1
|
Fox R. X-linked genes exhibit skewed expression in Sjogren's disease (SjD): a further step toward understanding the female predominance of autoimmune disease. J Mol Med (Berl) 2022; 100:1267-1269. [PMID: 35982186 PMCID: PMC9402745 DOI: 10.1007/s00109-022-02223-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 05/16/2022] [Accepted: 06/13/2022] [Indexed: 11/18/2022]
Affiliation(s)
- Robert Fox
- Division of Rheumatology, Scripps Memorial Hospital and Research Foundation-Ximed, La Jolla, CA, USA.
| |
Collapse
|
2
|
Su Y, Chen X, Zhou H, Shaw S, Chen J, Isales CM, Zhao J, Shi X. Expression of long noncoding RNA Xist is induced by glucocorticoids. Front Endocrinol (Lausanne) 2022; 13:1005944. [PMID: 36187119 PMCID: PMC9516292 DOI: 10.3389/fendo.2022.1005944] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 08/29/2022] [Indexed: 11/19/2022] Open
Abstract
Glucocorticoids (GCs) are potent anti-inflammatory and immunosuppressive agents. However, their clinical usage is limited by severe multisystemic side effects. Glucocorticoid induced osteoporosis results in significant morbidity and mortality but the cellular and molecular mechanisms underlying GC-induced bone loss are not clear. GC use results in decreased osteoblast differentiation with increased marrow adiposity through effects on bone marrow stem cells. GC effects are transduced through its receptor (GR). To identify novel GR regulated genes, we performed RNA sequencing (RNA-Seq) analysis comparing conditional GR knockout mouse made by crossing the floxed GR animal with the Col I promoter-Cre, versus normal floxed GR without Cre, and that testing was specific for Col I promoter active cells, such as bone marrow mesenchymal stem/osteoprogenitor cells (MSCs) and osteoblasts. Results showed 15 upregulated genes (3- to 10-fold) and 70 downregulated genes (-2.7- to -10-fold), with the long noncoding RNA X-inactive specific transcript (Xist) downregulated the most. The differential expression of genes measured by RNA-Seq was validated by qRT-PCR analysis of selected genes and the GC/GR signaling-dependent expression of Xist was further demonstrated by GC (dexamethasone) treatment of GR-deficient MSCs in vitro and by GC injection of C57BL/6 mice (wild-type males and females) in vivo. Our data revealed that the long noncoding RNA Xist is a GR regulated gene and its expression is induced by GC both in vitro and in vivo. To our knowledge, this is the first evidence showing that Xist is transcriptionally regulated by GC/GR signaling.
Collapse
Affiliation(s)
- Yun Su
- Department of Neuroscience & Regenerative Medicine, Augusta University, Augusta, GA, United States
| | - Xing Chen
- Department of Mathematics, Logistical Engineering University, Chongqing, China
| | - Hongyan Zhou
- Department of Neuroscience & Regenerative Medicine, Augusta University, Augusta, GA, United States
- Department of Pathology and Pathophysiology, School of Medicine, Jianghan University, Wuhan, China
| | - Sean Shaw
- Department of Neuroscience & Regenerative Medicine, Augusta University, Augusta, GA, United States
| | - Jie Chen
- Division of Biostatistics and Data Science, Department of Population Health Sciences, Augusta University, Augusta, GA, United States
| | - Carlos M. Isales
- Department of Neuroscience & Regenerative Medicine, Augusta University, Augusta, GA, United States
- Department of Orthopaedic Surgery, Augusta University, Augusta, GA, United States
| | - Jing Zhao
- Institute of Interdisciplinary Complex Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xingming Shi
- Department of Neuroscience & Regenerative Medicine, Augusta University, Augusta, GA, United States
- Department of Orthopaedic Surgery, Augusta University, Augusta, GA, United States
- *Correspondence: Xingming Shi,
| |
Collapse
|
3
|
Olszewska M, Wiland E, Huleyuk N, Fraczek M, Midro AT, Zastavna D, Kurpisz M. Chromosome (re)positioning in spermatozoa of fathers and sons - carriers of reciprocal chromosome translocation (RCT). BMC Med Genomics 2019; 12:30. [PMID: 30709354 PMCID: PMC6359769 DOI: 10.1186/s12920-018-0470-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Accepted: 12/28/2018] [Indexed: 01/05/2023] Open
Abstract
Background Non-random chromosome positioning has been observed in the nuclei of several different tissue types, including human spermatozoa. The nuclear arrangement of chromosomes can be altered in men with decreased semen parameters or increased DNA fragmentation and in males with chromosomal numerical or structural aberrations. An aim of this study was to determine whether and how the positioning of nine chromosome centromeres was (re)arranged in the spermatozoa of fathers and sons – carriers of the same reciprocal chromosome translocation (RCT). Methods Fluorescence in situ hybridization (FISH) was applied to analyse the positioning of sperm chromosomes in a group of 13 carriers of 11 RCTs, including two familial RCT cases: t(4;5) and t(7;10), followed by analysis of eight control individuals. Additionally, sperm chromatin integrity was evaluated using TUNEL and Aniline Blue techniques. Results In the analysed familial RCT cases, repositioning of the chromosomes occurred in a similar way when compared to the data generated in healthy controls, even if some differences between father and son were further observed. These differences might have arisen from various statuses of sperm chromatin disintegration. Conclusions Nuclear topology appears as another aspect of epigenetic genomic regulation that may influence DNA functioning. We have re-documented that chromosomal positioning is defined in control males and that a particular RCT is reflected in the individual pattern of chromosomal topology. The present study examining the collected RCT group, including two familial cases, additionally showed that chromosomal factors (karyotype and hyperhaploidy) have superior effects, strongly influencing the chromosomal topology, when confronted with sperm chromatin integrity components (DNA fragmentation or chromatin deprotamination). Electronic supplementary material The online version of this article (10.1186/s12920-018-0470-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Marta Olszewska
- Institute of Human Genetics, Polish Academy of Sciences, Strzeszynska 32, 60-479, Poznan, Poland
| | - Ewa Wiland
- Institute of Human Genetics, Polish Academy of Sciences, Strzeszynska 32, 60-479, Poznan, Poland
| | - Nataliya Huleyuk
- National Academy of Medical Sciences of Ukraine, Institute of Hereditary Pathology, Lysenko Str. 31a, Lviv, 79000, Ukraine
| | - Monika Fraczek
- Institute of Human Genetics, Polish Academy of Sciences, Strzeszynska 32, 60-479, Poznan, Poland
| | - Alina T Midro
- Department of Clinical Genetics, Medical University of Bialystok, Waszyngtona 13, PO Box 22, 15-089, Bialystok, Poland
| | - Danuta Zastavna
- National Academy of Medical Sciences of Ukraine, Institute of Hereditary Pathology, Lysenko Str. 31a, Lviv, 79000, Ukraine.,Department of Biotechnology and Bioinformatics, Faculty of Chemistry, Rzeszow University of Technology, Al. Powstancow Warszawy 6, 35-959, Rzeszow, Poland
| | - Maciej Kurpisz
- Institute of Human Genetics, Polish Academy of Sciences, Strzeszynska 32, 60-479, Poznan, Poland.
| |
Collapse
|
4
|
Schurz H, Salie M, Tromp G, Hoal EG, Kinnear CJ, Möller M. The X chromosome and sex-specific effects in infectious disease susceptibility. Hum Genomics 2019; 13:2. [PMID: 30621780 PMCID: PMC6325731 DOI: 10.1186/s40246-018-0185-z] [Citation(s) in RCA: 246] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Accepted: 11/30/2018] [Indexed: 12/18/2022] Open
Abstract
The X chromosome and X-linked variants have largely been ignored in genome-wide and candidate association studies of infectious diseases due to the complexity of statistical analysis of the X chromosome. This exclusion is significant, since the X chromosome contains a high density of immune-related genes and regulatory elements that are extensively involved in both the innate and adaptive immune responses. Many diseases present with a clear sex bias, and apart from the influence of sex hormones and socioeconomic and behavioural factors, the X chromosome, X-linked genes and X chromosome inactivation mechanisms contribute to this difference. Females are functional mosaics for X-linked genes due to X chromosome inactivation and this, combined with other X chromosome inactivation mechanisms such as genes that escape silencing and skewed inactivation, could contribute to an immunological advantage for females in many infections. In this review, we discuss the involvement of the X chromosome and X inactivation in immunity and address its role in sexual dimorphism of infectious diseases using tuberculosis susceptibility as an example, in which male sex bias is clear, yet not fully explored.
Collapse
Affiliation(s)
- Haiko Schurz
- DST-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
- South African Tuberculosis Bioinformatics Initiative (SATBBI), Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Muneeb Salie
- Department of Genetics, St. Jude Children’s Research Hospital, Memphis, TN 38105 USA
| | - Gerard Tromp
- DST-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
- South African Tuberculosis Bioinformatics Initiative (SATBBI), Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Eileen G. Hoal
- DST-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Craig J. Kinnear
- DST-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Marlo Möller
- DST-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| |
Collapse
|
5
|
Hernandez I, Dhiman H, Klanert G, Jadhav V, Auer N, Hanscho M, Baumann M, Esteve-Codina A, Dabad M, Gómez J, Alioto T, Merkel A, Raineri E, Heath S, Rico D, Borth N. Epigenetic regulation of gene expression in Chinese Hamster Ovary cells in response to the changing environment of a batch culture. Biotechnol Bioeng 2019; 116:677-692. [PMID: 30512195 PMCID: PMC6492168 DOI: 10.1002/bit.26891] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 10/18/2018] [Accepted: 11/21/2018] [Indexed: 12/31/2022]
Abstract
The existence of dynamic cellular phenotypes in changing environmental conditions is of major interest for cell biologists who aim to understand the mechanism and sequence of regulation of gene expression. In the context of therapeutic protein production by Chinese Hamster Ovary (CHO) cells, a detailed temporal understanding of cell‐line behavior and control is necessary to achieve a more predictable and reliable process performance. Of particular interest are data on dynamic, temporally resolved transcriptional regulation of genes in response to altered substrate availability and culture conditions. In this study, the gene transcription dynamics throughout a 9‐day batch culture of CHO cells was examined by analyzing histone modifications and gene expression profiles in regular 12‐ and 24‐hr intervals, respectively. Three levels of regulation were observed: (a) the presence or absence of DNA methylation in the promoter region provides an ON/OFF switch; (b) a temporally resolved correlation is observed between the presence of active transcription‐ and promoter‐specific histone marks and the expression level of the respective genes; and (c) a major mechanism of gene regulation is identified by interaction of coding genes with long non‐coding RNA (lncRNA), as observed in the regulation of the expression level of both neighboring coding/lnc gene pairs and of gene pairs where the lncRNA is able to form RNA–DNA–DNA triplexes. Such triplex‐forming regions were predominantly found in the promoter or enhancer region of the targeted coding gene. Significantly, the coding genes with the highest degree of variation in expression during the batch culture are characterized by a larger number of possible triplex‐forming interactions with differentially expressed lncRNAs. This indicates a specific role of lncRNA‐triplexes in enabling rapid and large changes in transcription. A more comprehensive understanding of these regulatory mechanisms will provide an opportunity for new tools to control cellular behavior and to engineer enhanced phenotypes.
Collapse
Affiliation(s)
- Inmaculada Hernandez
- Department of Biotechnology, University of Natural Resources and Life Sciences Vienna, Vienna, Austria.,Austrian Centre of Industrial Biotechnology, Vienna, Austria.,Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Heena Dhiman
- Department of Biotechnology, University of Natural Resources and Life Sciences Vienna, Vienna, Austria.,Austrian Centre of Industrial Biotechnology, Vienna, Austria
| | - Gerald Klanert
- Austrian Centre of Industrial Biotechnology, Vienna, Austria
| | - Vaibhav Jadhav
- Austrian Centre of Industrial Biotechnology, Vienna, Austria
| | - Norbert Auer
- Austrian Centre of Industrial Biotechnology, Vienna, Austria
| | - Michael Hanscho
- Austrian Centre of Industrial Biotechnology, Vienna, Austria
| | - Martina Baumann
- Austrian Centre of Industrial Biotechnology, Vienna, Austria
| | - Anna Esteve-Codina
- CNAG-CRG National Centre for Genomic Analysis-Centre for Genomic Regulation, Barcelona Institute of Science and Technology (BIST), Barcelona, Spain.,Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Marc Dabad
- CNAG-CRG National Centre for Genomic Analysis-Centre for Genomic Regulation, Barcelona Institute of Science and Technology (BIST), Barcelona, Spain.,Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Jessica Gómez
- CNAG-CRG National Centre for Genomic Analysis-Centre for Genomic Regulation, Barcelona Institute of Science and Technology (BIST), Barcelona, Spain.,Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Tyler Alioto
- CNAG-CRG National Centre for Genomic Analysis-Centre for Genomic Regulation, Barcelona Institute of Science and Technology (BIST), Barcelona, Spain.,Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Angelika Merkel
- CNAG-CRG National Centre for Genomic Analysis-Centre for Genomic Regulation, Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Emanuele Raineri
- CNAG-CRG National Centre for Genomic Analysis-Centre for Genomic Regulation, Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Simon Heath
- CNAG-CRG National Centre for Genomic Analysis-Centre for Genomic Regulation, Barcelona Institute of Science and Technology (BIST), Barcelona, Spain.,Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Daniel Rico
- Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Nicole Borth
- Department of Biotechnology, University of Natural Resources and Life Sciences Vienna, Vienna, Austria.,Austrian Centre of Industrial Biotechnology, Vienna, Austria
| |
Collapse
|
6
|
Cajigas I, Chakraborty A, Swyter KR, Luo H, Bastidas M, Nigro M, Morris ER, Chen S, VanGompel MJW, Leib D, Kohtz SJ, Martina M, Koh S, Ay F, Kohtz JD. The Evf2 Ultraconserved Enhancer lncRNA Functionally and Spatially Organizes Megabase Distant Genes in the Developing Forebrain. Mol Cell 2018; 71:956-972.e9. [PMID: 30146317 PMCID: PMC6428050 DOI: 10.1016/j.molcel.2018.07.024] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Revised: 04/30/2018] [Accepted: 07/20/2018] [Indexed: 02/06/2023]
Abstract
Gene regulation requires selective targeting of DNA regulatory enhancers over megabase distances. Here we show that Evf2, a cloud-forming Dlx5/6 ultraconserved enhancer (UCE) lncRNA, simultaneously localizes to activated (Umad1, 1.6 Mb distant) and repressed (Akr1b8, 27 Mb distant) chr6 target genes, precisely regulating UCE-gene distances and cohesin binding in mouse embryonic forebrain GABAergic interneurons (INs). Transgene expression of Evf2 activates Lsm8 (12 Mb distant) but fails to repress Akr1b8, supporting trans activation and long-range cis repression. Through both short-range (Dlx6 antisense) and long-range (Akr1b8) repression, the Evf2-5'UCE links homeodomain and mevalonate pathway-regulated enhancers to IN diversity. The Evf2-3' end is required for long-range activation but dispensable for RNA cloud localization, functionally dividing the RNA into 3'-activator and 5'UCE repressor and targeting regions. Together, these results support that Evf2 selectively regulates UCE interactions with multi-megabase distant genes through complex effects on chromosome topology, linking lncRNA-dependent topological and transcriptional control with interneuron diversity and seizure susceptibility.
Collapse
Affiliation(s)
- Ivelisse Cajigas
- Department of Pediatrics and Developmental Biology, Feinberg School of Medicine, Northwestern University and Stanley Manne Children's Research Institute, Box 204, 2430 N. Halsted, Chicago, IL 60614, USA
| | - Abhijit Chakraborty
- Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, 9420 Athena Circle, La Jolla, CA 92037, USA
| | - Kelsey R Swyter
- Department of Pediatrics and Developmental Biology, Feinberg School of Medicine, Northwestern University and Stanley Manne Children's Research Institute, Box 204, 2430 N. Halsted, Chicago, IL 60614, USA
| | - Hao Luo
- Department of Pediatrics and Developmental Biology, Feinberg School of Medicine, Northwestern University and Stanley Manne Children's Research Institute, Box 204, 2430 N. Halsted, Chicago, IL 60614, USA
| | - Monique Bastidas
- Department of Pediatrics and Developmental Biology, Feinberg School of Medicine, Northwestern University and Stanley Manne Children's Research Institute, Box 204, 2430 N. Halsted, Chicago, IL 60614, USA
| | - Maximilliano Nigro
- Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago IL, 60611, USA
| | - Elizabeth R Morris
- Department of Pediatrics and Developmental Biology, Feinberg School of Medicine, Northwestern University and Stanley Manne Children's Research Institute, Box 204, 2430 N. Halsted, Chicago, IL 60614, USA
| | - Sean Chen
- Department of Pediatrics and Developmental Biology, Feinberg School of Medicine, Northwestern University and Stanley Manne Children's Research Institute, Box 204, 2430 N. Halsted, Chicago, IL 60614, USA
| | - Michael J W VanGompel
- Department of Pediatrics and Developmental Biology, Feinberg School of Medicine, Northwestern University and Stanley Manne Children's Research Institute, Box 204, 2430 N. Halsted, Chicago, IL 60614, USA
| | - David Leib
- Department of Pediatrics and Developmental Biology, Feinberg School of Medicine, Northwestern University and Stanley Manne Children's Research Institute, Box 204, 2430 N. Halsted, Chicago, IL 60614, USA
| | - Sara J Kohtz
- Department of Pediatrics and Developmental Biology, Feinberg School of Medicine, Northwestern University and Stanley Manne Children's Research Institute, Box 204, 2430 N. Halsted, Chicago, IL 60614, USA
| | - Marco Martina
- Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago IL, 60611, USA
| | - Sooky Koh
- Department of Pediatrics, Emory University, Atlanta, GA 30307, USA
| | - Ferhat Ay
- Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, 9420 Athena Circle, La Jolla, CA 92037, USA; School of Medicine, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Jhumku D Kohtz
- Department of Pediatrics and Developmental Biology, Feinberg School of Medicine, Northwestern University and Stanley Manne Children's Research Institute, Box 204, 2430 N. Halsted, Chicago, IL 60614, USA.
| |
Collapse
|
7
|
Daskalakis M, Brocks D, Sheng YH, Islam MS, Ressnerova A, Assenov Y, Milde T, Oehme I, Witt O, Goyal A, Kühn A, Hartmann M, Weichenhan D, Jung M, Plass C. Reactivation of endogenous retroviral elements via treatment with DNMT- and HDAC-inhibitors. Cell Cycle 2018; 17:811-822. [PMID: 29633898 DOI: 10.1080/15384101.2018.1442623] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Inhibitors of DNA methyltransferases (DNMTis) or histone deacetylases (HDACis) are epigenetic drugs which are investigated since decades. Several have been approved and are applied in the treatment of hematopoietic and lymphatic malignancies, although their mode of action has not been fully understood. Two recent findings improved mechanistic insights: i) activation of human endogenous retroviral elements (HERVs) with concomitant synthesis of double-stranded RNAs (dsRNAs), and ii) massive activation of promoters from long terminal repeats (LTRs) which originated from past HERV invasions. These dsRNAs activate an antiviral response pathway followed by apoptosis. LTR promoter activation leads to synthesis of non-annotated transcripts potentially encoding novel or cryptic proteins. Here, we discuss the current knowledge of the molecular effects exerted by epigenetic drugs with a focus on DNMTis and HDACis. We highlight the role in LTR activation and provide novel data from both in vitro and in vivo epigenetic drug treatment.
Collapse
Affiliation(s)
- Michael Daskalakis
- a Division of Epigenomics and Cancer Risk Factors , German Cancer Research Center , Heidelberg , Germany.,f German Cancer Research Consortium (DKTK) , Heidelberg , Germany
| | - David Brocks
- a Division of Epigenomics and Cancer Risk Factors , German Cancer Research Center , Heidelberg , Germany
| | - Yi-Hua Sheng
- b School of Pharmacy, College of Medicine , National Taiwan University , Taipei , Taiwan
| | - Md Saiful Islam
- a Division of Epigenomics and Cancer Risk Factors , German Cancer Research Center , Heidelberg , Germany
| | - Alzbeta Ressnerova
- a Division of Epigenomics and Cancer Risk Factors , German Cancer Research Center , Heidelberg , Germany
| | - Yassen Assenov
- a Division of Epigenomics and Cancer Risk Factors , German Cancer Research Center , Heidelberg , Germany
| | - Till Milde
- c Translational Program, Hopp Children's Cancer Center at NCT Heidelberg (KiTZ) , Germany.,d CCU Pediatric Oncology , German Cancer Research Center (DKFZ) , Heidelberg , Germany.,e Department of Pediatric Oncology, Hematology and Immunology , University Hospital, and Clinical Cooperation Unit Pediatric Oncology, DKFZ , Heidelberg , Germany.,f German Cancer Research Consortium (DKTK) , Heidelberg , Germany
| | - Ina Oehme
- c Translational Program, Hopp Children's Cancer Center at NCT Heidelberg (KiTZ) , Germany.,d CCU Pediatric Oncology , German Cancer Research Center (DKFZ) , Heidelberg , Germany.,e Department of Pediatric Oncology, Hematology and Immunology , University Hospital, and Clinical Cooperation Unit Pediatric Oncology, DKFZ , Heidelberg , Germany.,f German Cancer Research Consortium (DKTK) , Heidelberg , Germany
| | - Olaf Witt
- c Translational Program, Hopp Children's Cancer Center at NCT Heidelberg (KiTZ) , Germany.,d CCU Pediatric Oncology , German Cancer Research Center (DKFZ) , Heidelberg , Germany.,e Department of Pediatric Oncology, Hematology and Immunology , University Hospital, and Clinical Cooperation Unit Pediatric Oncology, DKFZ , Heidelberg , Germany.,f German Cancer Research Consortium (DKTK) , Heidelberg , Germany
| | - Ashish Goyal
- a Division of Epigenomics and Cancer Risk Factors , German Cancer Research Center , Heidelberg , Germany
| | - Alexander Kühn
- a Division of Epigenomics and Cancer Risk Factors , German Cancer Research Center , Heidelberg , Germany
| | - Mark Hartmann
- a Division of Epigenomics and Cancer Risk Factors , German Cancer Research Center , Heidelberg , Germany.,g Regulation of Cellular Differentiation Group , German Cancer Research Center , Heidelberg , Germany
| | - Dieter Weichenhan
- a Division of Epigenomics and Cancer Risk Factors , German Cancer Research Center , Heidelberg , Germany
| | - Manfred Jung
- h Institute of Pharmaceutical Sciences, University of Freiburg , Germany
| | - Christoph Plass
- a Division of Epigenomics and Cancer Risk Factors , German Cancer Research Center , Heidelberg , Germany.,f German Cancer Research Consortium (DKTK) , Heidelberg , Germany
| |
Collapse
|
8
|
|
9
|
Mohammed H, Hernando-Herraez I, Savino A, Scialdone A, Macaulay I, Mulas C, Chandra T, Voet T, Dean W, Nichols J, Marioni JC, Reik W. Single-Cell Landscape of Transcriptional Heterogeneity and Cell Fate Decisions during Mouse Early Gastrulation. Cell Rep 2017; 20:1215-1228. [PMID: 28768204 PMCID: PMC5554778 DOI: 10.1016/j.celrep.2017.07.009] [Citation(s) in RCA: 232] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Revised: 06/07/2017] [Accepted: 07/06/2017] [Indexed: 01/08/2023] Open
Abstract
The mouse inner cell mass (ICM) segregates into the epiblast and primitive endoderm (PrE) lineages coincident with implantation of the embryo. The epiblast subsequently undergoes considerable expansion of cell numbers prior to gastrulation. To investigate underlying regulatory principles, we performed systematic single-cell RNA sequencing (seq) of conceptuses from E3.5 to E6.5. The epiblast shows reactivation and subsequent inactivation of the X chromosome, with Zfp57 expression associated with reactivation and inactivation together with other candidate regulators. At E6.5, the transition from epiblast to primitive streak is linked with decreased expression of polycomb subunits, suggesting a key regulatory role. Notably, our analyses suggest elevated transcriptional noise at E3.5 and within the non-committed epiblast at E6.5, coinciding with exit from pluripotency. By contrast, E6.5 primitive streak cells became highly synchronized and exhibit a shortened G1 cell-cycle phase, consistent with accelerated proliferation. Our study systematically charts transcriptional noise and uncovers molecular processes associated with early lineage decisions.
Collapse
Affiliation(s)
- Hisham Mohammed
- Epigenetics Programme, Babraham Institute, Cambridge CB22 3AT, UK
| | | | - Aurora Savino
- Epigenetics Programme, Babraham Institute, Cambridge CB22 3AT, UK
| | - Antonio Scialdone
- EMBL-European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Cambridge CB10 1SD, UK; Wellcome Trust Sanger Institute, Single-Cell Genomics Centre, Cambridge CB10 1SA, UK
| | - Iain Macaulay
- Wellcome Trust Sanger Institute, Single-Cell Genomics Centre, Cambridge CB10 1SA, UK
| | - Carla Mulas
- Wellcome Trust-Medical Research Council Stem Cell Institute, University of Cambridge, Tennis Court Road, Cambridge CB2 1QR, UK; Department of Physiology, Development and Neuroscience, University of Cambridge, Tennis Court Road, Cambridge CB2 3EG, UK
| | - Tamir Chandra
- Epigenetics Programme, Babraham Institute, Cambridge CB22 3AT, UK
| | - Thierry Voet
- Wellcome Trust Sanger Institute, Single-Cell Genomics Centre, Cambridge CB10 1SA, UK; Department of Human Genetics, Human Genome Laboratory, KU Leuven, 3000 Leuven, Belgium
| | - Wendy Dean
- Epigenetics Programme, Babraham Institute, Cambridge CB22 3AT, UK
| | - Jennifer Nichols
- Wellcome Trust-Medical Research Council Stem Cell Institute, University of Cambridge, Tennis Court Road, Cambridge CB2 1QR, UK; Department of Physiology, Development and Neuroscience, University of Cambridge, Tennis Court Road, Cambridge CB2 3EG, UK.
| | - John C Marioni
- EMBL-European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Cambridge CB10 1SD, UK; Wellcome Trust Sanger Institute, Single-Cell Genomics Centre, Cambridge CB10 1SA, UK; Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge CB2 ORE, UK.
| | - Wolf Reik
- Epigenetics Programme, Babraham Institute, Cambridge CB22 3AT, UK; Wellcome Trust Sanger Institute, Single-Cell Genomics Centre, Cambridge CB10 1SA, UK; Centre for Trophoblast Research, University of Cambridge, Cambridge CB2 3EG, UK.
| |
Collapse
|
10
|
Insights from Global Analyses of Long Noncoding RNAs in Breast Cancer. CURRENT PATHOBIOLOGY REPORTS 2017; 5:23-34. [PMID: 28616363 DOI: 10.1007/s40139-017-0122-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
PURPOSE OF REVIEW The goal of this review was to compare and contrast the results and implications from several recent transcriptomic studies that analyzed the expression of lncRNAs in breast cancer. How many lncRNAs are dysregulated in breast cancer? Do dysregulated lncRNAs contribute to breast cancer etiology? Are lncRNAs viable biomarkers in breast cancer? RECENT FINDINGS Transcriptomic profiling of breast cancer tissues, mostly from The Cancer Genome Atlas, identified thousands of long noncoding RNAs that are expressed and dysregulated in breast cancer. The expression of lncRNAs alone can divide patients into molecular subtypes. Subsequent functional studies demonstrated that several of these lncRNAs have important roles in breast cancer cell biology. SUMMARY Thousands of lncRNAs are dysregulated in breast cancer that can be developed as biomarkers for prognostic or therapeutic purposes. The reviewed reports provide a roadmap to guide functional studies to discover lncRNAs with critical biological functions relating to breast cancer development and progression.
Collapse
|
11
|
Toth Z, Papp B, Brulois K, Choi YJ, Gao SJ, Jung JU. LANA-Mediated Recruitment of Host Polycomb Repressive Complexes onto the KSHV Genome during De Novo Infection. PLoS Pathog 2016; 12:e1005878. [PMID: 27606464 PMCID: PMC5015872 DOI: 10.1371/journal.ppat.1005878] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Accepted: 08/17/2016] [Indexed: 12/12/2022] Open
Abstract
One of the hallmarks of the latent phase of Kaposi's sarcoma-associated herpesvirus (KSHV) infection is the global repression of lytic viral gene expression. Following de novo KSHV infection, the establishment of latency involves the chromatinization of the incoming viral genomes and recruitment of the host Polycomb repressive complexes (PRC1 and PRC2) to the promoters of lytic genes, which is accompanied by the inhibition of lytic genes. However, the mechanism of how PRCs are recruited to the KSHV episome is still unknown. Utilizing a genetic screen of latent genes in the context of KSHV genome, we identified the latency-associated nuclear antigen (LANA) to be responsible for the genome-wide recruitment of PRCs onto the lytic promoters following infection. We found that LANA initially bound to the KSHV genome right after infection and subsequently recruited PRCs onto the viral lytic promoters, thereby repressing lytic gene expression. Furthermore, both the DNA and chromatin binding activities of LANA were required for the binding of LANA to the KSHV promoters, which was necessary for the recruitment of PRC2 to the lytic promoters during de novo KSHV infection. Consequently, the LANA-knockout KSHV could not recruit PRCs to its viral genome upon de novo infection, resulting in aberrant lytic gene expression and dysregulation of expression of host genes involved in cell cycle and proliferation pathways. In this report, we demonstrate that KSHV LANA recruits host PRCs onto the lytic promoters to suppress lytic gene expression following de novo infection.
Collapse
Affiliation(s)
- Zsolt Toth
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Zilkha Neurogenetic Institute, Los Angeles, California, United States of America
- * E-mail: (ZT); (JUJ)
| | - Bernadett Papp
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Zilkha Neurogenetic Institute, Los Angeles, California, United States of America
| | - Kevin Brulois
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Zilkha Neurogenetic Institute, Los Angeles, California, United States of America
| | - Youn Jung Choi
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Zilkha Neurogenetic Institute, Los Angeles, California, United States of America
| | - Shou-Jiang Gao
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Zilkha Neurogenetic Institute, Los Angeles, California, United States of America
| | - Jae U. Jung
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Zilkha Neurogenetic Institute, Los Angeles, California, United States of America
- * E-mail: (ZT); (JUJ)
| |
Collapse
|
12
|
Wu R, Su Y, Wu H, Dai Y, Zhao M, Lu Q. Characters, functions and clinical perspectives of long non-coding RNAs. Mol Genet Genomics 2016; 291:1013-33. [PMID: 26885843 DOI: 10.1007/s00438-016-1179-y] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2015] [Accepted: 01/26/2016] [Indexed: 02/07/2023]
Abstract
It is well established that most of the human genome and those of other mammals and plants are transcribed into RNA without protein-coding capacity, which we define as non-coding RNA. From siRNA to microRNA, whose functions and features have been well characterized, non-coding RNAs have been a popular topic in life science research over the last decade. Long non-coding RNAs (lncRNAs), however, as a novel class of transcripts, are distinguished from these other small RNAs. Recent studies have revealed a diverse population of lncRNAs with different sizes and functions across different species. These populations are expressed dynamically and act as important regulators in a variety of biological processes, especially in gene expression. Nevertheless, the functions and mechanisms of most lncRNAs remain unclear. In this review, we present recent progress in the identification of lncRNAs, their functions and molecular mechanisms, their roles in human diseases, their potential diagnostic and therapeutic applications as well as newer technologies for identifying deregulated lncRNAs in disease tissues.
Collapse
Affiliation(s)
- Ruifang Wu
- Hunan Key Laboratory of Medical Epigenomics, Department of Dermatology, The Second Xiangya Hospital, Central South University, #139 Renmin Middle Road, Changsha, 410011, Hunan, China
| | - Yuwen Su
- Hunan Key Laboratory of Medical Epigenomics, Department of Dermatology, The Second Xiangya Hospital, Central South University, #139 Renmin Middle Road, Changsha, 410011, Hunan, China
| | - Haijing Wu
- Hunan Key Laboratory of Medical Epigenomics, Department of Dermatology, The Second Xiangya Hospital, Central South University, #139 Renmin Middle Road, Changsha, 410011, Hunan, China
| | - Yong Dai
- Clinical Medical Research Center, The Second Clinical Medical College of Jinan University (Shenzhen People's Hospital), Shenzhen, 518020, Guangdong, China
| | - Ming Zhao
- Hunan Key Laboratory of Medical Epigenomics, Department of Dermatology, The Second Xiangya Hospital, Central South University, #139 Renmin Middle Road, Changsha, 410011, Hunan, China.
| | - Qianjin Lu
- Hunan Key Laboratory of Medical Epigenomics, Department of Dermatology, The Second Xiangya Hospital, Central South University, #139 Renmin Middle Road, Changsha, 410011, Hunan, China.
| |
Collapse
|
13
|
Fang R, Moss WN, Rutenberg-Schoenberg M, Simon MD. Probing Xist RNA Structure in Cells Using Targeted Structure-Seq. PLoS Genet 2015; 11:e1005668. [PMID: 26646615 PMCID: PMC4672913 DOI: 10.1371/journal.pgen.1005668] [Citation(s) in RCA: 97] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Accepted: 10/24/2015] [Indexed: 11/19/2022] Open
Abstract
The long non-coding RNA (lncRNA) Xist is a master regulator of X-chromosome inactivation in mammalian cells. Models for how Xist and other lncRNAs function depend on thermodynamically stable secondary and higher-order structures that RNAs can form in the context of a cell. Probing accessible RNA bases can provide data to build models of RNA conformation that provide insight into RNA function, molecular evolution, and modularity. To study the structure of Xist in cells, we built upon recent advances in RNA secondary structure mapping and modeling to develop Targeted Structure-Seq, which combines chemical probing of RNA structure in cells with target-specific massively parallel sequencing. By enriching for signals from the RNA of interest, Targeted Structure-Seq achieves high coverage of the target RNA with relatively few sequencing reads, thus providing a targeted and scalable approach to analyze RNA conformation in cells. We use this approach to probe the full-length Xist lncRNA to develop new models for functional elements within Xist, including the repeat A element in the 5’-end of Xist. This analysis also identified new structural elements in Xist that are evolutionarily conserved, including a new element proximal to the C repeats that is important for Xist function. To do their jobs, many RNAs need to fold into structures (through base-paring). We were interested in the conformation of a specific mammalian RNA, Xist, when it is inside a cell. Xist is a very large non-coding RNA (lncRNA), that is >17,000 nt long. Xist is particularly important because it is one of the first lncRNAs to be discovered, and turns genes off across an entire chromosome. To figure out how Xist RNA is folded in mouse cells, we developed a new approach, Targeted Structure-Seq, to examine the conformation of large RNAs like Xist. Using computer modeling, we identified parts of Xist that are base paired into RNA duplexes. We also determined which parts of the Xist RNA are likely to be structured. This work provides a new tool for studying the secondary structure of any large RNA, and helps us understand what the important pieces of Xist look like while Xist does its work in the cell.
Collapse
Affiliation(s)
- Rui Fang
- Department of Molecular Biophysics & Biochemistry, Yale University, New Haven, Connecticut, United States of America
- Chemical Biology Institute, Yale University, West Haven, Connecticut, United States of America
| | - Walter N. Moss
- Department of Molecular Biophysics & Biochemistry, Yale University, New Haven, Connecticut, United States of America
| | - Michael Rutenberg-Schoenberg
- Department of Molecular Biophysics & Biochemistry, Yale University, New Haven, Connecticut, United States of America
- Chemical Biology Institute, Yale University, West Haven, Connecticut, United States of America
| | - Matthew D. Simon
- Department of Molecular Biophysics & Biochemistry, Yale University, New Haven, Connecticut, United States of America
- Chemical Biology Institute, Yale University, West Haven, Connecticut, United States of America
- * E-mail:
| |
Collapse
|
14
|
Transcriptional read-through is not sufficient to induce an epigenetic switch in the silencing activity of Polycomb response elements. Proc Natl Acad Sci U S A 2015; 112:14930-5. [PMID: 26504232 DOI: 10.1073/pnas.1515276112] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In Drosophila, Polycomb (PcG) and Trithorax (TrxG) group proteins are assembled on Polycomb response elements (PREs) to maintain tissue and stage-specific patterns of gene expression. Critical to coordinating gene expression with the process of differentiation, the activity of PREs can be switched "on" and "off." When on, the PRE imposes a silenced state on the genes in the same domain that is stably inherited through multiple rounds of cell division. When the PRE is switched off, the domain is in a state permissive for gene expression that can be stably inherited. Previous studies have suggested that a burst of transcription through a PRE sequence displaces PcG proteins and provides a universal mechanism for inducing a heritable switch in PRE activity from on to off; however, the evidence favoring this model is indirect. Here, we have directly tested the transcriptional read-through mechanism. Contrary to previous suggestions, we show that transcription through the PRE is not sufficient for inducing an epigenetic switch in PRE activity. In fact, even high levels of continuous transcription through a PRE fails to dislodge the PcG proteins, nor does it remove repressive histone marks. Our results indicate that other mechanisms involving adjacent DNA regulatory elements must be implicated in heritable switch of PRE activity.
Collapse
|
15
|
Minkovsky A, Sahakyan A, Bonora G, Damoiseaux R, Dimitrova E, Rubbi L, Pellegrini M, Radu CG, Plath K. A high-throughput screen of inactive X chromosome reactivation identifies the enhancement of DNA demethylation by 5-aza-2'-dC upon inhibition of ribonucleotide reductase. Epigenetics Chromatin 2015; 8:42. [PMID: 26468331 PMCID: PMC4604769 DOI: 10.1186/s13072-015-0034-4] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Accepted: 09/23/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND DNA methylation is important for the maintenance of the silent state of genes on the inactive X chromosome (Xi). Here, we screened for siRNAs and chemicals that reactivate an Xi-linked reporter in the presence of 5-aza-2'-deoxycytidine (5-aza-2'-dC), an inhibitor of DNA methyltransferase 1, at a concentration that, on its own, is not sufficient for Xi-reactivation. RESULTS We found that inhibition of ribonucleotide reductase (RNR) induced expression of the reporter. RNR inhibition potentiated the effect of 5-aza-2'-dC by enhancing its DNA incorporation, thereby decreasing DNA methylation levels genome-wide. Since both 5-aza-2'-dC and RNR-inhibitors are used in the treatment of hematological malignancies, we treated myeloid leukemia cell lines with 5-aza-2'-dC and the RNR-inhibitor hydroxyurea, and observed synergistic inhibition of cell growth and a decrease in genome-wide DNA methylation. CONCLUSIONS Taken together, our study identifies a drug combination that enhances DNA demethylation by altering nucleotide metabolism. This demonstrates that Xi-reactivation assays can be used to optimize the epigenetic activity of drug combinations.
Collapse
Affiliation(s)
- Alissa Minkovsky
- Department of Biological Chemistry, David Geffen School of Medicine, Eli and Edythe Broad Center for Regenerative Medicine, Jonsson Comprehensive Cancer Center, Molecular Biology Institute, University of California, 615 Charles E. Young Drive South, BSRB 390D, Los Angeles, 90095 USA
| | - Anna Sahakyan
- Department of Biological Chemistry, David Geffen School of Medicine, Eli and Edythe Broad Center for Regenerative Medicine, Jonsson Comprehensive Cancer Center, Molecular Biology Institute, University of California, 615 Charles E. Young Drive South, BSRB 390D, Los Angeles, 90095 USA
| | - Giancarlo Bonora
- Department of Biological Chemistry, David Geffen School of Medicine, Eli and Edythe Broad Center for Regenerative Medicine, Jonsson Comprehensive Cancer Center, Molecular Biology Institute, University of California, 615 Charles E. Young Drive South, BSRB 390D, Los Angeles, 90095 USA
| | - Robert Damoiseaux
- Department of Molecular and Medicinal Chemistry and California NanoSystems Institute, University of California, Los Angeles, 90095 USA
| | - Elizabeth Dimitrova
- Ahmanson Translational Imaging Division, Department of Molecular and Medical Pharmacology, University of California, Los Angeles, 90095 USA
| | - Liudmilla Rubbi
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, 90095 USA
| | - Matteo Pellegrini
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, 90095 USA
| | - Caius G Radu
- Ahmanson Translational Imaging Division, Department of Molecular and Medical Pharmacology, University of California, Los Angeles, 90095 USA
| | - Kathrin Plath
- Department of Biological Chemistry, David Geffen School of Medicine, Eli and Edythe Broad Center for Regenerative Medicine, Jonsson Comprehensive Cancer Center, Molecular Biology Institute, University of California, 615 Charles E. Young Drive South, BSRB 390D, Los Angeles, 90095 USA
| |
Collapse
|
16
|
Sun T, Plutynski A, Ward S, Rubin JB. An integrative view on sex differences in brain tumors. Cell Mol Life Sci 2015; 72:3323-42. [PMID: 25985759 PMCID: PMC4531141 DOI: 10.1007/s00018-015-1930-2] [Citation(s) in RCA: 140] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Revised: 04/27/2015] [Accepted: 05/11/2015] [Indexed: 02/07/2023]
Abstract
Sex differences in human health and disease can range from undetectable to profound. Differences in brain tumor rates and outcome are evident in males and females throughout the world and regardless of age. These observations indicate that fundamental aspects of sex determination can impact the biology of brain tumors. It is likely that optimal personalized approaches to the treatment of male and female brain tumor patients will require recognizing and understanding the ways in which the biology of their tumors can differ. It is our view that sex-specific approaches to brain tumor screening and care will be enhanced by rigorously documenting differences in brain tumor rates and outcomes in males and females, and understanding the developmental and evolutionary origins of sex differences. Here we offer such an integrative perspective on brain tumors. It is our intent to encourage the consideration of sex differences in clinical and basic scientific investigations.
Collapse
Affiliation(s)
- Tao Sun
- />Department of Pediatrics, Washington University School of Medicine, St Louis, USA
| | - Anya Plutynski
- />Department of Philosophy, Washington University in St Louis, St Louis, USA
| | - Stacey Ward
- />Department of Pediatrics, Washington University School of Medicine, St Louis, USA
| | - Joshua B. Rubin
- />Department of Pediatrics, Washington University School of Medicine, St Louis, USA
- />Department of Anatomy and Neurobiology, Washington University School of Medicine, 660 South Euclid Ave, St Louis, MO 63110 USA
- />Campus Box 8208, 660 South Euclid Ave, St Louis, MO 63110 USA
| |
Collapse
|
17
|
Cerase A, Pintacuda G, Tattermusch A, Avner P. Xist localization and function: new insights from multiple levels. Genome Biol 2015; 16:166. [PMID: 26282267 PMCID: PMC4539689 DOI: 10.1186/s13059-015-0733-y] [Citation(s) in RCA: 130] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2015] [Accepted: 07/29/2015] [Indexed: 12/21/2022] Open
Abstract
In female mammals, one of the two X chromosomes in each cell is transcriptionally silenced in order to achieve dosage compensation between the genders in a process called X chromosome inactivation. The master regulator of this process is the long non-coding RNA Xist. During X-inactivation, Xist accumulates in cis on the future inactive X chromosome, triggering a cascade of events that provoke the stable silencing of the entire chromosome, with relatively few genes remaining active. How Xist spreads, what are its binding sites, how it recruits silencing factors and how it induces a specific topological and nuclear organization of the chromatin all remain largely unanswered questions. Recent studies have improved our understanding of Xist localization and the proteins with which it interacts, allowing a reappraisal of ideas about Xist function. We discuss recent advances in our knowledge of Xist-mediated silencing, focusing on Xist spreading, the nuclear organization of the inactive X chromosome, recruitment of the polycomb complex and the role of the nuclear matrix in the process of X chromosome inactivation.
Collapse
Affiliation(s)
- Andrea Cerase
- EMBL Mouse Biology Unit, Monterotondo, 00015 (RM), Italy.
| | - Greta Pintacuda
- Department of Biochemistry, University of Oxford, Oxford, OX1 3QU, UK
| | - Anna Tattermusch
- Department of Biochemistry, University of Oxford, Oxford, OX1 3QU, UK
| | - Philip Avner
- EMBL Mouse Biology Unit, Monterotondo, 00015 (RM), Italy. .,Institut Pasteur, Unite de Genetique Moleculaire Murine, CNRS, URA2578, Paris, France.
| |
Collapse
|
18
|
Cajigas I, Leib DE, Cochrane J, Luo H, Swyter KR, Chen S, Clark BS, Thompson J, Yates JR, Kingston RE, Kohtz JD. Evf2 lncRNA/BRG1/DLX1 interactions reveal RNA-dependent inhibition of chromatin remodeling. Development 2015; 142:2641-52. [PMID: 26138476 DOI: 10.1242/dev.126318] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2015] [Accepted: 06/09/2015] [Indexed: 01/12/2023]
Abstract
Transcription-regulating long non-coding RNAs (lncRNAs) have the potential to control the site-specific expression of thousands of target genes. Previously, we showed that Evf2, the first described ultraconserved lncRNA, increases the association of transcriptional activators (DLX homeodomain proteins) with key DNA enhancers but represses gene expression. In this report, mass spectrometry shows that the Evf2-DLX1 ribonucleoprotein (RNP) contains the SWI/SNF-related chromatin remodelers Brahma-related gene 1 (BRG1, SMARCA4) and Brahma-associated factor (BAF170, SMARCC2) in the developing mouse forebrain. Evf2 RNA colocalizes with BRG1 in nuclear clouds and increases BRG1 association with key DNA regulatory enhancers in the developing forebrain. While BRG1 directly interacts with DLX1 and Evf2 through distinct binding sites, Evf2 directly inhibits BRG1 ATPase and chromatin remodeling activities. In vitro studies show that both RNA-BRG1 binding and RNA inhibition of BRG1 ATPase/remodeling activity are promiscuous, suggesting that context is a crucial factor in RNA-dependent chromatin remodeling inhibition. Together, these experiments support a model in which RNAs convert an active enhancer to a repressed enhancer by directly inhibiting chromatin remodeling activity, and address the apparent paradox of RNA-mediated stabilization of transcriptional activators at enhancers with a repressive outcome. The importance of BRG1/RNA and BRG1/homeodomain interactions in neurodevelopmental disorders is underscored by the finding that mutations in Coffin-Siris syndrome, a human intellectual disability disorder, localize to the BRG1 RNA-binding and DLX1-binding domains.
Collapse
Affiliation(s)
- Ivelisse Cajigas
- Developmental Biology and Department of Pediatrics, Stanley Manne Children's Research Institute and Feinberg School of Medicine, Northwestern University, Box 204, 2430 N. Halsted, Chicago, IL 60614, USA
| | - David E Leib
- Developmental Biology and Department of Pediatrics, Stanley Manne Children's Research Institute and Feinberg School of Medicine, Northwestern University, Box 204, 2430 N. Halsted, Chicago, IL 60614, USA
| | - Jesse Cochrane
- Department of Molecular Biology, Harvard University, Boston, MA 02114, USA
| | - Hao Luo
- Developmental Biology and Department of Pediatrics, Stanley Manne Children's Research Institute and Feinberg School of Medicine, Northwestern University, Box 204, 2430 N. Halsted, Chicago, IL 60614, USA
| | - Kelsey R Swyter
- Developmental Biology and Department of Pediatrics, Stanley Manne Children's Research Institute and Feinberg School of Medicine, Northwestern University, Box 204, 2430 N. Halsted, Chicago, IL 60614, USA
| | - Sean Chen
- Developmental Biology and Department of Pediatrics, Stanley Manne Children's Research Institute and Feinberg School of Medicine, Northwestern University, Box 204, 2430 N. Halsted, Chicago, IL 60614, USA
| | - Brian S Clark
- Developmental Biology and Department of Pediatrics, Stanley Manne Children's Research Institute and Feinberg School of Medicine, Northwestern University, Box 204, 2430 N. Halsted, Chicago, IL 60614, USA
| | | | - John R Yates
- The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Robert E Kingston
- Department of Molecular Biology, Harvard University, Boston, MA 02114, USA
| | - Jhumku D Kohtz
- Developmental Biology and Department of Pediatrics, Stanley Manne Children's Research Institute and Feinberg School of Medicine, Northwestern University, Box 204, 2430 N. Halsted, Chicago, IL 60614, USA
| |
Collapse
|
19
|
Ishizuka A, Hasegawa Y, Ishida K, Yanaka K, Nakagawa S. Formation of nuclear bodies by the lncRNA Gomafu-associating proteins Celf3 and SF1. Genes Cells 2015; 19:704-21. [PMID: 25145264 PMCID: PMC4255692 DOI: 10.1111/gtc.12169] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2013] [Accepted: 06/28/2014] [Indexed: 12/19/2022]
Abstract
Gomafu/MIAT/Rncr2 is a long noncoding RNA that has been proposed to control retinal cell specification, stem cell differentiation and alternative splicing of schizophrenia-related genes. However, how Gomafu controls these biological processes at the molecular level has remained largely unknown. In this study, we identified the RNA-binding protein Celf3 as a novel Gomafu-associating protein. Knockdown of Celf3 led to the down-regulation of Gomafu, and cross-link RNA precipitation analysis confirmed specific binding between Celf3 and Gomafu. In the neuroblastoma cell line Neuro2A, Celf3 formed novel nuclear bodies (named CS bodies) that colocalized with SF1, another Gomafu-binding protein. Gomafu, however, was not enriched in the CS bodies; instead, it formed distinct nuclear bodies in separate regions in the nucleus. These observations suggest that Gomafu indirectly modulates the function of the splicing factors SF1 and Celf3 by sequestering these proteins into separate nuclear bodies.
Collapse
Affiliation(s)
- Akira Ishizuka
- RNA Biology Laboratory, RIKEN, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | | | | | | | | |
Collapse
|
20
|
Brancaleoni V, Balwani M, Granata F, Graziadei G, Missineo P, Fiorentino V, Fustinoni S, Cappellini MD, Naik H, Desnick RJ, Di Pierro E. X-chromosomal inactivation directly influences the phenotypic manifestation of X-linked protoporphyria. Clin Genet 2015; 89:20-6. [PMID: 25615817 DOI: 10.1111/cge.12562] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Revised: 01/09/2015] [Accepted: 01/20/2015] [Indexed: 11/29/2022]
Abstract
X-linked protoporphyria (XLP), a rare erythropoietic porphyria, results from terminal exon gain-of-function mutations in the ALAS2 gene causing increased ALAS2 activity and markedly increased erythrocyte protoporphyrin levels. Patients present with severe cutaneous photosensitivity and may develop liver dysfunction. XLP was originally reported as X-linked dominant with 100% penetrance in males and females. We characterized 11 heterozygous females from six unrelated XLP families and show markedly varying phenotypic and biochemical heterogeneity, reflecting the degree of X-chromosomal inactivation of the mutant gene. ALAS2 sequencing identified the specific mutation and confirmed heterozygosity among the females. Clinical history, plasma and erythrocyte protoporphyrin levels were determined. Methylation assays of the androgen receptor and zinc-finger MYM type 3 short tandem repeat polymorphisms estimated each heterozygotes X-chromosomal inactivation pattern. Heterozygotes with equal or increased skewing, favoring expression of the wild-type allele had no clinical symptoms and only slightly increased erythrocyte protoporphyrin concentrations and/or frequency of protoporphyrin-containing peripheral blood fluorocytes. When the wild-type allele was preferentially inactivated, heterozygous females manifested the disease phenotype and had both higher erythrocyte protoporphyrin levels and circulating fluorocytes. These findings confirm that the previous dominant classification of XLP is inappropriate and genetically misleading, as the disorder is more appropriately designated XLP.
Collapse
Affiliation(s)
- V Brancaleoni
- Fondazione IRCCS "Cà-Granda" Ospedale Maggiore Policlinico, U.O. di Medicina Interna, Milano, Italy
| | - M Balwani
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - F Granata
- Fondazione IRCCS "Cà-Granda" Ospedale Maggiore Policlinico, U.O. di Medicina Interna, Milano, Italy
| | - G Graziadei
- Fondazione IRCCS "Cà-Granda" Ospedale Maggiore Policlinico, U.O. di Medicina Interna, Milano, Italy
| | - P Missineo
- Dipartimento di Scienze Cliniche e di Comunità, Università degli Studi di Milano, Milano, Italy
| | - V Fiorentino
- Fondazione IRCCS "Cà-Granda" Ospedale Maggiore Policlinico, U.O. di Medicina Interna, Milano, Italy
| | - S Fustinoni
- Dipartimento di Scienze Cliniche e di Comunità, Università degli Studi di Milano, Milano, Italy
| | - M D Cappellini
- Fondazione IRCCS "Cà-Granda" Ospedale Maggiore Policlinico, U.O. di Medicina Interna, Milano, Italy.,Dipartimento di Scienze Cliniche e di Comunità, Università degli Studi di Milano, Milano, Italy
| | - H Naik
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - R J Desnick
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - E Di Pierro
- Fondazione IRCCS "Cà-Granda" Ospedale Maggiore Policlinico, U.O. di Medicina Interna, Milano, Italy
| |
Collapse
|
21
|
Genetic and pharmacological reactivation of the mammalian inactive X chromosome. Proc Natl Acad Sci U S A 2014; 111:12591-8. [PMID: 25136103 DOI: 10.1073/pnas.1413620111] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
X-chromosome inactivation (XCI), the random transcriptional silencing of one X chromosome in somatic cells of female mammals, is a mechanism that ensures equal expression of X-linked genes in both sexes. XCI is initiated in cis by the noncoding Xist RNA, which coats the inactive X chromosome (Xi) from which it is produced. However, trans-acting factors that mediate XCI remain largely unknown. Here, we perform a large-scale RNA interference screen to identify trans-acting XCI factors (XCIFs) that comprise regulators of cell signaling and transcription, including the DNA methyltransferase, DNMT1. The expression pattern of the XCIFs explains the selective onset of XCI following differentiation. The XCIFs function, at least in part, by promoting expression and/or localization of Xist to the Xi. Surprisingly, we find that DNMT1, which is generally a transcriptional repressor, is an activator of Xist transcription. Small-molecule inhibitors of two of the XCIFs can reversibly reactivate the Xi, which has implications for treatment of Rett syndrome and other dominant X-linked diseases. A homozygous mouse knockout of one of the XCIFs, stanniocalcin 1 (STC1), has an expected XCI defect but surprisingly is phenotypically normal. Remarkably, X-linked genes are not overexpressed in female Stc1(-/-) mice, revealing the existence of a mechanism(s) that can compensate for a persistent XCI deficiency to regulate X-linked gene expression.
Collapse
|
22
|
Differentiation-dependent requirement of Tsix long non-coding RNA in imprinted X-chromosome inactivation. Nat Commun 2014; 5:4209. [PMID: 24979243 PMCID: PMC4086345 DOI: 10.1038/ncomms5209] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Accepted: 05/26/2014] [Indexed: 01/01/2023] Open
Abstract
Imprinted X-inactivation is a paradigm of mammalian transgenerational epigenetic regulation resulting in silencing of genes on the paternally inherited X-chromosome. The preprogrammed fate of the X-chromosomes is thought to be controlled in cis by the parent-of-origin-specific expression of two opposing long non-coding RNAs, Tsix and Xist, in mice. Exclusive expression of Tsix from the maternal-X has implicated it as the instrument through which the maternal germline prevents inactivation of the maternal-X in the offspring. Here, we show that Tsix is dispensable for inhibiting Xist and X-inactivation in the early embryo and in cultured stem cells of extra-embryonic lineages. Tsix is instead required to prevent Xist expression as trophectodermal progenitor cells differentiate. Despite induction of wild-type Xist RNA and accumulation of histone H3-K27me3, many Tsix-mutant X-chromosomes fail to undergo ectopic X-inactivation. We propose a novel model of lncRNA function in imprinted X-inactivation that may also apply to other genomically imprinted loci.
Collapse
|
23
|
Minkovsky A, Sahakyan A, Rankin-Gee E, Bonora G, Patel S, Plath K. The Mbd1-Atf7ip-Setdb1 pathway contributes to the maintenance of X chromosome inactivation. Epigenetics Chromatin 2014; 7:12. [PMID: 25028596 PMCID: PMC4099106 DOI: 10.1186/1756-8935-7-12] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2014] [Accepted: 06/05/2014] [Indexed: 01/08/2023] Open
Abstract
Background X chromosome inactivation (XCI) is a developmental program of heterochromatin formation that initiates during early female mammalian embryonic development and is maintained through a lifetime of cell divisions in somatic cells. Despite identification of the crucial long non-coding RNA Xist and involvement of specific chromatin modifiers in the establishment and maintenance of the heterochromatin of the inactive X chromosome (Xi), interference with known pathways only partially reactivates the Xi once silencing has been established. Here, we studied ATF7IP (MCAF1), a protein previously characterized to coordinate DNA methylation and histone H3K9 methylation through interactions with the methyl-DNA binding protein MBD1 and the histone H3K9 methyltransferase SETDB1, as a candidate maintenance factor of the Xi. Results We found that siRNA-mediated knockdown of Atf7ip in mouse embryonic fibroblasts (MEFs) induces the activation of silenced reporter genes on the Xi in a low number of cells. Additional inhibition of two pathways known to contribute to Xi maintenance, DNA methylation and Xist RNA coating of the X chromosome, strongly increased the number of cells expressing Xi-linked genes upon Atf7ip knockdown. Despite its functional importance in Xi maintenance, ATF7IP does not accumulate on the Xi in MEFs or differentiating mouse embryonic stem cells. However, we found that depletion of two known repressive biochemical interactors of ATF7IP, MBD1 and SETDB1, but not of other unrelated H3K9 methyltransferases, also induces the activation of an Xi-linked reporter in MEFs. Conclusions Together, these data indicate that Atf7ip acts in a synergistic fashion with DNA methylation and Xist RNA to maintain the silent state of the Xi in somatic cells, and that Mbd1 and Setdb1, similar to Atf7ip, play a functional role in Xi silencing. We therefore propose that ATF7IP links DNA methylation on the Xi to SETDB1-mediated H3K9 trimethylation via its interaction with MBD1, and that this function is a crucial feature of the stable silencing of the Xi in female mammalian cells.
Collapse
Affiliation(s)
- Alissa Minkovsky
- David Geffen School of Medicine, Department of Biological Chemistry, Jonsson Comprehensive Cancer Center, Molecular Biology Institute, Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, CA 90095, USA
| | - Anna Sahakyan
- David Geffen School of Medicine, Department of Biological Chemistry, Jonsson Comprehensive Cancer Center, Molecular Biology Institute, Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, CA 90095, USA
| | - Elyse Rankin-Gee
- David Geffen School of Medicine, Department of Biological Chemistry, Jonsson Comprehensive Cancer Center, Molecular Biology Institute, Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, CA 90095, USA
| | - Giancarlo Bonora
- David Geffen School of Medicine, Department of Biological Chemistry, Jonsson Comprehensive Cancer Center, Molecular Biology Institute, Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, CA 90095, USA
| | - Sanjeet Patel
- David Geffen School of Medicine, Department of Biological Chemistry, Jonsson Comprehensive Cancer Center, Molecular Biology Institute, Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, CA 90095, USA
| | - Kathrin Plath
- David Geffen School of Medicine, Department of Biological Chemistry, Jonsson Comprehensive Cancer Center, Molecular Biology Institute, Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, CA 90095, USA
| |
Collapse
|
24
|
Derkacheva M, Hennig L. Variations on a theme: Polycomb group proteins in plants. JOURNAL OF EXPERIMENTAL BOTANY 2014; 65:2769-84. [PMID: 24336446 DOI: 10.1093/jxb/ert410] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Polycomb group (PcG) proteins evolved early in evolution, probably in the common ancestor of animals and plants. In some unicellular organisms, such as Chlamydomonas and Tetrahymena, PcG proteins silence genes in heterochromatin, suggesting an ancestral function in genome defence. In angiosperms, the PcG system controls many developmental transitions. A PcG function in the vernalization response evolved especially in Brassicaceaea. Thus, the role of PcG proteins has changed during evolution to match novel needs. Recent studies identified many proteins associated with plant PcG protein complexes. Possible functions of these interactions are discussed here. We highlight recent findings about recruitment of PcG proteins in plants in comparison with animal system. Through the new data, a picture emerges in which PcG protein complexes do not function in sequential linear pathways but as dynamically interacting networks allowing stabilizing feedback loops. We discuss how the interplay between different PcG protein complexes can enable establishment, maintenance, and epigenetic inheritance of H3K27me3.
Collapse
Affiliation(s)
- Maria Derkacheva
- Department of Plant Biology and Forest Genetics, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, SE-75007 Uppsala, Sweden Department of Biology and Zurich-Basel Plant Science Center, ETH Zurich, CH-8092, Zurich, Switzerland
| | - Lars Hennig
- Department of Plant Biology and Forest Genetics, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, SE-75007 Uppsala, Sweden Department of Biology and Zurich-Basel Plant Science Center, ETH Zurich, CH-8092, Zurich, Switzerland Science for Life Laboratory, SE-75007 Uppsala, Sweden
| |
Collapse
|
25
|
Backofen R, Vogel T. Biological and bioinformatical approaches to study crosstalk of long-non-coding RNAs and chromatin-modifying proteins. Cell Tissue Res 2014; 356:507-26. [PMID: 24820400 DOI: 10.1007/s00441-014-1885-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2014] [Accepted: 03/27/2014] [Indexed: 02/04/2023]
Abstract
Long-non-coding RNA (lncRNA) regulates gene expression through transcriptional and epigenetic regulation as well as alternative splicing in the nucleus. In addition, regulation is achieved at the levels of mRNA translation, storage and degradation in the cytoplasm. During recent years, several studies have described the interaction of lncRNAs with enzymes that confer so-called epigenetic modifications, such as DNA methylation, histone modifications and chromatin structure or remodelling. LncRNA interaction with chromatin-modifying enzymes (CME) is an emerging field that confers another layer of complexity in transcriptional regulation. Given that CME-lncRNA interactions have been identified in many biological processes, ranging from development to disease, comprehensive understanding of underlying mechanisms is important to inspire basic and translational research in the future. In this review, we highlight recent findings to extend our understanding about the functional interdependencies between lncRNAs and CMEs that activate or repress gene expression. We focus on recent highlights of molecular and functional roles for CME-lncRNAs and provide an interdisciplinary overview of recent technical and methodological developments that have improved biological and bioinformatical approaches for detection and functional studies of CME-lncRNA interaction.
Collapse
Affiliation(s)
- Rolf Backofen
- Institute of Computer Science, Albert-Ludwigs-University, Freiburg, Germany
| | | |
Collapse
|
26
|
Smeets D, Markaki Y, Schmid VJ, Kraus F, Tattermusch A, Cerase A, Sterr M, Fiedler S, Demmerle J, Popken J, Leonhardt H, Brockdorff N, Cremer T, Schermelleh L, Cremer M. Three-dimensional super-resolution microscopy of the inactive X chromosome territory reveals a collapse of its active nuclear compartment harboring distinct Xist RNA foci. Epigenetics Chromatin 2014; 7:8. [PMID: 25057298 PMCID: PMC4108088 DOI: 10.1186/1756-8935-7-8] [Citation(s) in RCA: 130] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2014] [Accepted: 04/11/2014] [Indexed: 12/31/2022] Open
Abstract
Background A Xist RNA decorated Barr body is the structural hallmark of the compacted inactive X territory in female mammals. Using super-resolution three-dimensional structured illumination microscopy (3D-SIM) and quantitative image analysis, we compared its ultrastructure with active chromosome territories (CTs) in human and mouse somatic cells, and explored the spatio-temporal process of Barr body formation at onset of inactivation in early differentiating mouse embryonic stem cells (ESCs). Results We demonstrate that all CTs are composed of structurally linked chromatin domain clusters (CDCs). In active CTs the periphery of CDCs harbors low-density chromatin enriched with transcriptionally competent markers, called the perichromatin region (PR). The PR borders on a contiguous channel system, the interchromatin compartment (IC), which starts at nuclear pores and pervades CTs. We propose that the PR and macromolecular complexes in IC channels together form the transcriptionally permissive active nuclear compartment (ANC). The Barr body differs from active CTs by a partially collapsed ANC with CDCs coming significantly closer together, although a rudimentary IC channel system connected to nuclear pores is maintained. Distinct Xist RNA foci, closely adjacent to the nuclear matrix scaffold attachment factor-A (SAF-A) localize throughout Xi along the rudimentary ANC. In early differentiating ESCs initial Xist RNA spreading precedes Barr body formation, which occurs concurrent with the subsequent exclusion of RNA polymerase II (RNAP II). Induction of a transgenic autosomal Xist RNA in a male ESC triggers the formation of an ‘autosomal Barr body’ with less compacted chromatin and incomplete RNAP II exclusion. Conclusions 3D-SIM provides experimental evidence for profound differences between the functional architecture of transcriptionally active CTs and the Barr body. Basic structural features of CT organization such as CDCs and IC channels are however still recognized, arguing against a uniform compaction of the Barr body at the nucleosome level. The localization of distinct Xist RNA foci at boundaries of the rudimentary ANC may be considered as snap-shots of a dynamic interaction with silenced genes. Enrichment of SAF-A within Xi territories and its close spatial association with Xist RNA suggests their cooperative function for structural organization of Xi.
Collapse
Affiliation(s)
- Daniel Smeets
- Biocenter, Department of Biology II, Ludwig Maximilians University (LMU), Martinsried, Germany ; Department of Biochemistry, University of Oxford, Oxford, UK
| | - Yolanda Markaki
- Biocenter, Department of Biology II, Ludwig Maximilians University (LMU), Martinsried, Germany
| | - Volker J Schmid
- Institute of Statistics, Ludwig Maximilians University (LMU), Munich, Germany
| | - Felix Kraus
- Biocenter, Department of Biology II, Ludwig Maximilians University (LMU), Martinsried, Germany ; Department of Biochemistry, University of Oxford, Oxford, UK
| | | | - Andrea Cerase
- Department of Biochemistry, University of Oxford, Oxford, UK
| | - Michael Sterr
- Biocenter, Department of Biology II, Ludwig Maximilians University (LMU), Martinsried, Germany
| | - Susanne Fiedler
- Biocenter, Department of Biology II, Ludwig Maximilians University (LMU), Martinsried, Germany
| | - Justin Demmerle
- Department of Biochemistry, University of Oxford, Oxford, UK
| | - Jens Popken
- Biocenter, Department of Biology II, Ludwig Maximilians University (LMU), Martinsried, Germany
| | - Heinrich Leonhardt
- Biocenter, Department of Biology II, Ludwig Maximilians University (LMU), Martinsried, Germany
| | - Neil Brockdorff
- Department of Biochemistry, University of Oxford, Oxford, UK
| | - Thomas Cremer
- Biocenter, Department of Biology II, Ludwig Maximilians University (LMU), Martinsried, Germany
| | - Lothar Schermelleh
- Biocenter, Department of Biology II, Ludwig Maximilians University (LMU), Martinsried, Germany ; Department of Biochemistry, University of Oxford, Oxford, UK
| | - Marion Cremer
- Biocenter, Department of Biology II, Ludwig Maximilians University (LMU), Martinsried, Germany
| |
Collapse
|
27
|
Human active X-specific DNA methylation events showing stability across time and tissues. Eur J Hum Genet 2014; 22:1376-81. [PMID: 24713664 DOI: 10.1038/ejhg.2014.34] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2013] [Revised: 01/29/2014] [Accepted: 02/13/2014] [Indexed: 02/07/2023] Open
Abstract
The phenomenon of X chromosome inactivation in female mammals is well characterised and remains the archetypal example of dosage compensation via monoallelic expression. The temporal series of events that culminates in inactive X-specific gene silencing by DNA methylation has revealed a 'patchwork' of gene inactivation along the chromosome, with approximately 15% of genes escaping. Such genes are therefore potentially subject to sex-specific imbalance between males and females. Aside from XIST, the non-coding RNA on the X chromosome destined to be inactivated, very little is known about the extent of loci that may be selectively silenced on the active X chromosome (Xa). Using longitudinal array-based DNA methylation profiling of two human tissues, we have identified specific and widespread active X-specific DNA methylation showing stability over time and across tissues of disparate origin. Our panel of X-chromosome loci subject to methylation on Xa reflects a potentially novel mechanism for controlling female-specific X inactivation and sex-specific dimorphisms in humans. Further work is needed to investigate these phenomena.
Collapse
|
28
|
Spatial separation of Xist RNA and polycomb proteins revealed by superresolution microscopy. Proc Natl Acad Sci U S A 2014; 111:2235-40. [PMID: 24469834 DOI: 10.1073/pnas.1312951111] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In female mammals, one of the two X chromosomes is transcriptionally silenced to equalize X-linked gene dosage relative to XY males, a process termed X chromosome inactivation. Mechanistically, this is thought to occur via directed recruitment of chromatin modifying factors by the master regulator, X-inactive specific transcript (Xist) RNA, which localizes in cis along the entire length of the chromosome. A well-studied example is the recruitment of polycomb repressive complex 2 (PRC2), for which there is evidence of a direct interaction involving the PRC2 proteins Enhancer of zeste 2 (Ezh2) and Supressor of zeste 12 (Suz12) and the A-repeat region located at the 5' end of Xist RNA. In this study, we have analyzed Xist-mediated recruitment of PRC2 using two approaches, microarray-based epigenomic mapping and superresolution 3D structured illumination microscopy. Making use of an ES cell line carrying an inducible Xist transgene located on mouse chromosome 17, we show that 24 h after synchronous induction of Xist expression, acquired PRC2 binding sites map predominantly to gene-rich regions, notably within gene bodies. Paradoxically, these new sites of PRC2 deposition do not correlate with Xist-mediated gene silencing. The 3D structured illumination microscopy was performed to assess the relative localization of PRC2 proteins and Xist RNA. Unexpectedly, we observed significant spatial separation and absence of colocalization both in the inducible Xist transgene ES cell line and in normal XX somatic cells. Our observations argue against direct interaction between Xist RNA and PRC2 proteins and, as such, prompt a reappraisal of the mechanism for PRC2 recruitment in X chromosome inactivation.
Collapse
|
29
|
Alfieri C, Gambetta MC, Matos R, Glatt S, Sehr P, Fraterman S, Wilm M, Müller J, Müller CW. Structural basis for targeting the chromatin repressor Sfmbt to Polycomb response elements. Genes Dev 2013; 27:2367-79. [PMID: 24186981 PMCID: PMC3828522 DOI: 10.1101/gad.226621.113] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Polycomb group (PcG) complexes repress developmental regulator genes by modifying their chromatin. However, how PcG proteins assemble into complexes and are recruited to their target genes is poorly understood. Here, Alfieri et al. report the crystal structure of the core of the PcG complex PhoRC, which contains the DNA-binding protein Pho and corepressor Sfmbt. The authors show that tethering of Sfmbt by Pho to Polycomb response elements is essential for Polycomb repression of developmental regulator genes in Drosophila. This study thus reveals the molecular basis for PcG protein complex assembly at specific genomic sites. Polycomb group (PcG) protein complexes repress developmental regulator genes by modifying their chromatin. How different PcG proteins assemble into complexes and are recruited to their target genes is poorly understood. Here, we report the crystal structure of the core of the Drosophila PcG protein complex Pleiohomeotic (Pho)-repressive complex (PhoRC), which contains the Polycomb response element (PRE)-binding protein Pho and Sfmbt. The spacer region of Pho, separated from the DNA-binding domain by a long flexible linker, forms a tight complex with the four malignant brain tumor (4MBT) domain of Sfmbt. The highly conserved spacer region of the human Pho ortholog YY1 binds three of the four human 4MBT domain proteins in an analogous manner but with lower affinity. Comparison of the Drosophila Pho:Sfmbt and human YY1:MBTD1 complex structures provides a molecular explanation for the lower affinity of YY1 for human 4MBT domain proteins. Structure-guided mutations that disrupt the interaction between Pho and Sfmbt abolish formation of a ternary Sfmbt:Pho:DNA complex in vitro and repression of developmental regulator genes in Drosophila. PRE tethering of Sfmbt by Pho is therefore essential for Polycomb repression in Drosophila. Our results support a model where DNA tethering of Sfmbt by Pho and multivalent interactions of Sfmbt with histone modifications and other PcG proteins create a hub for PcG protein complex assembly at PREs.
Collapse
Affiliation(s)
- Claudio Alfieri
- European Molecular Biology Laboratory, 69117 Heidelberg, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Marchese FP, Huarte M. Long non-coding RNAs and chromatin modifiers: their place in the epigenetic code. Epigenetics 2013; 9:21-6. [PMID: 24335342 DOI: 10.4161/epi.27472] [Citation(s) in RCA: 142] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The emergence of long non-coding RNAs (lncRNAs) has shaken up our conception of gene expression regulation, as lncRNAs take prominent positions as components of cellular networks. Several cellular processes involve lncRNAs, and a significant number of them have been shown to function in cooperation with chromatin modifying enzymes to promote epigenetic activation or silencing of gene expression. Different model mechanisms have been proposed to explain how lncRNAs achieve regulation of gene expression by interacting with the epigenetic machinery. Here we describe these models in light of the current knowledge of lncRNAs, such as Xist and HOTAIR, and discuss recent literature on the role of the three-dimensional structure of the genome in the mechanism of action of lncRNAs and chromatin modifiers.
Collapse
Affiliation(s)
| | - Maite Huarte
- Center for Applied Medical Research; University of Navarra; Pamplona, Spain
| |
Collapse
|
31
|
Nakagawa S, Kageyama Y. Nuclear lncRNAs as epigenetic regulators-beyond skepticism. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2013; 1839:215-22. [PMID: 24200874 DOI: 10.1016/j.bbagrm.2013.10.009] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2013] [Revised: 10/09/2013] [Accepted: 10/29/2013] [Indexed: 02/07/2023]
Abstract
Systematic transcriptome analysis has revealed that a vast majority of the mammalian genome is transcribed into RNA, thus establishing the concept of "pervasive transcription." More than half of these RNAs do not encode proteins, and they are collectively called noncoding RNAs. Although the physiological relevance of the transcription of these noncoding RNAs has remained unclear, it was recently proposed that one of the major roles of long noncoding RNAs (lncRNAs) in the nucleus is the regulation of gene expression at the transcriptional level via histone or DNA modification. In this review, we will summarize the advancement of our understanding of the molecular mechanisms of lncRNAs. This article is part of a Special Issue entitled: Chromatin and epigenetic regulation of animal development.
Collapse
Affiliation(s)
- Shinichi Nakagawa
- RNA Biology Laboratory, RIKEN, 2-1 Hirosawa, Saitama 351-0198, Japan.
| | - Yuji Kageyama
- Laboratory of Molecular Biology, Research Center for Environmental Genomics, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan; Graduate School of Science, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan
| |
Collapse
|
32
|
Salvador MA, Wicinski J, Cabaud O, Toiron Y, Finetti P, Josselin E, Lelièvre H, Kraus-Berthier L, Depil S, Bertucci F, Collette Y, Birnbaum D, Charafe-Jauffret E, Ginestier C. The histone deacetylase inhibitor abexinostat induces cancer stem cells differentiation in breast cancer with low Xist expression. Clin Cancer Res 2013; 19:6520-31. [PMID: 24141629 DOI: 10.1158/1078-0432.ccr-13-0877] [Citation(s) in RCA: 105] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
PURPOSE Cancer stem cells (CSC) are the tumorigenic cell population that has been shown to sustain tumor growth and to resist conventional therapies. The purpose of this study was to evaluate the potential of histone deacetylase inhibitors (HDACi) as anti-CSC therapies. EXPERIMENTAL DESIGN We evaluated the effect of the HDACi compound abexinostat on CSCs from 16 breast cancer cell lines (BCL) using ALDEFLUOR assay and tumorsphere formation. We performed gene expression profiling to identify biomarkers predicting drug response to abexinostat. Then, we used patient-derived xenograft (PDX) to confirm, in vivo, abexinostat treatment effect on breast CSCs according to the identified biomarkers. RESULTS We identified two drug-response profiles to abexinostat in BCLs. Abexinostat induced CSC differentiation in low-dose sensitive BCLs, whereas it did not have any effect on the CSC population from high-dose sensitive BCLs. Using gene expression profiling, we identified the long noncoding RNA Xist (X-inactive specific transcript) as a biomarker predicting BCL response to HDACi. We validated that low Xist expression predicts drug response in PDXs associated with a significant reduction of the breast CSC population. CONCLUSIONS Our study opens promising perspectives for the use of HDACi as a differentiation therapy targeting the breast CSCs and identified a biomarker to select patients with breast cancer susceptible to responding to this treatment.
Collapse
Affiliation(s)
- Marion A Salvador
- Authors' Affiliations: Institut national de la santé et de la recherche medicale (INSERM), CRCM, U1068, Laboratoire d'Oncologie Moléculaire; Département de Biopathologie, Institut Paoli-Calmettes; Aix Marseille Université, F-13007; CNRS, CRCM, 7258; INSERM, CRCM, U1068, TrGET, Marseille; and Institut de Recherches Internationales Servier, Paris, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Eun B, Sampley ML, Van Winkle MT, Good AL, Kachman MM, Pfeifer K. The Igf2/H19 muscle enhancer is an active transcriptional complex. Nucleic Acids Res 2013; 41:8126-34. [PMID: 23842673 PMCID: PMC3783178 DOI: 10.1093/nar/gkt597] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2013] [Revised: 06/13/2013] [Accepted: 06/15/2013] [Indexed: 02/06/2023] Open
Abstract
In eukaryotic cells, gene expression is mediated by enhancer activation of RNA polymerase at distant promoters. Recently, distinctions between enhancers and promoters have been blurred by the discovery that enhancers are associated with RNA polymerase and are sites of RNA synthesis. Here, we present an analysis of the insulin-like growth factor 2/H19 muscle enhancer. This enhancer includes a short conserved core element that is organized into chromatin typical of mammalian enhancers, binds tissue-specific transcription factors and functions on its own in vitro to activate promoter transcription. However, in a chromosomal context, this element is not sufficient to activate distant promoters. Instead, enhancer function also requires transcription in cis of a long non-coding RNA, Nctc1. Thus, the insulin-like growth factor 2/H19 enhancer is an active transcriptional complex whose own transcription is essential to its function.
Collapse
Affiliation(s)
- Bokkee Eun
- Program in Genomics of Differentiation, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA and Core-Laboratory, College of Medicine, Korea University, Seoul 136-701, Republic of Korea
| | - Megan L. Sampley
- Program in Genomics of Differentiation, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA and Core-Laboratory, College of Medicine, Korea University, Seoul 136-701, Republic of Korea
| | - Matthew T. Van Winkle
- Program in Genomics of Differentiation, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA and Core-Laboratory, College of Medicine, Korea University, Seoul 136-701, Republic of Korea
| | - Austin L. Good
- Program in Genomics of Differentiation, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA and Core-Laboratory, College of Medicine, Korea University, Seoul 136-701, Republic of Korea
| | - Marika M. Kachman
- Program in Genomics of Differentiation, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA and Core-Laboratory, College of Medicine, Korea University, Seoul 136-701, Republic of Korea
| | - Karl Pfeifer
- Program in Genomics of Differentiation, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA and Core-Laboratory, College of Medicine, Korea University, Seoul 136-701, Republic of Korea
| |
Collapse
|
34
|
Bhartiya D, Pal K, Ghosh S, Kapoor S, Jalali S, Panwar B, Jain S, Sati S, Sengupta S, Sachidanandan C, Raghava GPS, Sivasubbu S, Scaria V. lncRNome: a comprehensive knowledgebase of human long noncoding RNAs. DATABASE-THE JOURNAL OF BIOLOGICAL DATABASES AND CURATION 2013; 2013:bat034. [PMID: 23846593 PMCID: PMC3708617 DOI: 10.1093/database/bat034] [Citation(s) in RCA: 110] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The advent of high-throughput genome scale technologies has enabled us to unravel a large amount of the previously unknown transcriptionally active regions of the genome. Recent genome-wide studies have provided annotations of a large repertoire of various classes of noncoding transcripts. Long noncoding RNAs (lncRNAs) form a major proportion of these novel annotated noncoding transcripts, and presently known to be involved in a number of functionally distinct biological processes. Over 18 000 transcripts are presently annotated as lncRNA, and encompass previously annotated classes of noncoding transcripts including large intergenic noncoding RNA, antisense RNA and processed pseudogenes. There is a significant gap in the resources providing a stable annotation, cross-referencing and biologically relevant information. lncRNome has been envisioned with the aim of filling this gap by integrating annotations on a wide variety of biologically significant information into a comprehensive knowledgebase. To the best of our knowledge, lncRNome is one of the largest and most comprehensive resources for lncRNAs. Database URL:http://genome.igib.res.in/lncRNome
Collapse
Affiliation(s)
- Deeksha Bhartiya
- GN Ramachandran Knowledge Center for Genome Informatics, CSIR Institute of Genomics and Integrative Biology, Mall Road, Delhi 110007, India
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Staedtler F, Hartmann N, Letzkus M, Bongiovanni S, Scherer A, Marc P, Johnson KJ, Schumacher MM. Robust and tissue-independent gender-specific transcript biomarkers. Biomarkers 2013; 18:436-45. [PMID: 23829492 DOI: 10.3109/1354750x.2013.811538] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
CONTEXT Correct gender assignment in humans at the molecular level is crucial in many scientific disciplines and applied areas. MATERIALS AND METHODS Candidate gender markers were identified through supervised statistical analysis of genome wide microarray expression data from human blood samples (N = 123, 58 female, 65 male) as a training set. The potential of the markers to predict undisclosed tissue donor gender was tested on microarray data from 13 healthy and 11 cancerous human tissue collections (internal) and external datasets from samples of varying tissue origin. The abundance of some genes in the marker panel was quantified by RT-PCR as alternative analytical technology. RESULTS We identified and qualified predictive, gender-specific transcript markers based on a set of five genes (RPS4Y1, EIF1AY, DDX3Y, KDM5D and XIST). CONCLUSION Gene expression marker panels can be used as a robust tissue- and platform-independent predictive approach for gender determination.
Collapse
Affiliation(s)
- Frank Staedtler
- Novartis Institutes for BioMedical Research (NIBR), Biomarker Development, Basel, Switzerland.
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Senut MC, Cingolani P, Sen A, Kruger A, Shaik A, Hirsch H, Suhr ST, Ruden D. Epigenetics of early-life lead exposure and effects on brain development. Epigenomics 2013; 4:665-74. [PMID: 23244311 DOI: 10.2217/epi.12.58] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The epigenetic machinery plays a pivotal role in the control of many of the body's key cellular functions. It modulates an array of pliable mechanisms that are readily and durably modified by intracellular or extracellular factors. In the fast-moving field of neuroepigenetics, it is emerging that faulty epigenetic gene regulation can have dramatic consequences on the developing CNS that can last a lifetime and perhaps even affect future generations. Mounting evidence suggests that environmental factors can impact the developing brain through these epigenetic mechanisms and this report reviews and examines the epigenetic effects of one of the most common neurotoxic pollutants of our environment, which is believed to have no safe level of exposure during human development: lead.
Collapse
Affiliation(s)
- Marie-Claude Senut
- Institute of Environmental Health Sciences, CS Mott Center for Human Health & Development & Department of Obstetrics & Gynecology, Wayne State University, Detroit, MI 48201, USA
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Lessing D, Anguera MC, Lee JT. X chromosome inactivation and epigenetic responses to cellular reprogramming. Annu Rev Genomics Hum Genet 2013; 14:85-110. [PMID: 23662665 DOI: 10.1146/annurev-genom-091212-153530] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Reprogramming somatic cells to derive induced pluripotent stem cells (iPSCs) has provided a new method to model disease and holds great promise for regenerative medicine. Although genetically identical to their donor somatic cells, iPSCs undergo substantial changes in the epigenetic landscape during reprogramming. One such epigenetic process, X chromosome inactivation (XCI), has recently been shown to vary widely in human female iPSCs and embryonic stem cells (ESCs). XCI is a form of dosage compensation whose chief regulator is the noncoding RNA Xist. In mouse iPSCs and ESCs, Xist expression and XCI strictly correlate with the pluripotent state, but no such correlation exists in humans. Lack of XIST expression in human cells is linked to reduced developmental potential and an altered transcriptional profile, including upregulation of genes associated with cancer, which has therefore led to concerns about the safety of pluripotent stem cells for use in regenerative medicine. In this review, we describe how different states of XIST expression define three classes of female human pluripotent stem cells and explore progress in discovering the reasons for these variations and how they might be countered.
Collapse
Affiliation(s)
- Derek Lessing
- Howard Hughes Medical Institute, Department of Molecular Biology, and Department of Genetics, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114; , ,
| | | | | |
Collapse
|
38
|
Occupying chromatin: Polycomb mechanisms for getting to genomic targets, stopping transcriptional traffic, and staying put. Mol Cell 2013; 49:808-24. [PMID: 23473600 DOI: 10.1016/j.molcel.2013.02.013] [Citation(s) in RCA: 552] [Impact Index Per Article: 46.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Chromatin modification by Polycomb proteins provides an essential strategy for gene silencing in higher eukaryotes. Polycomb repressive complexes (PRCs) silence key developmental regulators and are centrally integrated in the transcriptional circuitry of stem cells. PRC2 trimethylates histone H3 on lysine 27 (H3K27me3), and PRC1-type complexes ubiquitylate histone H2A and compact polynucleosomes. How PRCs are deployed to select and silence genomic targets is the subject of intense investigation. We review advances on targeting, modulation, and functions of PRC1 and PRC2 and progress on defining the transcriptional steps they impact. Recent findings emphasize PRC1 targeting independent of H3K27me3, nonenzymatic PRC1-mediated compaction, and connections between PRCs and noncoding RNAs. Systematic analyses of Polycomb complexes and associated histone modifications during DNA replication and mitosis have also emerged. The stage is now set to reveal fundamental epigenetic mechanisms that determine how Polycomb target genes are silenced and how Polycomb silence is preserved through cell-cycle progression.
Collapse
|
39
|
Sado T, Brockdorff N. Advances in understanding chromosome silencing by the long non-coding RNA Xist. Philos Trans R Soc Lond B Biol Sci 2013; 368:20110325. [PMID: 23166390 DOI: 10.1098/rstb.2011.0325] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
In female mammals, one of the two X chromosomes becomes genetically silenced to compensate for dosage imbalance of X-linked genes between XX females and XY males. X chromosome inactivation (X-inactivation) is a classical model for epigenetic gene regulation in mammals and has been studied for half a century. In the last two decades, efforts have been focused on the X inactive-specific transcript (Xist) locus, discovered to be the master regulator of X-inactivation. The Xist gene produces a non-coding RNA that functions as the primary switch for X-inactivation, coating the X chromosome from which it is transcribed in cis. Significant progress has been made towards understanding how Xist is regulated at the onset of X-inactivation, but our understanding of the molecular basis of silencing mediated by Xist RNA has progressed more slowly. A picture has, however, begun to emerge, and new tools and resources hold out the promise of further advances to come. Here, we provide an overview of the current state of our knowledge, what is known about Xist RNA and how it may trigger chromosome silencing.
Collapse
Affiliation(s)
- Takashi Sado
- Division of Epigenomics, Medical Institute of Bioregulation, Kyushu University, 3-1-1, Maidashi, Higashi-ku, Fukuoka 812-8582, Japan.
| | | |
Collapse
|
40
|
Aragon L, Martinez-Perez E, Merkenschlager M. Condensin, cohesin and the control of chromatin states. Curr Opin Genet Dev 2013; 23:204-11. [PMID: 23312842 DOI: 10.1016/j.gde.2012.11.004] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2012] [Accepted: 11/08/2012] [Indexed: 10/27/2022]
Abstract
Cohesin and condensin complexes are essential for defining the topology of chromosomes through the cell cycle. Here we look at the emerging role of these complexes in regulating chromatin structure and gene expression and reflect on how these activities could be linked with chromosome topology.
Collapse
Affiliation(s)
- Luis Aragon
- Cell Cycle Group, MRC Clinical Sciences Centre, Imperial College London, Du Cane Road, London W12 0NN, UK.
| | | | | |
Collapse
|
41
|
Merkenschlager M, Odom DT. CTCF and cohesin: linking gene regulatory elements with their targets. Cell 2013; 152:1285-97. [PMID: 23498937 DOI: 10.1016/j.cell.2013.02.029] [Citation(s) in RCA: 274] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2012] [Revised: 02/11/2013] [Accepted: 02/12/2013] [Indexed: 12/11/2022]
Abstract
Current epigenomics approaches have facilitated the genome-wide identification of regulatory elements based on chromatin features and transcriptional regulator binding and have begun to map long-range interactions between regulatory elements and their targets. Here, we focus on the emerging roles of CTCF and the cohesin in coordinating long-range interactions between regulatory elements. We discuss how species-specific transposable elements may influence such interactions by remodeling the CTCF binding repertoire and suggest that cohesin's association with enhancers, promoters, and sites defined by CTCF binding has the potential to form developmentally regulated networks of long-range interactions that reflect and promote cell-type-specific transcriptional programs.
Collapse
Affiliation(s)
- Matthias Merkenschlager
- Lymphocyte Development Group, MRC Clinical Sciences Centre, Imperial College London, Du Cane Road, London W12 0NN, UK.
| | | |
Collapse
|
42
|
Yamamoto T, Nakayama K, Hirano H, Tomonaga T, Ishihama Y, Yamada T, Kondo T, Kodera Y, Sato Y, Araki N, Mamitsuka H, Goshima N. Integrated view of the human chromosome X-centric proteome project. J Proteome Res 2012; 12:58-61. [PMID: 23259409 DOI: 10.1021/pr300844p] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
This article introduces how the human chromosome X-centric proteome project is carried out by the Japan Chromosome X Project Consortium. The inactivation of one of two chromosomes in female mammals and accumulation of genes related to neural/immune systems/tumor/testis are characteristic of chromosome X. In this Chromosome X Project, information on proteins translated from genes on chromosome X is collected by both mass spectrometry- and antibody-based proteomics. Information on the following resources is also provided: antibodies to proteins translated and full-length cDNAs transcripted from the chromosome X genes for recombinant proteins. The consortium aims to provide the following tools to search useful antibodies in the literature (Antibody Ranker), to find gene expression sites in microarray databases (Transcript Localizer) and to do advanced MRM analysis (information-based MRM).
Collapse
Affiliation(s)
- Tadashi Yamamoto
- Institute of Nephrology, Graduate School of Medical and Dental Sciences, Niigata, Japan.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Seisenberger S, Andrews S, Krueger F, Arand J, Walter J, Santos F, Popp C, Thienpont B, Dean W, Reik W. The dynamics of genome-wide DNA methylation reprogramming in mouse primordial germ cells. Mol Cell 2012; 48:849-62. [PMID: 23219530 PMCID: PMC3533687 DOI: 10.1016/j.molcel.2012.11.001] [Citation(s) in RCA: 718] [Impact Index Per Article: 55.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2012] [Revised: 10/04/2012] [Accepted: 11/01/2012] [Indexed: 11/29/2022]
Abstract
Genome-wide DNA methylation reprogramming occurs in mouse primordial germ cells (PGCs) and preimplantation embryos, but the precise dynamics and biological outcomes are largely unknown. We have carried out whole-genome bisulfite sequencing (BS-Seq) and RNA-Seq across key stages from E6.5 epiblast to E16.5 PGCs. Global loss of methylation takes place during PGC expansion and migration with evidence for passive demethylation, but sequences that carry long-term epigenetic memory (imprints, CpG islands on the X chromosome, germline-specific genes) only become demethylated upon entry of PGCs into the gonads. The transcriptional profile of PGCs is tightly controlled despite global hypomethylation, with transient expression of the pluripotency network, suggesting that reprogramming and pluripotency are inextricably linked. Our results provide a framework for the understanding of the epigenetic ground state of pluripotency in the germline.
Collapse
|
44
|
Abstract
The first genes composing the Polycomb group (PcG) were identified 50 years ago in Drosophila melanogaster as essential developmental functions that regulate the correct segmental expression of homeotic selector genes. In the past two decades, what was initially described as a large family of chromatin-associated proteins involved in the maintenance of transcriptional repression to maintain cellular memory of homeotic genes turned out to be a highly conserved and sophisticated network of epigenetic regulators that play key roles in multiple aspects of cell physiology and identity, including regulation of all developmental genes, cell differentiation, stem and somatic cell reprogramming and response to environmental stimuli. These myriad phenotypes further spread interest for the contribution that PcG proteins revealed in the pathogenesis and progression of cancer and other complex diseases. Recent novel insights have increasingly clarified the molecular regulatory mechanisms at the basis of PcG-mediated epigenetic silencing and opened new visions about PcG functions in cells. In this review, we focus on the multiple modes of action of the PcG complexes and describe their biological roles.
Collapse
Affiliation(s)
- Chiara Lanzuolo
- Dulbecco Telethon Institute, Epigenetics and Genome Reprogramming, IRCCS Santa Lucia Foundation, 00143 Rome, Italy
| | | |
Collapse
|
45
|
Messerschmidt DM. Should I stay or should I go: protection and maintenance of DNA methylation at imprinted genes. Epigenetics 2012; 7:969-75. [PMID: 22869105 PMCID: PMC3515016 DOI: 10.4161/epi.21337] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Recent findings shed light on the coordination of two fundamental, yet mechanistically opposing, processes in the early mammalian embryo. During the oocyte-to-embryo transition and early preimplantation development nuclear reprogramming occurs. This resetting of the epigenome in maternal and paternal pronuclei to a ground state is the essential step ensuring totipotency in the zygote, the first embryonic stage. Radical, global DNA demethylation, which occurs actively in the paternal and passively in the maternal genome, is a prominent feature of nuclear reprogramming; yet, this process poses a danger to a subset of methylated sequences that must be preserved for their germline to soma inheritance. Genomic imprinting and its importance were demonstrated three decades ago by a series of experiments generating non-viable mammalian uniparental embryos. Indeed, imprinted loci, gene clusters with parent-of-origin specific gene expression patterns, must retain their differential methylation status acquired during gametogenesis throughout embryogenesis and in adult tissues. It is just recently that the molecular players that protect/maintain imprinting marks during reprogramming in preimplantation embryos have been identified, in particular, an epigenetic modifier complex formed by ZFP57 and TRIM28/KAP1. The interaction of these and other molecules with the newly formed embryonic chromatin and imprinted genes is discussed and highlighted herein.
Collapse
|
46
|
Lanzuolo C. Epigenetic alterations in muscular disorders. Comp Funct Genomics 2012; 2012:256892. [PMID: 22761545 PMCID: PMC3385594 DOI: 10.1155/2012/256892] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2012] [Revised: 04/11/2012] [Accepted: 04/19/2012] [Indexed: 11/18/2022] Open
Abstract
Epigenetic mechanisms, acting via chromatin organization, fix in time and space different transcriptional programs and contribute to the quality, stability, and heritability of cell-specific transcription programs. In the last years, great advances have been made in our understanding of mechanisms by which this occurs in normal subjects. However, only a small part of the complete picture has been revealed. Abnormal gene expression patterns are often implicated in the development of different diseases, and thus epigenetic studies from patients promise to fill an important lack of knowledge, deciphering aberrant molecular mechanisms at the basis of pathogenesis and diseases progression. The identification of epigenetic modifications that could be used as targets for therapeutic interventions could be particularly timely in the light of pharmacologically reversion of pathological perturbations, avoiding changes in DNA sequences. Here I discuss the available information on epigenetic mechanisms that, altered in neuromuscular disorders, could contribute to the progression of the disease.
Collapse
Affiliation(s)
- Chiara Lanzuolo
- CNR Institute of Cellular Biology and Neurobiology, IRCCS Santa Lucia Foundation, Via Del Fosso di Fiorano 64, 00143 Rome, Italy
| |
Collapse
|
47
|
Shore AN, Herschkowitz JI, Rosen JM. Noncoding RNAs involved in mammary gland development and tumorigenesis: there's a long way to go. J Mammary Gland Biol Neoplasia 2012; 17:43-58. [PMID: 22402938 PMCID: PMC3637027 DOI: 10.1007/s10911-012-9247-3] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2012] [Accepted: 02/22/2012] [Indexed: 01/04/2023] Open
Abstract
The mammalian genome encodes thousands of noncoding RNAs. These noncoding transcripts are broadly categorized into short noncoding RNAs, such as microRNAs (miRNAs), and long noncoding RNAs (lncRNAs) of greater than 200 nt. While the role of miRNAs in development and cancer biology has been extensively studied, much less is known about the vast majority of noncoding transcripts represented by lncRNAs. LncRNAs are emerging as key regulators of developmental processes and as such, their frequent misregulation in tumorigenesis and disease in not unexpected. The role of lncRNAs in mammary gland development and breast cancer is just beginning to be elucidated. This review will discuss the role of lncRNAs in mammalian and mammary gland development. In addition, we will review the contributions of lncRNAs to the stepwise progression of tumorigenesis, highlighting the role of lncRNAs in breast cancer.
Collapse
Affiliation(s)
- Amy N Shore
- Program in Developmental Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | | | | |
Collapse
|
48
|
Saitou M, Kagiwada S, Kurimoto K. Epigenetic reprogramming in mouse pre-implantation development and primordial germ cells. Development 2012; 139:15-31. [PMID: 22147951 DOI: 10.1242/dev.050849] [Citation(s) in RCA: 298] [Impact Index Per Article: 22.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Epigenetic modifications are crucial for the identity and stability of cells, and, when aberrant, can lead to disease. During mouse development, the genome-wide epigenetic states of pre-implantation embryos and primordial germ cells (PGCs) undergo extensive reprogramming. An improved understanding of the epigenetic reprogramming mechanisms that occur in these cells should provide important new information about the regulation of the epigenetic state of a cell and the mechanisms of induced pluripotency. Here, we discuss recent findings about the potential mechanisms of epigenetic reprogramming, particularly genome-wide DNA demethylation, in pre-implantation mouse embryos and PGCs.
Collapse
Affiliation(s)
- Mitinori Saitou
- Department of Anatomy and Cell Biology, Graduate School of Medicine, Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan.
| | | | | |
Collapse
|