1
|
Weaver MR, Shkoruta D, Pellegatta M, Berti C, Palmisano M, Ferguson S, Hurley E, French J, Patel S, Belin S, Selbach M, Paul FE, Sim F, Poitelon Y, Feltri ML. The STRIPAK complex is required for radial sorting and laminin receptor expression in Schwann cells. Cell Rep 2025; 44:115401. [PMID: 40056414 PMCID: PMC12035956 DOI: 10.1016/j.celrep.2025.115401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 01/19/2025] [Accepted: 02/14/2025] [Indexed: 03/10/2025] Open
Abstract
During peripheral nervous system development, Schwann cells undergo Rac1-dependent cytoskeletal reorganization as they insert cytoplasmic extensions into axon bundles to sort and myelinate individual axons. However, our understanding of the direct effectors targeted by Rac1 is limited. Here, we demonstrate that striatin-3 and MOB4 are Rac1 interactors. We show that Schwann-cell-specific ablation of striatin-3 causes defects in lamellipodia formation, and conditional Schwann cell knockout for striatins presents a severe delay in radial sorting. Finally, we demonstrate that deletion of Rac1 or striatin-1/3 in Schwann cells causes defects in the activation of Hippo pathway effectors YAP and TAZ and the expression of genes co-regulated by YAP and TAZ, such as extracellular matrix receptors. In summary, our results indicate that striatin-3 is a Rac1 interactor and that striatins are required for peripheral nervous system development and reveal a role for Rac1 in the regulation of the Hippo pathway in Schwann cells.
Collapse
Affiliation(s)
| | - Dominika Shkoruta
- Ivano-Frankivsk National Medical University, Ivano-Frankivsk, Ivano-Frankivsk Oblast, Ukraine
| | - Marta Pellegatta
- Institute for Myelin and Glia Exploration, Buffalo, NY, USA; Department of Biochemistry, Buffalo, NY, USA
| | - Caterina Berti
- Institute for Myelin and Glia Exploration, Buffalo, NY, USA; Department of Biochemistry, Buffalo, NY, USA
| | - Marilena Palmisano
- Institute for Myelin and Glia Exploration, Buffalo, NY, USA; Department of Biochemistry, Buffalo, NY, USA
| | - Scott Ferguson
- Institute for Myelin and Glia Exploration, Buffalo, NY, USA; Department of Pharmaceutical Sciences, Buffalo, NY, USA
| | - Edward Hurley
- Institute for Myelin and Glia Exploration, Buffalo, NY, USA
| | - Julianne French
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College, Albany, NY, USA
| | - Shreya Patel
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College, Albany, NY, USA
| | - Sophie Belin
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College, Albany, NY, USA
| | | | | | - Fraser Sim
- Department of Pharmacology and Toxicology, Buffalo, NY, USA
| | - Yannick Poitelon
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College, Albany, NY, USA.
| | - M Laura Feltri
- Institute for Myelin and Glia Exploration, Buffalo, NY, USA; Department of Biochemistry, Buffalo, NY, USA; Department of Neurology, State University of New York at Buffalo Jacob's School of Medicine and Biomedical Sciences, Buffalo, NY, USA
| |
Collapse
|
2
|
Loret C, Scherrer C, Rovini A, Lesage E, Richard L, Danigo A, Sturtz F, Favreau F, Faye PA, Lia AS. Addressing myelination disorders: Novel strategies using human 3D peripheral nerve model. Brain Res Bull 2025; 222:111252. [PMID: 39938756 DOI: 10.1016/j.brainresbull.2025.111252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 01/30/2025] [Accepted: 02/07/2025] [Indexed: 02/14/2025]
Abstract
Peripheral myelination disorders encompass a variety of disorders that affect myelin sheaths in the peripheral nervous system. The Charcot-Marie-Tooth disease (CMT), the most common inherited peripheral neuropathy, is one of the most prevalent among them. CMT stems from a wide range of genetic causes that disrupt the nerve conduction, leading to progressive muscle weakness and atrophy, sensory loss, and motor function impairment. Historically, the study of these disorders has relied heavily on animal studies, owing to the challenges in accessing human cells. However, the advent of human induced pluripotent stem cell (hiPSC)-derived neuronal cells has addressed these limitations in the realm of peripheral myelination disorders. Despite this, obtaining myelin in these models remains an expensive, time-consuming, and material-intensive process. This study presents a novel, cost-effective method utilizing hiPSC-derived Schwann cells and motor neurons in a three-dimensional culture system. Our method successfully enabled the acquisition of myelin in a control clone within just four weeks, as confirmed by electron microscopy. Furthermore, the utility of these approaches was validated by studying CMT4C, also named AR-CMTde-SH3TC2, the most common recessive demyelinating form of CMT. This revealed defects in Schwann cell support to motor neuron neurite outgrowth and impaired myelination in disease-specific hiPSC-derived lines. This approach offers valuable insights into the pathogenesis of peripheral myelination disorders and provides a platform for testing potential therapeutic strategies.
Collapse
Affiliation(s)
- Camille Loret
- University of Limoges, NeurIT UR 20218, GEIST Institute, Limoges F-87000, France.
| | - Camille Scherrer
- University of Limoges, NeurIT UR 20218, GEIST Institute, Limoges F-87000, France
| | - Amandine Rovini
- University of Limoges, NeurIT UR 20218, GEIST Institute, Limoges F-87000, France
| | - Esther Lesage
- University of Limoges, NeurIT UR 20218, GEIST Institute, Limoges F-87000, France
| | - Laurence Richard
- University of Limoges, NeurIT UR 20218, GEIST Institute, Limoges F-87000, France; CHU Limoges, Service de Neurologie, Limoges F-87000, France
| | - Aurore Danigo
- University of Limoges, NeurIT UR 20218, GEIST Institute, Limoges F-87000, France; CHU Limoges, Service de Neurologie, Limoges F-87000, France
| | - Franck Sturtz
- University of Limoges, NeurIT UR 20218, GEIST Institute, Limoges F-87000, France; CHU Limoges, Department of Biochemistry and Molecular Genetics, Limoges F-87000, France
| | - Frédéric Favreau
- University of Limoges, NeurIT UR 20218, GEIST Institute, Limoges F-87000, France; CHU Limoges, Department of Biochemistry and Molecular Genetics, Limoges F-87000, France.
| | - Pierre-Antoine Faye
- University of Limoges, NeurIT UR 20218, GEIST Institute, Limoges F-87000, France; CHU Limoges, Department of Biochemistry and Molecular Genetics, Limoges F-87000, France
| | - Anne-Sophie Lia
- University of Limoges, NeurIT UR 20218, GEIST Institute, Limoges F-87000, France; CHU Limoges, Department of Biochemistry and Molecular Genetics, Limoges F-87000, France; CHU Limoges, Department of Bioinformatics, Limoges F-87000, France
| |
Collapse
|
3
|
Weaver MR, Shkoruta D, Pellegatta M, Berti C, Palmisano M, Ferguson S, Hurley E, French J, Patel S, Belin S, Selbach M, Paul FE, Sim F, Poitelon Y, Feltri ML. The STRIPAK complex is required for radial sorting and laminin receptor expression in Schwann cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.30.620661. [PMID: 39554194 PMCID: PMC11565846 DOI: 10.1101/2024.10.30.620661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
During peripheral nervous system development, Schwann cells undergo Rac1-dependent cytoskeletal reorganization as they insert cytoplasmic extensions into axon bundles to radially sort, ensheath, and myelinate individual axons. However, our understanding of the direct effectors targeted by Rac1 is limited. Here, we demonstrate that striatin-3 and MOB4 are novel Rac1 interactors. We show that, similar to Rac1-null Schwann cells, Schwann cell specific ablation of striatin-3 causes defects in lamellipodia formation. In addition, conditional Schwann cell knockout of multiple striatin proteins presents a severe delay in radial sorting. Finally, we demonstrate here that deletion of Rac1 or striatin-1/3 in Schwann cells causes defects in Hippo pathway regulation, phosphorylation of the Hippo pathway effectors YAP and TAZ, and expression of genes co-regulated by YAP and TAZ, such as extracellular matrix receptors. In summary, our results indicate that striatin-3 is a novel Rac1 interactor, show that striatin proteins are required for peripheral nervous system development, and reveal a role for Rac1 in regulation of the Hippo pathway in Schwann cells.
Collapse
|
4
|
Yurchenco PD, Kulczyk AW. Polymerizing laminins in development, health, and disease. J Biol Chem 2024; 300:107429. [PMID: 38825010 PMCID: PMC11260871 DOI: 10.1016/j.jbc.2024.107429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 05/12/2024] [Accepted: 05/26/2024] [Indexed: 06/04/2024] Open
Abstract
Polymerizing laminins are multi-domain basement membrane (BM) glycoproteins that self-assemble into cell-anchored planar lattices to establish the initial BM scaffold. Nidogens, collagen-IV and proteoglycans then bind to the scaffold at different domain loci to create a mature BM. The LN domains of adjacent laminins bind to each other to form a polymer node, while the LG domains attach to cytoskeletal-anchoring integrins and dystroglycan, as well as to sulfatides and heparan sulfates. The polymer node, the repeating unit of the polymer scaffold, is organized into a near-symmetrical triskelion. The structure, recently solved by cryo-electron microscopy in combination with AlphaFold2 modeling and biochemical studies, reveals how the LN surface residues interact with each other and how mutations cause failures of self-assembly in an emerging group of diseases, the LN-lamininopathies, that include LAMA2-related dystrophy and Pierson syndrome.
Collapse
Affiliation(s)
- Peter D Yurchenco
- Department of Pathology & Laboratory Medicine, Robert Wood Johnson Medical School, Rutgers University, Piscataway, New Jersey, USA.
| | - Arkadiusz W Kulczyk
- Department of Biochemistry and Microbiology, Institute for Quantitative Biomedicine, Rutgers University, Piscataway, New Jersey, USA
| |
Collapse
|
5
|
Gu X, Rahman FS, Bendale G, Tran B, Miyata JF, Hernandez A, Anand S, Romero-Ortega MI. Pleiotrophin-Neuregulin1 promote axon regeneration and sorting in conduit repair of critical nerve gap injuries. RESEARCH SQUARE 2023:rs.3.rs-3429258. [PMID: 37986821 PMCID: PMC10659554 DOI: 10.21203/rs.3.rs-3429258/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
Significant challenges remain in the treatment of critical nerve gap injuries using artificial nerve conduits. We previously reported successful axon regeneration across a 40 mm nerve gap using a biosynthetic nerve implant (BNI) with multi-luminal synergistic growth factor release. However, axon sorting, remyelination, and functional recovery were limited. Neuregulin1 (NRG1) plays a significant role in regulating the proliferation and differentiation of Schwann cells (SCs) during development and after injury. We hypothesize that the release of NRG1 type III combined with pleiotrophin (PTN) in the BNI will enhance axon growth, remyelination, and function of regenerated nerves across a critical gap. A rabbit 40 mm peroneal gap injury model was used to investigate the therapeutic efficacy of BNIs containing either NRG1, PTN, or PTN+NRG1 growth factor release. We found that NRG1 treatment doubled the number of regenerated axons (1276±895) compared to empty controls (633±666) and PTN tripled this number (2270±989). NRG1 also significantly increased the number of SOX10+ Schwann cells in mid-conduit (20.42%±11.78%) and reduced the number of abnormal Remak axon bundles. The combination of PTN+NRG1 increased axon diameter (1.70±1.06) vs control (1.21±0.77) (p<0.01), with 15.35% of axons above 3 μm, comparable to autograft. However, the total number of remyelinated axons was not increased by the added NRG1 release, which correlated with absence of axonal NRG1 type III expression in the regenerated axons. Electrophysiological evaluation showed higher muscle force recruitment (23.8±16.0 mN vs 17.4±1.4 mN) and maximum evoked compound motor action potential (353 μV vs 37 μV) in PTN-NRG1 group versus control, which correlated with the improvement in the toe spread recovery observed in PTN-NRG1 treated animals (0.64±0.02) vs control (0.50±0.01). These results revealed the need of a combination of pro-regenerative and remyelinating growth factor combination therapy for the repair of critical nerve gaps.
Collapse
Affiliation(s)
- Xingjian Gu
- Department of Biomedical Engineering, University of Houston, Houston TX 77204
| | - Farial S. Rahman
- Department of Biomedical Engineering, University of Houston, Houston TX 77204
| | - G Bendale
- Department of Biomedical Engineering, University of Houston, Houston TX 77204
| | - B Tran
- Department of Biomedical Engineering, University of Houston, Houston TX 77204
| | - JF Miyata
- Department of Biomedical Engineering, University of Houston, Houston TX 77204
| | - A Hernandez
- Department of Biomedical Engineering, University of Houston, Houston TX 77204
| | - S Anand
- Department of Biomedical Engineering, University of Houston, Houston TX 77204
| | | |
Collapse
|
6
|
Jahncke JN, Wright KM. The many roles of dystroglycan in nervous system development and function: Dystroglycan and neural circuit development: Dystroglycan and neural circuit development. Dev Dyn 2023; 252:61-80. [PMID: 35770940 DOI: 10.1002/dvdy.516] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 06/21/2022] [Accepted: 06/22/2022] [Indexed: 01/04/2023] Open
Abstract
The glycoprotein dystroglycan was first identified in muscle, where it functions as part of the dystrophin glycoprotein complex to connect the extracellular matrix to the actin cytoskeleton. Mutations in genes involved in the glycosylation of dystroglycan cause a form of congenital muscular dystrophy termed dystroglycanopathy. In addition to its well-defined role in regulating muscle integrity, dystroglycan is essential for proper central and peripheral nervous system development. Patients with dystroglycanopathy can present with a wide range of neurological perturbations, but unraveling the complex role of Dag1 in the nervous system has proven to be a challenge. Over the past two decades, animal models of dystroglycanopathy have been an invaluable resource that has allowed researchers to elucidate dystroglycan's many roles in neural circuit development. In this review, we summarize the pathways involved in dystroglycan's glycosylation and its known interacting proteins, and discuss how it regulates neuronal migration, axon guidance, synapse formation, and its role in non-neuronal cells.
Collapse
Affiliation(s)
- Jennifer N Jahncke
- Neuroscience Graduate Program, Oregan Health & Science University, Portland, Oregon, USA
| | - Kevin M Wright
- Vollum Institute, Oregon Health & Science University, Portland, Oregon, USA
| |
Collapse
|
7
|
Cristobal CD, Lee HK. Development of myelinating glia: An overview. Glia 2022; 70:2237-2259. [PMID: 35785432 PMCID: PMC9561084 DOI: 10.1002/glia.24238] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 06/24/2022] [Accepted: 06/24/2022] [Indexed: 01/07/2023]
Abstract
Myelin is essential to nervous system function, playing roles in saltatory conduction and trophic support. Oligodendrocytes (OLs) and Schwann cells (SCs) form myelin in the central and peripheral nervous systems respectively and follow different developmental paths. OLs are neural stem-cell derived and follow an intrinsic developmental program resulting in a largely irreversible differentiation state. During embryonic development, OL precursor cells (OPCs) are produced in distinct waves originating from different locations in the central nervous system, with a subset developing into myelinating OLs. OPCs remain evenly distributed throughout life, providing a population of responsive, multifunctional cells with the capacity to remyelinate after injury. SCs derive from the neural crest, are highly dependent on extrinsic signals, and have plastic differentiation states. SC precursors (SCPs) are produced in early embryonic nerve structures and differentiate into multipotent immature SCs (iSCs), which initiate radial sorting and differentiate into myelinating and non-myelinating SCs. Differentiated SCs retain the capacity to radically change phenotypes in response to external signals, including becoming repair SCs, which drive peripheral regeneration. While several transcription factors and myelin components are common between OLs and SCs, their differentiation mechanisms are highly distinct, owing to their unique lineages and their respective environments. In addition, both OLs and SCs respond to neuronal activity and regulate nervous system output in reciprocal manners, possibly through different pathways. Here, we outline their basic developmental programs, mechanisms regulating their differentiation, and recent advances in the field.
Collapse
Affiliation(s)
- Carlo D. Cristobal
- Integrative Program in Molecular and Biomedical SciencesBaylor College of MedicineHoustonTexasUSA,Jan and Dan Duncan Neurological Research InstituteTexas Children's HospitalHoustonTexasUSA
| | - Hyun Kyoung Lee
- Integrative Program in Molecular and Biomedical SciencesBaylor College of MedicineHoustonTexasUSA,Jan and Dan Duncan Neurological Research InstituteTexas Children's HospitalHoustonTexasUSA,Department of PediatricsBaylor College of MedicineHoustonTexasUSA,Department of NeuroscienceBaylor College of MedicineHoustonTexasUSA
| |
Collapse
|
8
|
Delta/Notch signaling in glia maintains motor nerve barrier function and synaptic transmission by controlling matrix metalloproteinase expression. Proc Natl Acad Sci U S A 2022; 119:e2110097119. [PMID: 35969789 PMCID: PMC9407389 DOI: 10.1073/pnas.2110097119] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We have made a surprising discovery linking Delta/Notch signaling in subperineurial glia (SPG) to the regulation of nerve ensheathment and neurotransmitter release at the Drosophila neuromuscular junction (NMJ). SPG, the counterpart of the endothelial layer in the vertebrate blood–brain barrier, form the key cellular layer that is critical for axonal ensheathment and the blood–brain barrier in Drosophila. Our findings demonstrate that Delta/Notch signaling exerts a constitutive negative inhibition on JNK signaling in SPG, thereby limiting the expression of Mmp1, a matrix metalloproteinase. SPG-specific and temporally regulated knockdown of Delta leads to breakdown of barrier function and compromises neurotransmitter release at the NMJ. Our results provide a mechanistic insight into the biology of barrier function and glia–neuron interactions. While the role of barrier function in establishing a protective, nutrient-rich, and ionically balanced environment for neurons has been appreciated for some time, little is known about how signaling cues originating in barrier-forming cells participate in maintaining barrier function and influence synaptic activity. We have identified Delta/Notch signaling in subperineurial glia (SPG), a crucial glial type for Drosophila motor axon ensheathment and the blood–brain barrier, to be essential for controlling the expression of matrix metalloproteinase 1 (Mmp1), a major regulator of the extracellular matrix (ECM). Our genetic analysis indicates that Delta/Notch signaling in SPG exerts an inhibitory control on Mmp1 expression. In the absence of this inhibition, abnormally enhanced Mmp1 activity disrupts septate junctions and glial ensheathment of peripheral motor nerves, compromising neurotransmitter release at the neuromuscular junction (NMJ). Temporally controlled and cell type–specific transgenic analysis shows that Delta/Notch signaling inhibits transcription of Mmp1 by inhibiting c-Jun N-terminal kinase (JNK) signaling in SPG. Our results provide a mechanistic insight into the regulation of neuronal health and function via glial-initiated signaling and open a framework for understanding the complex relationship between ECM regulation and the maintenance of barrier function.
Collapse
|
9
|
McLean JW, Wilson JA, Tian T, Watson JA, VanHart M, Bean AJ, Scherer SS, Crossman DK, Ubogu E, Wilson SM. Disruption of Endosomal Sorting in Schwann Cells Leads to Defective Myelination and Endosomal Abnormalities Observed in Charcot-Marie-Tooth Disease. J Neurosci 2022; 42:5085-5101. [PMID: 35589390 PMCID: PMC9233440 DOI: 10.1523/jneurosci.2481-21.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 04/24/2022] [Accepted: 05/03/2022] [Indexed: 12/24/2022] Open
Abstract
Endosomal sorting plays a fundamental role in directing neural development. By altering the temporal and spatial distribution of membrane receptors, endosomes regulate signaling pathways that control the differentiation and function of neural cells. Several genes linked to inherited demyelinating peripheral neuropathies, known as Charcot-Marie-Tooth (CMT) disease, encode proteins that directly interact with components of the endosomal sorting complex required for transport (ESCRT). Our previous studies demonstrated that a point mutation in the ESCRT component hepatocyte growth-factor-regulated tyrosine kinase substrate (HGS), an endosomal scaffolding protein that identifies internalized cargo to be sorted by the endosome, causes a peripheral neuropathy in the neurodevelopmentally impaired teetering mice. Here, we constructed a Schwann cell-specific deletion of Hgs to determine the role of endosomal sorting during myelination. Inactivation of HGS in Schwann cells resulted in motor and sensory deficits, slowed nerve conduction velocities, delayed myelination and hypomyelinated axons, all of which occur in demyelinating forms of CMT. Consistent with a delay in Schwann cell maturation, HGS-deficient sciatic nerves displayed increased mRNA levels for several promyelinating genes and decreased mRNA levels for genes that serve as markers of myelinating Schwann cells. Loss of HGS also altered the abundance and activation of the ERBB2/3 receptors, which are essential for Schwann cell development. We therefore hypothesize that HGS plays a critical role in endosomal sorting of the ERBB2/3 receptors during Schwann cell maturation, which further implicates endosomal dysfunction in inherited peripheral neuropathies.SIGNIFICANCE STATEMENT Schwann cells myelinate peripheral axons, and defects in Schwann cell function cause inherited demyelinating peripheral neuropathies known as CMT. Although many CMT-linked mutations are in genes that encode putative endosomal proteins, little is known about the requirements of endosomal sorting during myelination. In this study, we demonstrate that loss of HGS disrupts the endosomal sorting pathway in Schwann cells, resulting in hypomyelination, aberrant myelin sheaths, and impairment of the ERBB2/3 receptor pathway. These findings suggest that defective endosomal trafficking of internalized cell surface receptors may be a common mechanism contributing to demyelinating CMT.
Collapse
Affiliation(s)
- John W McLean
- Department of Neurobiology, Evelyn F. McKnight Brain Institute, Civitan International Research Center, University of Alabama at Birmingham, Birmingham, Alabama 35294
| | - Julie A Wilson
- Department of Neurobiology, Evelyn F. McKnight Brain Institute, Civitan International Research Center, University of Alabama at Birmingham, Birmingham, Alabama 35294
| | - Tina Tian
- Department of Neurobiology, Evelyn F. McKnight Brain Institute, Civitan International Research Center, University of Alabama at Birmingham, Birmingham, Alabama 35294
| | - Jennifer A Watson
- Department of Neurobiology, Evelyn F. McKnight Brain Institute, Civitan International Research Center, University of Alabama at Birmingham, Birmingham, Alabama 35294
| | - Mary VanHart
- Department of Neurobiology, Evelyn F. McKnight Brain Institute, Civitan International Research Center, University of Alabama at Birmingham, Birmingham, Alabama 35294
| | - Andrew J Bean
- Graduate College, Rush University, Chicago, Illinois 60612
| | - Steven S Scherer
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - David K Crossman
- Department of Genetics, University of Alabama at Birmingham, Birmingham, Alabama, 35294
| | - Eroboghene Ubogu
- Department of Neurobiology, Evelyn F. McKnight Brain Institute, Civitan International Research Center, University of Alabama at Birmingham, Birmingham, Alabama 35294
- Division of Neuromuscular Disease, Department of Neurology, University of Alabama at Birmingham, Birmingham, Alabama 35294
| | - Scott M Wilson
- Department of Neurobiology, Evelyn F. McKnight Brain Institute, Civitan International Research Center, University of Alabama at Birmingham, Birmingham, Alabama 35294
| |
Collapse
|
10
|
Sardella-Silva G, Mietto BS, Ribeiro-Resende VT. Four Seasons for Schwann Cell Biology, Revisiting Key Periods: Development, Homeostasis, Repair, and Aging. Biomolecules 2021; 11:1887. [PMID: 34944531 PMCID: PMC8699407 DOI: 10.3390/biom11121887] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 12/08/2021] [Accepted: 12/10/2021] [Indexed: 01/28/2023] Open
Abstract
Like the seasons of the year, all natural things happen in stages, going through adaptations when challenged, and Schwann cells are a great example of that. During maturation, these cells regulate several steps in peripheral nervous system development. The Spring of the cell means the rise and bloom through organized stages defined by time-dependent regulation of factors and microenvironmental influences. Once matured, the Summer of the cell begins: a high energy stage focused on maintaining adult homeostasis. The Schwann cell provides many neuron-glia communications resulting in the maintenance of synapses. In the peripheral nervous system, Schwann cells are pivotal after injuries, balancing degeneration and regeneration, similarly to when Autumn comes. Their ability to acquire a repair phenotype brings the potential to reconnect axons to targets and regain function. Finally, Schwann cells age, not only by growing old, but also by imposed environmental cues, like loss of function induced by pathologies. The Winter of the cell presents as reduced activity, especially regarding their role in repair; this reflects on the regenerative potential of older/less healthy individuals. This review gathers essential information about Schwann cells in different stages, summarizing important participation of this intriguing cell in many functions throughout its lifetime.
Collapse
Affiliation(s)
- Gabriela Sardella-Silva
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, RJ, Brazil;
- Núcleo Multidisciplinar de Pesquisa em Biologia (Numpex-Bio), Campus de Duque de Caxias Geraldo Guerra Cidade, Universidade Federal do Rio de Janeiro, Duque de Caxias 25255-030, RJ, Brazil
| | - Bruno Siqueira Mietto
- Instituto de Ciências Biológicas, Universidade Federal de Juiz de Fora, Juiz de Fora 36036-900, MG, Brazil;
| | - Victor Túlio Ribeiro-Resende
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, RJ, Brazil;
- Núcleo Multidisciplinar de Pesquisa em Biologia (Numpex-Bio), Campus de Duque de Caxias Geraldo Guerra Cidade, Universidade Federal do Rio de Janeiro, Duque de Caxias 25255-030, RJ, Brazil
| |
Collapse
|
11
|
Previtali SC. Peripheral Nerve Development and the Pathogenesis of Peripheral Neuropathy: the Sorting Point. Neurotherapeutics 2021; 18:2156-2168. [PMID: 34244926 PMCID: PMC8804061 DOI: 10.1007/s13311-021-01080-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/26/2021] [Indexed: 12/12/2022] Open
Abstract
Nerve development requires a coordinated sequence of events and steps to be accomplished for the generation of functional peripheral nerves to convey sensory and motor signals. Any abnormality during development may result in pathological structure and function of the nerve, which evolves in peripheral neuropathy. In this review, we will briefly describe different steps of nerve development while we will mostly focus on the molecular mechanisms involved in radial sorting of axons, one of these nerve developmental steps. We will summarize current knowledge of molecular pathways so far reported in radial sorting and their possible interactions. Finally, we will describe how disruption of these pathways may result in human neuropathies.
Collapse
Affiliation(s)
- Stefano C Previtali
- Neuromuscular Repair Unit, InSpe (Institute of Experimental Neurology) and Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy.
| |
Collapse
|
12
|
Catignas KK, Frick LR, Pellegatta M, Hurley E, Kolb Z, Addabbo K, McCarty JH, Hynes RO, van der Flier A, Poitelon Y, Wrabetz L, Feltri ML. α V integrins in Schwann cells promote attachment to axons, but are dispensable in vivo. Glia 2021; 69:91-108. [PMID: 32744761 PMCID: PMC8491627 DOI: 10.1002/glia.23886] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 06/22/2020] [Accepted: 06/23/2020] [Indexed: 12/22/2022]
Abstract
In the developing peripheral nervous system, Schwann cells (SCs) extend their processes to contact, sort, and myelinate axons. The mechanisms that contribute to the interaction between SCs and axons are just beginning to be elucidated. Using a SC-neuron coculture system, we demonstrate that Arg-Gly-Asp (RGD) peptides that inhibit αV -containing integrins delay the extension of SCs elongating on axons. αV integrins in SC localize to sites of contact with axons and are expressed early in development during radial sorting and myelination. Short interfering RNA-mediated knockdown of the αV integrin subunit also delays SC extension along axons in vitro, suggesting that αV -containing integrins participate in axo-glial interactions. However, mice lacking the αV subunit in SCs, alone or in combination with the potentially compensating α5 subunit, or the αV partners β3 or β8 , myelinate normally during development and remyelinate normally after nerve crush, indicating that overlapping or compensatory mechanisms may hide the in vivo role of RGD-binding integrins.
Collapse
Affiliation(s)
- Kathleen K. Catignas
- Hunter James Kelly Research Institute, University at Buffalo, Buffalo, New York
- Department of Biochemistry, University at Buffalo, Buffalo, New York
| | - Luciana R. Frick
- Hunter James Kelly Research Institute, University at Buffalo, Buffalo, New York
- Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, New York
| | - Marta Pellegatta
- Hunter James Kelly Research Institute, University at Buffalo, Buffalo, New York
- IRCCS San Raffaele Scientific Institute and Vita Salute San Raffaele University, Milan, Italy
| | - Edward Hurley
- Hunter James Kelly Research Institute, University at Buffalo, Buffalo, New York
- Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, New York
| | - Zachary Kolb
- Department of Biochemistry, University at Buffalo, Buffalo, New York
| | - Kathryn Addabbo
- Department of Biochemistry, University at Buffalo, Buffalo, New York
| | - Joseph H. McCarty
- Department of Neurosurgery, The University of Texas M.D. Anderson Cancer Center, Houston, Texas
| | - Richard O. Hynes
- Howard Hughes Medical Institute, Massachusetts Institute of Technology, Boston, Massachusetts
| | - Arjan van der Flier
- Howard Hughes Medical Institute, Massachusetts Institute of Technology, Boston, Massachusetts
- Sanofi, Boston, Massachusetts
| | - Yannick Poitelon
- Hunter James Kelly Research Institute, University at Buffalo, Buffalo, New York
- Department of Biochemistry, University at Buffalo, Buffalo, New York
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College, Albany, New York
| | - Lawrence Wrabetz
- Hunter James Kelly Research Institute, University at Buffalo, Buffalo, New York
- Department of Biochemistry, University at Buffalo, Buffalo, New York
- Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, New York
| | - Maria Laura Feltri
- Hunter James Kelly Research Institute, University at Buffalo, Buffalo, New York
- Department of Biochemistry, University at Buffalo, Buffalo, New York
- Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, New York
| |
Collapse
|
13
|
Muppirala AN, Limbach LE, Bradford EF, Petersen SC. Schwann cell development: From neural crest to myelin sheath. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2020; 10:e398. [PMID: 33145925 DOI: 10.1002/wdev.398] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 10/06/2020] [Accepted: 10/07/2020] [Indexed: 12/16/2022]
Abstract
Vertebrate nervous system function requires glial cells, including myelinating glia that insulate axons and provide trophic support that allows for efficient signal propagation by neurons. In vertebrate peripheral nervous systems, neural crest-derived glial cells known as Schwann cells (SCs) generate myelin by encompassing and iteratively wrapping membrane around single axon segments. SC gliogenesis and neurogenesis are intimately linked and governed by a complex molecular environment that shapes their developmental trajectory. Changes in this external milieu drive developing SCs through a series of distinct morphological and transcriptional stages from the neural crest to a variety of glial derivatives, including the myelinating sublineage. Cues originate from the extracellular matrix, adjacent axons, and the developing SC basal lamina to trigger intracellular signaling cascades and gene expression changes that specify stages and transitions in SC development. Here, we integrate the findings from in vitro neuron-glia co-culture experiments with in vivo studies investigating SC development, particularly in zebrafish and mouse, to highlight critical factors that specify SC fate. Ultimately, we connect classic biochemical and mutant studies with modern genetic and visualization tools that have elucidated the dynamics of SC development. This article is categorized under: Signaling Pathways > Cell Fate Signaling Nervous System Development > Vertebrates: Regional Development.
Collapse
Affiliation(s)
- Anoohya N Muppirala
- Program in Neuroscience, Harvard Medical School, Boston, Massachusetts, USA.,Department of Neuroscience, Kenyon College, Gambier, Ohio, USA
| | | | | | - Sarah C Petersen
- Department of Neuroscience, Kenyon College, Gambier, Ohio, USA.,Department of Biology, Kenyon College, Gambier, Ohio, USA
| |
Collapse
|
14
|
Chen S, Wu C, Liu A, Wei D, Xiao Y, Guo Z, Chen L, Zhu Y, Sun J, Luo H, Fan H. Biofabrication of nerve fibers with mimetic myelin sheath-like structure and aligned fibrous niche. Biofabrication 2020; 12:035013. [PMID: 32240990 DOI: 10.1088/1758-5090/ab860d] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Nerve tissues contain hierarchically ordered nerve fibers, while each of the nerve fibers has nano-oriented fibrous extracellular matrix and a core-shell structure of tubular myelin sheath with elongated axons encapsulated. Here, we report, for the first time, a ready approach to fabricate biomimetic nerve fibers which are oriented and have a core-shell structure to spatially encapsulate two types of cells, neurons and Schwann cells. A microfluidic system was designed and assembled, which contained a coaxial triple-channel chip and a stretching loading device. Alginate was used first to assist the fabrication, which was washed away afterwards. The orientation of the biomimetic nerve fibers was optimized by the control of the compositions of methacrylate hyaluronan and fibrin, together with the parameters of microfluidic shearing and external stretching. Also, neurons and Schwann cells, which were respectively located in the core and shell of the fibers, displayed advanced biologic functions, including neurogenesis and myelinating maturation. We demonstrate that the neural performance is relatively good, compared to that resulted from individually encapsulated in single-layer microfibers. The present study brings insights to fabricate biomimetic nerve fibers for their potential in neuroscience research and nerve regeneration. Moreover, the present methodology on the fabrication of oriented fibers with different types of cells separately encapsulated should be applicable to biomimetic constructions of various tissues.
Collapse
Affiliation(s)
- Suping Chen
- Engineering Research Center in Biomaterials, Sichuan University, Chengdu, Sichuan 610064 People's Republic of China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Morioka S, Sakaguchi H, Mohri H, Taniguchi-Ikeda M, Kanagawa M, Suzuki T, Miyagoe-Suzuki Y, Toda T, Saito N, Ueyama T. Congenital hearing impairment associated with peripheral cochlear nerve dysmyelination in glycosylation-deficient muscular dystrophy. PLoS Genet 2020; 16:e1008826. [PMID: 32453729 PMCID: PMC7274486 DOI: 10.1371/journal.pgen.1008826] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 06/05/2020] [Accepted: 05/04/2020] [Indexed: 02/06/2023] Open
Abstract
Hearing loss (HL) is one of the most common sensory impairments and etiologically and genetically heterogeneous disorders in humans. Muscular dystrophies (MDs) are neuromuscular disorders characterized by progressive degeneration of skeletal muscle accompanied by non-muscular symptoms. Aberrant glycosylation of α-dystroglycan causes at least eighteen subtypes of MD, now categorized as MD-dystroglycanopathy (MD-DG), with a wide spectrum of non-muscular symptoms. Despite a growing number of MD-DG subtypes and increasing evidence regarding their molecular pathogeneses, no comprehensive study has investigated sensorineural HL (SNHL) in MD-DG. Here, we found that two mouse models of MD-DG, Largemyd/myd and POMGnT1-KO mice, exhibited congenital, non-progressive, and mild-to-moderate SNHL in auditory brainstem response (ABR) accompanied by extended latency of wave I. Profoundly abnormal myelination was found at the peripheral segment of the cochlear nerve, which is rich in the glycosylated α-dystroglycan-laminin complex and demarcated by "the glial dome." In addition, patients with Fukuyama congenital MD, a type of MD-DG, also had latent SNHL with extended latency of wave I in ABR. Collectively, these findings indicate that hearing impairment associated with impaired Schwann cell-mediated myelination at the peripheral segment of the cochlear nerve is a notable symptom of MD-DG.
Collapse
Affiliation(s)
- Shigefumi Morioka
- Laboratory of Molecular Pharmacology, Biosignal Research Center, Kobe University, Kobe, Japan
- Department of Otolaryngology-Head and Neck Surgery, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Hirofumi Sakaguchi
- Department of Otolaryngology-Head and Neck Surgery, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Hiroaki Mohri
- Laboratory of Molecular Pharmacology, Biosignal Research Center, Kobe University, Kobe, Japan
| | - Mariko Taniguchi-Ikeda
- Division of Molecular Brain Science, Kobe University Graduate School of Medicine, Kobe, Japan
- Department of Clinical Genetics, Fujita Health University Hospital, Toyoake, Japan
| | - Motoi Kanagawa
- Division of Molecular Brain Science, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Toshiaki Suzuki
- Laboratory of Molecular Pharmacology, Biosignal Research Center, Kobe University, Kobe, Japan
| | - Yuko Miyagoe-Suzuki
- Department of Molecular Therapy, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Tatsushi Toda
- Division of Molecular Brain Science, Kobe University Graduate School of Medicine, Kobe, Japan
- Department of Neurology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Naoaki Saito
- Laboratory of Molecular Pharmacology, Biosignal Research Center, Kobe University, Kobe, Japan
| | - Takehiko Ueyama
- Laboratory of Molecular Pharmacology, Biosignal Research Center, Kobe University, Kobe, Japan
| |
Collapse
|
16
|
Previtali SC, Zambon AA. LAMA2 Neuropathies: Human Findings and Pathomechanisms From Mouse Models. Front Mol Neurosci 2020; 13:60. [PMID: 32390798 PMCID: PMC7190814 DOI: 10.3389/fnmol.2020.00060] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 03/26/2020] [Indexed: 12/18/2022] Open
Abstract
Merosin deficient Congenital Muscular Dystrophy (MDC1A), or LAMA2-related muscular dystrophy (LAMA2-RD), is a recessive disorder resulting from mutations in the LAMA2 gene, encoding for the alpha-2 chain of laminin-211. The disease is predominantly characterized by progressive muscular dystrophy affecting patient motor function and reducing life expectancy. However, LAMA2-RD also comprises a developmentally-associated dysmyelinating neuropathy that contributes to the disease progression, in addition to brain abnormalities; the latter often underappreciated. In this brief review, we present data supporting the impact of peripheral neuropathy in the LAMA2-RD phenotype, including both mouse models and human studies. We discuss the molecular mechanisms underlying nerve abnormalities and involved in the laminin-211 pathway, which affects axon sorting, ensheathing and myelination. We conclude with some final considerations of consequences on nerve regeneration and potential therapeutic strategies.
Collapse
Affiliation(s)
- Stefano Carlo Previtali
- Neuromuscular Repair Unit, Institute of Experimental Neurology (InSpe), Division of Neuroscience, IRCCS Ospedale San Raffaele, Milan, Italy.,Department of Neurology, IRCCS Ospedale San Raffaele, Milan, Italy
| | | |
Collapse
|
17
|
Yurchenco PD, McKee KK. Linker Protein Repair of LAMA2 Dystrophic Neuromuscular Basement Membranes. Front Mol Neurosci 2019; 12:305. [PMID: 31920536 PMCID: PMC6923227 DOI: 10.3389/fnmol.2019.00305] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 11/26/2019] [Indexed: 12/18/2022] Open
Abstract
An understanding of basement membrane (BM) assembly at a molecular level provides a foundation with which to develop repair strategies for diseases with defects of BM structure. As currently understood, laminins become anchored to cell surfaces through receptor-mediated interactions and polymerize. This provisional matrix binds to proteoglycans, nidogens and type IV collagen to form a mature BM. Identification of BM binding domains and their binding targets has enabled investigators to engineer proteins that link BM components to modify and improve their functions. This approach is illustrated by the development of two linker proteins to repair the LAMA2-deficient muscular dystrophy (LAMA2-MD). Dystrophy-causing mutations of the LAMA2 gene product (Lmα2) disrupt the BM molecular architecture, destabilizing it. In a mild ambulatory type of the dystrophy, α2LN mutations in laminin-211 prevents polymerization. In the more common and severe non-ambulatory type (MDC1A), an absent Lmα2 subunit is replaced by the naturally occurring Lmα4 subunit that is normally largely confined to the microvasculature. The compensatory laminin, however, is a poor substitute because it neither polymerizes nor binds adequately to the anchoring receptor α-dystroglycan. A chimeric laminin-binding protein called αLNNd enables laminins with defective or absent αLN domains to polymerize while another engineered protein, miniagrin (mag), promotes efficient α-dystroglycan receptor-binding in otherwise weakly adhesive laminins. Alone, αLNNd enables Lm211 with a self-assembly defect to polymerize and was used to ameliorate a mouse model of the ambulatory dystrophy. Together, these linker proteins alter Lm411 such that it both polymerizes and binds αDG such that it properly assembles. This combination was used to ameliorate a mouse model of the non-ambulatory dystrophy in which Lm411 replaced Lm211 as seen in the human disease. Collectively, these studies pave the way for the development of somatic gene delivery of repair proteins for treatment of LAMA2-MD. The studies further suggest a more general approach of linker-protein mediated repair in which a variety of existing BM protein domains can be combined together to stabilize BMs in other diseases.
Collapse
Affiliation(s)
- Peter D Yurchenco
- Department of Pathology and Laboratory Medicine, Rutgers Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ, United States
| | - Karen K McKee
- Department of Pathology and Laboratory Medicine, Rutgers Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ, United States
| |
Collapse
|
18
|
Mehrotra P, Tseropoulos G, Bronner ME, Andreadis ST. Adult tissue-derived neural crest-like stem cells: Sources, regulatory networks, and translational potential. Stem Cells Transl Med 2019; 9:328-341. [PMID: 31738018 PMCID: PMC7031649 DOI: 10.1002/sctm.19-0173] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 10/22/2019] [Accepted: 10/25/2019] [Indexed: 12/15/2022] Open
Abstract
Neural crest (NC) cells are a multipotent stem cell population that give rise to a diverse array of cell types in the body, including peripheral neurons, Schwann cells (SC), craniofacial cartilage and bone, smooth muscle cells, and melanocytes. NC formation and differentiation into specific lineages takes place in response to a set of highly regulated signaling and transcriptional events within the neural plate border. Premigratory NC cells initially are contained within the dorsal neural tube from which they subsequently emigrate, migrating to often distant sites in the periphery. Following their migration and differentiation, some NC‐like cells persist in adult tissues in a nascent multipotent state, making them potential candidates for autologous cell therapy. This review discusses the gene regulatory network responsible for NC development and maintenance of multipotency. We summarize the genes and signaling pathways that have been implicated in the differentiation of a postmigratory NC into mature myelinating SC. We elaborate on the signals and transcription factors involved in the acquisition of immature SC fate, axonal sorting of unmyelinated neuronal axons, and finally the path toward mature myelinating SC, which envelope axons within myelin sheaths, facilitating electrical signal propagation. The gene regulatory events guiding development of SC in vivo provides insights into means for differentiating NC‐like cells from adult human tissues into functional SC, which have the potential to provide autologous cell sources for the treatment of demyelinating and neurodegenerative disorders.
Collapse
Affiliation(s)
- Pihu Mehrotra
- Department of Chemical and Biological Engineering, University at Buffalo, Buffalo, New York
| | - Georgios Tseropoulos
- Department of Chemical and Biological Engineering, University at Buffalo, Buffalo, New York
| | - Marianne E Bronner
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California
| | - Stelios T Andreadis
- Department of Chemical and Biological Engineering, University at Buffalo, Buffalo, New York.,Center of Excellence in Bioinformatics and Life Sciences, Buffalo, New York.,Department of Biomedical Engineering, University at Buffalo, Buffalo, New York
| |
Collapse
|
19
|
Ahmed M, Marziali LN, Arenas E, Feltri ML, Ffrench-Constant C. Laminin α2 controls mouse and human stem cell behaviour during midbrain dopaminergic neuron development. Development 2019; 146:dev.172668. [PMID: 31371375 DOI: 10.1242/dev.172668] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Accepted: 07/24/2019] [Indexed: 01/16/2023]
Abstract
Development of the central nervous system requires coordination of the proliferation and differentiation of neural stem cells. Here, we show that laminin alpha 2 (lm-α2) is a component of the midbrain dopaminergic neuron (mDA) progenitor niche in the ventral midbrain (VM) and identify a concentration-dependent role for laminin α2β1γ1 (lm211) in regulating mDA progenitor proliferation and survival via a distinct set of receptors. At high concentrations, lm211-rich environments maintain mDA progenitors in a proliferative state via integrins α6β1 and α7β1, whereas low concentrations of lm211 support mDA lineage survival via dystroglycan receptors. We confirmed our findings in vivo, demonstrating that the VM was smaller in the absence of lm-α2, with increased apoptosis; furthermore, the progenitor pool was depleted through premature differentiation, resulting in fewer mDA neurons. Examination of mDA neuron subtype composition showed a reduction in later-born mDA neurons of the ventral tegmental area, which control a range of cognitive behaviours. Our results identify a novel role for laminin in neural development and provide a possible mechanism for autism-like behaviours and the brainstem hypoplasia seen in some individuals with mutations of LAMA2.
Collapse
Affiliation(s)
- Maqsood Ahmed
- MRC Centre of Regenerative Medicine, University of Edinburgh, Edinburgh EH16 4UU, UK
| | - Leandro N Marziali
- Departments of Biochemistry and Neurology, School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY 14203, USA
| | - Ernest Arenas
- Laboratory of Molecular Neurobiology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm 17177, Sweden
| | - M Laura Feltri
- Departments of Biochemistry and Neurology, School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY 14203, USA
| | | |
Collapse
|
20
|
Ommer A, Figlia G, Pereira JA, Datwyler AL, Gerber J, DeGeer J, Lalli G, Suter U. Ral GTPases in Schwann cells promote radial axonal sorting in the peripheral nervous system. J Cell Biol 2019; 218:2350-2369. [PMID: 31201267 PMCID: PMC6605813 DOI: 10.1083/jcb.201811150] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 04/03/2019] [Accepted: 05/15/2019] [Indexed: 12/11/2022] Open
Abstract
Small GTPases of the Rho and Ras families are important regulators of Schwann cell biology. The Ras-like GTPases RalA and RalB act downstream of Ras in malignant peripheral nerve sheath tumors. However, the physiological role of Ral proteins in Schwann cell development is unknown. Using transgenic mice with ablation of one or both Ral genes, we report that Ral GTPases are crucial for axonal radial sorting. While lack of only one Ral GTPase was dispensable for early peripheral nerve development, ablation of both RalA and RalB resulted in persistent radial sorting defects, associated with hallmarks of deficits in Schwann cell process formation and maintenance. In agreement, ex vivo-cultured Ral-deficient Schwann cells were impaired in process extension and the formation of lamellipodia. Our data indicate further that RalA contributes to Schwann cell process extensions through the exocyst complex, a known effector of Ral GTPases, consistent with an exocyst-mediated function of Ral GTPases in Schwann cells.
Collapse
Affiliation(s)
- Andrea Ommer
- Institute of Molecular Health Sciences, Department of Biology, ETH Zurich, Zurich, Switzerland
| | - Gianluca Figlia
- Institute of Molecular Health Sciences, Department of Biology, ETH Zurich, Zurich, Switzerland
| | - Jorge A Pereira
- Institute of Molecular Health Sciences, Department of Biology, ETH Zurich, Zurich, Switzerland
| | - Anna Lena Datwyler
- Institute of Molecular Health Sciences, Department of Biology, ETH Zurich, Zurich, Switzerland
| | - Joanne Gerber
- Institute of Molecular Health Sciences, Department of Biology, ETH Zurich, Zurich, Switzerland
| | - Jonathan DeGeer
- Institute of Molecular Health Sciences, Department of Biology, ETH Zurich, Zurich, Switzerland
| | - Giovanna Lalli
- Wolfson Centre for Age-Related Diseases, King's College London, London, UK
| | - Ueli Suter
- Institute of Molecular Health Sciences, Department of Biology, ETH Zurich, Zurich, Switzerland
| |
Collapse
|
21
|
Gerber D, Ghidinelli M, Tinelli E, Somandin C, Gerber J, Pereira JA, Ommer A, Figlia G, Miehe M, Nägeli LG, Suter V, Tadini V, Sidiropoulos PNM, Wessig C, Toyka KV, Suter U. Schwann cells, but not Oligodendrocytes, Depend Strictly on Dynamin 2 Function. eLife 2019; 8:e42404. [PMID: 30648534 PMCID: PMC6335055 DOI: 10.7554/elife.42404] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Accepted: 12/31/2018] [Indexed: 12/13/2022] Open
Abstract
Myelination requires extensive plasma membrane rearrangements, implying that molecules controlling membrane dynamics play prominent roles. The large GTPase dynamin 2 (DNM2) is a well-known regulator of membrane remodeling, membrane fission, and vesicular trafficking. Here, we genetically ablated Dnm2 in Schwann cells (SCs) and in oligodendrocytes of mice. Dnm2 deletion in developing SCs resulted in severely impaired axonal sorting and myelination onset. Induced Dnm2 deletion in adult SCs caused a rapidly-developing peripheral neuropathy with abundant demyelination. In both experimental settings, mutant SCs underwent prominent cell death, at least partially due to cytokinesis failure. Strikingly, when Dnm2 was deleted in adult SCs, non-recombined SCs still expressing DNM2 were able to remyelinate fast and efficiently, accompanied by neuropathy remission. These findings reveal a remarkable self-healing capability of peripheral nerves that are affected by SC loss. In the central nervous system, however, we found no major defects upon Dnm2 deletion in oligodendrocytes.
Collapse
Affiliation(s)
- Daniel Gerber
- Department of BiologyInstitute of Molecular Health Sciences, Swiss Federal Institute of Technology, ETH ZurichZurichSwitzerland
| | - Monica Ghidinelli
- Department of BiologyInstitute of Molecular Health Sciences, Swiss Federal Institute of Technology, ETH ZurichZurichSwitzerland
| | - Elisa Tinelli
- Department of BiologyInstitute of Molecular Health Sciences, Swiss Federal Institute of Technology, ETH ZurichZurichSwitzerland
| | - Christian Somandin
- Department of BiologyInstitute of Molecular Health Sciences, Swiss Federal Institute of Technology, ETH ZurichZurichSwitzerland
| | - Joanne Gerber
- Department of BiologyInstitute of Molecular Health Sciences, Swiss Federal Institute of Technology, ETH ZurichZurichSwitzerland
| | - Jorge A Pereira
- Department of BiologyInstitute of Molecular Health Sciences, Swiss Federal Institute of Technology, ETH ZurichZurichSwitzerland
| | - Andrea Ommer
- Department of BiologyInstitute of Molecular Health Sciences, Swiss Federal Institute of Technology, ETH ZurichZurichSwitzerland
| | - Gianluca Figlia
- Department of BiologyInstitute of Molecular Health Sciences, Swiss Federal Institute of Technology, ETH ZurichZurichSwitzerland
| | - Michaela Miehe
- Department of BiologyInstitute of Molecular Health Sciences, Swiss Federal Institute of Technology, ETH ZurichZurichSwitzerland
| | - Lukas G Nägeli
- Department of BiologyInstitute of Molecular Health Sciences, Swiss Federal Institute of Technology, ETH ZurichZurichSwitzerland
| | - Vanessa Suter
- Department of BiologyInstitute of Molecular Health Sciences, Swiss Federal Institute of Technology, ETH ZurichZurichSwitzerland
| | - Valentina Tadini
- Department of BiologyInstitute of Molecular Health Sciences, Swiss Federal Institute of Technology, ETH ZurichZurichSwitzerland
| | - Páris NM Sidiropoulos
- Department of BiologyInstitute of Molecular Health Sciences, Swiss Federal Institute of Technology, ETH ZurichZurichSwitzerland
| | - Carsten Wessig
- Department of NeurologyUniversity Hospital of Würzburg, University of WürzburgWürzburgGermany
| | - Klaus V Toyka
- Department of NeurologyUniversity Hospital of Würzburg, University of WürzburgWürzburgGermany
| | - Ueli Suter
- Department of BiologyInstitute of Molecular Health Sciences, Swiss Federal Institute of Technology, ETH ZurichZurichSwitzerland
| |
Collapse
|
22
|
Deng B, Lv W, Duan W, Liu Y, Li Z, Song X, Cui C, Qi X, Wang X, Li C. FGF9 modulates Schwann cell myelination in developing nerves and induces a pro‐inflammatory environment during injury. J Cell Biochem 2018; 119:8643-8658. [PMID: 29953642 DOI: 10.1002/jcb.27105] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Accepted: 05/07/2018] [Indexed: 01/12/2023]
Affiliation(s)
- Binbin Deng
- Department of Neurology Second Hospital of Hebei Medical University Shijiazhuang China
- Department of Neurology The First Affiliated Hospital of Wenzhou Medical University Wenzhou Zhejiang China
| | - Wenjing Lv
- Department of Neurology Second Hospital of Hebei Medical University Shijiazhuang China
| | - Weisong Duan
- Department of Neurology Second Hospital of Hebei Medical University Shijiazhuang China
- Neurological Laboratory of Hebei Province Shijiazhuang China
| | - Yakun Liu
- Department of Neurology Second Hospital of Hebei Medical University Shijiazhuang China
| | - Zhongyao Li
- Department of Neurology Second Hospital of Hebei Medical University Shijiazhuang China
| | - Xueqing Song
- Department of Neurology Second Hospital of Hebei Medical University Shijiazhuang China
| | - Can Cui
- Department of Neurology Second Hospital of Hebei Medical University Shijiazhuang China
| | - Xiaoming Qi
- Department of Neurology Second Hospital of Hebei Medical University Shijiazhuang China
| | - Xiaoxiao Wang
- Department of Neurology Second Hospital of Hebei Medical University Shijiazhuang China
| | - Chunyan Li
- Department of Neurology Second Hospital of Hebei Medical University Shijiazhuang China
- Neurological Laboratory of Hebei Province Shijiazhuang China
| |
Collapse
|
23
|
Kask K, Tikker L, Ruisu K, Lulla S, Oja EM, Meier R, Raid R, Velling T, Tõnissoo T, Pooga M. Targeted deletion of RIC8A in mouse neural precursor cells interferes with the development of the brain, eyes, and muscles. Dev Neurobiol 2018; 78:374-390. [PMID: 29380551 DOI: 10.1002/dneu.22578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Revised: 01/18/2018] [Accepted: 01/18/2018] [Indexed: 11/11/2022]
Abstract
Autosomal recessive disorders such as Fukuyama congenital muscular dystrophy, Walker-Warburg syndrome, and the muscle-eye-brain disease are characterized by defects in the development of patient's brain, eyes, and skeletal muscles. These syndromes are accompanied by brain malformations like type II lissencephaly in the cerebral cortex with characteristic overmigrations of neurons through the breaches of the pial basement membrane. The signaling pathways activated by laminin receptors, dystroglycan and integrins, control the integrity of the basement membrane, and their malfunctioning may underlie the pathologies found in the rise of defects reminiscent of these syndromes. Similar defects in corticogenesis and neuromuscular disorders were found in mice when RIC8A was specifically removed from neural precursor cells. RIC8A regulates a subset of G-protein α subunits and in several model organisms, it has been reported to participate in the control of cell division, signaling, and migration. Here, we studied the role of RIC8A in the development of the brain, muscles, and eyes of the neural precursor-specific conditional Ric8a knockout mice. The absence of RIC8A severely affected the attachment and positioning of radial glial processes, Cajal-Retzius' cells, and the arachnoid trabeculae, and these mice displayed additional defects in the lens, skeletal muscles, and heart development. All the discovered defects might be linked to aberrancies in cell adhesion and migration, suggesting that RIC8A has a crucial role in the regulation of cell-extracellular matrix interactions and that its removal leads to the phenotype characteristic to type II lissencephaly-associated diseases. © 2018 Wiley Periodicals, Inc. Develop Neurobiol 78: 374-390, 2018.
Collapse
Affiliation(s)
- Keiu Kask
- Institute of Molecular and Cell Biology, University of Tartu, 23 Riia St, Tartu, 51010, Estonia
| | - Laura Tikker
- Department of Biosciences, University of Helsinki, P.O. Box 56, Viikinkaari 9, FIN-00014, Helsinki, Finland
| | - Katrin Ruisu
- Institute of Molecular and Cell Biology, University of Tartu, 23 Riia St, Tartu, 51010, Estonia
| | - Sirje Lulla
- Institute of Molecular and Cell Biology, University of Tartu, 23 Riia St, Tartu, 51010, Estonia
| | - Eva-Maria Oja
- Institute of Molecular and Cell Biology, University of Tartu, 23 Riia St, Tartu, 51010, Estonia
| | - Riho Meier
- Institute of Molecular and Cell Biology, University of Tartu, 23 Riia St, Tartu, 51010, Estonia
| | - Raivo Raid
- Institute of Molecular and Cell Biology, University of Tartu, 23 Riia St, Tartu, 51010, Estonia
| | - Teet Velling
- Institute of Molecular and Cell Biology, University of Tartu, 23 Riia St, Tartu, 51010, Estonia
| | - Tambet Tõnissoo
- Institute of Molecular and Cell Biology, University of Tartu, 23 Riia St, Tartu, 51010, Estonia
| | - Margus Pooga
- Institute of Molecular and Cell Biology, University of Tartu, 23 Riia St, Tartu, 51010, Estonia.,Institute of Technology, University of Tartu, Nooruse 1, Tartu, 50411, Estonia
| |
Collapse
|
24
|
Belin S, Zuloaga KL, Poitelon Y. Influence of Mechanical Stimuli on Schwann Cell Biology. Front Cell Neurosci 2017; 11:347. [PMID: 29209171 PMCID: PMC5701625 DOI: 10.3389/fncel.2017.00347] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Accepted: 10/19/2017] [Indexed: 12/05/2022] Open
Abstract
Schwann cells are the glial cells of the peripheral nervous system (PNS). They insulate axons by forming a specialized extension of plasma membrane called the myelin sheath. The formation of myelin is essential for the rapid saltatory propagation of action potentials and to maintain the integrity of axons. Although both axonal and extracellular matrix (ECM) signals are necessary for myelination to occur, the cellular and molecular mechanisms regulating myelination continue to be elucidated. Schwann cells in peripheral nerves are physiologically exposed to mechanical stresses (i.e., tensile, compressive and shear strains), occurring during development, adulthood and injuries. In addition, there is a growing body of evidences that Schwann cells are sensitive to the stiffness of their environment. In this review, we detail the mechanical constraints of Schwann cells and peripheral nerves. We explore the regulation of Schwann cell signaling pathways in response to mechanical stimulation. Finally, we provide a comprehensive overview of the experimental studies addressing the mechanobiology of Schwann cells. Understanding which mechanical properties can interfere with the cellular and molecular biology of Schwann cell during development, myelination and following injuries opens new insights in the regulation of PNS development and treatment approaches in peripheral neuropathies.
Collapse
Affiliation(s)
- Sophie Belin
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College, Albany, NY, United States
| | - Kristen L. Zuloaga
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College, Albany, NY, United States
| | - Yannick Poitelon
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College, Albany, NY, United States
| |
Collapse
|
25
|
Ghidinelli M, Poitelon Y, Shin YK, Ameroso D, Williamson C, Ferri C, Pellegatta M, Espino K, Mogha A, Monk K, Podini P, Taveggia C, Nave KA, Wrabetz L, Park HT, Feltri ML. Laminin 211 inhibits protein kinase A in Schwann cells to modulate neuregulin 1 type III-driven myelination. PLoS Biol 2017. [PMID: 28636612 PMCID: PMC5479503 DOI: 10.1371/journal.pbio.2001408] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Myelin is required for proper nervous system function. Schwann cells in developing nerves depend on extrinsic signals from the axon and from the extracellular matrix to first sort and ensheathe a single axon and then myelinate it. Neuregulin 1 type III (Nrg1III) and laminin α2β1γ1 (Lm211) are the key axonal and matrix signals, respectively, but how their signaling is integrated and if each molecule controls both axonal sorting and myelination is unclear. Here, we use a series of epistasis experiments to show that Lm211 modulates neuregulin signaling to ensure the correct timing and amount of myelination. Lm211 can inhibit Nrg1III by limiting protein kinase A (PKA) activation, which is required to initiate myelination. We provide evidence that excessive PKA activation amplifies promyelinating signals downstream of neuregulin, including direct activation of the neuregulin receptor ErbB2 and its effector Grb2-Associated Binder-1 (Gab1), thereby elevating the expression of the key transcription factors Oct6 and early growth response protein 2 (Egr2). The inhibitory effect of Lm211 is seen only in fibers of small caliber. These data may explain why hereditary neuropathies associated with decreased laminin function are characterized by focally thick and redundant myelin.
Collapse
Affiliation(s)
- Monica Ghidinelli
- Hunter James Kelly Research Institute, Department of Biochemistry and Neurology, Jacobs School of Medicine and Biomedical Sciences, The State University of New York at Buffalo, Buffalo, New York, United States of America
- Division of Genetics and Cell Biology, San Raffaele Scientific Institute, DIBIT, Milano, Italy
- UniSR, Vita Salute San Raffaele University, Milan, Italy
| | - Yannick Poitelon
- Hunter James Kelly Research Institute, Department of Biochemistry and Neurology, Jacobs School of Medicine and Biomedical Sciences, The State University of New York at Buffalo, Buffalo, New York, United States of America
| | - Yoon Kyoung Shin
- Department of Physiology, Peripheral Neuropathy Research Center, Dong-A University Medical School, Busan, South Korea
| | - Dominique Ameroso
- Hunter James Kelly Research Institute, Department of Biochemistry and Neurology, Jacobs School of Medicine and Biomedical Sciences, The State University of New York at Buffalo, Buffalo, New York, United States of America
| | - Courtney Williamson
- Hunter James Kelly Research Institute, Department of Biochemistry and Neurology, Jacobs School of Medicine and Biomedical Sciences, The State University of New York at Buffalo, Buffalo, New York, United States of America
| | - Cinzia Ferri
- Division of Genetics and Cell Biology, San Raffaele Scientific Institute, DIBIT, Milano, Italy
| | - Marta Pellegatta
- Hunter James Kelly Research Institute, Department of Biochemistry and Neurology, Jacobs School of Medicine and Biomedical Sciences, The State University of New York at Buffalo, Buffalo, New York, United States of America
- Division of Genetics and Cell Biology, San Raffaele Scientific Institute, DIBIT, Milano, Italy
- UniSR, Vita Salute San Raffaele University, Milan, Italy
| | - Kevin Espino
- Hunter James Kelly Research Institute, Department of Biochemistry and Neurology, Jacobs School of Medicine and Biomedical Sciences, The State University of New York at Buffalo, Buffalo, New York, United States of America
| | - Amit Mogha
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Kelly Monk
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Paola Podini
- Division of Neuroscience and INSPE, San Raffaele Scientific Institute, DIBIT, Milano, Italy
| | - Carla Taveggia
- Division of Neuroscience and INSPE, San Raffaele Scientific Institute, DIBIT, Milano, Italy
| | - Klaus-Armin Nave
- Department of Neurogenetics, Max Planck Institute of Experimental Medicine, Göttingen, Germany
| | - Lawrence Wrabetz
- Hunter James Kelly Research Institute, Department of Biochemistry and Neurology, Jacobs School of Medicine and Biomedical Sciences, The State University of New York at Buffalo, Buffalo, New York, United States of America
- Division of Genetics and Cell Biology, San Raffaele Scientific Institute, DIBIT, Milano, Italy
| | - Hwan Tae Park
- Department of Physiology, Peripheral Neuropathy Research Center, Dong-A University Medical School, Busan, South Korea
- * E-mail: (MLF); (HTP)
| | - Maria Laura Feltri
- Hunter James Kelly Research Institute, Department of Biochemistry and Neurology, Jacobs School of Medicine and Biomedical Sciences, The State University of New York at Buffalo, Buffalo, New York, United States of America
- Division of Genetics and Cell Biology, San Raffaele Scientific Institute, DIBIT, Milano, Italy
- * E-mail: (MLF); (HTP)
| |
Collapse
|
26
|
Logan AM, Mammel AE, Robinson DC, Chin AL, Condon AF, Robinson FL. Schwann cell-specific deletion of the endosomal PI 3-kinase Vps34 leads to delayed radial sorting of axons, arrested myelination, and abnormal ErbB2-ErbB3 tyrosine kinase signaling. Glia 2017; 65:1452-1470. [PMID: 28617998 DOI: 10.1002/glia.23173] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2016] [Revised: 05/04/2017] [Accepted: 05/10/2017] [Indexed: 12/12/2022]
Abstract
The PI 3-kinase Vps34 (Pik3c3) synthesizes phosphatidylinositol 3-phosphate (PI3P), a lipid critical for both endosomal membrane traffic and macroautophagy. Human genetics have implicated PI3P dysregulation, and endosomal trafficking in general, as a recurring cause of demyelinating Charcot-Marie-Tooth (CMT) peripheral neuropathy. Here, we investigated the role of Vps34, and PI3P, in mouse Schwann cells by selectively deleting Vps34 in this cell type. Vps34-Schwann cell knockout (Vps34SCKO ) mice show severe hypomyelination in peripheral nerves. Vps34-/- Schwann cells interact abnormally with axons, and there is a delay in radial sorting, a process by which large axons are selected for myelination. Upon reaching the promyelinating stage, Vps34-/- Schwann cells are significantly impaired in the elaboration of myelin. Nerves from Vps34SCKO mice contain elevated levels of the LC3 and p62 proteins, indicating impaired autophagy. However, in the light of recent demonstrations that autophagy is dispensable for myelination, it is unlikely that hypomyelination in Vps34SCKO mice is caused by impaired autophagy. Endosomal trafficking is also disturbed in Vps34-/- Schwann cells. We investigated the activation of the ErbB2/3 receptor tyrosine kinases in Vps34SCKO nerves, as these proteins, which play essential roles in Schwann cell myelination, are known to traffic through endosomes. In Vps34SCKO nerves, ErbB3 was hyperphosphorylated on a tyrosine known to be phosphorylated in response to neuregulin 1 exposure. ErbB2 protein levels were also decreased during myelination. Our findings suggest that the loss of Vps34 alters the trafficking of ErbB2/3 through endosomes. Abnormal ErbB2/3 signaling to downstream targets may contribute to the hypomyelination observed in Vps34SCKO mice.
Collapse
Affiliation(s)
- Anne M Logan
- Department of Neurology, Jungers Center for Neurosciences Research, Oregon Health and Science University, Mail Code L623, Portland, Oregon, 97239.,Neuroscience Graduate Program, Oregon Health and Science University, Portland, Oregon, 97239
| | - Anna E Mammel
- Department of Neurology, Jungers Center for Neurosciences Research, Oregon Health and Science University, Mail Code L623, Portland, Oregon, 97239.,Cell, Developmental and Cancer Biology Graduate Program, Oregon Health and Science University, Portland, Oregon, 97239
| | - Danielle C Robinson
- Department of Neurology, Jungers Center for Neurosciences Research, Oregon Health and Science University, Mail Code L623, Portland, Oregon, 97239.,Neuroscience Graduate Program, Oregon Health and Science University, Portland, Oregon, 97239
| | - Andrea L Chin
- Department of Neurology, Jungers Center for Neurosciences Research, Oregon Health and Science University, Mail Code L623, Portland, Oregon, 97239
| | - Alec F Condon
- Department of Neurology, Jungers Center for Neurosciences Research, Oregon Health and Science University, Mail Code L623, Portland, Oregon, 97239.,Neuroscience Graduate Program, Oregon Health and Science University, Portland, Oregon, 97239
| | - Fred L Robinson
- Department of Neurology, Jungers Center for Neurosciences Research, Oregon Health and Science University, Mail Code L623, Portland, Oregon, 97239.,Vollum Institute, Oregon Health and Science University, Portland, Oregon, 97239
| |
Collapse
|
27
|
McFerrin J, Patton BL, Sunderhaus ER, Kretzschmar D. NTE/PNPLA6 is expressed in mature Schwann cells and is required for glial ensheathment of Remak fibers. Glia 2017; 65:804-816. [PMID: 28206686 PMCID: PMC5357176 DOI: 10.1002/glia.23127] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Revised: 01/26/2017] [Accepted: 01/26/2017] [Indexed: 11/08/2022]
Abstract
Neuropathy target esterase (NTE) or patatin-like phospholipase domain containing 6 (PNPLA6) was first linked with a neuropathy occurring after organophosphate poisoning and was later also found to cause complex syndromes when mutated, which can include mental retardation, spastic paraplegia, ataxia, and blindness. NTE/PNPLA6 is widely expressed in neurons but experiments with its Drosophila orthologue Swiss-cheese (SWS) suggested that it may also have glial functions. Investigating whether NTE/PNPLA6 is expressed in glia, we found that NTE/PNPLA6 is expressed by Schwann cells in the sciatic nerve of adult mice with the most prominent expression in nonmyelinating Schwann cells. Within Schwann cells, NTE/PNPLA6 is enriched at the Schmidt-Lanterman incisures and around the nucleus. When analyzing postnatal expression patterns, we did not detect NTE/PNPLA6 in promyelinating Schwann cells, while weak expression was detectable at postnatal day 5 in Schwann cells and increased with their maturation. Interestingly, NTE/PNPLA6 levels were upregulated after nerve crush and localized to ovoids forming along the nerve fibers. Using a GFAP-based knock-out of NTE/PNPLA6, we detected an incomplete ensheathment of Remak fibers whereas myelination did not appear to be affected. These results suggest that NTE/PNPLA6 is involved in the maturation of nonmyelinating Schwann cells during development and de-/remyelination after neuronal injury. Since Schwann cells play an important role in maintaining axonal viability and function, it is therefore likely that changes in Schwann cells contribute to the locomotory deficits and neuropathy observed in patients carrying mutations in NTE.
Collapse
Affiliation(s)
- Janis McFerrin
- Oregon Institute of Occupational Health Sciences, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239, USA
| | - Bruce L. Patton
- Oregon Institute of Occupational Health Sciences, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239, USA
| | - Elizabeth R. Sunderhaus
- Oregon Institute of Occupational Health Sciences, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239, USA
- Molecular and Medical Genetics, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239, USA
| | - Doris Kretzschmar
- Oregon Institute of Occupational Health Sciences, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239, USA
- Molecular and Medical Genetics, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239, USA
| |
Collapse
|
28
|
Grove M, Kim H, Santerre M, Krupka AJ, Han SB, Zhai J, Cho JY, Park R, Harris M, Kim S, Sawaya BE, Kang SH, Barbe MF, Cho SH, Lemay MA, Son YJ. YAP/TAZ initiate and maintain Schwann cell myelination. eLife 2017; 6:e20982. [PMID: 28124973 PMCID: PMC5287714 DOI: 10.7554/elife.20982] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Accepted: 01/22/2017] [Indexed: 12/12/2022] Open
Abstract
Nuclear exclusion of the transcriptional regulators and potent oncoproteins, YAP/TAZ, is considered necessary for adult tissue homeostasis. Here we show that nuclear YAP/TAZ are essential regulators of peripheral nerve development and myelin maintenance. To proliferate, developing Schwann cells (SCs) require YAP/TAZ to enter S-phase and, without them, fail to generate sufficient SCs for timely axon sorting. To differentiate, SCs require YAP/TAZ to upregulate Krox20 and, without them, completely fail to myelinate, resulting in severe peripheral neuropathy. Remarkably, in adulthood, nuclear YAP/TAZ are selectively expressed by myelinating SCs, and conditional ablation results in severe peripheral demyelination and mouse death. YAP/TAZ regulate both developmental and adult myelination by driving TEAD1 to activate Krox20. Therefore, YAP/TAZ are crucial for SCs to myelinate developing nerve and to maintain myelinated nerve in adulthood. Our study also provides a new insight into the role of nuclear YAP/TAZ in homeostatic maintenance of an adult tissue.
Collapse
Affiliation(s)
- Matthew Grove
- Shriners Hospitals Pediatric Research Center, Center for Neural Repair, Lewis Katz School of Medicine, Temple University, Philadelphia, United States
- Department of Anatomy and Cell Biology, Lewis Katz School of Medicine, Temple University, Philadelphia, United States
| | - Hyukmin Kim
- Shriners Hospitals Pediatric Research Center, Center for Neural Repair, Lewis Katz School of Medicine, Temple University, Philadelphia, United States
- Department of Anatomy and Cell Biology, Lewis Katz School of Medicine, Temple University, Philadelphia, United States
| | - Maryline Santerre
- FELS Institute for Cancer Research and Molecular Biology, Lewis Katz School of Medicine, Temple University, Philadelphia, United States
| | - Alexander J Krupka
- Department of Bioengineering, Temple University, Philadelphia, United States
| | - Seung Baek Han
- Shriners Hospitals Pediatric Research Center, Center for Neural Repair, Lewis Katz School of Medicine, Temple University, Philadelphia, United States
- Department of Anatomy and Cell Biology, Lewis Katz School of Medicine, Temple University, Philadelphia, United States
| | - Jinbin Zhai
- Shriners Hospitals Pediatric Research Center, Center for Neural Repair, Lewis Katz School of Medicine, Temple University, Philadelphia, United States
- Department of Anatomy and Cell Biology, Lewis Katz School of Medicine, Temple University, Philadelphia, United States
| | - Jennifer Y Cho
- Shriners Hospitals Pediatric Research Center, Center for Neural Repair, Lewis Katz School of Medicine, Temple University, Philadelphia, United States
| | - Raehee Park
- Shriners Hospitals Pediatric Research Center, Center for Neural Repair, Lewis Katz School of Medicine, Temple University, Philadelphia, United States
- Department of Anatomy and Cell Biology, Lewis Katz School of Medicine, Temple University, Philadelphia, United States
| | - Michele Harris
- Department of Anatomy and Cell Biology, Lewis Katz School of Medicine, Temple University, Philadelphia, United States
| | - Seonhee Kim
- Shriners Hospitals Pediatric Research Center, Center for Neural Repair, Lewis Katz School of Medicine, Temple University, Philadelphia, United States
- Department of Anatomy and Cell Biology, Lewis Katz School of Medicine, Temple University, Philadelphia, United States
| | - Bassel E Sawaya
- FELS Institute for Cancer Research and Molecular Biology, Lewis Katz School of Medicine, Temple University, Philadelphia, United States
| | - Shin H Kang
- Shriners Hospitals Pediatric Research Center, Center for Neural Repair, Lewis Katz School of Medicine, Temple University, Philadelphia, United States
- Department of Anatomy and Cell Biology, Lewis Katz School of Medicine, Temple University, Philadelphia, United States
| | - Mary F Barbe
- Department of Anatomy and Cell Biology, Lewis Katz School of Medicine, Temple University, Philadelphia, United States
| | - Seo-Hee Cho
- Shriners Hospitals Pediatric Research Center, Center for Neural Repair, Lewis Katz School of Medicine, Temple University, Philadelphia, United States
- Department of Anatomy and Cell Biology, Lewis Katz School of Medicine, Temple University, Philadelphia, United States
| | - Michel A Lemay
- Department of Bioengineering, Temple University, Philadelphia, United States
| | - Young-Jin Son
- Shriners Hospitals Pediatric Research Center, Center for Neural Repair, Lewis Katz School of Medicine, Temple University, Philadelphia, United States
- Department of Anatomy and Cell Biology, Lewis Katz School of Medicine, Temple University, Philadelphia, United States
| |
Collapse
|
29
|
Groth SW, Stewart PA, Ossip DJ, Block RC, Wixom N, Fernandez ID. Micronutrient Intake Is Inadequate for a Sample of Pregnant African-American Women. J Acad Nutr Diet 2017; 117:589-598. [PMID: 28065633 DOI: 10.1016/j.jand.2016.11.011] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2015] [Accepted: 11/16/2016] [Indexed: 01/09/2023]
Abstract
BACKGROUND Micronutrient intake is critical for fetal development and positive pregnancy outcomes. Little is known about the adequacy of micronutrient intake in pregnant African-American women. OBJECTIVE To describe nutrient sufficiency and top food groups contributing to dietary intake of select micronutrients in low-income pregnant African-American women and determine whether micronutrient intake varies with early pregnancy body mass index (BMI) and/or gestational weight gain. DESIGN Secondary analysis of data collected in a cohort study of pregnant African-American women. PARTICIPANTS/SETTING A total of 93 women aged 18 to 36 years, <20 weeks pregnant, with early pregnancy BMIs ≥18.5 and <40.0. The study was conducted during 2008 to 2012 with participants from university-affiliated obstetrics clinics in an urban setting in the northeastern United States. MAIN OUTCOME MEASURES Proportion of women with dietary intakes below Estimated Average Requirement (EAR) or Adequate Intake (AI) for vitamin D, folate, iron, calcium, and choline throughout pregnancy. Top food groups from which women derived these micronutrients was also determined. STATISTICAL ANALYSES PERFORMED Descriptive statistics included means, standard deviations, and percentages. Percent of women reaching EAR or AI was calculated. The χ2 test was used to assess micronutrient intake differences based on early pregnancy BMI and gestational weight gain. RESULTS A large percentage of pregnant women did not achieve the EAR or AI from dietary sources alone; EAR for folate (66%), vitamin D (100%), iron (89%), and AI for choline (100%). Mean micronutrient intake varied throughout pregnancy. Top food sources included reduced-fat milk, eggs, and mixed egg dishes, pasta dishes, and ready-to-eat cereal. CONCLUSIONS The majority of study participants had dietary micronutrient intake levels below EAR/AI throughout pregnancy. Findings suggest that practitioners should evaluate dietary adequacy in women to avoid deficits in micronutrient intake during pregnancy. Top food sources of these micronutrients can be considered when assisting women in improving dietary intake.
Collapse
|
30
|
Quintes S, Brinkmann BG, Ebert M, Fröb F, Kungl T, Arlt FA, Tarabykin V, Huylebroeck D, Meijer D, Suter U, Wegner M, Sereda MW, Nave KA. Zeb2 is essential for Schwann cell differentiation, myelination and nerve repair. Nat Neurosci 2016; 19:1050-1059. [PMID: 27294512 PMCID: PMC4964942 DOI: 10.1038/nn.4321] [Citation(s) in RCA: 113] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Accepted: 05/04/2016] [Indexed: 12/12/2022]
Abstract
Schwann cell development and peripheral nerve myelination require the serial expression of transcriptional activators, such as Sox10, Oct6 (also called Scip or Pou3f1) and Krox20 (also called Egr2). Here we show that transcriptional repression, mediated by the zinc-finger protein Zeb2 (also known as Sip1), is essential for differentiation and myelination. Mice lacking Zeb2 in Schwann cells develop a severe peripheral neuropathy, caused by failure of axonal sorting and virtual absence of myelin membranes. Zeb2-deficient Schwann cells continuously express repressors of lineage progression. Moreover, genes for negative regulators of maturation such as Sox2 and Ednrb emerge as Zeb2 target genes, supporting its function as an 'inhibitor of inhibitors' in myelination control. When Zeb2 is deleted in adult mice, Schwann cells readily dedifferentiate following peripheral nerve injury and become repair cells. However, nerve regeneration and remyelination are both perturbed, demonstrating that Zeb2, although undetectable in adult Schwann cells, has a latent function throughout life.
Collapse
Affiliation(s)
- Susanne Quintes
- Max Planck Institute of Experimental Medicine, Department of
Neurogenetics, Göttingen, Germany
- University Medical Center Göttingen (UMG), Department of
Clinical Neurophysiology, Göttingen, Germany
| | - Bastian G Brinkmann
- Max Planck Institute of Experimental Medicine, Department of
Neurogenetics, Göttingen, Germany
| | - Madlen Ebert
- Max Planck Institute of Experimental Medicine, Department of
Neurogenetics, Göttingen, Germany
| | - Franziska Fröb
- Institut für Biochemie, Emil-Fischer-Zentrum,
Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen,
Germany
| | - Theresa Kungl
- Max Planck Institute of Experimental Medicine, Department of
Neurogenetics, Göttingen, Germany
| | - Friederike A Arlt
- Max Planck Institute of Experimental Medicine, Department of
Neurogenetics, Göttingen, Germany
| | - Victor Tarabykin
- Institute for Cell and Neurobiology, Center for Anatomy,
Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Danny Huylebroeck
- Laboratory of Molecular Biology (Celgen), Department of Development
and Regeneration, KU Leuven, Leuven, Belgium
- Department of Cell Biology, Erasmus University Medical Center,
Rotterdam, The Netherlands
| | - Dies Meijer
- Centre for Neuroregeneration, University of Edinburgh, Edinburgh,
United Kingdom
| | - Ueli Suter
- Institute of Molecular Health Sciences, Department of Biology, ETH
Zürich, Zürich, Switzerland
| | - Michael Wegner
- Institut für Biochemie, Emil-Fischer-Zentrum,
Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen,
Germany
| | - Michael W Sereda
- Max Planck Institute of Experimental Medicine, Department of
Neurogenetics, Göttingen, Germany
- University Medical Center Göttingen (UMG), Department of
Clinical Neurophysiology, Göttingen, Germany
| | - Klaus-Armin Nave
- Max Planck Institute of Experimental Medicine, Department of
Neurogenetics, Göttingen, Germany
| |
Collapse
|
31
|
YAP and TAZ control peripheral myelination and the expression of laminin receptors in Schwann cells. Nat Neurosci 2016; 19:879-87. [PMID: 27273766 PMCID: PMC4925303 DOI: 10.1038/nn.4316] [Citation(s) in RCA: 156] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Accepted: 05/04/2016] [Indexed: 12/13/2022]
Abstract
Myelination is essential for nervous system function. Schwann cells interact with neurons and the basal lamina to myelinate axons, using known receptors, signals and transcription factors. In contrast, the transcriptional control of axonal sorting and the role of mechanotransduction in myelination are largely unknown. Yap and Taz are effectors of the Hippo pathway that integrate chemical and mechanical signals in cells. We describe a previously unknown role for the Hippo pathway in myelination. Using conditional mutagenesis in mice we show that Taz is required in Schwann cells for radial sorting and myelination, and that Yap is redundant with Taz. Yap/Taz are activated in Schwann cells by mechanical stimuli, and regulate Schwann cell proliferation and transcription of basal lamina receptor genes, both necessary for proper radial sorting of axons and subsequent myelination. These data link transcriptional effectors of the Hippo pathway and of mechanotransduction to myelin formation in Schwann cells.
Collapse
|
32
|
Birchmeier C, Bennett DLH. Neuregulin/ErbB Signaling in Developmental Myelin Formation and Nerve Repair. Curr Top Dev Biol 2016; 116:45-64. [PMID: 26970613 DOI: 10.1016/bs.ctdb.2015.11.009] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Myelin is essential for rapid and accurate conduction of electrical impulses by axons in the central and peripheral nervous system (PNS). Myelin is formed in the early postnatal period, and developmental myelination in the PNS depends on axonal signals provided by Nrg1/ErbB receptors. In addition, Nrg1 is required for effective nerve repair and remyelination in adulthood. We discuss here similarities and differences in Nrg1/ErbB functions in developmental myelination and remyelination after nerve injury.
Collapse
Affiliation(s)
- Carmen Birchmeier
- Developmental Biology, Max-Delbrück-Center for Molecular Medicine, Berlin, Germany.
| | - David L H Bennett
- The Nuffield Department of Clinical Neurosciences, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom.
| |
Collapse
|
33
|
Poitelon Y, Bogni S, Matafora V, Della-Flora Nunes G, Hurley E, Ghidinelli M, Katzenellenbogen BS, Taveggia C, Silvestri N, Bachi A, Sannino A, Wrabetz L, Feltri ML. Spatial mapping of juxtacrine axo-glial interactions identifies novel molecules in peripheral myelination. Nat Commun 2015; 6:8303. [PMID: 26383514 PMCID: PMC4576721 DOI: 10.1038/ncomms9303] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Accepted: 08/07/2015] [Indexed: 12/13/2022] Open
Abstract
Cell–cell interactions promote juxtacrine signals in specific subcellular domains, which are difficult to capture in the complexity of the nervous system. For example, contact between axons and Schwann cells triggers signals required for radial sorting and myelination. Failure in this interaction causes dysmyelination and axonal degeneration. Despite its importance, few molecules at the axo-glial surface are known. To identify novel molecules in axo-glial interactions, we modified the ‘pseudopodia' sub-fractionation system and isolated the projections that glia extend when they receive juxtacrine signals from axons. By proteomics we identified the signalling networks present at the glial-leading edge, and novel proteins, including members of the Prohibitin family. Glial-specific deletion of Prohibitin-2 in mice impairs axo-glial interactions and myelination. We thus validate a novel method to model morphogenesis and juxtacrine signalling, provide insights into the molecular organization of the axo-glial contact, and identify a novel class of molecules in myelination. Neuron–glia interactions are critical in the nervous system, where they result in the extension of glial pseudopodia. Poitelon et al. isolate these protrusions using an in vitro assay, and, by characterising their proteomes, identify Prohibitin-2 as a regulator of myelination.
Collapse
Affiliation(s)
- Y Poitelon
- Hunter James Kelly Research Institute, Department Biochemistry, University at Buffalo, Buffalo, New York 14203, USA.,Division of Genetics and Cell Biology, San Raffaele Hospital, Milano 20132, Italy
| | - S Bogni
- Division of Genetics and Cell Biology, San Raffaele Hospital, Milano 20132, Italy
| | - V Matafora
- Division of Genetics and Cell Biology, San Raffaele Hospital, Milano 20132, Italy
| | - G Della-Flora Nunes
- Hunter James Kelly Research Institute, Department Biochemistry, University at Buffalo, Buffalo, New York 14203, USA
| | - E Hurley
- Hunter James Kelly Research Institute, Department Biochemistry, University at Buffalo, Buffalo, New York 14203, USA
| | - M Ghidinelli
- Hunter James Kelly Research Institute, Department Biochemistry, University at Buffalo, Buffalo, New York 14203, USA.,Division of Genetics and Cell Biology, San Raffaele Hospital, Milano 20132, Italy
| | - B S Katzenellenbogen
- Department of Molecular and Integrative Physiology, University of Illinois and College of Medicine, Urbana Illinois 61801, USA
| | - C Taveggia
- Division of Neuroscience, San Raffaele Hospital, Milano 20132, Italy
| | - N Silvestri
- Department of Neurology, School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, New York 14203, USA
| | - A Bachi
- Division of Genetics and Cell Biology, San Raffaele Hospital, Milano 20132, Italy
| | - A Sannino
- Department of Engineering for Innovation, University of Salento, Lecce 73100, Italy
| | - L Wrabetz
- Hunter James Kelly Research Institute, Department Biochemistry, University at Buffalo, Buffalo, New York 14203, USA.,Division of Genetics and Cell Biology, San Raffaele Hospital, Milano 20132, Italy.,Department of Neurology, School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, New York 14203, USA
| | - M L Feltri
- Hunter James Kelly Research Institute, Department Biochemistry, University at Buffalo, Buffalo, New York 14203, USA.,Division of Genetics and Cell Biology, San Raffaele Hospital, Milano 20132, Italy.,Department of Neurology, School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, New York 14203, USA
| |
Collapse
|
34
|
Monk KR, Feltri ML, Taveggia C. New insights on Schwann cell development. Glia 2015; 63:1376-93. [PMID: 25921593 PMCID: PMC4470834 DOI: 10.1002/glia.22852] [Citation(s) in RCA: 195] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Accepted: 04/13/2015] [Indexed: 12/11/2022]
Abstract
In the peripheral nervous system, Schwann cells are glial cells that are in intimate contact with axons throughout development. Schwann cells generate the insulating myelin sheath and provide vital trophic support to the neurons that they ensheathe. Schwann cell precursors arise from neural crest progenitor cells, and a highly ordered developmental sequence controls the progression of these cells to become mature myelinating or nonmyelinating Schwann cells. Here, we discuss both seminal discoveries and recent advances in our understanding of the molecular mechanisms that drive Schwann cell development and myelination with a focus on cell-cell and cell-matrix signaling events.
Collapse
Affiliation(s)
- Kelly R Monk
- Department of Developmental Biology, Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, Missouri
| | - M Laura Feltri
- Department of Biochemistry and Neurology, Hunter James Kelly Research Institute, University at Buffalo, State University of New York, Buffalo, New York
| | - Carla Taveggia
- Division of Neuroscience and INSPE, San Raffaele Scientific Institute, Milan, Italy
| |
Collapse
|
35
|
Bartesaghi L, Arnaud Gouttenoire E, Prunotto A, Médard JJ, Bergmann S, Chrast R. Sox4 participates in the modulation of Schwann cell myelination. Eur J Neurosci 2015; 42:1788-96. [PMID: 25899854 DOI: 10.1111/ejn.12929] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Revised: 03/20/2015] [Accepted: 04/20/2015] [Indexed: 11/26/2022]
Abstract
In order to identify new regulators of Schwann cell myelination potentially playing a role in peripheral nervous system (PNS) pathologies, we analysed gene expression profiling data from three mouse models of demyelinating neuropathies and from the developing PNS. This analysis revealed that Sox4, which encodes a member of the Sry-related high-mobility group box protein family, was consistently upregulated in all three analysed models of neuropathy. Moreover, Sox4 showed a peak in its expression during development that corresponded with the onset of myelination. To gain further insights into the role of Sox4 in PNS development, we generated a transgenic mouse that specifically overexpresses Sox4 in Schwann cells. Sox4 overexpression led to a temporary delay in PNS myelination without affecting axonal sorting. Importantly, we observed that, whereas Sox4 mRNA could be efficiently overexpressed, Sox4 protein expression in Schwann cells was strictly regulated. Finally, our data showed that enforced expression of Sox4 in the mouse model for Charcot-Marie-Tooth 4C aggravated its neuropathic phenotype. Together, these observations reveal that Sox4 contributes to the regulation of Schwann cell myelination, and also indicates its involvement in the pathophysiology of peripheral neuropathies.
Collapse
Affiliation(s)
- Luca Bartesaghi
- Department of Medical Genetics, University of Lausanne, Lausanne, Switzerland.,Department of Neuroscience and Department of Clinical Neuroscience, Karolinska Institutet, Retzius väg 8, 171 77, Stockholm, Sweden
| | | | - Andrea Prunotto
- Department of Medical Genetics, University of Lausanne, Lausanne, Switzerland.,Swiss Institute of Bioinformatics, University of Lausanne, Lausanne, Switzerland
| | - Jean-Jacques Médard
- Department of Medical Genetics, University of Lausanne, Lausanne, Switzerland
| | - Sven Bergmann
- Department of Medical Genetics, University of Lausanne, Lausanne, Switzerland.,Swiss Institute of Bioinformatics, University of Lausanne, Lausanne, Switzerland
| | - Roman Chrast
- Department of Medical Genetics, University of Lausanne, Lausanne, Switzerland.,Department of Neuroscience and Department of Clinical Neuroscience, Karolinska Institutet, Retzius väg 8, 171 77, Stockholm, Sweden
| |
Collapse
|
36
|
Petersen SC, Luo R, Liebscher I, Giera S, Jeong SJ, Mogha A, Ghidinelli M, Feltri ML, Schöneberg T, Piao X, Monk KR. The adhesion GPCR GPR126 has distinct, domain-dependent functions in Schwann cell development mediated by interaction with laminin-211. Neuron 2015; 85:755-69. [PMID: 25695270 DOI: 10.1016/j.neuron.2014.12.057] [Citation(s) in RCA: 214] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2014] [Revised: 11/12/2014] [Accepted: 12/17/2014] [Indexed: 10/24/2022]
Abstract
Myelin ensheathes axons to allow rapid propagation of action potentials and proper nervous system function. In the peripheral nervous system, Schwann cells (SCs) radially sort axons into a 1:1 relationship before wrapping an axonal segment to form myelin. SC myelination requires the adhesion G protein-coupled receptor GPR126, which undergoes autoproteolytic cleavage into an N-terminal fragment (NTF) and a seven-transmembrane-containing C-terminal fragment (CTF). Here we show that GPR126 has domain-specific functions in SC development whereby the NTF is necessary and sufficient for axon sorting, whereas the CTF promotes wrapping through cAMP elevation. These biphasic roles of GPR126 are governed by interactions with Laminin-211, which we define as a novel ligand for GPR126 that modulates receptor signaling via a tethered agonist. Our work suggests a model in which Laminin-211 mediates GPR126-induced cAMP levels to control early and late stages of SC development.
Collapse
Affiliation(s)
- Sarah C Petersen
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Rong Luo
- Division of Newborn Medicine, Department of Medicine, Boston Children's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Ines Liebscher
- Institute of Biochemistry, Medical Faculty, University of Leipzig, 04103 Leipzig, Germany
| | - Stefanie Giera
- Division of Newborn Medicine, Department of Medicine, Boston Children's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Sung-Jin Jeong
- Division of Newborn Medicine, Department of Medicine, Boston Children's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Amit Mogha
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Monica Ghidinelli
- Department of Biochemistry, University of Buffalo, The State University of New York, Buffalo, NY 14023, USA
| | - M Laura Feltri
- Department of Biochemistry, University of Buffalo, The State University of New York, Buffalo, NY 14023, USA
| | - Torsten Schöneberg
- Institute of Biochemistry, Medical Faculty, University of Leipzig, 04103 Leipzig, Germany
| | - Xianhua Piao
- Division of Newborn Medicine, Department of Medicine, Boston Children's Hospital and Harvard Medical School, Boston, MA 02115, USA.
| | - Kelly R Monk
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO 63110, USA; Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO 63110, USA.
| |
Collapse
|
37
|
Hung HA, Sun G, Keles S, Svaren J. Dynamic regulation of Schwann cell enhancers after peripheral nerve injury. J Biol Chem 2015; 290:6937-50. [PMID: 25614629 PMCID: PMC4358118 DOI: 10.1074/jbc.m114.622878] [Citation(s) in RCA: 82] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Revised: 12/31/2014] [Indexed: 12/20/2022] Open
Abstract
Myelination of the peripheral nervous system is required for axonal function and long term stability. After peripheral nerve injury, Schwann cells transition from axon myelination to a demyelinated state that supports neuronal survival and ultimately remyelination of axons. Reprogramming of gene expression patterns during development and injury responses is shaped by the actions of distal regulatory elements that integrate the actions of multiple transcription factors. We used ChIP-seq to measure changes in histone H3K27 acetylation, a mark of active enhancers, to identify enhancers in myelinating rat peripheral nerve and their dynamics after demyelinating nerve injury. Analysis of injury-induced enhancers identified enriched motifs for c-Jun, a transcription factor required for Schwann cells to support nerve regeneration. We identify a c-Jun-bound enhancer in the gene for Runx2, a transcription factor induced after nerve injury, and we show that Runx2 is required for activation of other induced genes. In contrast, enhancers that lose H3K27ac after nerve injury are enriched for binding sites of the Sox10 and early growth response 2 (Egr2/Krox20) transcription factors, which are critical determinants of Schwann cell differentiation. Egr2 expression is lost after nerve injury, and many Egr2-binding sites lose H3K27ac after nerve injury. However, the majority of Egr2-bound enhancers retain H3K27ac, indicating that other transcription factors maintain active enhancer status after nerve injury. The global epigenomic changes in H3K27ac deposition pinpoint dynamic changes in enhancers that mediate the effects of transcription factors that control Schwann cell myelination and peripheral nervous system responses to nerve injury.
Collapse
Affiliation(s)
- Holly A Hung
- From the Waisman Center, Cellular and Molecular Pathology Graduate Program, and
| | - Guannan Sun
- Departments of Biostatistics and Medical Informatics and
| | - Sunduz Keles
- Departments of Biostatistics and Medical Informatics and
| | - John Svaren
- From the Waisman Center, Comparative Biosciences, University of Wisconsin-Madison, Madison, Wisconsin 53705
| |
Collapse
|
38
|
Namgung U. The role of Schwann cell-axon interaction in peripheral nerve regeneration. Cells Tissues Organs 2015; 200:6-12. [PMID: 25765065 DOI: 10.1159/000370324] [Citation(s) in RCA: 106] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/29/2014] [Indexed: 11/19/2022] Open
Abstract
After peripheral nerve injury, Schwann cells are released from the degenerating nerve, dedifferentiated, and then actively participate in axonal regeneration. Dedifferentiated Schwann cells, together with macrophages, are involved in eliminating myelin debris, forming bands of Büngner that provide pathways for regenerating axons, and redifferentiating for remyelination. Activation of Erk1/2 and c-Jun was shown to induce stepwise repair programs in Schwann cells, indicating that plastic changes in Schwann cell activity contribute to interaction with axons for regeneration. Schwann cell β1 integrin was identified to mediate the Cdc2-vimentin pathway and further connect to adaptor molecules in the growth cone of regenerating axons through the binding of extracellular matrix (ECM) proteins. Timely interaction between Schwann cells and the axon (S-A) is critical to achieving efficient axonal regeneration because the delay in S-A interaction results in retarded nerve repair and chronic nerve damage. By comparing with the role of Schwann cells in developing nerves, this review is focused on cellular and molecular aspects of Schwann cell interaction with axons at the early stages of regeneration.
Collapse
Affiliation(s)
- Uk Namgung
- Department of Oriental Medicine, Daejeon University, Daejeon, Republic of Korea
| |
Collapse
|
39
|
Abstract
Peripheral nerves contain large myelinated and small unmyelinated (Remak) fibers that perform different functions. The choice to myelinate or not is dictated to Schwann cells by the axon itself, based on the amount of neuregulin I-type III exposed on its membrane. Peripheral axons are more important in determining the final myelination fate than central axons, and the implications for this difference in Schwann cells and oligodendrocytes are discussed. Interestingly, this choice is reversible during pathology, accounting for the remarkable plasticity of Schwann cells, and contributing to the regenerative potential of the peripheral nervous system. Radial sorting is the process by which Schwann cells choose larger axons to myelinate during development. This crucial morphogenetic step is a prerequisite for myelination and for differentiation of Remak fibers, and is arrested in human diseases due to mutations in genes coding for extracellular matrix and linkage molecules. In this review we will summarize progresses made in the last years by a flurry of reverse genetic experiments in mice and fish. This work revealed novel molecules that control radial sorting, and contributed unexpected ideas to our understanding of the cellular and molecular mechanisms that control radial sorting of axons.
Collapse
Affiliation(s)
- M Laura Feltri
- Hunter James Kelly Research Institute, Departments of Biochemistry & Neurology, School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, USA
| | - Yannick Poitelon
- Hunter James Kelly Research Institute, Departments of Biochemistry & Neurology, School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, USA
| | - Stefano Carlo Previtali
- Institute of Experimental Neurology (INSPE), Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
| |
Collapse
|
40
|
von Boxberg Y, Soares S, Féréol S, Fodil R, Bartolami S, Taxi J, Tricaud N, Nothias F. Giant scaffolding protein AHNAK1 interacts with β-dystroglycan and controls motility and mechanical properties of Schwann cells. Glia 2014; 62:1392-406. [PMID: 24796807 DOI: 10.1002/glia.22685] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2013] [Revised: 04/11/2014] [Accepted: 04/17/2014] [Indexed: 01/02/2023]
Abstract
The profound morphofunctional changes that Schwann cells (SCs) undergo during their migration and elongation on axons, as well as during axon sorting, ensheathment, and myelination, require their close interaction with the surrounding laminin-rich basal lamina. In contrast to myelinating central nervous system glia, SCs strongly and constitutively express the giant scaffolding protein AHNAK1, localized essentially underneath the outer, abaxonal plasma membrane. Using electron microscopy, we show here that in the sciatic nerve of ahnak1(-) (/) (-) mice the ultrastructure of myelinated, and unmyelinated (Remak) fibers is affected. The major SC laminin receptor β-dystroglycan co-immunoprecipitates with AHNAK1 shows reduced expression in ahnak1(-) (/) (-) SCs, and is no longer detectable in Cajal bands on myelinated fibers in ahnak1(-) (/) (-) sciatic nerve. Reduced migration velocity in a scratch wound assay of purified ahnak1(-) (/) (-) primary SCs cultured on a laminin substrate indicated a function of AHNAK1 in SC motility. This was corroborated by atomic force microscopy measurements, which revealed a greater mechanical rigidity of shaft and leading tip of ahnak1(-) (/) (-) SC processes. Internodal lengths of large fibers are decreased in ahnak1(-) (/) (-) sciatic nerve, and longitudinal extension of myelin segments is even more strongly reduced after acute knockdown of AHNAK1 in SCs of developing sciatic nerve. Together, our results suggest that by interfering in the cross-talk between the transmembrane form of the laminin receptor dystroglycan and F-actin, AHNAK1 influences the cytoskeleton organization of SCs, and thus plays a role in the regulation of their morphology and motility and lastly, the myelination process.
Collapse
Affiliation(s)
- Ysander von Boxberg
- Sorbonne Universités, UPMC CR18 (NPS), Paris, France; Neuroscience Paris Seine (NPS), CNRS UMR 8246, Paris, France; Neuroscience Paris Seine (NPS), INSERM U1130, Paris, France
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Heller BA, Ghidinelli M, Voelkl J, Einheber S, Smith R, Grund E, Morahan G, Chandler D, Kalaydjieva L, Giancotti F, King RH, Fejes-Toth AN, Fejes-Toth G, Feltri ML, Lang F, Salzer JL. Functionally distinct PI 3-kinase pathways regulate myelination in the peripheral nervous system. J Cell Biol 2014; 204:1219-36. [PMID: 24687281 PMCID: PMC3971744 DOI: 10.1083/jcb.201307057] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2013] [Accepted: 02/18/2014] [Indexed: 02/02/2023] Open
Abstract
The PI 3-kinase (PI 3-K) signaling pathway is essential for Schwann cell myelination. Here we have characterized PI 3-K effectors activated during myelination by probing myelinating cultures and developing nerves with an antibody that recognizes phosphorylated substrates for this pathway. We identified a discrete number of phospho-proteins including the S6 ribosomal protein (S6rp), which is down-regulated at the onset of myelination, and N-myc downstream-regulated gene-1 (NDRG1), which is up-regulated strikingly with myelination. We show that type III Neuregulin1 on the axon is the primary activator of S6rp, an effector of mTORC1. In contrast, laminin-2 in the extracellular matrix (ECM), signaling through the α6β4 integrin and Sgk1 (serum and glucocorticoid-induced kinase 1), drives phosphorylation of NDRG1 in the Cajal bands of the abaxonal compartment. Unexpectedly, mice deficient in α6β4 integrin signaling or Sgk1 exhibit hypermyelination during development. These results identify functionally and spatially distinct PI 3-K pathways: an early, pro-myelinating pathway driven by axonal Neuregulin1 and a later-acting, laminin-integrin-dependent pathway that negatively regulates myelination.
Collapse
Affiliation(s)
- Bradley A. Heller
- Neuroscience Institute and Departments of Neuroscience and Physiology and Neurology, NYU Langone Medical Center, New York, NY 10016
| | - Monica Ghidinelli
- University of Buffalo School of Medicine, Hunter James Kelly Research Institute, Buffalo, NY 14214
| | - Jakob Voelkl
- Department of Physiology, University of Tübingen, 72076 Tübingen, Germany
| | - Steven Einheber
- Department of Medical Laboratory Sciences, Hunter College, City University of New York, New York, NY 10010
| | - Ryan Smith
- Neuroscience Institute and Departments of Neuroscience and Physiology and Neurology, NYU Langone Medical Center, New York, NY 10016
| | - Ethan Grund
- Neuroscience Institute and Departments of Neuroscience and Physiology and Neurology, NYU Langone Medical Center, New York, NY 10016
| | - Grant Morahan
- Western Australian Institute for Medical Research/Centre for Medical Research, The University of Western Australia, Perth 6009, Australia
| | - David Chandler
- Western Australian Institute for Medical Research/Centre for Medical Research, The University of Western Australia, Perth 6009, Australia
| | - Luba Kalaydjieva
- Western Australian Institute for Medical Research/Centre for Medical Research, The University of Western Australia, Perth 6009, Australia
| | - Filippo Giancotti
- Department of Cell Biology, Memorial Sloan-Kettering Cancer Center, New York, NY 10065
| | - Rosalind H. King
- UCL Institute of Neurology, University College London, London NW3 2PF, England, UK
| | - Aniko Naray Fejes-Toth
- Department of Physiology and Neurobiology, Geisel School of Medicine, Dartmouth College, Lebanon, NH 03756
| | - Gerard Fejes-Toth
- Department of Physiology and Neurobiology, Geisel School of Medicine, Dartmouth College, Lebanon, NH 03756
| | - Maria Laura Feltri
- University of Buffalo School of Medicine, Hunter James Kelly Research Institute, Buffalo, NY 14214
| | - Florian Lang
- Department of Physiology, University of Tübingen, 72076 Tübingen, Germany
| | - James L. Salzer
- Neuroscience Institute and Departments of Neuroscience and Physiology and Neurology, NYU Langone Medical Center, New York, NY 10016
| |
Collapse
|
42
|
Abstract
During development, Schwann cells extend lamellipodia-like processes to segregate large- and small-caliber axons during the process of radial sorting. Radial sorting is a prerequisite for myelination and is arrested in human neuropathies because of laminin deficiency. Experiments in mice using targeted mutagenesis have confirmed that laminins 211, 411, and receptors containing the β1 integrin subunit are required for radial sorting; however, which of the 11 α integrins that can pair with β1 forms the functional receptor is unknown. Here we conditionally deleted all the α subunits that form predominant laminin-binding β1 integrins in Schwann cells and show that only α6β1 and α7β1 integrins are required and that α7β1 compensates for the absence of α6β1 during development. The absence of either α7β1 or α6β1 integrin impairs the ability of Schwann cells to spread and to bind laminin 211 or 411, potentially explaining the failure to extend cytoplasmic processes around axons to sort them. However, double α6/α7 integrin mutants show only a subset of the abnormalities found in mutants lacking all β1 integrins, and a milder phenotype. Double-mutant Schwann cells can properly activate all the major signaling pathways associated with radial sorting and show normal Schwann cell proliferation and survival. Thus, α6β1 and α7β1 are the laminin-binding integrins required for axonal sorting, but other Schwann cell β1 integrins, possibly those that do not bind laminins, may also contribute to radial sorting during peripheral nerve development.
Collapse
|
43
|
Porrello E, Rivellini C, Dina G, Triolo D, Del Carro U, Ungaro D, Panattoni M, Feltri ML, Wrabetz L, Pardi R, Quattrini A, Previtali SC. Jab1 regulates Schwann cell proliferation and axonal sorting through p27. ACTA ACUST UNITED AC 2013; 211:29-43. [PMID: 24344238 PMCID: PMC3892969 DOI: 10.1084/jem.20130720] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Jab1 constitutes a regulatory molecule that integrates laminin211 signals in Schwann cells to govern cell cycle, cell number, and differentiation. Axonal sorting is a crucial event in nerve formation and requires proper Schwann cell proliferation, differentiation, and contact with axons. Any defect in axonal sorting results in dysmyelinating peripheral neuropathies. Evidence from mouse models shows that axonal sorting is regulated by laminin211– and, possibly, neuregulin 1 (Nrg1)–derived signals. However, how these signals are integrated in Schwann cells is largely unknown. We now report that the nuclear Jun activation domain–binding protein 1 (Jab1) may transduce laminin211 signals to regulate Schwann cell number and differentiation during axonal sorting. Mice with inactivation of Jab1 in Schwann cells develop a dysmyelinating neuropathy with axonal sorting defects. Loss of Jab1 increases p27 levels in Schwann cells, which causes defective cell cycle progression and aberrant differentiation. Genetic down-regulation of p27 levels in Jab1-null mice restores Schwann cell number, differentiation, and axonal sorting and rescues the dysmyelinating neuropathy. Thus, Jab1 constitutes a regulatory molecule that integrates laminin211 signals in Schwann cells to govern cell cycle, cell number, and differentiation. Finally, Jab1 may constitute a key molecule in the pathogenesis of dysmyelinating neuropathies.
Collapse
Affiliation(s)
- Emanuela Porrello
- Institute of Experimental Neurology (INSPE), Division of Neuroscience; 2 Department of Neurology; and 3 Division of Immunology, Transplantation, and Infectious Disease; San Raffaele Scientific Institute, 20132 Milan, Italy
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Masaki T. Polarization and myelination in myelinating glia. ISRN NEUROLOGY 2012; 2012:769412. [PMID: 23326681 PMCID: PMC3544266 DOI: 10.5402/2012/769412] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/03/2012] [Accepted: 11/13/2012] [Indexed: 01/13/2023]
Abstract
Myelinating glia, oligodendrocytes in central nervous system and Schwann cells in peripheral nervous system, form myelin sheath, a multilayered membrane system around axons enabling salutatory nerve impulse conduction and maintaining axonal integrity. Myelin sheath is a polarized structure localized in the axonal side and therefore is supposed to be formed based on the preceding polarization of myelinating glia. Thus, myelination process is closely associated with polarization of myelinating glia. However, cell polarization has been less extensively studied in myelinating glia than other cell types such as epithelial cells. The ultimate goal of this paper is to provide insights for the field of myelination research by applying the information obtained in polarity study in other cell types, especially epithelial cells, to cell polarization of myelinating glia. Thus, in this paper, the main aspects of cell polarization study in general are summarized. Then, they will be compared with polarization in oligodendrocytes. Finally, the achievements obtained in polarization study for epithelial cells, oligodendrocytes, and other types of cells will be translated into polarization/myelination process by Schwann cells. Then, based on this model, the perspectives in the study of Schwann cell polarization/myelination will be discussed.
Collapse
Affiliation(s)
- Toshihiro Masaki
- Department of Medical Science, Teikyo University of Science, 2-2-1 Senju-Sakuragi, Adachi-ku, Tokyo 120-0045, Japan
| |
Collapse
|
45
|
McKee KK, Yang DH, Patel R, Chen ZL, Strickland S, Takagi J, Sekiguchi K, Yurchenco PD. Schwann cell myelination requires integration of laminin activities. J Cell Sci 2012; 125:4609-19. [PMID: 22767514 DOI: 10.1242/jcs.107995] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Laminins promote early stages of peripheral nerve myelination by assembling basement membranes (BMs) on Schwann cell surfaces, leading to activation of β1 integrins and other receptors. The BM composition, structural bonds and ligands needed to mediate this process, however, are not well understood. Mice hypomorphic for laminin γ1-subunit expression that assembled endoneurial BMs with reduced component density exhibited an axonal sorting defect with amyelination but normal Schwann cell proliferation, the latter unlike the null. To identify the basis for this, and to dissect participating laminin interactions, LAMC1 gene-inactivated dorsal root ganglia were treated with recombinant laminin-211 and -111 lacking different architecture-forming and receptor-binding activities, to induce myelination. Myelin-wrapping of axons by Schwann cells was found to require higher laminin concentrations than either proliferation or axonal ensheathment. Laminins that were unable to polymerize through deletions that removed critical N-terminal (LN) domains, or that lacked cell-adhesive globular (LG) domains, caused reduced BMs and almost no myelination. Laminins engineered to bind weakly to α6β1 and/or α7β1 integrins through their LG domains, even though they could effectively assemble BMs, decreased myelination. Proliferation depended upon both integrin binding to LG domains and polymerization. Collectively these findings reveal that laminins integrate scaffold-forming and cell-adhesion activities to assemble an endoneurial BM, with myelination and proliferation requiring additional α6β1/α7β1-laminin LG domain interactions, and that a high BM ligand/structural density is needed for efficient myelination.
Collapse
Affiliation(s)
- Karen K McKee
- Department of Pathology and Laboratory Medicine, Robert Wood Johnson Medical School, Piscataway, NJ 08854, USA
| | | | | | | | | | | | | | | |
Collapse
|
46
|
The RNA-binding protein human antigen R controls global changes in gene expression during Schwann cell development. J Neurosci 2012; 32:4944-58. [PMID: 22492050 DOI: 10.1523/jneurosci.5868-11.2012] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
An important prerequisite to myelination in peripheral nerves is the establishment of one-to-one relationships between axons and Schwann cells. This patterning event depends on immature Schwann cell proliferation, apoptosis, and morphogenesis, which are governed by coordinated changes in gene expression. Here, we found that the RNA-binding protein human antigen R (HuR) was highly expressed in immature Schwann cells, where genome-wide identification of its target mRNAs in vivo in mouse sciatic nerves using ribonomics showed an enrichment of functionally related genes regulating these processes. HuR coordinately regulated expression of several genes to promote proliferation, apoptosis, and morphogenesis in rat Schwann cells, in response to NRG1, TGFβ, and laminins, three major signals implicated in this patterning event. Strikingly, HuR also binds to several mRNAs encoding myelination-related proteins but, contrary to its typical function, negatively regulated their expression, likely to prevent ectopic myelination during development. These functions of HuR correlated with its abundance and subcellular localization, which were regulated by different signals in Schwann cells.
Collapse
|
47
|
Eyermann C, Czaplinski K, Colognato H. Dystroglycan promotes filopodial formation and process branching in differentiating oligodendroglia. J Neurochem 2012; 120:928-47. [PMID: 22117643 DOI: 10.1111/j.1471-4159.2011.07600.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
During central nervous system (CNS) development, individual oligodendrocytes myelinate multiple axons, thus requiring the outgrowth and extensive branching of oligodendroglial processes. Laminin (Lm)-deficient mice have a lower percentage of myelinated axons, which may indicate a defect in the ability to properly extend and branch processes. It remains unclear, however, to what extent extracellular matrix (ECM) receptors contribute to oligodendroglial process remodeling itself. In the current study, we report that the ECM receptor dystroglycan is necessary for Lm enhancement of filopodial formation, process outgrowth, and process branching in differentiating oligodendroglia. During early oligodendroglial differentiation, the disruption of dystroglycan-Lm interactions, via blocking antibodies or dystroglycan small interfering RNA (siRNA), resulted in decreased filopodial number and length, decreased process length, and decreased numbers of primary and secondary processes. Later in oligodendrocyte differentiation, dystroglycan-deficient cells developed fewer branches, thus producing less complex networks of processes as determined by Sholl analysis. In newly differentiating oligodendroglia, dystroglycan was localized in filopodial tips, whereas, in more mature oligodendrocytes, dystroglycan was enriched in focal adhesion kinase (FAK)-positive focal adhesion structures. These results suggest that dystroglycan-Lm interactions influence oligodendroglial process dynamics and therefore may regulate the myelination capacity of individual oligodendroglia.
Collapse
|
48
|
Pereira JA, Lebrun-Julien F, Suter U. Molecular mechanisms regulating myelination in the peripheral nervous system. Trends Neurosci 2011; 35:123-34. [PMID: 22192173 DOI: 10.1016/j.tins.2011.11.006] [Citation(s) in RCA: 187] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2011] [Revised: 11/17/2011] [Accepted: 11/18/2011] [Indexed: 12/21/2022]
Abstract
Glial cells and neurons are engaged in a continuous and highly regulated bidirectional dialog. A remarkable example is the control of myelination. Oligodendrocytes in the central nervous system (CNS) and Schwann cells (SCs) in the peripheral nervous system (PNS) wrap their plasma membranes around axons to organize myelinated nerve fibers that allow rapid saltatory conduction. The functionality of this system is critical, as revealed by numerous neurological diseases that result from deregulation of the system, including multiple sclerosis and peripheral neuropathies. In this review we focus on PNS myelination and present a conceptual framework that integrates crucial signaling mechanisms with basic SC biology. We will highlight signaling hubs and overarching molecular mechanisms, including genetic, epigenetic, and post-translational controls, which together regulate the interplay between SCs and axons, extracellular signals, and the transcriptional network.
Collapse
Affiliation(s)
- Jorge A Pereira
- Institute of Cell Biology, Department of Biology, Swiss Federal Institute of Technology, ETH Zürich, Zürich, Switzerland
| | | | | |
Collapse
|