biochemistry, Schulich School of Medicine and Dentistry, the University of Western Ontario, London, Canada
| | - Mallory I Frederick
- Department of Biochemistry, Schulich School of Medicine and Dentistry, the University of Western Ontario, London, Canada
| | - Ilka U Heinemann
- Department of Biochemistry, Schulich School of Medicine and Dentistry, the University of Western Ontario, London, Canada
| |
Collapse
|
9
|
Park WR, Lim DJ, Sang H, Kim E, Moon JH, Choi HS, Kim IS, Kim DK. Aphid estrogen-related receptor controls glycolytic gene expression and fecundity. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2021; 130:103529. [PMID: 33485935 DOI: 10.1016/j.ibmb.2021.103529] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 01/13/2021] [Accepted: 01/13/2021] [Indexed: 06/12/2023]
Abstract
Aphids, the major insect pests of agricultural crops, reproduce sexually and asexually depending upon environmental factors such as the photoperiod and temperature. Nuclear receptors, a unique family of ligand-dependent transcription factors, control insect development and growth including morphogenesis, molting, and metamorphosis. However, the structural features and biological functions of the aphid estrogen-related receptor (ERR) are largely unknown. Here, we cloned full-length cDNA encoding the ERR in the green peach aphid, Myzus persicae, (Sulzer) (Hemiptera: Aphididae) (MpERR) and demonstrated that the MpERR modulated glycolytic gene expression and aphid fecundity. The phylogenetic analysis revealed that the MpERR originated in a unique evolutionary lineage distinct from those of hemipteran insects. Moreover, the AF-2 domain of the MpERR conferred nuclear localization and transcriptional activity. The overexpression of the MpERR significantly upregulated the gene expression of rate-limiting enzymes involved in glycolysis such as phosphofructokinase and pyruvate kinase by directly binding to ERR-response elements in their promoters. Moreover, ERR-deficient viviparous female aphids showed decreased glycolytic gene expression and produced fewer offspring. These results suggest that the aphid ERR plays a pivotal role in glycolytic transcriptional control and fecundity.
Collapse
Affiliation(s)
- Woo-Ram Park
- Department of Integrative Food, Bioscience and Biotechnology, Chonnam National University, Gwangju, 61186, Republic of Korea.
| | - Da Jung Lim
- Department of Agricultural Chemistry, Institute of Environmentally Friendly Agriculture, College of Agriculture and Life Sciences, Chonnam National University, Gwangju, 61186, Republic of Korea.
| | - Hyunkyu Sang
- Department of Integrative Food, Bioscience and Biotechnology, Chonnam National University, Gwangju, 61186, Republic of Korea.
| | - Eunae Kim
- College of Pharmacy, Chosun University, Gwangju, 61452, Republic of Korea.
| | - Jae-Hak Moon
- Department of Food Science and Biotechnology, Chonnam National University, Gwangju, 61186, Republic of Korea.
| | - Hueng-Sik Choi
- School of Biological Sciences and Technology, Chonnam National University, Gwangju, 61186, Republic of Korea.
| | - In Seon Kim
- Department of Agricultural Chemistry, Institute of Environmentally Friendly Agriculture, College of Agriculture and Life Sciences, Chonnam National University, Gwangju, 61186, Republic of Korea.
| | - Don-Kyu Kim
- Department of Integrative Food, Bioscience and Biotechnology, Chonnam National University, Gwangju, 61186, Republic of Korea.
| |
Collapse
|
10
|
Ma XY, Zhang H, Feng JX, Hu JL, Yu B, Luo L, Cao YL, Liao S, Wang J, Gao S. Structures of mammalian GLD-2 proteins reveal molecular basis of their functional diversity in mRNA and microRNA processing. Nucleic Acids Res 2020; 48:8782-8795. [PMID: 32633758 PMCID: PMC7470959 DOI: 10.1093/nar/gkaa578] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 05/20/2020] [Accepted: 07/03/2020] [Indexed: 11/12/2022] Open
Abstract
The stability and processing of cellular RNA transcripts are efficiently controlled via non-templated addition of single or multiple nucleotides, which is catalyzed by various nucleotidyltransferases including poly(A) polymerases (PAPs). Germline development defective 2 (GLD-2) is among the first reported cytoplasmic non-canonical PAPs that promotes the translation of germline-specific mRNAs by extending their short poly(A) tails in metazoan, such as Caenorhabditis elegans and Xenopus. On the other hand, the function of mammalian GLD-2 seems more diverse, which includes monoadenylation of certain microRNAs. To understand the structural basis that underlies the difference between mammalian and non-mammalian GLD-2 proteins, we determine crystal structures of two rodent GLD-2s. Different from C. elegans GLD-2, mammalian GLD-2 is an intrinsically robust PAP with an extensively positively charged surface. Rodent and C. elegans GLD-2s have a topological difference in the β-sheet region of the central domain. Whereas C. elegans GLD-2 prefers adenosine-rich RNA substrates, mammalian GLD-2 can work on RNA oligos with various sequences. Coincident with its activity on microRNAs, mammalian GLD-2 structurally resembles the mRNA and miRNA processor terminal uridylyltransferase 7 (TUT7). Our study reveals how GLD-2 structurally evolves to a more versatile nucleotidyltransferase, and provides important clues in understanding its biological function in mammals.
Collapse
Affiliation(s)
- Xiao-Yan Ma
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong 510060, China
| | - Hong Zhang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong 510060, China
| | - Jian-Xiong Feng
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong 510060, China
| | - Jia-Li Hu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong 510060, China
| | - Bing Yu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong 510060, China
| | - Li Luo
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong 510060, China
| | - Yu-Lu Cao
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong 510060, China
| | - Shuang Liao
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong 510060, China
| | - Jichang Wang
- Key Laboratory for Stem Cells and Tissue Engineering (Sun Yat-sen University), Ministry of Education, Guangzhou 510080, China.,Department of histology and embryology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Song Gao
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong 510060, China.,Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou 510530, China
| |
Collapse
|
11
|
Liudkovska V, Dziembowski A. Functions and mechanisms of RNA tailing by metazoan terminal nucleotidyltransferases. WILEY INTERDISCIPLINARY REVIEWS-RNA 2020; 12:e1622. [PMID: 33145994 PMCID: PMC7988573 DOI: 10.1002/wrna.1622] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 06/25/2020] [Accepted: 06/26/2020] [Indexed: 12/28/2022]
Abstract
Termini often determine the fate of RNA molecules. In recent years, 3' ends of almost all classes of RNA species have been shown to acquire nontemplated nucleotides that are added by terminal nucleotidyltransferases (TENTs). The best-described role of 3' tailing is the bulk polyadenylation of messenger RNAs in the cell nucleus that is catalyzed by canonical poly(A) polymerases (PAPs). However, many other enzymes that add adenosines, uridines, or even more complex combinations of nucleotides have recently been described. This review focuses on metazoan TENTs, which are either noncanonical PAPs or terminal uridylyltransferases with varying processivity. These enzymes regulate RNA stability and RNA functions and are crucial in early development, gamete production, and somatic tissues. TENTs regulate gene expression at the posttranscriptional level, participate in the maturation of many transcripts, and protect cells against viral invasion and the transposition of repetitive sequences. This article is categorized under: RNA Interactions with Proteins and Other Molecules > Protein-RNA Recognition RNA Processing > 3' End Processing RNA Turnover and Surveillance > Regulation of RNA Stability.
Collapse
Affiliation(s)
- Vladyslava Liudkovska
- Laboratory of RNA Biology, International Institute of Molecular and Cell Biology, Warsaw, Poland
| | - Andrzej Dziembowski
- Laboratory of RNA Biology, International Institute of Molecular and Cell Biology, Warsaw, Poland.,Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| |
Collapse
|
12
|
A tale of non-canonical tails: gene regulation by post-transcriptional RNA tailing. Nat Rev Mol Cell Biol 2020; 21:542-556. [PMID: 32483315 DOI: 10.1038/s41580-020-0246-8] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/08/2020] [Indexed: 01/06/2023]
Abstract
RNA tailing, or the addition of non-templated nucleotides to the 3' end of RNA, is the most frequent and conserved type of RNA modification. The addition of tails and their composition reflect RNA maturation stages and have important roles in determining the fate of the modified RNAs. Apart from canonical poly(A) polymerases, which add poly(A) tails to mRNAs in a transcription-coupled manner, a family of terminal nucleotidyltransferases (TENTs), including terminal uridylyltransferases (TUTs), modify RNAs post-transcriptionally to control RNA stability and activity. The human genome encodes 11 different TENTs with distinct substrate specificity, intracellular localization and tissue distribution. In this Review, we discuss recent advances in our understanding of non-canonical RNA tails, with a focus on the functions of human TENTs, which include uridylation, mixed tailing and post-transcriptional polyadenylation of mRNAs, microRNAs and other types of non-coding RNA.
Collapse
|
13
|
Gagliardi D, Dziembowski A. 5' and 3' modifications controlling RNA degradation: from safeguards to executioners. Philos Trans R Soc Lond B Biol Sci 2018; 373:rstb.2018.0160. [PMID: 30397097 DOI: 10.1098/rstb.2018.0160] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/05/2018] [Indexed: 12/17/2022] Open
Abstract
RNA degradation is a key process in the regulation of gene expression. In all organisms, RNA degradation participates in controlling coding and non-coding RNA levels in response to developmental and environmental cues. RNA degradation is also crucial for the elimination of defective RNAs. Those defective RNAs are mostly produced by 'mistakes' made by the RNA processing machinery during the maturation of functional transcripts from their precursors. The constant control of RNA quality prevents potential deleterious effects caused by the accumulation of aberrant non-coding transcripts or by the translation of defective messenger RNAs (mRNAs). Prokaryotic and eukaryotic organisms are also under the constant threat of attacks from pathogens, mostly viruses, and one common line of defence involves the ribonucleolytic digestion of the invader's RNA. Finally, mutations in components involved in RNA degradation are associated with numerous diseases in humans, and this together with the multiplicity of its roles illustrates the biological importance of RNA degradation. RNA degradation is mostly viewed as a default pathway: any functional RNA (including a successful pathogenic RNA) must be protected from the scavenging RNA degradation machinery. Yet, this protection must be temporary, and it will be overcome at one point because the ultimate fate of any cellular RNA is to be eliminated. This special issue focuses on modifications deposited at the 5' or the 3' extremities of RNA, and how these modifications control RNA stability or degradation.This article is part of the theme issue '5' and 3' modifications controlling RNA degradation'.
Collapse
Affiliation(s)
- Dominique Gagliardi
- Institut de biologie moléculaire des plantes (IBMP), Centre national de la recherche scientifique (CNRS), Université de Strasbourg, 12 rue Zimmer, 67000 Strasbourg, France
| | - Andrzej Dziembowski
- Laboratory of RNA Biology and Functional Genomics, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5a, 02-106 Warsaw, Poland .,Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, Pawinskiego 5a, 02-106 Warsaw, Poland
| |
Collapse
|
14
|
Warkocki Z, Liudkovska V, Gewartowska O, Mroczek S, Dziembowski A. Terminal nucleotidyl transferases (TENTs) in mammalian RNA metabolism. Philos Trans R Soc Lond B Biol Sci 2018; 373:rstb.2018.0162. [PMID: 30397099 PMCID: PMC6232586 DOI: 10.1098/rstb.2018.0162] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/01/2018] [Indexed: 12/15/2022] Open
Abstract
In eukaryotes, almost all RNA species are processed at their 3′ ends and most mRNAs are polyadenylated in the nucleus by canonical poly(A) polymerases. In recent years, several terminal nucleotidyl transferases (TENTs) including non-canonical poly(A) polymerases (ncPAPs) and terminal uridyl transferases (TUTases) have been discovered. In contrast to canonical polymerases, TENTs' functions are more diverse; some, especially TUTases, induce RNA decay while others, such as cytoplasmic ncPAPs, activate translationally dormant deadenylated mRNAs. The mammalian genome encodes 11 different TENTs. This review summarizes the current knowledge about the functions and mechanisms of action of these enzymes. This article is part of the theme issue ‘5′ and 3′ modifications controlling RNA degradation’.
Collapse
Affiliation(s)
- Zbigniew Warkocki
- Department of RNA Metabolism, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, Poznan, Poland
| | - Vladyslava Liudkovska
- Laboratory of RNA Biology and Functional Genomics, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5a, 02-106 Warsaw, Poland.,Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, Pawinskiego 5a, 02-106 Warsaw, Poland
| | - Olga Gewartowska
- Laboratory of RNA Biology and Functional Genomics, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5a, 02-106 Warsaw, Poland.,Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, Pawinskiego 5a, 02-106 Warsaw, Poland
| | - Seweryn Mroczek
- Laboratory of RNA Biology and Functional Genomics, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5a, 02-106 Warsaw, Poland.,Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, Pawinskiego 5a, 02-106 Warsaw, Poland
| | - Andrzej Dziembowski
- Laboratory of RNA Biology and Functional Genomics, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5a, 02-106 Warsaw, Poland .,Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, Pawinskiego 5a, 02-106 Warsaw, Poland
| |
Collapse
|
15
|
Genes Relocated Between Drosophila Chromosome Arms Evolve Under Relaxed Selective Constraints Relative to Non-Relocated Genes. J Mol Evol 2018; 86:340-352. [PMID: 29926120 DOI: 10.1007/s00239-018-9849-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Accepted: 06/11/2018] [Indexed: 10/28/2022]
Abstract
Gene duplication creates a second copy of a gene either in tandem to the ancestral locus or dispersed to another chromosomal location. When the ancestral copy of a dispersed duplicate is lost from the genome, it creates the appearance that the gene was "relocated" from the ancestral locus to the derived location. Gene relocations may be as common as canonical dispersed duplications in which both the ancestral and derived copies are retained. Relocated genes appear to be under more selective constraints than the derived copies of canonical duplications, and they are possibly as conserved as single-copy non-relocated genes. To test this hypothesis, we combined comparative genomics, population genetics, gene expression, and functional analyses to assess the selection pressures acting on relocated, duplicated, and non-relocated single-copy genes in Drosophila genomes. We find that relocated genes evolve faster than single-copy non-relocated genes, and there is no evidence that this faster evolution is driven by positive selection. In addition, relocated genes are less essential for viability and male fertility than single-copy non-relocated genes, suggesting that relocated genes evolve fast because of relaxed selective constraints. However, relocated genes evolve slower than the derived copies of canonical dispersed duplicated genes. We therefore conclude that relocated genes are under more selective constraints than canonical duplicates, but are not as conserved as single-copy non-relocated genes.
Collapse
|
16
|
Gubala AM, Schmitz JF, Kearns MJ, Vinh TT, Bornberg-Bauer E, Wolfner MF, Findlay GD. The Goddard and Saturn Genes Are Essential for Drosophila Male Fertility and May Have Arisen De Novo. Mol Biol Evol 2017; 34:1066-1082. [PMID: 28104747 DOI: 10.1093/molbev/msx057] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
New genes arise through a variety of mechanisms, including the duplication of existing genes and the de novo birth of genes from noncoding DNA sequences. While there are numerous examples of duplicated genes with important functional roles, the functions of de novo genes remain largely unexplored. Many newly evolved genes are expressed in the male reproductive tract, suggesting that these evolutionary innovations may provide advantages to males experiencing sexual selection. Using testis-specific RNA interference, we screened 11 putative de novo genes in Drosophila melanogaster for effects on male fertility and identified two, goddard and saturn, that are essential for spermatogenesis and sperm function. Goddard knockdown (KD) males fail to produce mature sperm, while saturn KD males produce few sperm, and these function inefficiently once transferred to females. Consistent with a de novo origin, both genes are identifiable only in Drosophila and are predicted to encode proteins with no sequence similarity to any annotated protein. However, since high levels of divergence prevented the unambiguous identification of the noncoding sequences from which each gene arose, we consider goddard and saturn to be putative de novo genes. Within Drosophila, both genes have been lost in certain lineages, but show conserved, male-specific patterns of expression in the species in which they are found. Goddard is consistently found in single-copy and evolves under purifying selection. In contrast, saturn has diversified through gene duplication and positive selection. These data suggest that de novo genes can acquire essential roles in male reproduction.
Collapse
Affiliation(s)
- Anna M Gubala
- Department of Biology, College of the Holy Cross, Worcester, MA
| | - Jonathan F Schmitz
- Evolutionary Bioinformatics Group, Institute for Evolution and Biodiversity, University of Münster, Münster, Germany
| | | | - Tery T Vinh
- Department of Biology, College of the Holy Cross, Worcester, MA
| | - Erich Bornberg-Bauer
- Evolutionary Bioinformatics Group, Institute for Evolution and Biodiversity, University of Münster, Münster, Germany
| | - Mariana F Wolfner
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY
| | - Geoffrey D Findlay
- Department of Biology, College of the Holy Cross, Worcester, MA.,Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY
| |
Collapse
|
17
|
Nousch M, Minasaki R, Eckmann CR. Polyadenylation is the key aspect of GLD-2 function in C. elegans. RNA (NEW YORK, N.Y.) 2017; 23:1180-1187. [PMID: 28490506 PMCID: PMC5513063 DOI: 10.1261/rna.061473.117] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Accepted: 05/05/2017] [Indexed: 06/07/2023]
Abstract
The role of many enzymes extends beyond their dedicated catalytic activity by fulfilling important cellular functions in a catalysis-independent fashion. In this aspect, little is known about 3'-end RNA-modifying enzymes that belong to the class of nucleotidyl transferases. Among these are noncanonical poly(A) polymerases, a group of evolutionarily conserved enzymes that are critical for gene expression regulation, by adding adenosines to the 3'-end of RNA targets. In this study, we investigate whether the functions of the cytoplasmic poly(A) polymerase (cytoPAP) GLD-2 in C. elegans germ cells exclusively depend on its catalytic activity. To this end, we analyzed a specific missense mutation affecting a conserved amino acid in the catalytic region of GLD-2 cytoPAP. Although this mutated protein is expressed to wild-type levels and incorporated into cytoPAP complexes, we found that it cannot elongate mRNA poly(A) tails efficiently or promote GLD-2 target mRNA abundance. Furthermore, germ cell defects in animals expressing this mutant protein strongly resemble those lacking the GLD-2 protein altogether, arguing that only the polyadenylation activity of GLD-2 is essential for gametogenesis. In summary, we propose that all known molecular and biological functions of GLD-2 depend on its enzymatic activity, demonstrating that polyadenylation is the key mechanism of GLD-2 functionality. Our findings highlight the enzymatic importance of noncanonical poly(A) polymerases and emphasize the pivotal role of poly(A) tail-centered cytoplasmic mRNA regulation in germ cell biology.
Collapse
Affiliation(s)
- Marco Nousch
- Developmental Genetics, Institute of Biology, Martin Luther University Halle-Wittenberg, 06120 Halle (Saale), Germany
| | - Ryuji Minasaki
- Developmental Genetics, Institute of Biology, Martin Luther University Halle-Wittenberg, 06120 Halle (Saale), Germany
| | - Christian R Eckmann
- Developmental Genetics, Institute of Biology, Martin Luther University Halle-Wittenberg, 06120 Halle (Saale), Germany
| |
Collapse
|
18
|
Nakel K, Bonneau F, Basquin C, Habermann B, Eckmann CR, Conti E. Structural basis for the antagonistic roles of RNP-8 and GLD-3 in GLD-2 poly(A)-polymerase activity. RNA (NEW YORK, N.Y.) 2016; 22:1139-1145. [PMID: 27288313 PMCID: PMC4931106 DOI: 10.1261/rna.056598.116] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Accepted: 04/28/2016] [Indexed: 06/06/2023]
Abstract
Cytoplasmic polyadenylation drives the translational activation of specific mRNAs in early metazoan development and is performed by distinct complexes that share the same catalytic poly(A)-polymerase subunit, GLD-2. The activity and specificity of GLD-2 depend on its binding partners. In Caenorhabditis elegans, GLD-2 promotes spermatogenesis when bound to GLD-3 and oogenesis when bound to RNP-8. GLD-3 and RNP-8 antagonize each other and compete for GLD-2 binding. Following up on our previous mechanistic studies of GLD-2-GLD-3, we report here the 2.5 Å resolution structure and biochemical characterization of a GLD-2-RNP-8 core complex. In the structure, RNP-8 embraces the poly(A)-polymerase, docking onto several conserved hydrophobic hotspots present on the GLD-2 surface. RNP-8 stabilizes GLD-2 and indirectly stimulates polyadenylation. RNP-8 has a different amino-acid sequence and structure as compared to GLD-3. Yet, it binds the same surfaces of GLD-2 by forming alternative interactions, rationalizing the remarkable versatility of GLD-2 complexes.
Collapse
Affiliation(s)
- Katharina Nakel
- Department of Structural Cell Biology, Max-Planck-Institute of Biochemistry, D-82152 Martinsried, Germany
| | - Fabien Bonneau
- Department of Structural Cell Biology, Max-Planck-Institute of Biochemistry, D-82152 Martinsried, Germany
| | - Claire Basquin
- Department of Structural Cell Biology, Max-Planck-Institute of Biochemistry, D-82152 Martinsried, Germany
| | - Bianca Habermann
- Department of Structural Cell Biology, Max-Planck-Institute of Biochemistry, D-82152 Martinsried, Germany
| | - Christian R Eckmann
- Department of Genetics, Martin-Luther-University of Halle-Wittenberg, Institute of Biology, 06120 Halle (Saale), Germany
| | - Elena Conti
- Department of Structural Cell Biology, Max-Planck-Institute of Biochemistry, D-82152 Martinsried, Germany
| |
Collapse
|
19
|
Chung CZ, Jo DHS, Heinemann IU. Nucleotide specificity of the human terminal nucleotidyltransferase Gld2 (TUT2). RNA (NEW YORK, N.Y.) 2016; 22:1239-49. [PMID: 27284165 PMCID: PMC4931116 DOI: 10.1261/rna.056077.116] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Accepted: 05/05/2016] [Indexed: 05/16/2023]
Abstract
The nontemplated addition of single or multiple nucleotides to RNA transcripts is an efficient means to control RNA stability and processing. Cytoplasmic RNA adenylation and the less well-known uridylation are post-transcriptional mechanisms regulating RNA maturation, activity, and degradation. Gld2 is a member of the noncanonical poly(A) polymerases, which include enzymes with varying nucleotide specificity, ranging from strictly ATP to ambiguous to exclusive UTP adding enzymes. Human Gld2 has been associated with transcript stabilizing miRNA monoadenylation and cytoplasmic mRNA polyadenylation. Most recent data have uncovered an unexpected miRNA uridylation activity, which promotes miRNA maturation. These conflicting data raise the question of Gld2 nucleotide specificity. Here, we biochemically characterized human Gld2 and demonstrated that it is a bona fide adenylyltransferase with only weak activity toward other nucleotides. Despite its sequence similarity with uridylyltransferases (TUT4, TUT7), Gld2 displays an 83-fold preference of ATP over UTP. Gld2 is a promiscuous enzyme, with activity toward miRNA, pre-miRNA, and polyadenylated RNA substrates. Apo-Gld2 activity is restricted to adding single nucleotides and processivity likely relies on additional RNA-binding proteins. A phylogeny of the PAP/TUTase superfamily suggests that uridylyltransferases, which are derived from distinct adenylyltransferase ancestors, arose multiple times during evolution via insertion of an active site histidine. A corresponding histidine insertion into the Gld2 active site alters substrate specificity from ATP to UTP.
Collapse
Affiliation(s)
- Christina Z Chung
- Department of Biochemistry, The University of Western Ontario, London, Ontario N6A 5C1, Canada
| | - David Hyung Suk Jo
- Department of Biochemistry, The University of Western Ontario, London, Ontario N6A 5C1, Canada
| | - Ilka U Heinemann
- Department of Biochemistry, The University of Western Ontario, London, Ontario N6A 5C1, Canada
| |
Collapse
|
20
|
Structural basis for the activation of the C. elegans noncanonical cytoplasmic poly(A)-polymerase GLD-2 by GLD-3. Proc Natl Acad Sci U S A 2015; 112:8614-9. [PMID: 26124149 DOI: 10.1073/pnas.1504648112] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The Caenorhabditis elegans germ-line development defective (GLD)-2-GLD-3 complex up-regulates the expression of genes required for meiotic progression. GLD-2-GLD-3 acts by extending the short poly(A) tail of germ-line-specific mRNAs, switching them from a dormant state into a translationally active state. GLD-2 is a cytoplasmic noncanonical poly(A) polymerase that lacks the RNA-binding domain typical of the canonical nuclear poly(A)-polymerase Pap1. The activity of C. elegans GLD-2 in vivo and in vitro depends on its association with the multi-K homology (KH) domain-containing protein, GLD-3, a homolog of Bicaudal-C. We have identified a minimal polyadenylation complex that includes the conserved nucleotidyl-transferase core of GLD-2 and the N-terminal domain of GLD-3, and determined its structure at 2.3-Å resolution. The structure shows that the N-terminal domain of GLD-3 does not fold into the predicted KH domain but wraps around the catalytic domain of GLD-2. The picture that emerges from the structural and biochemical data are that GLD-3 activates GLD-2 both indirectly by stabilizing the enzyme and directly by contributing positively charged residues near the RNA-binding cleft. The RNA-binding cleft of GLD-2 has distinct structural features compared with the poly(A)-polymerases Pap1 and Trf4. Consistently, GLD-2 has distinct biochemical properties: It displays unusual specificity in vitro for single-stranded RNAs with at least one adenosine at the 3' end. GLD-2 thus appears to have evolved specialized nucleotidyl-transferase properties that match the 3' end features of dormant cytoplasmic mRNAs.
Collapse
|
21
|
Steinhauer J. Separating from the pack: Molecular mechanisms of Drosophila spermatid individualization. SPERMATOGENESIS 2015; 5:e1041345. [PMID: 26413413 PMCID: PMC4581072 DOI: 10.1080/21565562.2015.1041345] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Revised: 03/26/2015] [Accepted: 03/26/2015] [Indexed: 12/18/2022]
|
22
|
Chen YN, Wu CH, Zheng Y, Li JJ, Wang JL, Wang YF. Knockdown of ATPsyn-b caused larval growth defect and male infertility in Drosophila. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2015; 88:144-154. [PMID: 25336344 DOI: 10.1002/arch.21209] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
The ATPsyn-b encoding for subunit b of ATP synthase in Drosophila melanogaster is proposed to act in ATP synthesis and phagocytosis, and has been identified as one of the sperm proteins in both Drosophila and mammals. At present, its details of functions in animal growth and spermatogenesis have not been reported. In this study, we knocked down ATPsyn-b using Drosophila lines expressing inducible hairpin RNAi constructs and Gal4 drivers. Ubiquitous knockdown of ATPsyn-b resulted in growth defects in larval stage as the larvae did not grow bigger than the size of normal second-instar larvae. Knockdown in testes did not interrupt the developmental excursion to viable adult flies, however, these male adults were sterile. Analyses of testes revealed disrupted nuclear bundles during spermatogenesis and abnormal shaping in spermatid elongation. There were no mature sperm in the seminal vesicle of ATPsyn-b knockdown male testes. These findings suggest us that ATPsyn-b acts in growth and male fertility of Drosophila.
Collapse
Affiliation(s)
- Ya-Na Chen
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, Hubei, P. R. China
| | | | | | | | | | | |
Collapse
|
23
|
Sirot LK, Findlay GD, Sitnik JL, Frasheri D, Avila FW, Wolfner MF. Molecular characterization and evolution of a gene family encoding both female- and male-specific reproductive proteins in Drosophila. Mol Biol Evol 2014; 31:1554-67. [PMID: 24682282 DOI: 10.1093/molbev/msu114] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Gene duplication is an important mechanism for the evolution of new reproductive proteins. However, in most cases, each resulting paralog continues to function within the same sex. To investigate the possibility that seminal fluid proteins arise through duplicates of female reproductive genes that become "co-opted" by males, we screened female reproductive genes in Drosophila melanogaster for cases of duplication in which one of the resulting paralogs produces a protein in males that is transferred to females during mating. We identified a set of three tandemly duplicated genes that encode secreted serine-type endopeptidase homologs, two of which are expressed primarily in the female reproductive tract (RT), whereas the third is expressed specifically in the male RT and encodes a seminal fluid protein. Evolutionary and gene expression analyses across Drosophila species suggest that this family arose from a single-copy gene that was female-specific; after duplication, one paralog evolved male-specific expression. Functional tests of knockdowns of each gene in D. melanogaster show that one female-expressed gene is essential for full fecundity, and both female-expressed genes contribute singly or in combination to a female's propensity to remate. In contrast, knockdown of the male-expressed paralog had no significant effect on female fecundity or remating. These data are consistent with a model in which members of this gene family exert effects on females by acting on a common, female-expressed target. After duplication and male co-option of one paralog, the evolution of the interacting proteins could have resulted in differential strengths or effects of each paralog.
Collapse
Affiliation(s)
- Laura K Sirot
- Department of Molecular Biology and Genetics, Cornell UniversityDepartment of Biology, College of Wooster
| | - Geoffrey D Findlay
- Department of Molecular Biology and Genetics, Cornell UniversityDepartment of Biology, College of the Holy Cross
| | - Jessica L Sitnik
- Department of Molecular Biology and Genetics, Cornell University
| | - Dorina Frasheri
- Department of Molecular Biology and Genetics, Cornell University
| | - Frank W Avila
- Department of Molecular Biology and Genetics, Cornell University
| | | |
Collapse
|
24
|
Cui J, Sartain CV, Pleiss JA, Wolfner MF. Cytoplasmic polyadenylation is a major mRNA regulator during oogenesis and egg activation in Drosophila. Dev Biol 2013; 383:121-31. [PMID: 23978535 DOI: 10.1016/j.ydbio.2013.08.013] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2013] [Revised: 08/15/2013] [Accepted: 08/17/2013] [Indexed: 11/27/2022]
Abstract
The GLD-2 class of poly(A) polymerases regulate the timing of translation of stored transcripts by elongating the poly(A) tails of target mRNAs in the cytoplasm. WISPY is a GLD-2 enzyme that acts in the Drosophila female germline and is required for the completion of the egg-to-embryo transition. Though a handful of WISPY target mRNAs have been identified during both oogenesis and early embryogenesis, it was unknown whether WISP simply regulated a small pool of patterning or cell cycle genes, or whether, instead, cytoplasmic polyadenylation was widespread during this developmental transition. To identify the full range of WISPY targets, we carried out microarray analysis to look for maternal mRNAs whose poly(A) tails fail to elongate in the absence of WISP function. We examined the polyadenylated portion of the maternal transcriptome in both stage 14 (mature) oocytes and in early embryos that had completed egg activation. Our analysis shows that the poly(A) tails of thousands of maternal mRNAs fail to elongate in wisp-deficient oocytes and embryos. Furthermore, we have identified specific classes of genes that are highly regulated in this manner at each stage. Our study shows that cytoplasmic polyadenylation is a major regulatory mechanism during oocyte maturation and egg activation.
Collapse
Affiliation(s)
- Jun Cui
- Department of Molecular Biology and Genetics, Biotechnology Bldg., Cornell University, Ithaca, NY 14853, United States
| | | | | | | |
Collapse
|
25
|
Barckmann B, Chen X, Kaiser S, Jayaramaiah-Raja S, Rathke C, Dottermusch-Heidel C, Fuller MT, Renkawitz-Pohl R. Three levels of regulation lead to protamine and Mst77F expression in Drosophila. Dev Biol 2013; 377:33-45. [PMID: 23466740 DOI: 10.1016/j.ydbio.2013.02.018] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2012] [Revised: 02/22/2013] [Accepted: 02/23/2013] [Indexed: 01/04/2023]
Abstract
Differentiation from a haploid round spermatid to a highly streamlined, motile sperm requires temporal and spatial regulation of the expression of numerous proteins. One form of regulation is the storage of translationally repressed mRNAs. In Drosophila spermatocytes, the transcription of many of these translationally delayed mRNAs during spermiogenesis is in turn directly or indirectly regulated by testis-specific homologs of TATA-box-binding-protein-associated factors (tTAFs). Here we present evidence that expression of Mst77F, which is a specialized linker histone-like component of sperm chromatin, and of protamine B (ProtB), which contributes to formation of condensed sperm chromatin, is regulated at three levels. Transcription of Mst77F is guided by a short, promoter-proximal region, while expression of the Mst77F protein is regulated at two levels, early by translational repression via sequences mainly in the 5' part of the ORF and later by either protein stabilization or translational activation, dependent on sequences in the ORF. The protB gene is a direct target of tTAFs, with very short upstream regulatory regions of protB (-105 to +94 bp) sufficient for both cell-type-specific transcription and repression of translation in spermatocytes. In addition, efficient accumulation of the ProtB protein in late elongating spermatids depends on sequences in the ORF. We present evidence that spermatocytes provide the transacting mechanisms for translational repression of these mRNAs, while spermatids contain the machinery to activate or stabilize protamine accumulation for sperm chromatin components. Thus, the proper spatiotemporal expression pattern of major sperm chromatin components depends on cell-type-specific mechanisms of transcriptional and translational control.
Collapse
Affiliation(s)
- Bridlin Barckmann
- Philipps-Universität Marburg, Fachbereich Biologie, Entwicklungsbiologie, Karl-von-Frisch Str. 8, 35043 Marburg, Germany
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Xu S, Hafer N, Agunwamba B, Schedl P. The CPEB protein Orb2 has multiple functions during spermatogenesis in Drosophila melanogaster. PLoS Genet 2012; 8:e1003079. [PMID: 23209437 PMCID: PMC3510050 DOI: 10.1371/journal.pgen.1003079] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2012] [Accepted: 09/27/2012] [Indexed: 12/02/2022] Open
Abstract
Cytoplasmic Polyadenylation Element Binding (CPEB) proteins are translational regulators that can either activate or repress translation depending on the target mRNA and the specific biological context. There are two CPEB subfamilies and most animals have one or more genes from each. Drosophila has a single CPEB gene, orb and orb2, from each subfamily. orb expression is only detected at high levels in the germline and has critical functions in oogenesis but not spermatogenesis. By contrast, orb2 is broadly expressed in the soma; and previous studies have revealed important functions in asymmetric cell division, viability, motor function, learning, and memory. Here we show that orb2 is also expressed in the adult male germline and that it has essential functions in programming the progression of spermatogenesis from meiosis through differentiation. Like the translational regulators boule (bol) and off-schedule (ofs), orb2 is required for meiosis and orb2 mutant spermatocytes undergo a prolonged arrest during the meiotic G2-M transition. However, orb2 differs from boule and off-schedule in that this arrest occurs at a later step in meiotic progression after the synthesis of the meiotic regulator twine. orb2 is also required for the orderly differentiation of the spermatids after meiosis is complete. The differentiation defects in orb2 mutants include abnormal elongation of the spermatid flagellar axonemes, a failure in individualization and improper post-meiotic gene expression. Amongst the orb2 differentiation targets are orb and two other mRNAs, which are transcribed post-meiotically and localized to the tip of the flagellar axonemes. Additionally, analysis of a partial loss of function orb2 mutant suggests that the orb2 differentiation phenotypes are independent of the earlier arrest in meiosis. Cytoplasmic Polyadenylation Element Binding (CPEB) proteins bind and recognize CPE sequences in the 3′ UTRs of target mRNAs and can activate and/or repress their translation depending on the mRNA species and the biological context. Drosophila has two CPEB family genes, orb and orb2. orb is expressed in the germline of both sexes and has critical functions at multiple steps during oogenesis; however, it plays only a limited role in spermatogenesis. Here we show that the second CPEB family gene orb2 has the opposite sex specificity in germline development. While it appears to be dispensable for oogenesis, orb2 has essential functions during spermatogenesis. It is required for programming the orderly and sequential progression of spermatogenesis from meiosis through differentiation. orb2 mutants fail to execute the meiotic G2-M transition and exhibit a range of defects in the process of sperm differentiation.
Collapse
Affiliation(s)
- Shuwa Xu
- Department of Biology, California Institute of Technology, Pasadena, California, United States of America
| | - Nathaniel Hafer
- UMass Center for Clinical and Translational Science, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Blessing Agunwamba
- Memorial Sloan-Kettering Cancer Center, New York, New York, United States of America
| | - Paul Schedl
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, United States of America
- * E-mail:
| |
Collapse
|
27
|
Lipidomic profiling of model organisms and the world's major pathogens. Biochimie 2012; 95:109-15. [PMID: 22971440 DOI: 10.1016/j.biochi.2012.08.012] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2012] [Accepted: 08/14/2012] [Indexed: 01/15/2023]
Abstract
Lipidomics is a subspecialty of metabolomics that focuses on water insoluble metabolites that form membrane barriers. Most lipidomic databases catalog lipids from common model organisms, like humans or Escherichia coli. However, model organisms' lipid profiles show surprisingly little overlap with those of specialized pathogens, creating the need for organism-specific lipidomic databases. Here we review rapid progress in lipidomic platform development with regard to chromatography, detection and bioinformatics. We emphasize new methods of comparative lipidomics, which use aligned datasets to identify lipids changed after introducing a biological variable. These new methods provide an unprecedented ability to broadly and quantitatively describe lipidic change during biological processes and identify changed lipids with low error rates.
Collapse
|
28
|
Hernández G, Han H, Gandin V, Fabian L, Ferreira T, Zuberek J, Sonenberg N, Brill JA, Lasko P. Eukaryotic initiation factor 4E-3 is essential for meiotic chromosome segregation, cytokinesis and male fertility in Drosophila. Development 2012; 139:3211-20. [PMID: 22833128 DOI: 10.1242/dev.073122] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Gene expression is translationally regulated during many cellular and developmental processes. Translation can be modulated by affecting the recruitment of mRNAs to the ribosome, which involves recognition of the 5' cap structure by the cap-binding protein eIF4E. Drosophila has several genes encoding eIF4E-related proteins, but the biological role of most of them remains unknown. Here, we report that Drosophila eIF4E-3 is required specifically during spermatogenesis. Males lacking eIF4E-3 are sterile, showing defects in meiotic chromosome segregation, cytokinesis, nuclear shaping and individualization. We show that eIF4E-3 physically interacts with both eIF4G and eIF4G-2, the latter being a factor crucial for spermatocyte meiosis. In eIF4E-3 mutant testes, many proteins are present at different levels than in wild type, suggesting widespread effects on translation. Our results imply that eIF4E-3 forms specific eIF4F complexes that are essential for spermatogenesis.
Collapse
Affiliation(s)
- Greco Hernández
- Department of Biology, McGill University, 3649 Promenade Sir William Osler, Montréal, Québec, H3G 0B1, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Sitaram P, Anderson MA, Jodoin JN, Lee E, Lee LA. Regulation of dynein localization and centrosome positioning by Lis-1 and asunder during Drosophila spermatogenesis. Development 2012; 139:2945-54. [PMID: 22764052 DOI: 10.1242/dev.077511] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Dynein, a microtubule motor complex, plays crucial roles in cell-cycle progression in many systems. The LIS1 accessory protein directly binds dynein, although its precise role in regulating dynein remains unclear. Mutation of human LIS1 causes lissencephaly, a developmental brain disorder. To gain insight into the in vivo functions of LIS1, we characterized a male-sterile allele of the Drosophila homolog of human LIS1. We found that centrosomes do not properly detach from the cell cortex at the onset of meiosis in most Lis-1 spermatocytes; centrosomes that do break cortical associations fail to attach to the nucleus. In Lis-1 spermatids, we observed loss of attachments between the nucleus, basal body and mitochondria. The localization pattern of LIS-1 protein throughout Drosophila spermatogenesis mirrors that of dynein. We show that dynein recruitment to the nuclear surface and spindle poles is severely reduced in Lis-1 male germ cells. We propose that Lis-1 spermatogenesis phenotypes are due to loss of dynein regulation, as we observed similar phenotypes in flies null for Tctex-1, a dynein light chain. We have previously identified asunder (asun) as another regulator of dynein localization and centrosome positioning during Drosophila spermatogenesis. We now report that Lis-1 is a strong dominant enhancer of asun and that localization of LIS-1 in male germ cells is ASUN dependent. We found that Drosophila LIS-1 and ASUN colocalize and coimmunoprecipitate from transfected cells, suggesting that they function within a common complex. We present a model in which Lis-1 and asun cooperate to regulate dynein localization and centrosome positioning during Drosophila spermatogenesis.
Collapse
Affiliation(s)
- Poojitha Sitaram
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, U-4225 Medical Research Building III, 465 21st Avenue South, Nashville, TN 37232-8240, USA
| | | | | | | | | |
Collapse
|
30
|
Brill JA, Wolfner MF. Overview: Special issue on Drosophila spermatogenesis. SPERMATOGENESIS 2012; 2:127-128. [PMID: 23087831 PMCID: PMC3469435 DOI: 10.4161/spmg.21797] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Julie A. Brill
- Cell Biology Program; The Hospital for Sick Children (SickKids); Toronto, ON Canada
- Department of Molecular Genetics; University of Toronto; Toronto, ON Canada
| | - Mariana F. Wolfner
- Department of Molecular Biology and Genetics; Cornell University; Ithaca, NY USA
| |
Collapse
|
31
|
Abstract
Drosophila melanogaster spermatids undergo dramatic morphological changes as they differentiate from small round cells approximately 12 μm in diameter into highly polarized, 1.8 mm long, motile sperm capable of participating in fertilization. During spermiogenesis, syncytial cysts of 64 haploid spermatids undergo synchronous differentiation. Numerous changes occur at a subcellular level, including remodeling of existing organelles (mitochondria, nuclei), formation of new organelles (flagellar axonemes, acrosomes), polarization of elongating cysts and plasma membrane addition. At the end of spermatid morphogenesis, organelles, mitochondrial DNA and cytoplasmic components not needed in mature sperm are stripped away in a caspase-dependent process called individualization that results in formation of individual sperm. Here, we review the stages of Drosophila spermiogenesis and examine our current understanding of the cellular and molecular mechanisms involved in shaping male germ cell-specific organelles and forming mature, fertile sperm.
Collapse
Affiliation(s)
- Lacramioara Fabian
- Cell Biology Program; The Hospital for Sick Children (SickKids); Toronto, ON Canada
| | - Julie A. Brill
- Cell Biology Program; The Hospital for Sick Children (SickKids); Toronto, ON Canada
- Department of Molecular Genetics; University of Toronto; Toronto, ON Canada
| |
Collapse
|
32
|
Minasaki R, Eckmann CR. Subcellular specialization of multifaceted 3'end modifying nucleotidyltransferases. Curr Opin Cell Biol 2012; 24:314-22. [PMID: 22551970 DOI: 10.1016/j.ceb.2012.03.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2012] [Revised: 03/24/2012] [Accepted: 03/29/2012] [Indexed: 10/28/2022]
Abstract
While canonical 3'end modifications of mRNAs or tRNAs are well established, recent technological advances in RNA analysis have given us a glimpse of how widespread other types of distinctive 3'end modifications appear to be. Next to alternative nuclear or cytoplasmic polyadenylation mechanisms, evidence accumulated for a variety of 3'end mono-nucleotide and oligo-nucleotide additions of primarily adenosines or uracils on a variety of RNA species. Enzymes responsible for such non-templated additions are non-canonical RNA nucleotidyltransferases, which possess surprising flexibility in RNA substrate selection and enzymatic activity. We will highlight recent findings supporting the view that RNA nucleotidyltransferase activity, RNA target selection and sub-compartimentalization are spatially, temporally and physiologically regulated by dedicated co-factors. Along with the diversification of non-coding RNA classes, the evolutionary conservation of these multifaceted RNA modifiers underscores the prevalence and importance of diverse 3'end formation mechanisms.
Collapse
Affiliation(s)
- Ryuji Minasaki
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, 01307 Dresden, Germany
| | | |
Collapse
|
33
|
Li Q, Laumonnier Y, Syrovets T, Simmet T. Yeast two-hybrid screening of proteins interacting with plasmin receptor subunit: C-terminal fragment of annexin A2. Acta Pharmacol Sin 2011; 32:1411-8. [PMID: 21963895 DOI: 10.1038/aps.2011.121] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
AIM To identify proteins that interact with the C-terminal fragment of annexin A2 (A2IC), generated by plasmin cleavage of the plasmin receptor, a heterotetramer (AA2t) containing annexin A2. METHODS The gene that encodes the A2IC fragment was obtained from PCR-amplified cDNA isolated from human monocytes, and was ligated into the pBTM116 vector using a DNA ligation kit. The resultant plasmid (pBTM116-A2IC) was sequenced with an ABI PRISM 310 Genetic Analyzer. The expression of an A2IC bait protein fused with a LexA-DNA binding domain (BD) was determined using Western blot analysis. The identification of proteins that interact with A2IC and are encoded in a human monocyte cDNA library was performed using yeast two-hybrid screening. The DNA sequences of the relevant cDNAs were determined using an ABI PRISM BigDye terminator cycle sequencing ready reaction kit. Nucleotide sequence databases were searched for homologous sequences using BLAST search analysis (http://www.ncbi.nlm.nih.gov). Confirmation of the interaction between the protein LexA-A2IC and each of cathepsin S and SNX17 was conducted using a small-scale yeast transformation and X-gal assay. RESULTS The yeast transformed with plasmids encoding the bait proteins were screened with a human monocyte cDNA library by reconstituting full-length transcription factors containing the GAL4-active domain (GAL4-AD) as the prey in a yeast two-hybrid approach. After screening 1×10(7) clones, 23 independent β-Gal-positive clones were identified. Sequence analysis and a database search revealed that 15 of these positive clones matched eight different proteins (SNX17, ProCathepsin S, RPS2, ZBTB4, OGDH, CCDC32, PAPD4, and actin which was already known to interact with annexin A2). CONCLUSION A2IC A2IC interacts with various proteins to form protein complexes, which may contribute to the molecular mechanism of monocyte activation induced by plasmin. The yeast two-hybrid system is an efficient approach for investigating protein interactions.
Collapse
|
34
|
Sanders C, Smith DP. LUMP is a putative double-stranded RNA binding protein required for male fertility in Drosophila melanogaster. PLoS One 2011; 6:e24151. [PMID: 21912621 PMCID: PMC3166160 DOI: 10.1371/journal.pone.0024151] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2011] [Accepted: 07/31/2011] [Indexed: 01/10/2023] Open
Abstract
In animals, male fertility requires the successful development of motile sperm. During Drosophila melanogaster spermatogenesis, 64 interconnected spermatids descended from a single germline stem cell are resolved into motile sperm in a process termed individualization. Here we identify a putative double-stranded RNA binding protein LUMP that is required for male fertility. lump(1) mutants are male-sterile and lack motile sperm due to defects in sperm individualization. We show that one dsRNA binding domains (dsRBD) is essential for LUMP function in male fertility. These findings reveal LUMP is a novel factor required for late stages of male germline differentiation.
Collapse
Affiliation(s)
- Charcacia Sanders
- Departments of Pharmacology and Neuroscience, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Dean P. Smith
- Departments of Pharmacology and Neuroscience, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
- * E-mail:
| |
Collapse
|