1
|
Haseltine WA, Patarca R. The RNA Revolution in the Central Molecular Biology Dogma Evolution. Int J Mol Sci 2024; 25:12695. [PMID: 39684407 DOI: 10.3390/ijms252312695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 11/24/2024] [Accepted: 11/25/2024] [Indexed: 12/18/2024] Open
Abstract
Human genome projects in the 1990s identified about 20,000 protein-coding sequences. We are now in the RNA revolution, propelled by the realization that genes determine phenotype beyond the foundational central molecular biology dogma, stating that inherited linear pieces of DNA are transcribed to RNAs and translated into proteins. Crucially, over 95% of the genome, initially considered junk DNA between protein-coding genes, encodes essential, functionally diverse non-protein-coding RNAs, raising the gene count by at least one order of magnitude. Most inherited phenotype-determining changes in DNA are in regulatory areas that control RNA and regulatory sequences. RNAs can directly or indirectly determine phenotypes by regulating protein and RNA function, transferring information within and between organisms, and generating DNA. RNAs also exhibit high structural, functional, and biomolecular interaction plasticity and are modified via editing, methylation, glycosylation, and other mechanisms, which bestow them with diverse intra- and extracellular functions without altering the underlying DNA. RNA is, therefore, currently considered the primary determinant of cellular to populational functional diversity, disease-linked and biomolecular structural variations, and cell function regulation. As demonstrated by RNA-based coronavirus vaccines' success, RNA technology is transforming medicine, agriculture, and industry, as did the advent of recombinant DNA technology in the 1980s.
Collapse
Affiliation(s)
- William A Haseltine
- Access Health International, 384 West Lane, Ridgefield, CT 06877, USA
- Feinstein Institutes for Medical Research, 350 Community Dr, Manhasset, NY 11030, USA
| | - Roberto Patarca
- Access Health International, 384 West Lane, Ridgefield, CT 06877, USA
- Feinstein Institutes for Medical Research, 350 Community Dr, Manhasset, NY 11030, USA
| |
Collapse
|
2
|
Sun J, Durmaz AD, Babu A, Macabenta F, Stathopoulos A. Two sequential gene expression programs bridged by cell division support long-distance collective cell migration. Development 2024; 151:dev202262. [PMID: 38646822 PMCID: PMC11165717 DOI: 10.1242/dev.202262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 04/08/2024] [Indexed: 04/23/2024]
Abstract
The precise assembly of tissues and organs relies on spatiotemporal regulation of gene expression to coordinate the collective behavior of cells. In Drosophila embryos, the midgut musculature is formed through collective migration of caudal visceral mesoderm (CVM) cells, but how gene expression changes as cells migrate is not well understood. Here, we have focused on ten genes expressed in the CVM and the cis-regulatory sequences controlling their expression. Although some genes are continuously expressed, others are expressed only early or late during migration. Late expression relates to cell cycle progression, as driving string/Cdc25 causes earlier division of CVM cells and accelerates the transition to late gene expression. In particular, we found that the cell cycle effector transcription factor E2F1 is a required input for the late gene CG5080. Furthermore, whereas late genes are broadly expressed in all CVM cells, early gene transcripts are polarized to the anterior or posterior ends of the migrating collective. We show this polarization requires transcription factors Snail, Zfh1 and Dorsocross. Collectively, these results identify two sequential gene expression programs bridged by cell division that support long-distance directional migration of CVM cells.
Collapse
Affiliation(s)
- Jingjing Sun
- California Institute of Technology, Division of Biology and Biological Engineering, 1200 East California Boulevard, Pasadena, CA 91125, USA
| | - Ayse Damla Durmaz
- California Institute of Technology, Division of Biology and Biological Engineering, 1200 East California Boulevard, Pasadena, CA 91125, USA
- Faculty of Biology, Ludwig-Maximilians Universität München, München, 82152 DE, Germany
| | - Aswini Babu
- California Institute of Technology, Division of Biology and Biological Engineering, 1200 East California Boulevard, Pasadena, CA 91125, USA
| | - Frank Macabenta
- California Institute of Technology, Division of Biology and Biological Engineering, 1200 East California Boulevard, Pasadena, CA 91125, USA
- California State University, Monterey Bay, Seaside, CA 93955, USA
| | - Angelike Stathopoulos
- California Institute of Technology, Division of Biology and Biological Engineering, 1200 East California Boulevard, Pasadena, CA 91125, USA
| |
Collapse
|
3
|
Syed S, Duan Y, Lim B. Modulation of protein-DNA binding reveals mechanisms of spatiotemporal gene control in early Drosophila embryos. eLife 2023; 12:e85997. [PMID: 37934571 PMCID: PMC10629816 DOI: 10.7554/elife.85997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 10/19/2023] [Indexed: 11/08/2023] Open
Abstract
It is well known that enhancers regulate the spatiotemporal expression of their target genes by recruiting transcription factors (TFs) to the cognate binding sites in the region. However, the role of multiple binding sites for the same TFs and their specific spatial arrangement in determining the overall competency of the enhancer has yet to be fully understood. In this study, we utilized the MS2-MCP live imaging technique to quantitatively analyze the regulatory logic of the snail distal enhancer in early Drosophila embryos. Through systematic modulation of Dorsal and Twist binding motifs in this enhancer, we found that a mutation in any one of these binding sites causes a drastic reduction in transcriptional amplitude, resulting in a reduction in mRNA production of the target gene. We provide evidence of synergy, such that multiple binding sites with moderate affinities cooperatively recruit more TFs to drive stronger transcriptional activity than a single site. Moreover, a Hidden Markov-based stochastic model of transcription reveals that embryos with mutated binding sites have a higher probability of returning to the inactive promoter state. We propose that TF-DNA binding regulates spatial and temporal gene expression and drives robust pattern formation by modulating transcriptional kinetics and tuning bursting rates.
Collapse
Affiliation(s)
- Sahla Syed
- Department of Chemical and Biomolecular Engineering, University of PennsylvaniaPhiladelphiaUnited States
| | - Yifei Duan
- Department of Chemical and Biomolecular Engineering, University of PennsylvaniaPhiladelphiaUnited States
- Master of Biotechnology Program, University of PennsylvaniaPhiladelphiaUnited States
| | - Bomyi Lim
- Department of Chemical and Biomolecular Engineering, University of PennsylvaniaPhiladelphiaUnited States
| |
Collapse
|
4
|
Fletcher A, Wunderlich Z, Enciso G. Shadow enhancers mediate trade-offs between transcriptional noise and fidelity. PLoS Comput Biol 2023; 19:e1011071. [PMID: 37205714 DOI: 10.1371/journal.pcbi.1011071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 04/03/2023] [Indexed: 05/21/2023] Open
Abstract
Enhancers are stretches of regulatory DNA that bind transcription factors (TFs) and regulate the expression of a target gene. Shadow enhancers are two or more enhancers that regulate the same target gene in space and time and are associated with most animal developmental genes. These multi-enhancer systems can drive more consistent transcription than single enhancer systems. Nevertheless, it remains unclear why shadow enhancer TF binding sites are distributed across multiple enhancers rather than within a single large enhancer. Here, we use a computational approach to study systems with varying numbers of TF binding sites and enhancers. We employ chemical reaction networks with stochastic dynamics to determine the trends in transcriptional noise and fidelity, two key performance objectives of enhancers. This reveals that while additive shadow enhancers do not differ in noise and fidelity from their single enhancer counterparts, sub- and superadditive shadow enhancers have noise and fidelity trade-offs not available to single enhancers. We also use our computational approach to compare the duplication and splitting of a single enhancer as mechanisms for the generation of shadow enhancers and find that the duplication of enhancers can decrease noise and increase fidelity, although at the metabolic cost of increased RNA production. A saturation mechanism for enhancer interactions similarly improves on both of these metrics. Taken together, this work highlights that shadow enhancer systems may exist for several reasons: genetic drift or the tuning of key functions of enhancers, including transcription fidelity, noise and output.
Collapse
Affiliation(s)
- Alvaro Fletcher
- Mathematical, Computational, and Systems Biology, University of California, Irvine, Irvine, CA, United States of America
| | - Zeba Wunderlich
- Department of Biology, Boston University, Boston, MA, United States of America
- Biological Design Center, Boston University, Boston, MA, United States of America
| | - German Enciso
- Department of Mathematics, University of California, Irvine, Irvine, CA, United States of America
| |
Collapse
|
5
|
Syed S, Duan Y, Lim B. Modulation of protein-DNA binding reveals mechanisms of spatiotemporal gene control in early Drosophila embryos. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.05.522923. [PMID: 36711729 PMCID: PMC9881968 DOI: 10.1101/2023.01.05.522923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
It is well known that enhancers regulate the spatiotemporal expression of their target genes by recruiting transcription factors (TFs) to the cognate binding sites in the region. However, the role of multiple binding sites for the same TFs and their specific spatial arrangement in determining the overall competency of the enhancer has yet to be fully understood. In this study, we utilized the MS2-MCP live imaging technique to quantitatively analyze the regulatory logic of the snail distal enhancer in early Drosophila embryos. Through systematic modulation of Dorsal and Twist binding motifs in this enhancer, we found that a mutation in any one of these binding sites causes a drastic reduction in transcriptional amplitude, resulting in a reduction in total mRNA production of the target gene. We provide evidence of synergy, such that multiple binding sites with moderate affinities cooperatively recruit more TFs to drive stronger transcriptional activity than a single site. Moreover, a Hidden Markov-based stochastic model of transcription reveals that embryos with mutated binding sites have a higher probability of returning to the inactive promoter state. We propose that TF-DNA binding regulates spatial and temporal gene expression and drives robust pattern formation by modulating transcriptional kinetics and tuning bursting rates.
Collapse
Affiliation(s)
- Sahla Syed
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, PA 19104
| | - Yifei Duan
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, PA 19104
- Master of Biotechnology Program, University of Pennsylvania, Philadelphia, PA 19104
| | - Bomyi Lim
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, PA 19104
| |
Collapse
|
6
|
García-Ferrés M, Sánchez-Higueras C, Espinosa-Vázquez JM, C-G Hombría J. Specification of the endocrine primordia controlling insect moulting and metamorphosis by the JAK/STAT signalling pathway. PLoS Genet 2022; 18:e1010427. [PMID: 36191039 PMCID: PMC9560620 DOI: 10.1371/journal.pgen.1010427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 10/13/2022] [Accepted: 09/12/2022] [Indexed: 11/18/2022] Open
Abstract
The corpora allata and the prothoracic glands control moulting and metamorphosis in insects. These endocrine glands are specified in the maxillary and labial segments at positions homologous to those forming the trachea in more posterior segments. Glands and trachea can be homeotically transformed into each other suggesting that all three evolved from a metamerically repeated organ that diverged to form glands in the head and respiratory organs in the trunk. While much is known about tracheal specification, there is limited information about corpora allata and prothorathic gland specification. Here we show that the expression of a key regulator of early gland development, the snail gene, is controlled by the Dfd and Scr Hox genes and by the Hedgehog and Wnt signalling pathways that induce localised transcription of upd, the ligand of the JAK/STAT signalling pathway, which lies at the heart of gland specification. Our results show that the same upstream regulators are required for the early gland and tracheal primordia specification, reinforcing the hypothesis that they originated from a segmentally repeated organ present in an ancient arthropod.
Collapse
Affiliation(s)
- Mar García-Ferrés
- Centro Andaluz de Biología del Desarrollo (CABD), CSIC-JA-UPO, Seville, Spain
| | | | | | - James C-G Hombría
- Centro Andaluz de Biología del Desarrollo (CABD), CSIC-JA-UPO, Seville, Spain,* E-mail:
| |
Collapse
|
7
|
Luecke D, Rice G, Kopp A. Sex-specific evolution of a Drosophila sensory system via interacting cis- and trans-regulatory changes. Evol Dev 2022; 24:37-60. [PMID: 35239254 PMCID: PMC9179014 DOI: 10.1111/ede.12398] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 01/20/2022] [Accepted: 01/25/2022] [Indexed: 12/13/2022]
Abstract
The evolution of gene expression via cis-regulatory changes is well established as a major driver of phenotypic evolution. However, relatively little is known about the influence of enhancer architecture and intergenic interactions on regulatory evolution. We address this question by examining chemosensory system evolution in Drosophila. Drosophila prolongata males show a massively increased number of chemosensory bristles compared to females and males of sibling species. This increase is driven by sex-specific transformation of ancestrally mechanosensory organs. Consistent with this phenotype, the Pox neuro transcription factor (Poxn), which specifies chemosensory bristle identity, shows expanded expression in D. prolongata males. Poxn expression is controlled by nonadditive interactions among widely dispersed enhancers. Although some D. prolongata Poxn enhancers show increased activity, the additive component of this increase is slight, suggesting that most changes in Poxn expression are due to epistatic interactions between Poxn enhancers and trans-regulatory factors. Indeed, the expansion of D. prolongata Poxn enhancer activity is only observed in cells that express doublesex (dsx), the gene that controls sexual differentiation in Drosophila and also shows increased expression in D. prolongata males due to cis-regulatory changes. Although expanded dsx expression may contribute to increased activity of D. prolongata Poxn enhancers, this interaction is not sufficient to explain the full expansion of Poxn expression, suggesting that cis-trans interactions between Poxn, dsx, and additional unknown genes are necessary to produce the derived D. prolongata phenotype. Overall, our results demonstrate the importance of epistatic gene interactions for evolution, particularly when pivotal genes have complex regulatory architecture.
Collapse
Affiliation(s)
- David Luecke
- Department of Evolution and Ecology, University of California – Davis,Current Address: Department of Integrative Biology, Michigan State University
| | - Gavin Rice
- Department of Evolution and Ecology, University of California – Davis,Current Address: Department of Biological Sciences, University of Pittsburgh
| | - Artyom Kopp
- Department of Evolution and Ecology, University of California – Davis
| |
Collapse
|
8
|
Yokoshi M, Kawasaki K, Cambón M, Fukaya T. Dynamic modulation of enhancer responsiveness by core promoter elements in living Drosophila embryos. Nucleic Acids Res 2021; 50:92-107. [PMID: 34897508 PMCID: PMC8754644 DOI: 10.1093/nar/gkab1177] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 11/08/2021] [Accepted: 11/12/2021] [Indexed: 11/12/2022] Open
Abstract
Regulatory interactions between enhancers and core promoters are fundamental for the temporal and spatial specificity of gene expression in development. The central role of core promoters is to initiate productive transcription in response to enhancer's activation cues. However, it has not been systematically assessed how individual core promoter elements affect the induction of transcriptional bursting by enhancers. Here, we provide evidence that each core promoter element differentially modulates functional parameters of transcriptional bursting in developing Drosophila embryos. Quantitative live imaging analysis revealed that the timing and the continuity of burst induction are common regulatory steps on which core promoter elements impact. We further show that the upstream TATA also affects the burst amplitude. On the other hand, Inr, MTE and DPE mainly contribute to the regulation of the burst frequency. Genome editing analysis of the pair-rule gene fushi tarazu revealed that the endogenous TATA and DPE are both essential for its correct expression and function during the establishment of body segments in early embryos. We suggest that core promoter elements serve as a key regulatory module in converting enhancer activity into transcription dynamics during animal development.
Collapse
Affiliation(s)
- Moe Yokoshi
- Laboratory of Transcription Dynamics, Research Center for Biological Visualization, Institute for Quantitative Biosciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Koji Kawasaki
- Laboratory of Transcription Dynamics, Research Center for Biological Visualization, Institute for Quantitative Biosciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Manuel Cambón
- Applied Mathematics Department, University of Granada, Granada, Spain
| | - Takashi Fukaya
- Laboratory of Transcription Dynamics, Research Center for Biological Visualization, Institute for Quantitative Biosciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan.,Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| |
Collapse
|
9
|
Prazak L, Iwasaki Y, Kim AR, Kozlov K, King K, Gergen JP. A dual role for DNA binding by Runt in activation and repression of sloppy paired transcription. Mol Biol Cell 2021; 32:ar26. [PMID: 34432496 PMCID: PMC8693977 DOI: 10.1091/mbc.e20-08-0509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
This work investigates the role of DNA binding by Runt in regulating the sloppy paired 1 (slp1) gene and in particular two distinct cis-regulatory elements that mediate regulation by Runt and other pair-rule transcription factors during Drosophila segmentation. We find that a DNA-binding-defective form of Runt is ineffective at repressing both the distal (DESE) and proximal (PESE) early stripe elements of slp1 and is also compromised for DESE-dependent activation. The function of Runt-binding sites in DESE is further investigated using site-specific transgenesis and quantitative imaging techniques. When DESE is tested as an autonomous enhancer, mutagenesis of the Runt sites results in a clear loss of Runt-dependent repression but has little to no effect on Runt-dependent activation. Notably, mutagenesis of these same sites in the context of a reporter gene construct that also contains the PESE enhancer results in a significant reduction of DESE-dependent activation as well as the loss of repression observed for the autonomous mutant DESE enhancer. These results provide strong evidence that DNA binding by Runt directly contributes to the regulatory interplay of interactions between these two enhancers in the early embryo.
Collapse
Affiliation(s)
- Lisa Prazak
- Department of Biology, Farmingdale State College, Farmingdale, NY 11735-1021.,Department of Biochemistry and Cell Biology and Center for Developmental Genetics.,Graduate Program in Molecular and Cellular Biology, Stony Brook University, Stony Brook, NY 11794-5215
| | - Yasuno Iwasaki
- Department of Biochemistry and Cell Biology and Center for Developmental Genetics
| | - Ah-Ram Kim
- Graduate Program in Biochemistry and Structural Biology, and
| | - Konstantin Kozlov
- Department of Applied Mathematics, St. Petersburg State Polytechnical University, St. Petersburg, Russia 195251
| | - Kevin King
- Department of Biochemistry and Cell Biology and Center for Developmental Genetics.,Graduate Program in Molecular and Cellular Biology, Stony Brook University, Stony Brook, NY 11794-5215
| | - J Peter Gergen
- Department of Biochemistry and Cell Biology and Center for Developmental Genetics
| |
Collapse
|
10
|
Abstract
Markers for the endoderm and mesoderm germ layers are commonly expressed together in the early embryo, potentially reflecting cells' ability to explore potential fates before fully committing. It remains unclear when commitment to a single-germ layer is reached and how it is impacted by external signals. Here, we address this important question in Drosophila, a convenient model system in which mesodermal and endodermal fates are associated with distinct cellular movements during gastrulation. Systematically applying endoderm-inducing extracellular signal-regulated kinase (ERK) signals to the ventral medial embryo-which normally only receives a mesoderm-inducing cue-reveals a critical time window during which mesodermal cell movements and gene expression are suppressed by proendoderm signaling. We identify the ERK target gene huckebein (hkb) as the main cause of the ventral furrow suppression and use computational modeling to show that Hkb repression of the mesoderm-associated gene snail is sufficient to account for a broad range of transcriptional and morphogenetic effects. Our approach, pairing precise signaling perturbations with observation of transcriptional dynamics and cell movements, provides a general framework for dissecting the complexities of combinatorial tissue patterning.
Collapse
|
11
|
Fukaya T. Dynamic regulation of anterior-posterior patterning genes in living Drosophila embryos. Curr Biol 2021; 31:2227-2236.e6. [PMID: 33761316 DOI: 10.1016/j.cub.2021.02.050] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 01/27/2021] [Accepted: 02/18/2021] [Indexed: 10/21/2022]
Abstract
Expression of the gap and pair-rule genes plays an essential role in body segmentation during Drosophila embryogenesis.1-5 However, it remains unclear how precise expression patterns of these key developmental genes arise from stochastic transcriptional activation at the single-cell level. Here, I employed genome-editing and live-imaging approaches to comprehensively visualize regulation of the gap and pair-rule genes at the endogenous loci. Quantitative image analysis revealed that the total duration of active transcription (transcription period) is a major determinant of spatial patterning of gene expression in early embryos. The length of the transcription period is determined by the continuity of bursting activities in individual nuclei, with the core expression domain producing more bursts than boundary regions. Each gene exhibits a distinct rate of nascent RNA production during transcriptional bursting, which contributes to gene-to-gene variability in the total output. I also provide evidence for "enhancer interference," wherein a distal weak enhancer interferes with transcriptional activation by a strong proximal enhancer to downregulate the length of the transcription period without changing the transcription rate. Analysis of the endogenous hunchback (hb) locus revealed that the removal of the distal shadow enhancer induces strong ectopic transcriptional activation, which suppresses refinement of the initial broad expression domain into narrower stripe patterns at the anterior part of embryos. This study provides key insights into the link between transcriptional bursting, enhancer-promoter interaction, and spatiotemporal patterning of gene expression during animal development.
Collapse
Affiliation(s)
- Takashi Fukaya
- Laboratory of Transcription Dynamics, Research Center for Biological Visualization, Institute for Quantitative Biosciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan; Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan.
| |
Collapse
|
12
|
Abstract
Shadow enhancers are seemingly redundant transcriptional cis-regulatory elements that regulate the same gene and drive overlapping expression patterns. Recent studies have shown that shadow enhancers are remarkably abundant and control most developmental gene expression in both invertebrates and vertebrates, including mammals. Shadow enhancers might provide an important mechanism for buffering gene expression against mutations in non-coding regulatory regions of genes implicated in human disease. Technological advances in genome editing and live imaging have shed light on how shadow enhancers establish precise gene expression patterns and confer phenotypic robustness. Shadow enhancers can interact in complex ways and may also help to drive the formation of transcriptional hubs within the nucleus. Despite their apparent redundancy, the prevalence and evolutionary conservation of shadow enhancers underscore their key role in emerging metazoan gene regulatory networks.
Collapse
|
13
|
Rao S, Ahmad K, Ramachandran S. Cooperative binding between distant transcription factors is a hallmark of active enhancers. Mol Cell 2021; 81:1651-1665.e4. [PMID: 33705711 DOI: 10.1016/j.molcel.2021.02.014] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 02/08/2021] [Accepted: 02/09/2021] [Indexed: 12/22/2022]
Abstract
Enhancers harbor binding motifs that recruit transcription factors (TFs) for gene activation. While cooperative binding of TFs at enhancers is known to be critical for transcriptional activation of a handful of developmental enhancers, the extent of TF cooperativity genome-wide is unknown. Here, we couple high-resolution nuclease footprinting with single-molecule methylation profiling to characterize TF cooperativity at active enhancers in the Drosophila genome. Enrichment of short micrococcal nuclease (MNase)-protected DNA segments indicates that the majority of enhancers harbor two or more TF-binding sites, and we uncover protected fragments that correspond to co-bound sites in thousands of enhancers. From the analysis of co-binding, we find that cooperativity dominates TF binding in vivo at the majority of active enhancers. Cooperativity is highest between sites spaced 50 bp apart, indicating that cooperativity occurs without apparent protein-protein interactions. Our findings suggest nucleosomes promoting cooperativity because co-binding may effectively clear nucleosomes and promote enhancer function.
Collapse
Affiliation(s)
- Satyanarayan Rao
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, CO 80045, USA; RNA Bioscience Initiative, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Kami Ahmad
- Basic Sciences Division, Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue North, Seattle, WA 98109, USA
| | - Srinivas Ramachandran
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, CO 80045, USA; RNA Bioscience Initiative, University of Colorado School of Medicine, Aurora, CO 80045, USA.
| |
Collapse
|
14
|
Irizarry J, Stathopoulos A. Dynamic patterning by morphogens illuminated by cis-regulatory studies. Development 2021; 148:148/2/dev196113. [PMID: 33472851 DOI: 10.1242/dev.196113] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Morphogen concentration changes in space as well as over time during development. However, how these dynamics are interpreted by cells to specify fate is not well understood. Here, we focus on two morphogens: the maternal transcription factors Bicoid and Dorsal, which directly regulate target genes to pattern Drosophila embryos. The actions of these factors at enhancers has been thoroughly dissected and provides a rich platform for understanding direct input by morphogens and their changing roles over time. Importantly, Bicoid and Dorsal do not work alone; we also discuss additional inputs that work with morphogens to control spatiotemporal gene expression in embryos.
Collapse
Affiliation(s)
- Jihyun Irizarry
- California Institute of Technology, Division of Biology and Biological Engineering, 1200 East California Blvd., Pasadena, CA 91125, USA
| | - Angelike Stathopoulos
- California Institute of Technology, Division of Biology and Biological Engineering, 1200 East California Blvd., Pasadena, CA 91125, USA
| |
Collapse
|
15
|
Waymack R, Fletcher A, Enciso G, Wunderlich Z. Shadow enhancers can suppress input transcription factor noise through distinct regulatory logic. eLife 2020; 9:e59351. [PMID: 32804082 PMCID: PMC7556877 DOI: 10.7554/elife.59351] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 08/14/2020] [Indexed: 12/26/2022] Open
Abstract
Shadow enhancers, groups of seemingly redundant enhancers, are found in a wide range of organisms and are critical for robust developmental patterning. However, their mechanism of action is unknown. We hypothesized that shadow enhancers drive consistent expression levels by buffering upstream noise through a separation of transcription factor (TF) inputs at the individual enhancers. By measuring the transcriptional dynamics of several Kruppel shadow enhancer configurations in live Drosophila embryos, we showed that individual member enhancers act largely independently. We found that TF fluctuations are an appreciable source of noise that the shadow enhancer pair can better buffer than duplicated enhancers. The shadow enhancer pair is also uniquely able to maintain low levels of expression noise across a wide range of temperatures. A stochastic model demonstrated the separation of TF inputs is sufficient to explain these findings. Our results suggest the widespread use of shadow enhancers is partially due to their noise suppressing ability.
Collapse
Affiliation(s)
- Rachel Waymack
- Department of Developmental and Cell Biology, University of California, IrvineIrvineUnited States
| | - Alvaro Fletcher
- Mathematical, Computational, and Systems Biology Graduate Program, University of California, IrvineIrvineUnited States
| | - German Enciso
- Department of Developmental and Cell Biology, University of California, IrvineIrvineUnited States
- Department of Mathematics, University of California, IrvineIrvineUnited States
| | - Zeba Wunderlich
- Department of Developmental and Cell Biology, University of California, IrvineIrvineUnited States
| |
Collapse
|
16
|
Irizarry J, McGehee J, Kim G, Stein D, Stathopoulos A. Twist-dependent ratchet functioning downstream from Dorsal revealed using a light-inducible degron. Genes Dev 2020; 34:965-972. [PMID: 32467225 PMCID: PMC7328519 DOI: 10.1101/gad.338194.120] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 04/24/2020] [Indexed: 11/24/2022]
Abstract
Graded transcription factors are pivotal regulators of embryonic patterning, but whether their role changes over time is unclear. A light-regulated protein degradation system was used to assay temporal dependence of the transcription factor Dorsal in dorsal-ventral axis patterning of Drosophila embryos. Surprisingly, the high-threshold target gene snail only requires Dorsal input early but not late when Dorsal levels peak. Instead, late snail expression can be supported by action of the Twist transcription factor, specifically, through one enhancer, sna.distal This study demonstrates that continuous input is not required for some Dorsal targets and downstream responses, such as twist, function as molecular ratchets.
Collapse
Affiliation(s)
- Jihyun Irizarry
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California 91125, USA
| | - James McGehee
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California 91125, USA
| | - Goheun Kim
- Molecular Cell, and Developmental Biology, University of Texas at Austin, , Austin, Texas 78712, USA
| | - David Stein
- Molecular Cell, and Developmental Biology, University of Texas at Austin, , Austin, Texas 78712, USA
| | - Angelike Stathopoulos
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California 91125, USA
| |
Collapse
|
17
|
Yokoshi M, Segawa K, Fukaya T. Visualizing the Role of Boundary Elements in Enhancer-Promoter Communication. Mol Cell 2020; 78:224-235.e5. [DOI: 10.1016/j.molcel.2020.02.007] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 12/19/2019] [Accepted: 02/05/2020] [Indexed: 12/21/2022]
|
18
|
Hong YG, Kang B, Lee S, Lee Y, Ju BG, Jeong S. Identification of cis -Regulatory Region Controlling Semaphorin-1a Expression in the Drosophila Embryonic Nervous System. Mol Cells 2020; 43:228-235. [PMID: 32024353 PMCID: PMC7103886 DOI: 10.14348/molcells.2019.0294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 12/19/2019] [Accepted: 12/20/2019] [Indexed: 11/27/2022] Open
Abstract
The Drosophila transmembrane semaphorin Sema-1a mediates forward and reverse signaling that plays an essential role in motor and central nervous system (CNS) axon pathfinding during embryonic neural development. Previous immunohistochemical analysis revealed that Sema-1a is expressed on most commissural and longitudinal axons in the CNS and five motor nerve branches in the peripheral nervous system (PNS). However, Sema-1a-mediated axon guidance function contributes significantly to both intersegmental nerve b (ISNb) and segmental nerve a (SNa), and slightly to ISNd and SNc, but not to ISN motor axon pathfinding. Here, we uncover three cis-regulatory elements (CREs), R34A03, R32H10, and R33F06, that robustly drove reporter expression in a large subset of neurons in the CNS. In the transgenic lines R34A03 and R32H10 reporter expression was consistently observed on both ISNb and SNa nerve branches, whereas in the line R33F06 reporter expression was irregularly detected on ISNb or SNa nerve branches in small subsets of abdominal hemisegments. Through complementation test with a Sema1a loss-of-function allele, we found that neuronal expression of Sema-1a driven by each of R34A03 and R32H10 restores robustly the CNS and PNS motor axon guidance defects observed in Sema-1a homozygous mutants. However, when wild-type Sema-1a is expressed by R33F06 in Sema-1a mutants, the Sema-1a PNS axon guidance phenotypes are partially rescued while the Sema-1a CNS axon guidance defects are completely rescued. These results suggest that in a redundant manner, the CREs, R34A03, R32H10, and R33F06 govern the Sema-1a expression required for the axon guidance function of Sema-1a during embryonic neural development.
Collapse
Affiliation(s)
- Young Gi Hong
- Division of Life Sciences (Molecular Biology Major), Jeonbuk National University, Jeonju 54896, Korea
| | - Bongsu Kang
- Division of Life Sciences (Molecular Biology Major), Jeonbuk National University, Jeonju 54896, Korea
- Department of Bioactive Material Sciences and Research Center of Bioactive Materials, Jeonbuk National University, Jeonju 54896, Korea
| | - Seongsoo Lee
- Gwangju Center, Korea Basic Science Institute, Gwangju 61186, Korea
| | - Youngseok Lee
- Department of Bio and Fermentation Convergence Technology, BK21 PLUS Project, Kookmin University, Seoul 02707, Korea
| | - Bong-Gun Ju
- Department of Life Science, Sogang University, Seoul 04107, Korea
| | - Sangyun Jeong
- Division of Life Sciences (Molecular Biology Major), Jeonbuk National University, Jeonju 54896, Korea
- Department of Bioactive Material Sciences and Research Center of Bioactive Materials, Jeonbuk National University, Jeonju 54896, Korea
| |
Collapse
|
19
|
Zeng J, Huynh N, Phelps B, King-Jones K. Snail synchronizes endocycling in a TOR-dependent manner to coordinate entry and escape from endoreplication pausing during the Drosophila critical weight checkpoint. PLoS Biol 2020; 18:e3000609. [PMID: 32097403 PMCID: PMC7041797 DOI: 10.1371/journal.pbio.3000609] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Accepted: 01/28/2020] [Indexed: 12/30/2022] Open
Abstract
The final body size of any given individual underlies both genetic and environmental constraints. Both mammals and insects use target of rapamycin (TOR) and insulin signaling pathways to coordinate growth with nutrition. In holometabolous insects, the growth period is terminated through a cascade of peptide and steroid hormones that end larval feeding behavior and trigger metamorphosis, a nonfeeding stage during which the larval body plan is remodeled to produce an adult. This irreversible decision, termed the critical weight (CW) checkpoint, ensures that larvae have acquired sufficient nutrients to complete and survive development to adulthood. How insects assess body size via the CW checkpoint is still poorly understood on the molecular level. We show here that the Drosophila transcription factor Snail plays a key role in this process. Before and during the CW checkpoint, snail is highly expressed in the larval prothoracic gland (PG), an endocrine tissue undergoing endoreplication and primarily dedicated to the production of the steroid hormone ecdysone. We observed two Snail peaks in the PG, one before and one after the molt from the second to the third instar. Remarkably, these Snail peaks coincide with two peaks of PG cells entering S phase and a slowing of DNA synthesis between the peaks. Interestingly, the second Snail peak occurs at the exit of the CW checkpoint. Snail levels then decline continuously, and endoreplication becomes nonsynchronized in the PG after the CW checkpoint. This suggests that the synchronization of PG cells into S phase via Snail represents the mechanistic link used to terminate the CW checkpoint. Indeed, PG-specific loss of snail function prior to the CW checkpoint causes larval arrest due to a cessation of endoreplication in PG cells, whereas impairing snail after the CW checkpoint no longer affected endoreplication and further development. During the CW window, starvation or loss of TOR signaling disrupted the formation of Snail peaks and endocycle synchronization, whereas later starvation had no effect on snail expression. Taken together, our data demonstrate that insects use the TOR pathway to assess nutrient status during larval development to regulate Snail in ecdysone-producing cells as an effector protein to coordinate endoreplication and CW attainment. During Drosophila development, the time window when larvae assess their readiness for metamorphosis is marked by slowing of cell growth in the prothoracic gland that produces the molting hormone; cell growth (via DNA endoreplication) then increases, allowing the production of the amount of hormone required to trigger metamorphosis. This study shows that these processes depend on the transcription factor Snail.
Collapse
Affiliation(s)
- Jie Zeng
- Department of Biological Sciences, University of Alberta, Edmonton, Canada
| | - Nhan Huynh
- Department of Biological Sciences, University of Alberta, Edmonton, Canada
| | - Brian Phelps
- Department of Biological Sciences, University of Alberta, Edmonton, Canada
| | - Kirst King-Jones
- Department of Biological Sciences, University of Alberta, Edmonton, Canada
- * E-mail:
| |
Collapse
|
20
|
Irvine SQ. Embryonic canalization and its limits-A view from temperature. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2020; 334:128-144. [PMID: 32011096 DOI: 10.1002/jez.b.22930] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 01/17/2020] [Accepted: 01/21/2020] [Indexed: 02/06/2023]
Abstract
Many animals are able to produce similar offspring over a range of environmental conditions. This property of the developmental process has been termed canalization-the channeling of developmental pathways to generate a stable outcome despite varying conditions. Temperature is one environmental parameter that has fundamental effects on cell physiology and biochemistry, yet developmental programs generally result in a stable phenotype under a range of temperatures. On the other hand, there are typically upper and lower temperature limits beyond which the developmental program is unable to produce normal offspring. This review summarizes data on how development is affected by temperature, particularly high temperature, in various animal species. It also brings together information on potential cell biological and developmental genetic factors that may be responsible for developmental stability in varying temperatures, and likely critical mechanisms that break down at high temperature. Also reviewed are possible means for studying temperature effects on embryogenesis and how to determine which factors are most critical at the high-temperature limits for normal development. Increased knowledge of these critical factors will point to the targets of selection under climate change, and more generally, how developmental robustness in varying environments is maintained.
Collapse
Affiliation(s)
- Steven Q Irvine
- Department of Biological Sciences, University of Rhode Island, Kingston, Rhode Island
| |
Collapse
|
21
|
Bell K, Skier K, Chen KH, Gergen JP. Two pair-rule responsive enhancers regulate wingless transcription in the Drosophila blastoderm embryo. Dev Dyn 2019; 249:556-572. [PMID: 31837063 DOI: 10.1002/dvdy.142] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 11/25/2019] [Accepted: 11/26/2019] [Indexed: 11/07/2022] Open
Abstract
BACKGROUND While many developmentally relevant enhancers act in a modular fashion, there is growing evidence for nonadditive interactions between distinct cis-regulatory enhancers. We investigated if nonautonomous enhancer interactions underlie transcription regulation of the Drosophila segment polarity gene, wingless. RESULTS We identified two wg enhancers active at the blastoderm stage: wg 3613u, located from -3.6 to -1.3 kb upstream of the wg transcription start site (TSS) and 3046d, located in intron two of the wg gene, from 3.0 to 4.6 kb downstream of the TSS. Genetic experiments confirm that Even Skipped (Eve), Fushi-tarazu (Ftz), Runt, Odd-paired (Opa), Odd-skipped (Odd), and Paired (Prd) contribute to spatially regulated wg expression. Interestingly, there are enhancer specific differences in response to the gain or loss of function of pair-rule gene activity. Although each element recapitulates aspects of wg expression, a composite reporter containing both enhancers more faithfully recapitulates wg regulation than would be predicted from the sum of their individual responses. CONCLUSION These results suggest that the regulation of wg by pair-rule genes involves nonadditive interactions between distinct cis-regulatory enhancers.
Collapse
Affiliation(s)
- Kimberly Bell
- Department of Biochemistry and Cell Biology and the Center for Developmental Genetics, Stony Brook University, Stony Brook, New York
- Center for Excellence in Learning & Teaching, Stony Brook University, Stony Brook, New York
| | - Kevin Skier
- Department of Biochemistry and Cell Biology and the Center for Developmental Genetics, Stony Brook University, Stony Brook, New York
- University of Massachusetts Medical School, Worcester, Massachusetts
| | - Kevin H Chen
- Department of Biochemistry and Cell Biology and the Center for Developmental Genetics, Stony Brook University, Stony Brook, New York
- Boston University School of Medicine, Boston, Massachusetts
| | - John Peter Gergen
- Department of Biochemistry and Cell Biology and the Center for Developmental Genetics, Stony Brook University, Stony Brook, New York
| |
Collapse
|
22
|
Dunipace L, Ákos Z, Stathopoulos A. Coacting enhancers can have complementary functions within gene regulatory networks and promote canalization. PLoS Genet 2019; 15:e1008525. [PMID: 31830033 PMCID: PMC6932828 DOI: 10.1371/journal.pgen.1008525] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 12/26/2019] [Accepted: 11/15/2019] [Indexed: 11/18/2022] Open
Abstract
Developmental genes are often regulated by multiple enhancers exhibiting similar spatiotemporal outputs, which are generally considered redundantly acting though few have been studied functionally. Using CRISPR-Cas9, we created deletions of two enhancers, brk5' and brk3', that drive similar but not identical expression of the gene brinker (brk) in early Drosophila embryos. Utilizing both in situ hybridization and quantitative mRNA analysis, we investigated the changes in the gene network state caused by the removal of one or both of the early acting enhancers. brk5' deletion generally phenocopied the gene mutant, including expansion of the BMP ligand decapentaplegic (dpp) as well as inducing variability in amnioserosa tissue cell number suggesting a loss of canalization. In contrast, brk3' deletion presented unique phenotypes including dorsal expansion of several ventrally expressed genes and a decrease in amnioserosa cell number. Similarly, deletions were made for two enhancers associated with the gene short-gastrulation (sog), sog.int and sog.dist, demonstrating that they also exhibit distinct patterning phenotypes and affect canalization. In summary, this study shows that similar gene expression driven by coacting enhancers can support distinct, and sometimes complementary, functions within gene regulatory networks and, moreover, that phenotypes associated with individual enhancer deletion mutants can provide insight into new gene functions.
Collapse
Affiliation(s)
- Leslie Dunipace
- California Institute of Technology, Pasadena, CA, United States of America
| | - Zsuzsa Ákos
- California Institute of Technology, Pasadena, CA, United States of America
| | | |
Collapse
|
23
|
Barr K, Reinitz J, Radulescu O. An in silico analysis of robust but fragile gene regulation links enhancer length to robustness. PLoS Comput Biol 2019; 15:e1007497. [PMID: 31730659 PMCID: PMC6881076 DOI: 10.1371/journal.pcbi.1007497] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 11/27/2019] [Accepted: 10/22/2019] [Indexed: 12/31/2022] Open
Abstract
Organisms must ensure that expression of genes is directed to the appropriate tissues at the correct times, while simultaneously ensuring that these gene regulatory systems are robust to perturbation. This idea is captured by a mathematical concept called r-robustness, which says that a system is robust to a perturbation in up to r - 1 randomly chosen parameters. r-robustness implies that the biological system has a small number of sensitive parameters and that this number can be used as a robustness measure. In this work we use this idea to investigate the robustness of gene regulation using a sequence level model of the Drosophila melanogaster gene even-skipped. We consider robustness with respect to mutations of the enhancer sequence and with respect to changes of the transcription factor concentrations. We find that gene regulation is r-robust with respect to mutations in the enhancer sequence and identify a number of sensitive nucleotides. In both natural and in silico predicted enhancers, the number of nucleotides that are sensitive to mutation correlates negatively with the length of the sequence, meaning that longer sequences are more robust. The exact degree of robustness obtained is dependent not only on DNA sequence, but also on the local concentration of regulatory factors. We find that gene regulation can be remarkably sensitive to changes in transcription factor concentrations at the boundaries of expression features, while it is robust to perturbation elsewhere.
Collapse
Affiliation(s)
- Kenneth Barr
- Department of Genetic Medicine, University of Chicago, Chicago, Illinois, United States of America
| | - John Reinitz
- Departments of Statistics, Ecology & Evolution, Molecular Genetics & Cell Biology, University of Chicago, Chicago, Illinois, United States of America
| | - Ovidiu Radulescu
- LPHI UMR CNRS 5235, University of Montpellier, Montpellier, France
| |
Collapse
|
24
|
Heist T, Fukaya T, Levine M. Large distances separate coregulated genes in living Drosophila embryos. Proc Natl Acad Sci U S A 2019; 116:15062-15067. [PMID: 31285341 PMCID: PMC6660726 DOI: 10.1073/pnas.1908962116] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Transcriptional enhancers are short segments of DNA that switch genes on and off in response to a variety of cellular signals. Many enhancers map quite far from their target genes, on the order of tens or even hundreds of kilobases. There is extensive evidence that remote enhancers are brought into proximity with their target promoters via long-range looping interactions. However, the exact physical distances of these enhancer-promoter interactions remain uncertain. Here, we employ high-resolution imaging of living Drosophila embryos to visualize the distances separating linked genes that are coregulated by a shared enhancer. Cotransvection assays (linked genes on separate homologs) suggest a surprisingly large distance during transcriptional activity: at least 100-200 nm. Similar distances were observed when a shared enhancer was placed into close proximity with linked reporter genes in cis. These observations are consistent with the occurrence of "transcription hubs," whereby clusters (or condensates) of multiple RNA polymerase II complexes and associated cofactors are periodically recruited to active promoters. The dynamics of this process might be responsible for rapid fluctuations in the distances separating the transcription of coregulated reporter genes during transvection. We propose that enhancer-promoter communication depends on a combination of classical looping and linking models.
Collapse
Affiliation(s)
- Tyler Heist
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544
| | - Takashi Fukaya
- Institute for Quantitative Biosciences, The University of Tokyo, 113-0032 Tokyo, Japan
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, 113-0032 Tokyo, Japan
| | - Michael Levine
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544;
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544
| |
Collapse
|
25
|
Repele A, Krueger S, Bhattacharyya T, Tuineau MY. The regulatory control of Cebpa enhancers and silencers in the myeloid and red-blood cell lineages. PLoS One 2019; 14:e0217580. [PMID: 31181110 PMCID: PMC6557489 DOI: 10.1371/journal.pone.0217580] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Accepted: 05/14/2019] [Indexed: 12/31/2022] Open
Abstract
Cebpa encodes a transcription factor (TF) that plays an instructive role in the development of multiple myeloid lineages. The expression of Cebpa itself is finely modulated, as Cebpa is expressed at high and intermediate levels in neutrophils and macrophages respectively and downregulated in non-myeloid lineages. The cis-regulatory logic underlying the lineage-specific modulation of Cebpa's expression level is yet to be fully characterized. Previously, we had identified 6 new cis-regulatory modules (CRMs) in a 78kb region surrounding Cebpa. We had also inferred the TFs that regulate each CRM by fitting a sequence-based thermodynamic model to a comprehensive reporter activity dataset. Here, we report the cis-regulatory logic of Cebpa CRMs at the resolution of individual binding sites. We tested the binding sites and functional roles of inferred TFs by designing and constructing mutated CRMs and comparing theoretical predictions of their activity against empirical measurements in a myeloid cell line. The enhancers were confirmed to be activated by combinations of PU.1, C/EBP family TFs, Egr1, and Gfi1 as predicted by the model. We show that silencers repress the activity of the proximal promoter in a dominant manner in G1ME cells, which are derived from the red-blood cell lineage. Dominant repression in G1ME cells can be traced to binding sites for GATA and Myb, a motif shared by all of the silencers. Finally, we demonstrate that GATA and Myb act redundantly to silence the proximal promoter. These results indicate that dominant repression is a novel mechanism for resolving hematopoietic lineages. Furthermore, Cebpa has a fail-safe cis-regulatory architecture, featuring several functionally similar CRMs, each of which contains redundant binding sites for multiple TFs. Lastly, by experimentally demonstrating the predictive ability of our sequence-based thermodynamic model, this work highlights the utility of this computational approach for understanding mammalian gene regulation.
Collapse
Affiliation(s)
- Andrea Repele
- Department of Biology, University of North Dakota, Grand Forks, ND, United States of America
| | - Shawn Krueger
- Department of Biology, University of North Dakota, Grand Forks, ND, United States of America
| | - Tapas Bhattacharyya
- Department of Biology, University of North Dakota, Grand Forks, ND, United States of America
| | - Michelle Y Tuineau
- Department of Biology, University of North Dakota, Grand Forks, ND, United States of America
| |
Collapse
|
26
|
Scholes C, Biette KM, Harden TT, DePace AH. Signal Integration by Shadow Enhancers and Enhancer Duplications Varies across the Drosophila Embryo. Cell Rep 2019; 26:2407-2418.e5. [PMID: 30811990 PMCID: PMC6597254 DOI: 10.1016/j.celrep.2019.01.115] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Revised: 01/06/2019] [Accepted: 01/30/2019] [Indexed: 01/07/2023] Open
Abstract
Transcription of developmental genes is controlled by multiple enhancers. Frequently, more than one enhancer can activate transcription from the same promoter in the same cells. How is regulatory information from multiple enhancers combined to determine the overall expression output? We measure nascent transcription driven by a pair of shadow enhancers, each enhancer of the pair separately, and each duplicated, using live imaging in Drosophila embryos. This set of constructs allows us to quantify the input-output function describing signal integration by two enhancers. We show that signal integration performed by these shadow enhancers and duplications varies across the expression pattern, implying that how their activities are combined depends on the transcriptional regulators bound to the enhancers in different parts of the embryo. Characterizing signal integration by multiple enhancers is a critical step in developing conceptual and computational models of gene expression at the locus level, where multiple enhancers control transcription together.
Collapse
Affiliation(s)
- Clarissa Scholes
- Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Kelly M Biette
- Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Timothy T Harden
- Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Angela H DePace
- Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
27
|
McGreal-Estrada RS, Wolf LV, Cvekl A. Promoter-enhancer looping and shadow enhancers of the mouse αA-crystallin locus. Biol Open 2018; 7:bio.036897. [PMID: 30404901 PMCID: PMC6310886 DOI: 10.1242/bio.036897] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Gene regulation by enhancers is important for precise temporal and spatial gene expression. Enhancers can drive gene expression regardless of their location, orientation or distance from the promoter. Changes in chromatin conformation and chromatin looping occur to bring the promoter and enhancers into close proximity. αA-crystallin ranks among one of the most abundantly expressed genes and proteins in the mammalian lens. The αA-crystallin locus is characterized by a 16 kb chromatin domain marked by two distal enhancers, 5′ DCR1 and 3′ DCR3. Here we used chromatin conformation capture (3C) analysis and transgenic approaches to analyze temporal control of the mouse αA-crystallin gene. We find that DCR1 is necessary, but not sufficient alone to drive expression at E10.5 in the mouse lens pit. Chromatin looping revealed interaction between the promoter and the region 3′ to DCR1, identifying a novel enhancer region in the αA-crystallin locus. We determined that this novel enhancer region, DCR1S, recapitulates the temporal control by DCR1. Acting as shadow enhancers, DCR1 and DCR1S are able to control expression in the lens vesicle at E11.5. It remains to be elucidated however, which region of the αA-crystallin locus is responsible for expression in the lens pit at E10.5. Summary: The αA-crystallin ranks amongst the most highly expressed tissue-specific genes. It is an advantageous model system to probe both promoter-enhancer looping and to identify distal enhancers and their temporal/spatial activities.
Collapse
Affiliation(s)
- Rebecca S McGreal-Estrada
- Departments Ophthalmology and Visual Sciences and Department of Genetics, Albert Einstein College of Medicine, 1300 Morris Park Ave, Ullmann 123, Bronx, NY 10461, USA
| | - Louise V Wolf
- Departments Ophthalmology and Visual Sciences and Department of Genetics, Albert Einstein College of Medicine, 1300 Morris Park Ave, Ullmann 123, Bronx, NY 10461, USA.,Office of Research Services (ORS), Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place - Box 1120, New York, NY 10029-6574
| | - Ales Cvekl
- Departments Ophthalmology and Visual Sciences and Department of Genetics, Albert Einstein College of Medicine, 1300 Morris Park Ave, Ullmann 123, Bronx, NY 10461, USA
| |
Collapse
|
28
|
Temporal control of gene expression by the pioneer factor Zelda through transient interactions in hubs. Nat Commun 2018; 9:5194. [PMID: 30518940 PMCID: PMC6281682 DOI: 10.1038/s41467-018-07613-z] [Citation(s) in RCA: 109] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Accepted: 11/09/2018] [Indexed: 12/31/2022] Open
Abstract
Pioneer transcription factors can engage nucleosomal DNA, which leads to local chromatin remodeling and to the establishment of transcriptional competence. However, the impact of enhancer priming by pioneer factors on the temporal control of gene expression and on mitotic memory remains unclear. Here we employ quantitative live imaging methods and mathematical modeling to test the effect of the pioneer factor Zelda on transcriptional dynamics and memory in Drosophila embryos. We demonstrate that increasing the number of Zelda binding sites accelerates the kinetics of nuclei transcriptional activation regardless of their transcriptional past. Despite its known pioneering activities, we show that Zelda does not remain detectably associated with mitotic chromosomes and is neither necessary nor sufficient to foster memory. We further reveal that Zelda forms sub-nuclear dynamic hubs where Zelda binding events are transient. We propose that Zelda facilitates transcriptional activation by accumulating in microenvironments where it could accelerate the duration of multiple pre-initiation steps.
Collapse
|
29
|
Lim B, Heist T, Levine M, Fukaya T. Visualization of Transvection in Living Drosophila Embryos. Mol Cell 2018; 70:287-296.e6. [PMID: 29606591 DOI: 10.1016/j.molcel.2018.02.029] [Citation(s) in RCA: 117] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 02/09/2018] [Accepted: 02/23/2018] [Indexed: 01/01/2023]
Abstract
How remote enhancers interact with appropriate target genes persists as a central mystery in gene regulation. Here, we exploit the properties of transvection to explore enhancer-promoter communication between homologous chromosomes in living Drosophila embryos. We successfully visualized the activation of an MS2-tagged reporter gene by a defined developmental enhancer located in trans on the other homolog. This trans-homolog activation depends on insulator DNAs, which increase the stability-but not the frequency-of homolog pairing. A pair of heterotypic insulators failed to mediate transvection, raising the possibility that insulator specificity underlies the formation of chromosomal loop domains. Moreover, we found that a shared enhancer co-activates separate PP7 and MS2 reporter genes incis and intrans. Transvecting alleles weakly compete with one another, raising the possibility that they share a common pool of the transcription machinery. We propose that transvecting alleles form a trans-homolog "hub," which serves as a scaffold for the accumulation of transcription complexes.
Collapse
Affiliation(s)
- Bomyi Lim
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA
| | - Tyler Heist
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA
| | - Michael Levine
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA; Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA.
| | - Takashi Fukaya
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA.
| |
Collapse
|
30
|
Comparative Analysis of Immune Cells Reveals a Conserved Regulatory Lexicon. Cell Syst 2018; 6:381-394.e7. [PMID: 29454939 DOI: 10.1016/j.cels.2018.01.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Revised: 10/06/2017] [Accepted: 12/30/2017] [Indexed: 12/13/2022]
Abstract
Most well-characterized enhancers are deeply conserved. In contrast, genome-wide comparative studies of steady-state systems showed that only a small fraction of active enhancers are conserved. To better understand conservation of enhancer activity, we used a comparative genomics approach that integrates temporal expression and epigenetic profiles in an innate immune system. We found that gene expression programs diverge among mildly induced genes, while being highly conserved for strongly induced genes. The fraction of conserved enhancers varies greatly across gene expression programs, with induced genes and early-response genes, in particular, being regulated by a higher fraction of conserved enhancers. Clustering of conserved accessible DNA sequences within enhancers resulted in over 60 sequence motifs including motifs for known factors, as well as many with unknown function. We further show that the number of instances of these motifs is a strong predictor of the responsiveness of a gene to pathogen detection.
Collapse
|
31
|
Requena D, Álvarez JA, Gabilondo H, Loker R, Mann RS, Estella C. Origins and Specification of the Drosophila Wing. Curr Biol 2017; 27:3826-3836.e5. [PMID: 29225023 DOI: 10.1016/j.cub.2017.11.023] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Revised: 10/11/2017] [Accepted: 11/08/2017] [Indexed: 01/18/2023]
Abstract
The insect wing is a key evolutionary innovation that was essential for insect diversification. Yet despite its importance, there is still debate about its evolutionary origins. Two main hypotheses have been proposed: the paranotal hypothesis, which suggests that wings evolved as an extension of the dorsal thorax, and the gill-exite hypothesis, which proposes that wings were derived from a modification of a pre-existing branch at the dorsal base (subcoxa) of the leg. Here, we address this question by studying how wing fates are initially specified during Drosophila embryogenesis, by characterizing a cis-regulatory module (CRM) from the snail (sna) gene, sna-DP (for dorsal primordia). sna-DP specifically marks the early primordia for both the wing and haltere, collectively referred to as the DP. We found that the inputs that activate sna-DP are distinct from those that activate Distalless, a marker for leg fates. Further, in genetic backgrounds in which the leg primordia are absent, the DP are still partially specified. However, lineage-tracing experiments demonstrate that cells from the early leg primordia contribute to both ventral and dorsal appendage fates. Together, these results suggest that the wings of Drosophila have a dual developmental origin: two groups of cells, one ventral and one more dorsal, give rise to the mature wing. We suggest that the dual developmental origins of the wing may be a molecular remnant of the evolutionary history of this appendage, in which cells of the subcoxa of the leg coalesced with dorsal outgrowths to evolve a dorsal appendage with motor control.
Collapse
Affiliation(s)
- David Requena
- Departamento de Biología Molecular and Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid (CSIC-UAM), Nicolás Cabrera 1, 28049 Madrid, Spain
| | - Jose Andres Álvarez
- Departamento de Biología and Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid (CSIC-UAM), Nicolás Cabrera 1, 28049 Madrid, Spain
| | - Hugo Gabilondo
- Departamento de Biología Molecular and Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid (CSIC-UAM), Nicolás Cabrera 1, 28049 Madrid, Spain
| | - Ryan Loker
- Departments of Biochemistry and Molecular Biophysics and Systems Biology, Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, 701 W. 168th St., HHSC 1104, New York, NY 10032, USA
| | - Richard S Mann
- Departments of Biochemistry and Molecular Biophysics and Systems Biology, Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, 701 W. 168th St., HHSC 1104, New York, NY 10032, USA.
| | - Carlos Estella
- Departamento de Biología Molecular and Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid (CSIC-UAM), Nicolás Cabrera 1, 28049 Madrid, Spain.
| |
Collapse
|
32
|
Sancisi V, Manzotti G, Gugnoni M, Rossi T, Gandolfi G, Gobbi G, Torricelli F, Catellani F, Faria do Valle I, Remondini D, Castellani G, Ragazzi M, Piana S, Ciarrocchi A. RUNX2 expression in thyroid and breast cancer requires the cooperation of three non-redundant enhancers under the control of BRD4 and c-JUN. Nucleic Acids Res 2017; 45:11249-11267. [PMID: 28981843 PMCID: PMC5737559 DOI: 10.1093/nar/gkx802] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Accepted: 08/30/2017] [Indexed: 12/14/2022] Open
Abstract
Aberrant reactivation of embryonic pathways is a common feature of cancer. RUNX2 is a transcription factor crucial during embryogenesis that is aberrantly reactivated in many tumors, including thyroid and breast cancer, where it promotes aggressiveness and metastatic spreading. Currently, the mechanisms driving RUNX2 expression in cancer are still largely unknown. Here we showed that RUNX2 transcription in thyroid and breast cancer requires the cooperation of three distantly located enhancers (ENHs) brought together by chromatin three-dimensional looping. We showed that BRD4 controls RUNX2 by binding to the newly identified ENHs and we demonstrated that the anti-proliferative effects of bromodomain inhibitors (BETi) is associated with RUNX2 transcriptional repression. We demonstrated that each RUNX2 ENH is potentially controlled by a distinct set of TFs and we identified c-JUN as the principal pivot of this regulatory platform. We also observed that accumulation of genetic mutations within these elements correlates with metastatic behavior in human thyroid tumors. Finally, we identified RAINs, a novel family of ENH-associated long non-coding RNAs, transcribed from the identified RUNX2 regulatory unit. Our data provide a new model to explain how RUNX2 expression is reactivated in thyroid and breast cancer and how cancer-driving signaling pathways converge on the regulation of this gene.
Collapse
Affiliation(s)
- Valentina Sancisi
- Laboratory of Translational Research, Azienda USL Reggio Emilia - IRCCS, Reggio Emilia, Italy
| | - Gloria Manzotti
- Laboratory of Translational Research, Azienda USL Reggio Emilia - IRCCS, Reggio Emilia, Italy
| | - Mila Gugnoni
- Laboratory of Translational Research, Azienda USL Reggio Emilia - IRCCS, Reggio Emilia, Italy
| | - Teresa Rossi
- Laboratory of Translational Research, Azienda USL Reggio Emilia - IRCCS, Reggio Emilia, Italy
| | - Greta Gandolfi
- Laboratory of Translational Research, Azienda USL Reggio Emilia - IRCCS, Reggio Emilia, Italy
| | - Giulia Gobbi
- Laboratory of Translational Research, Azienda USL Reggio Emilia - IRCCS, Reggio Emilia, Italy
| | - Federica Torricelli
- Laboratory of Translational Research, Azienda USL Reggio Emilia - IRCCS, Reggio Emilia, Italy
| | - Francesca Catellani
- Laboratory of Translational Research, Azienda USL Reggio Emilia - IRCCS, Reggio Emilia, Italy
| | | | - Daniel Remondini
- Department of Physics and Astronomy, University of Bologna, Bologna, Italy
| | - Gastone Castellani
- Department of Physics and Astronomy, University of Bologna, Bologna, Italy
| | - Moira Ragazzi
- Pathology Unit, Azienda USL Reggio Emilia - IRCCS, Reggio Emilia, Italy
| | - Simonetta Piana
- Pathology Unit, Azienda USL Reggio Emilia - IRCCS, Reggio Emilia, Italy
| | - Alessia Ciarrocchi
- Laboratory of Translational Research, Azienda USL Reggio Emilia - IRCCS, Reggio Emilia, Italy
| |
Collapse
|
33
|
Bentovim L, Harden TT, DePace AH. Transcriptional precision and accuracy in development: from measurements to models and mechanisms. Development 2017; 144:3855-3866. [PMID: 29089359 PMCID: PMC5702068 DOI: 10.1242/dev.146563] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
During development, genes are transcribed at specific times, locations and levels. In recent years, the emergence of quantitative tools has significantly advanced our ability to measure transcription with high spatiotemporal resolution in vivo. Here, we highlight recent studies that have used these tools to characterize transcription during development, and discuss the mechanisms that contribute to the precision and accuracy of the timing, location and level of transcription. We attempt to disentangle the discrepancies in how physicists and biologists use the term ‘precision' to facilitate interactions using a common language. We also highlight selected examples in which the coupling of mathematical modeling with experimental approaches has provided important mechanistic insights, and call for a more expansive use of mathematical modeling to exploit the wealth of quantitative data and advance our understanding of animal transcription. Summary: This Review highlights how high-resolution quantitative tools and theoretical models have formed our current view of the mechanisms determining precision and accuracy in the timing, location and level of transcription in the Drosophila embryo.
Collapse
Affiliation(s)
- Lital Bentovim
- Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Timothy T Harden
- Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Angela H DePace
- Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
34
|
Will AJ, Cova G, Osterwalder M, Chan WL, Wittler L, Brieske N, Heinrich V, de Villartay JP, Vingron M, Klopocki E, Visel A, Lupiáñez DG, Mundlos S. Composition and dosage of a multipartite enhancer cluster control developmental expression of Ihh (Indian hedgehog). Nat Genet 2017; 49:1539-1545. [PMID: 28846100 PMCID: PMC5617800 DOI: 10.1038/ng.3939] [Citation(s) in RCA: 91] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Accepted: 07/28/2017] [Indexed: 12/19/2022]
Abstract
Copy number variations (CNVs) often include non-coding sequence and putative enhancers but how these rearrangements induce disease is poorly understood. Here we investigate CNVs involving the regulatory landscape of Indian hedgehog (IHH), causing multiple, highly localised phenotypes including craniosynostosis and synpolydactyly1,2. We show through transgenic reporter and genome editing studies in mice that Ihh is regulated by a constellation of at least 9 enhancers with individual tissue specificities in the digit anlagen, growth plates, skull sutures and fingertips. Consecutive deletions show that they function in an additive manner resulting in growth defects of the skull and long bones. Duplications, in contrast, cause not only dose-dependent upregulation but also misexpression of Ihh, leading to abnormal phalanges, fusion of sutures and syndactyly. Thus, precise spatio-temporal control of developmental gene expression is achieved by complex multipartite enhancer ensembles. Alterations in the composition of such clusters can result in gene misexpression and disease.
Collapse
Affiliation(s)
- Anja J Will
- Max Planck Institute for Molecular Genetics, RG Development and Disease, Berlin, Germany.,Institute for Medical and Human Genetics, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Giulia Cova
- Max Planck Institute for Molecular Genetics, RG Development and Disease, Berlin, Germany.,Institute for Medical and Human Genetics, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Marco Osterwalder
- MS 84-171, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - Wing-Lee Chan
- Max Planck Institute for Molecular Genetics, RG Development and Disease, Berlin, Germany.,Institute for Medical and Human Genetics, Charité-Universitätsmedizin Berlin, Berlin, Germany.,Berlin-Brandenburg Center for Regenerative Therapies (BCRT), Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Lars Wittler
- Department of Developmental Genetics, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Norbert Brieske
- Max Planck Institute for Molecular Genetics, RG Development and Disease, Berlin, Germany
| | - Verena Heinrich
- Department of Computational Molecular Biology, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Jean-Pierre de Villartay
- Genome Dynamics in the Immune System Laboratory, INSERM, UMR 1163, Institut Imagine, Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Martin Vingron
- Department of Computational Molecular Biology, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Eva Klopocki
- Institute of Human Genetics, Biocentre, Julius Maximilians University Würzburg, Würzburg, Germany
| | - Axel Visel
- MS 84-171, Lawrence Berkeley National Laboratory, Berkeley, California, USA.,US Department of Energy Joint Genome Institute, Walnut Creek, California, USA.,School of Natural Sciences, University of California, Merced, California, USA
| | - Darío G Lupiáñez
- Max Planck Institute for Molecular Genetics, RG Development and Disease, Berlin, Germany.,Institute for Medical and Human Genetics, Charité-Universitätsmedizin Berlin, Berlin, Germany.,Berlin-Brandenburg Center for Regenerative Therapies (BCRT), Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Stefan Mundlos
- Max Planck Institute for Molecular Genetics, RG Development and Disease, Berlin, Germany.,Institute for Medical and Human Genetics, Charité-Universitätsmedizin Berlin, Berlin, Germany.,Berlin-Brandenburg Center for Regenerative Therapies (BCRT), Charité-Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
35
|
Barr KA, Reinitz J. A sequence level model of an intact locus predicts the location and function of nonadditive enhancers. PLoS One 2017; 12:e0180861. [PMID: 28715438 PMCID: PMC5513433 DOI: 10.1371/journal.pone.0180861] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Accepted: 06/22/2017] [Indexed: 01/24/2023] Open
Abstract
Metazoan gene expression is controlled through the action of long stretches of noncoding DNA that contain enhancers-shorter sequences responsible for controlling a single aspect of a gene's expression pattern. Models built on thermodynamics have shown how enhancers interpret protein concentration in order to determine specific levels of gene expression, but the emergent regulatory logic of a complete regulatory locus shows qualitative and quantitative differences from isolated enhancers. Such differences may arise from steric competition limiting the quantity of DNA that can simultaneously influence the transcription machinery. We incorporated this competition into a mechanistic model of gene regulation, generated efficient algorithms for this computation, and applied it to the regulation of Drosophila even-skipped (eve). This model finds the location of enhancers and identifies which factors control the boundaries of eve expression. This model predicts a new enhancer that, when assayed in vivo, drives expression in a non-eve pattern. Incorporation of chromatin accessibility eliminates this inconsistency.
Collapse
Affiliation(s)
- Kenneth A. Barr
- Committee on Genetics, Genomics, and Systems Biology, University of Chicago, Chicago, Illinois, United States of America
| | - John Reinitz
- Committee on Genetics, Genomics, and Systems Biology, University of Chicago, Chicago, Illinois, United States of America
- Department of Statistics, University of Chicago, Chicago, Illinois, United States of America
- Department of Ecology and Evolution, University of Chicago, Chicago, Illinois, United States of America
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, Illinois, United States of America
- Institute for Genomics and Systems Biology, University of Chicago, Chicago, Illinois, United States of America
| |
Collapse
|
36
|
Fukaya T, Lim B, Levine M. Rapid Rates of Pol II Elongation in the Drosophila Embryo. Curr Biol 2017; 27:1387-1391. [PMID: 28457866 DOI: 10.1016/j.cub.2017.03.069] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2017] [Revised: 03/26/2017] [Accepted: 03/28/2017] [Indexed: 01/21/2023]
Abstract
Elongation of RNA polymerase II (Pol II) is thought to be an important mechanism for regulating gene expression [1]. We measured the first wave of de novo transcription in living Drosophila embryos using dual-fluorescence detection of nascent transcripts containing 5' MS2 and 3' PP7 RNA stem loops. Pol II elongation rates of 2.4-3.0 kb/min were observed, approximately twice as fast as earlier estimates [2-6]. The revised rates permit substantial levels of zygotic gene activity prior to the mid-blastula transition. We also provide evidence that variable rates of elongation are not a significant source of differential gene activity, suggesting that transcription initiation and Pol II release are the key determinants of gene control in development.
Collapse
Affiliation(s)
- Takashi Fukaya
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA.
| | - Bomyi Lim
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA
| | - Michael Levine
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA; Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA.
| |
Collapse
|
37
|
Hang S, Gergen JP. Different modes of enhancer-specific regulation by Runt and Even-skipped during Drosophila segmentation. Mol Biol Cell 2017; 28:681-691. [PMID: 28077616 PMCID: PMC5328626 DOI: 10.1091/mbc.e16-09-0630] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Revised: 12/13/2016] [Accepted: 01/04/2017] [Indexed: 12/04/2022] Open
Abstract
Expression of the Drosophila slp1 gene depends on nonadditive interactions between two cis-regulatory enhancers. These enhancers are repressed by preventing either Pol II recruitment or release of promoter-proximal paused Pol II in a manner that is both enhancer and transcription factor specific and can account for their nonadditive interaction. The initial metameric expression of the Drosophila sloppy paired 1 (slp1) gene is controlled by two distinct cis-regulatory DNA elements that interact in a nonadditive manner to integrate inputs from transcription factors encoded by the pair-rule segmentation genes. We performed chromatin immunoprecipitation on reporter genes containing these elements in different embryonic genotypes to investigate the mechanism of their regulation. The distal early stripe element (DESE) mediates both activation and repression by Runt. We find that the differential response of DESE to Runt is due to an inhibitory effect of Fushi tarazu (Ftz) on P-TEFb recruitment and the regulation of RNA polymerase II (Pol II) pausing. The proximal early stripe element (PESE) is also repressed by Runt, but in this case, Runt prevents PESE-dependent Pol II recruitment and preinitiation complex (PIC) assembly. PESE is also repressed by Even-skipped (Eve), but, of interest, this repression involves regulation of P-TEFb recruitment and promoter-proximal Pol II pausing. These results demonstrate that the mode of slp1 repression by Runt is enhancer specific, whereas the mode of repression of the slp1 PESE enhancer is transcription factor specific. We propose a model based on these differential regulatory interactions that accounts for the nonadditive interactions between the PESE and DESE enhancers during Drosophila segmentation.
Collapse
Affiliation(s)
- Saiyu Hang
- Department of Biochemistry and Cell Biology and Center for Developmental Genetics and.,Graduate Program in Biochemistry and Structural Biology, Stony Brook University, Stony Brook, NY 11794
| | - J Peter Gergen
- Department of Biochemistry and Cell Biology and Center for Developmental Genetics and
| |
Collapse
|
38
|
Scholes C, DePace AH, Sánchez Á. Combinatorial Gene Regulation through Kinetic Control of the Transcription Cycle. Cell Syst 2016; 4:97-108.e9. [PMID: 28041762 DOI: 10.1016/j.cels.2016.11.012] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Revised: 08/09/2016] [Accepted: 11/23/2016] [Indexed: 11/20/2022]
Abstract
Cells decide when, where, and to what level to express their genes by "computing" information from transcription factors (TFs) binding to regulatory DNA. How is the information contained in multiple TF-binding sites integrated to dictate the rate of transcription? The dominant conceptual and quantitative model is that TFs combinatorially recruit one another and RNA polymerase to the promoter by direct physical interactions. Here, we develop a quantitative framework to explore kinetic control, an alternative model in which combinatorial gene regulation can result from TFs working on different kinetic steps of the transcription cycle. Kinetic control can generate a wide range of analog and Boolean computations without requiring the input TFs to be simultaneously bound to regulatory DNA. We propose experiments that will illuminate the role of kinetic control in transcription and discuss implications for deciphering the cis-regulatory "code."
Collapse
Affiliation(s)
- Clarissa Scholes
- Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA; Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA
| | - Angela H DePace
- Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA.
| | - Álvaro Sánchez
- The Rowland Institute at Harvard, Harvard University, Cambridge, MA 02142, USA.
| |
Collapse
|
39
|
Long HK, Prescott SL, Wysocka J. Ever-Changing Landscapes: Transcriptional Enhancers in Development and Evolution. Cell 2016; 167:1170-1187. [PMID: 27863239 PMCID: PMC5123704 DOI: 10.1016/j.cell.2016.09.018] [Citation(s) in RCA: 627] [Impact Index Per Article: 69.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Revised: 08/24/2016] [Accepted: 09/07/2016] [Indexed: 12/27/2022]
Abstract
A class of cis-regulatory elements, called enhancers, play a central role in orchestrating spatiotemporally precise gene-expression programs during development. Consequently, divergence in enhancer sequence and activity is thought to be an important mediator of inter- and intra-species phenotypic variation. Here, we give an overview of emerging principles of enhancer function, current models of enhancer architecture, genomic substrates from which enhancers emerge during evolution, and the influence of three-dimensional genome organization on long-range gene regulation. We discuss intricate relationships between distinct elements within complex regulatory landscapes and consider their potential impact on specificity and robustness of transcriptional regulation.
Collapse
Affiliation(s)
- Hannah K Long
- Department of Chemical and Systems Biology, Stanford School of Medicine, Stanford University, Stanford, CA 94305, USA; Institute of Stem Cell Biology and Regenerative Medicine, Stanford School of Medicine, Stanford University, Stanford, CA 94305, USA
| | - Sara L Prescott
- Department of Chemical and Systems Biology, Stanford School of Medicine, Stanford University, Stanford, CA 94305, USA; Department of Developmental Biology, Stanford School of Medicine, Stanford University, Stanford, CA 94305, USA
| | - Joanna Wysocka
- Department of Chemical and Systems Biology, Stanford School of Medicine, Stanford University, Stanford, CA 94305, USA; Institute of Stem Cell Biology and Regenerative Medicine, Stanford School of Medicine, Stanford University, Stanford, CA 94305, USA; Department of Developmental Biology, Stanford School of Medicine, Stanford University, Stanford, CA 94305, USA; Howard Hughes Medical Institute, Stanford School of Medicine, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
40
|
Buffry AD, Mendes CC, McGregor AP. The Functionality and Evolution of Eukaryotic Transcriptional Enhancers. ADVANCES IN GENETICS 2016; 96:143-206. [PMID: 27968730 DOI: 10.1016/bs.adgen.2016.08.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Enhancers regulate precise spatial and temporal patterns of gene expression in eukaryotes and, moreover, evolutionary changes in these modular cis-regulatory elements may represent the predominant genetic basis for phenotypic evolution. Here, we review approaches to identify and functionally analyze enhancers and their transcription factor binding sites, including assay for transposable-accessible chromatin-sequencing (ATAC-Seq) and clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9, respectively. We also explore enhancer functionality, including how transcription factor binding sites combine to regulate transcription, as well as research on shadow and super enhancers, and how enhancers can act over great distances and even in trans. Finally, we discuss recent theoretical and empirical data on how transcription factor binding sites and enhancers evolve. This includes how the function of enhancers is maintained despite the turnover of transcription factor binding sites as well as reviewing studies where mutations in enhancers have been shown to underlie morphological change.
Collapse
Affiliation(s)
- A D Buffry
- Oxford Brookes University, Oxford, United Kingdom
| | - C C Mendes
- Oxford Brookes University, Oxford, United Kingdom
| | - A P McGregor
- Oxford Brookes University, Oxford, United Kingdom
| |
Collapse
|
41
|
Fukaya T, Lim B, Levine M. Enhancer Control of Transcriptional Bursting. Cell 2016; 166:358-368. [PMID: 27293191 DOI: 10.1016/j.cell.2016.05.025] [Citation(s) in RCA: 474] [Impact Index Per Article: 52.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2016] [Revised: 04/13/2016] [Accepted: 05/04/2016] [Indexed: 11/27/2022]
Abstract
Transcription is episodic, consisting of a series of discontinuous bursts. Using live-imaging methods and quantitative analysis, we examine transcriptional bursting in living Drosophila embryos. Different developmental enhancers positioned downstream of synthetic reporter genes produce transcriptional bursts with similar amplitudes and duration but generate very different bursting frequencies, with strong enhancers producing more bursts than weak enhancers. Insertion of an insulator reduces the number of bursts and the corresponding level of gene expression, suggesting that enhancer regulation of bursting frequency is a key parameter of gene control in development. We also show that linked reporter genes exhibit coordinated bursting profiles when regulated by a shared enhancer, challenging conventional models of enhancer-promoter looping.
Collapse
Affiliation(s)
- Takashi Fukaya
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA
| | - Bomyi Lim
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA
| | - Michael Levine
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA; Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA.
| |
Collapse
|
42
|
Sandler JE, Stathopoulos A. Stepwise Progression of Embryonic Patterning. Trends Genet 2016; 32:432-443. [PMID: 27230753 DOI: 10.1016/j.tig.2016.04.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Revised: 04/20/2016] [Accepted: 04/21/2016] [Indexed: 01/23/2023]
Abstract
It is long established that the graded distribution of Dorsal transcription factor influences spatial domains of gene expression along the dorsoventral (DV) axis of Drosophila melanogaster embryos. However, the more recent realization that Dorsal levels also change with time raises the question of whether these dynamics are instructive. An overview of DV axis patterning is provided, focusing on new insights identified through quantitative analysis of temporal changes in Dorsal target gene expression from one nuclear cycle to the next ('steps'). Possible roles for the stepwise progression of this patterning program are discussed including (i) tight temporal regulation of signaling pathway activation, (ii) control of gene expression cohorts, and (iii) ensuring the irreversibility of the patterning and cell fate specification process.
Collapse
Affiliation(s)
- Jeremy E Sandler
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Angelike Stathopoulos
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA.
| |
Collapse
|
43
|
Bertolino E, Reinitz J, Manu. The analysis of novel distal Cebpa enhancers and silencers using a transcriptional model reveals the complex regulatory logic of hematopoietic lineage specification. Dev Biol 2016; 413:128-44. [PMID: 26945717 DOI: 10.1016/j.ydbio.2016.02.030] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Revised: 01/13/2016] [Accepted: 02/15/2016] [Indexed: 11/25/2022]
Abstract
C/EBPα plays an instructive role in the macrophage-neutrophil cell-fate decision and its expression is necessary for neutrophil development. How Cebpa itself is regulated in the myeloid lineage is not known. We decoded the cis-regulatory logic of Cebpa, and two other myeloid transcription factors, Egr1 and Egr2, using a combined experimental-computational approach. With a reporter design capable of detecting both distal enhancers and silencers, we analyzed 46 putative cis-regulatory modules (CRMs) in cells representing myeloid progenitors, and derived early macrophages or neutrophils. In addition to novel enhancers, this analysis revealed a surprisingly large number of silencers. We determined the regulatory roles of 15 potential transcriptional regulators by testing 32,768 alternative sequence-based transcriptional models against CRM activity data. This comprehensive analysis allowed us to infer the cis-regulatory logic for most of the CRMs. Silencer-mediated repression of Cebpa was found to be effected mainly by TFs expressed in non-myeloid lineages, highlighting a previously unappreciated contribution of long-distance silencing to hematopoietic lineage resolution. The repression of Cebpa by multiple factors expressed in alternative lineages suggests that hematopoietic genes are organized into densely interconnected repressive networks instead of hierarchies of mutually repressive pairs of pivotal TFs. More generally, our results demonstrate that de novo cis-regulatory dissection is feasible on a large scale with the aid of transcriptional modeling. Current address: Department of Biology, University of North Dakota, 10 Cornell Street, Stop 9019, Grand Forks, ND 58202-9019, USA.
Collapse
Affiliation(s)
- Eric Bertolino
- Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, IL 60637, USA.
| | - John Reinitz
- Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, IL 60637, USA; Department of Statistics, The University of Chicago, Chicago, IL 60637, USA; Department of Ecology and Evolution and Institute of Genomics and Systems Biology, The University of Chicago, Chicago, IL 60637, USA
| | - Manu
- Department of Ecology and Evolution and Institute of Genomics and Systems Biology, The University of Chicago, Chicago, IL 60637, USA; Department of Biology, University of North Dakota, 10 Cornell Street, Stop 9019, Grand Forks, ND 58202-9019, USA.
| |
Collapse
|
44
|
Ferraro T, Esposito E, Mancini L, Ng S, Lucas T, Coppey M, Dostatni N, Walczak AM, Levine M, Lagha M. Transcriptional Memory in the Drosophila Embryo. Curr Biol 2016; 26:212-218. [PMID: 26748851 PMCID: PMC4970865 DOI: 10.1016/j.cub.2015.11.058] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Revised: 10/05/2015] [Accepted: 11/12/2015] [Indexed: 02/04/2023]
Abstract
Transmission of active transcriptional states from mother to daughter cells has the potential to foster precision in the gene expression programs underlying development. Such transcriptional memory has been specifically proposed to promote rapid reactivation of complex gene expression profiles after successive mitoses in Drosophila development [1]. By monitoring transcription in living Drosophila embryos, we provide the first evidence for transcriptional memory in animal development. We specifically monitored the activities of stochastically expressed transgenes in order to distinguish active and inactive mother cells and the behaviors of their daughter nuclei after mitosis. Quantitative analyses reveal that there is a 4-fold higher probability for rapid reactivation after mitosis when the mother experienced transcription. Moreover, memory nuclei activate transcription twice as fast as neighboring inactive mothers, thus leading to augmented levels of gene expression. We propose that transcriptional memory is a mechanism of precision, which helps coordinate gene activity during embryogenesis.
Collapse
Affiliation(s)
- Teresa Ferraro
- Institut Curie, PSL Research University, UMR 3664/UMR 168, Paris 75248, France; CNRS, UMR 3664/UMR 168/UMR 8549/UMR 8550, Paris 75248, France; Sorbonne Universités, UPMC University Paris 06, UMR 3664/UMR 168, Paris 75248, France; PSL, Ecole Normale Supérieure, UMR 8549, Paris 75005, France
| | - Emilia Esposito
- Molecular and Cellular Biology Department, GDD, University of California, Berkeley, Berkeley, CA 94720, USA; Lewis-Sigler Institute, Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Laure Mancini
- Molecular and Cellular Biology Department, GDD, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Sam Ng
- Molecular and Cellular Biology Department, GDD, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Tanguy Lucas
- Institut Curie, PSL Research University, UMR 3664/UMR 168, Paris 75248, France; CNRS, UMR 3664/UMR 168/UMR 8549/UMR 8550, Paris 75248, France; Sorbonne Universités, UPMC University Paris 06, UMR 3664/UMR 168, Paris 75248, France
| | - Mathieu Coppey
- Institut Curie, PSL Research University, UMR 3664/UMR 168, Paris 75248, France; CNRS, UMR 3664/UMR 168/UMR 8549/UMR 8550, Paris 75248, France; Sorbonne Universités, UPMC University Paris 06, UMR 3664/UMR 168, Paris 75248, France
| | - Nathalie Dostatni
- Institut Curie, PSL Research University, UMR 3664/UMR 168, Paris 75248, France; CNRS, UMR 3664/UMR 168/UMR 8549/UMR 8550, Paris 75248, France; Sorbonne Universités, UPMC University Paris 06, UMR 3664/UMR 168, Paris 75248, France
| | - Aleksandra M Walczak
- CNRS, UMR 3664/UMR 168/UMR 8549/UMR 8550, Paris 75248, France; PSL, Ecole Normale Supérieure, UMR 8549, Paris 75005, France
| | - Michael Levine
- Molecular and Cellular Biology Department, GDD, University of California, Berkeley, Berkeley, CA 94720, USA; Lewis-Sigler Institute, Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA.
| | - Mounia Lagha
- Molecular and Cellular Biology Department, GDD, University of California, Berkeley, Berkeley, CA 94720, USA; IGMM, CNRS, UMR 5535, Montpellier 34293, France.
| |
Collapse
|
45
|
Shadow Enhancers Are Pervasive Features of Developmental Regulatory Networks. Curr Biol 2015; 26:38-51. [PMID: 26687625 PMCID: PMC4712172 DOI: 10.1016/j.cub.2015.11.034] [Citation(s) in RCA: 168] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2015] [Revised: 11/16/2015] [Accepted: 11/17/2015] [Indexed: 11/22/2022]
Abstract
Embryogenesis is remarkably robust to segregating mutations and environmental variation; under a range of conditions, embryos of a given species develop into stereotypically patterned organisms. Such robustness is thought to be conferred, in part, through elements within regulatory networks that perform similar, redundant tasks. Redundant enhancers (or "shadow" enhancers), for example, can confer precision and robustness to gene expression, at least at individual, well-studied loci. However, the extent to which enhancer redundancy exists and can thereby have a major impact on developmental robustness remains unknown. Here, we systematically assessed this, identifying over 1,000 predicted shadow enhancers during Drosophila mesoderm development. The activity of 23 elements, associated with five genes, was examined in transgenic embryos, while natural structural variation among individuals was used to assess their ability to buffer against genetic variation. Our results reveal three clear properties of enhancer redundancy within developmental systems. First, it is much more pervasive than previously anticipated, with 64% of loci examined having shadow enhancers. Their spatial redundancy is often partial in nature, while the non-overlapping function may explain why these enhancers are maintained within a population. Second, over 70% of loci do not follow the simple situation of having only two shadow enhancers-often there are three (rols), four (CadN and ade5), or five (Traf1), at least one of which can be deleted with no obvious phenotypic effects. Third, although shadow enhancers can buffer variation, patterns of segregating variation suggest that they play a more complex role in development than generally considered.
Collapse
|
46
|
Wunderlich Z, Bragdon MDJ, Vincent BJ, White JA, Estrada J, DePace AH. Krüppel Expression Levels Are Maintained through Compensatory Evolution of Shadow Enhancers. Cell Rep 2015; 12:1740-7. [PMID: 26344774 PMCID: PMC4581983 DOI: 10.1016/j.celrep.2015.08.021] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Revised: 06/24/2015] [Accepted: 08/05/2015] [Indexed: 01/08/2023] Open
Abstract
Many developmental genes are controlled by shadow enhancers—pairs of enhancers that drive overlapping expression patterns. We hypothesized that compensatory evolution can maintain the total expression of a gene, while individual shadow enhancers diverge between species. To test this hypothesis, we analyzed expression driven by orthologous pairs of shadow enhancers from Drosophila melanogaster, Drosophila yakuba, and Drosophila pseudoobscura that control expression of Krüppel, a transcription factor that patterns the anterior-posterior axis of blastoderm embryos. We found that the expression driven by the pair of enhancers is conserved between these three species, but expression levels driven by the individual enhancers are not. Using sequence analysis and experimental perturbation, we show that each shadow enhancer is regulated by different transcription factors. These results support the hypothesis that compensatory evolution can occur between shadow enhancers, which has implications for mechanistic and evolutionary studies of gene regulation.
Collapse
Affiliation(s)
- Zeba Wunderlich
- Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Meghan D J Bragdon
- Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Ben J Vincent
- Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA
| | | | - Javier Estrada
- Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Angela H DePace
- Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
47
|
Bothma JP, Garcia HG, Ng S, Perry MW, Gregor T, Levine M. Enhancer additivity and non-additivity are determined by enhancer strength in the Drosophila embryo. eLife 2015; 4:e07956. [PMID: 26267217 PMCID: PMC4532966 DOI: 10.7554/elife.07956] [Citation(s) in RCA: 127] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Accepted: 07/15/2015] [Indexed: 01/29/2023] Open
Abstract
Metazoan genes are embedded in a rich milieu of regulatory information that often includes multiple enhancers possessing overlapping activities. In this study, we employ quantitative live imaging methods to assess the function of pairs of primary and shadow enhancers in the regulation of key patterning genes-knirps, hunchback, and snail-in developing Drosophila embryos. The knirps enhancers exhibit additive, sometimes even super-additive activities, consistent with classical gene fusion studies. In contrast, the hunchback enhancers function sub-additively in anterior regions containing saturating levels of the Bicoid activator, but function additively in regions where there are diminishing levels of the Bicoid gradient. Strikingly sub-additive behavior is also observed for snail, whereby removal of the proximal enhancer causes a significant increase in gene expression. Quantitative modeling of enhancer-promoter interactions suggests that weakly active enhancers function additively while strong enhancers behave sub-additively due to competition with the target promoter.
Collapse
Affiliation(s)
- Jacques P Bothma
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
| | - Hernan G Garcia
- Department of Physics, Princeton University, Princeton, United States
| | - Samuel Ng
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
| | - Michael W Perry
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
| | - Thomas Gregor
- Department of Physics, Princeton University, Princeton, United States
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, United States
| | - Michael Levine
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
| |
Collapse
|
48
|
Shadow enhancers enable Hunchback bifunctionality in the Drosophila embryo. Proc Natl Acad Sci U S A 2015; 112:785-90. [PMID: 25564665 DOI: 10.1073/pnas.1413877112] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Hunchback (Hb) is a bifunctional transcription factor that activates and represses distinct enhancers. Here, we investigate the hypothesis that Hb can activate and repress the same enhancer. Computational models predicted that Hb bifunctionally regulates the even-skipped (eve) stripe 3+7 enhancer (eve3+7) in Drosophila blastoderm embryos. We measured and modeled eve expression at cellular resolution under multiple genetic perturbations and found that the eve3+7 enhancer could not explain endogenous eve stripe 7 behavior. Instead, we found that eve stripe 7 is controlled by two enhancers: the canonical eve3+7 and a sequence encompassing the minimal eve stripe 2 enhancer (eve2+7). Hb bifunctionally regulates eve stripe 7, but it executes these two activities on different pieces of regulatory DNA--it activates the eve2+7 enhancer and represses the eve3+7 enhancer. These two "shadow enhancers" use different regulatory logic to create the same pattern.
Collapse
|
49
|
Ozdemir A, Ma L, White KP, Stathopoulos A. Su(H)-mediated repression positions gene boundaries along the dorsal-ventral axis of Drosophila embryos. Dev Cell 2015; 31:100-13. [PMID: 25313963 DOI: 10.1016/j.devcel.2014.08.005] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2013] [Revised: 06/10/2014] [Accepted: 08/05/2014] [Indexed: 12/22/2022]
Abstract
In Drosophila embryos, a nuclear gradient of the Dorsal (Dl) transcription factor directs differential gene expression along the dorsoventral (DV) axis, translating it into distinct domains that specify future mesodermal, neural, and ectodermal territories. However, the mechanisms used to differentially position gene expression boundaries along this axis are not fully understood. Here, using a combination of approaches, including mutant phenotype analyses and chromatin immunoprecipitation, we show that the transcription factor Suppressor of Hairless, Su(H), helps define dorsal boundaries for many genes expressed along the DV axis. Synthetic reporter constructs also provide molecular evidence that Su(H) binding sites support repression and act to counterbalance activation through Dl and the ubiquitous activator Zelda. Our study highlights a role for broadly expressed repressors, like Su(H), and organization of transcription factor binding sites within cis-regulatory modules as important elements controlling spatial domains of gene expression to facilitate flexible positioning of boundaries across the entire DV axis.
Collapse
Affiliation(s)
- Anil Ozdemir
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Lijia Ma
- Institute for Genomics and Systems Biology and Department of Human Genetics, University of Chicago, Chicago, IL 60637, USA
| | - Kevin P White
- Institute for Genomics and Systems Biology and Department of Human Genetics, University of Chicago, Chicago, IL 60637, USA
| | - Angelike Stathopoulos
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA.
| |
Collapse
|
50
|
Schwarzer W, Spitz F. The architecture of gene expression: integrating dispersed cis-regulatory modules into coherent regulatory domains. Curr Opin Genet Dev 2014; 27:74-82. [PMID: 24907448 DOI: 10.1016/j.gde.2014.03.014] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2014] [Revised: 03/28/2014] [Accepted: 03/31/2014] [Indexed: 02/06/2023]
Abstract
Specificity and precision of expression are essential for the genes that regulate developmental processes. The specialized cis-acting modules, such as enhancers, that define gene expression patterns can be distributed across large regions, raising questions about the nature of the mechanisms that underline their action. Recent data has exposed the structural 3D context in which these long-range enhancers are operating. Here, we present how these studies shed new light on principles driving long-distance regulatory relationships. We discuss the molecular mechanisms that enable and accompany the action of long-range acting elements and the integration of multiple distributed regulatory inputs into the coherent and specific regulatory programs that are key to embryonic development.
Collapse
Affiliation(s)
- Wibke Schwarzer
- Developmental Biology Unit, European Molecular Biology Laboratory, Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | - François Spitz
- Developmental Biology Unit, European Molecular Biology Laboratory, Meyerhofstrasse 1, 69117 Heidelberg, Germany.
| |
Collapse
|