1
|
Carvalho C, Barbosa DJ, Celestino R, Zanin E, Xavier Carvalho A, Gassmann R. Dynein directs prophase centrosome migration to control the stem cell division axis in the developing Caenorhabditis elegans epidermis. Genetics 2024; 226:iyae005. [PMID: 38213110 PMCID: PMC11491518 DOI: 10.1093/genetics/iyae005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 11/10/2023] [Accepted: 01/02/2024] [Indexed: 01/13/2024] Open
Abstract
The microtubule motor dynein is critical for the assembly and positioning of mitotic spindles. In Caenorhabditis elegans, these dynein functions have been extensively studied in the early embryo but remain poorly explored in other developmental contexts. Here, we use a hypomorphic dynein mutant to investigate the motor's contribution to asymmetric stem cell-like divisions in the larval epidermis. Live imaging of seam cell divisions that precede formation of the seam syncytium shows that mutant cells properly assemble but frequently misorient their spindle. Misoriented divisions misplace daughter cells from the seam cell row, generate anucleate compartments due to aberrant cytokinesis, and disrupt asymmetric cell fate inheritance. Consequently, the seam becomes disorganized and populated with extra cells that have lost seam identity, leading to fatal epidermal rupture. We show that dynein orients the spindle through the cortical GOA-1Gα-LIN-5NuMA pathway by directing the migration of prophase centrosomes along the anterior-posterior axis. Spindle misorientation in the dynein mutant can be partially rescued by elongating cells, implying that dynein-dependent force generation and cell shape jointly promote correct asymmetric division of epithelial stem cells.
Collapse
Affiliation(s)
- Cátia Carvalho
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto 4200-135, Portugal
- IBMC—Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto 4200-135, Portugal
- ICBAS—Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto 4050-313, Portugal
| | - Daniel J Barbosa
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto 4200-135, Portugal
- IBMC—Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto 4200-135, Portugal
- 1H-Toxrun—One Health Toxicology Research Unit, University Institute of Health Sciences, CESPU, CRL, Gandra 4585-116, Portugal
| | - Ricardo Celestino
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto 4200-135, Portugal
- IBMC—Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto 4200-135, Portugal
| | - Esther Zanin
- Department Biologie, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen 91058, Germany
| | - Ana Xavier Carvalho
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto 4200-135, Portugal
- IBMC—Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto 4200-135, Portugal
| | - Reto Gassmann
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto 4200-135, Portugal
- IBMC—Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto 4200-135, Portugal
| |
Collapse
|
2
|
Wavreil FDM, Yajima M. Diversity of activator of G-protein signaling (AGS)-family proteins and their impact on asymmetric cell division across taxa. Dev Biol 2020; 465:89-99. [PMID: 32687894 DOI: 10.1016/j.ydbio.2020.07.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 07/05/2020] [Accepted: 07/06/2020] [Indexed: 11/18/2022]
Abstract
Asymmetric cell division (ACD) is a cellular process that forms two different cell types through a cell division and is thus critical for the development of all multicellular organisms. Not all but many of the ACD processes are mediated by proper orientation of the mitotic spindle, which segregates the fate determinants asymmetrically into daughter cells. In many cell types, the evolutionarily conserved protein complex of Gαi/AGS-family protein/NuMA-like protein appears to play critical roles in orienting the spindle and/or generating the polarized cortical forces to regulate ACD. Studies in various organisms reveal that this conserved protein complex is slightly modified in each phylum or even within species. In particular, AGS-family proteins appear to be modified with a variable number of motifs in their functional domains across taxa. This apparently creates different molecular interactions and mechanisms of ACD in each developmental program, ultimately contributing to developmental diversity across species. In this review, we discuss how a conserved ACD machinery has been modified in each phylum over the course of evolution with a major focus on the molecular evolution of AGS-family proteins and its impact on ACD regulation.
Collapse
Affiliation(s)
- Florence D M Wavreil
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI, 02906, USA
| | - Mamiko Yajima
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI, 02906, USA.
| |
Collapse
|
3
|
Kotak S. Mechanisms of Spindle Positioning: Lessons from Worms and Mammalian Cells. Biomolecules 2019; 9:E80. [PMID: 30823600 PMCID: PMC6406873 DOI: 10.3390/biom9020080] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 02/13/2019] [Accepted: 02/18/2019] [Indexed: 02/06/2023] Open
Abstract
Proper positioning of the mitotic spindle is fundamental for specifying the site for cleavage furrow, and thus regulates the appropriate sizes and accurate distribution of the cell fate determinants in the resulting daughter cells during development and in the stem cells. The past couple of years have witnessed tremendous work accomplished in the area of spindle positioning, and this has led to the emergence of a working model unravelling in-depth mechanistic insight of the underlying process orchestrating spindle positioning. It is evident now that the correct positioning of the mitotic spindle is not only guided by the chemical cues (protein⁻protein interactions) but also influenced by the physical nature of the cellular environment. In metazoans, the key players that regulate proper spindle positioning are the actin-rich cell cortex and associated proteins, the ternary complex (Gα/GPR-1/2/LIN-5 in Caenorhabditis elegans, Gαi/Pins/Mud in Drosophila and Gαi1-3/LGN/NuMA in humans), minus-end-directed motor protein dynein and the cortical machinery containing myosin. In this review, I will mainly discuss how the abovementioned components precisely and spatiotemporally regulate spindle positioning by sensing the physicochemical environment for execution of flawless mitosis.
Collapse
Affiliation(s)
- Sachin Kotak
- Department of Microbiology and Cell Biology (MCB), Indian Institute of Science (IISc), Bangalore 560012, India.
| |
Collapse
|
4
|
Heppert JK, Pani AM, Roberts AM, Dickinson DJ, Goldstein B. A CRISPR Tagging-Based Screen Reveals Localized Players in Wnt-Directed Asymmetric Cell Division. Genetics 2018; 208:1147-1164. [PMID: 29348144 PMCID: PMC5844328 DOI: 10.1534/genetics.117.300487] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Accepted: 01/08/2018] [Indexed: 11/18/2022] Open
Abstract
Oriented cell divisions are critical to establish and maintain cell fates and tissue organization. Diverse extracellular and intracellular cues have been shown to provide spatial information for mitotic spindle positioning; however, the molecular mechanisms by which extracellular signals communicate with cells to direct mitotic spindle positioning are largely unknown. In animal cells, oriented cell divisions are often achieved by the localization of force-generating motor protein complexes to discrete cortical domains. Disrupting either these force-generating complexes or proteins that globally affect microtubule stability results in defects in mitotic positioning, irrespective of whether these proteins function as spatial cues for spindle orientation. This poses a challenge to traditional genetic dissection of this process. Therefore, as an alternative strategy to identify key proteins that act downstream of intercellular signaling, we screened the localization of many candidate proteins by inserting fluorescent tags directly into endogenous gene loci, without overexpressing the proteins. We tagged 23 candidate proteins in Caenorhabditis elegans and examined each protein's localization in a well-characterized, oriented cell division in the four-cell-stage embryo. We used cell manipulations and genetic experiments to determine which cells harbor key localized proteins and which signals direct these localizations in vivo We found that Dishevelled and adenomatous polyposis coli homologs are polarized during this oriented cell division in response to a Wnt signal, but two proteins typically associated with mitotic spindle positioning, homologs of NuMA and Dynein, were not detectably polarized. These results suggest an unexpected mechanism for mitotic spindle positioning in this system, they pinpoint key proteins of interest, and they highlight the utility of a screening approach based on analyzing the localization of endogenously tagged proteins.
Collapse
Affiliation(s)
- Jennifer K Heppert
- Department of Biology, University of North Carolina at Chapel Hill, North Carolina 27599
| | - Ariel M Pani
- Department of Biology, University of North Carolina at Chapel Hill, North Carolina 27599
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, North Carolina 27599
| | - Allyson M Roberts
- Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, North Carolina 27599
| | - Daniel J Dickinson
- Department of Biology, University of North Carolina at Chapel Hill, North Carolina 27599
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, North Carolina 27599
| | - Bob Goldstein
- Department of Biology, University of North Carolina at Chapel Hill, North Carolina 27599
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, North Carolina 27599
- Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, North Carolina 27599
| |
Collapse
|
5
|
Mitotic Spindle Positioning in the EMS Cell of Caenorhabditis elegans Requires LET-99 and LIN-5/NuMA. Genetics 2016; 204:1177-1189. [PMID: 27672093 DOI: 10.1534/genetics.116.192831] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Accepted: 09/16/2016] [Indexed: 12/24/2022] Open
Abstract
Asymmetric divisions produce daughter cells with different fates, and thus are critical for animal development. During asymmetric divisions, the mitotic spindle must be positioned on a polarized axis to ensure the differential segregation of cell fate determinants into the daughter cells. In many cell types, a cortically localized complex consisting of Gα, GPR-1/2, and LIN-5 (Gαi/Pins/Mud, Gαi/LGN/NuMA) mediates the recruitment of dynactin/dynein, which exerts pulling forces on astral microtubules to physically position the spindle. The conserved PAR polarity proteins are known to regulate both cytoplasmic asymmetry and spindle positioning in many cases. However, spindle positioning also occurs in response to cell signaling cues that appear to be PAR-independent. In the four-cell Caenorhabditis elegans embryo, Wnt and Mes-1/Src-1 signaling pathways act partially redundantly to align the spindle on the anterior/posterior axis of the endomesodermal (EMS) precursor cell. It is unclear how those extrinsic signals individually contribute to spindle positioning and whether either pathway acts via conserved spindle positioning regulators. Here, we genetically test the involvement of Gα, LIN-5, and their negative regulator LET-99, in transducing EMS spindle positioning polarity cues. We also examined whether the C. elegans ortholog of another spindle positioning regulator, DLG-1, is required. We show that LET-99 acts in the Mes-1/Src-1 pathway for spindle positioning. LIN-5 is also required for EMS spindle positioning, possibly through a Gα- and DLG-1-independent mechanism.
Collapse
|
6
|
Abstract
The ability to dictate cell fate decisions is critical during animal development. Moreover, faithful execution of this process ensures proper tissue homeostasis throughout adulthood, whereas defects in the molecular machinery involved may contribute to disease. Evolutionarily conserved protein complexes control cell fate decisions across diverse tissues. Maintaining proper daughter cell inheritance patterns of these determinants during mitosis is therefore a fundamental step of the cell fate decision-making process. In this review, we will discuss two key aspects of this fate determinant segregation activity, cortical cell polarity and mitotic spindle orientation, and how they operate together to produce oriented cell divisions that ultimately influence daughter cell fate. Our focus will be directed at the principal underlying molecular mechanisms and the specific cell fate decisions they have been shown to control.
Collapse
Affiliation(s)
| | | | - Christopher A. Johnston
- Author to whom correspondence should be addressed; ; Tel.: +1-505-277-1567; Fax: +1-505-277-0304
| |
Collapse
|
7
|
Ajduk A, Zernicka-Goetz M. Polarity and cell division orientation in the cleavage embryo: from worm to human. Mol Hum Reprod 2015; 22:691-703. [PMID: 26660321 PMCID: PMC5062000 DOI: 10.1093/molehr/gav068] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Accepted: 11/25/2015] [Indexed: 01/01/2023] Open
Abstract
Cleavage is a period after fertilization, when a 1-cell embryo starts developing into a multicellular organism. Due to a series of mitotic divisions, the large volume of a fertilized egg is divided into numerous smaller, nucleated cells—blastomeres. Embryos of different phyla divide according to different patterns, but molecular mechanism of these early divisions remains surprisingly conserved. In the present paper, we describe how polarity cues, cytoskeleton and cell-to-cell communication interact with each other to regulate orientation of the early embryonic division planes in model animals such as Caenorhabditis elegans, Drosophila and mouse. We focus particularly on the Par pathway and the actin-driven cytoplasmic flows that accompany it. We also describe a unique interplay between Par proteins and the Hippo pathway in cleavage mammalian embryos. Moreover, we discuss the potential meaning of polarity, cytoplasmic dynamics and cell-to-cell communication as quality biomarkers of human embryos.
Collapse
Affiliation(s)
- Anna Ajduk
- Department of Embryology, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096 Warsaw, Poland
| | - Magdalena Zernicka-Goetz
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge CB2 3DY, UK
| |
Collapse
|
8
|
Identifying Regulators of Morphogenesis Common to Vertebrate Neural Tube Closure and Caenorhabditis elegans Gastrulation. Genetics 2015; 202:123-39. [PMID: 26434722 DOI: 10.1534/genetics.115.183137] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Accepted: 09/29/2015] [Indexed: 12/18/2022] Open
Abstract
Neural tube defects including spina bifida are common and severe congenital disorders. In mice, mutations in more than 200 genes can result in neural tube defects. We hypothesized that this large gene set might include genes whose homologs contribute to morphogenesis in diverse animals. To test this hypothesis, we screened a set of Caenorhabditis elegans homologs for roles in gastrulation, a topologically similar process to vertebrate neural tube closure. Both C. elegans gastrulation and vertebrate neural tube closure involve the internalization of surface cells, requiring tissue-specific gene regulation, actomyosin-driven apical constriction, and establishment and maintenance of adhesions between specific cells. Our screen identified several neural tube defect gene homologs that are required for gastrulation in C. elegans, including the transcription factor sptf-3. Disruption of sptf-3 in C. elegans reduced the expression of early endodermally expressed genes as well as genes expressed in other early cell lineages, establishing sptf-3 as a key contributor to multiple well-studied C. elegans cell fate specification pathways. We also identified members of the actin regulatory WAVE complex (wve-1, gex-2, gex-3, abi-1, and nuo-3a). Disruption of WAVE complex members reduced the narrowing of endodermal cells' apical surfaces. Although WAVE complex members are expressed broadly in C. elegans, we found that expression of a vertebrate WAVE complex member, nckap1, is enriched in the developing neural tube of Xenopus. We show that nckap1 contributes to neural tube closure in Xenopus. This work identifies in vivo roles for homologs of mammalian neural tube defect genes in two manipulable genetic model systems.
Collapse
|
9
|
Osborne Nishimura E, Zhang JC, Werts AD, Goldstein B, Lieb JD. Asymmetric transcript discovery by RNA-seq in C. elegans blastomeres identifies neg-1, a gene important for anterior morphogenesis. PLoS Genet 2015; 11:e1005117. [PMID: 25875092 PMCID: PMC4395330 DOI: 10.1371/journal.pgen.1005117] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2014] [Accepted: 03/03/2015] [Indexed: 11/23/2022] Open
Abstract
After fertilization but prior to the onset of zygotic transcription, the C. elegans zygote cleaves asymmetrically to create the anterior AB and posterior P1 blastomeres, each of which goes on to generate distinct cell lineages. To understand how patterns of RNA inheritance and abundance arise after this first asymmetric cell division, we pooled hand-dissected AB and P1 blastomeres and performed RNA-seq. Our approach identified over 200 asymmetrically abundant mRNA transcripts. We confirmed symmetric or asymmetric abundance patterns for a subset of these transcripts using smFISH. smFISH also revealed heterogeneous subcellular patterning of the P1-enriched transcripts chs-1 and bpl-1. We screened transcripts enriched in a given blastomere for embryonic defects using RNAi. The gene neg-1 (F32D1.6) encoded an AB-enriched (anterior) transcript and was required for proper morphology of anterior tissues. In addition, analysis of the asymmetric transcripts yielded clues regarding the post-transcriptional mechanisms that control cellular mRNA abundance during asymmetric cell divisions, which are common in developing organisms.
Collapse
Affiliation(s)
- Erin Osborne Nishimura
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, Chapel Hill, North Carolina, United States of America
- Department of Biology, University of North Carolina, Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Jay C. Zhang
- Department of Biology, University of North Carolina, Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Adam D. Werts
- Department of Biology, University of North Carolina, Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Bob Goldstein
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, Chapel Hill, North Carolina, United States of America
- Department of Biology, University of North Carolina, Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Jason D. Lieb
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, Chapel Hill, North Carolina, United States of America
- Department of Biology, University of North Carolina, Chapel Hill, Chapel Hill, North Carolina, United States of America
- Department of Human Genetics, University of Chicago, Chicago, Illinois, United States of America
| |
Collapse
|
10
|
Slim CL, van IJzendoorn SCD, Lázaro-Diéguez F, Müsch A. The special case of hepatocytes: unique tissue architecture calls for a distinct mode of cell division. BIOARCHITECTURE 2014; 4:47-52. [PMID: 24769852 DOI: 10.4161/bioa.29012] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Columnar epithelia (e.g., kidney, intestine) and hepatocytes embody the two major organizational phenotypes of non-stratified epithelial cells. Columnar epithelia establish their apical and basal domains at opposing poles and organize in monolayered cysts and tubules, in which their apical surfaces form a single continuous lumen whereas hepatocytes establish their apical domains in the midst of their basolateral domains and organize a highly branched capillary luminal network, the bile canaliculi, in which a single hepatocyte can engage in lumen formation with multiple neighbors. To maintain their distinct tissue architectures, columnar epithelial cells bisect their luminal domains during symmetric cell divisions, while the cleavage furrow in dividing hepatocytes avoids bisecting the bile canalicular domains. We discuss recently discovered molecular mechanisms that underlie the different cell division phenotypes in columnar and hepatocytic model cell lines. The serine/threonine kinase Par1b determines both the epithelial lumen polarity and cell division phenotype via cell adhesion signaling that converges on the small GTPase RhoA.
Collapse
Affiliation(s)
- Christiaan L Slim
- Department of Cell Biology; University of Groningen; University Medical Center Groningen; Groningen, The Netherlands
| | - Sven C D van IJzendoorn
- Department of Cell Biology; University of Groningen; University Medical Center Groningen; Groningen, The Netherlands
| | - Francisco Lázaro-Diéguez
- Department of Developmental and Molecular Biology; Albert Einstein College of Medicine; The Bronx, NY, USA
| | - Anne Müsch
- Department of Developmental and Molecular Biology; Albert Einstein College of Medicine; The Bronx, NY, USA
| |
Collapse
|
11
|
Seldin L, Poulson ND, Foote HP, Lechler T. NuMA localization, stability, and function in spindle orientation involve 4.1 and Cdk1 interactions. Mol Biol Cell 2013; 24:3651-62. [PMID: 24109598 PMCID: PMC3842992 DOI: 10.1091/mbc.e13-05-0277] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The epidermis is a multilayered epithelium that requires asymmetric divisions for stratification. A conserved cortical protein complex, including LGN, nuclear mitotic apparatus (NuMA), and dynein/dynactin, plays a key role in establishing proper spindle orientation during asymmetric divisions. The requirements for the cortical recruitment of these proteins, however, remain unclear. In this work, we show that NuMA is required to recruit dynactin to the cell cortex of keratinocytes. NuMA's cortical recruitment requires LGN; however, LGN interactions are not sufficient for this localization. Using fluorescence recovery after photobleaching, we find that the 4.1-binding domain of NuMA is important for stabilizing its interaction with the cell cortex. This is functionally important, as loss of 4.1/NuMA interaction results in spindle orientation defects, using two distinct assays. Furthermore, we observe an increase in cortical NuMA localization as cells enter anaphase. Inhibition of Cdk1 or mutation of a single residue in NuMA mimics this effect. NuMA's anaphase localization is independent of LGN and 4.1 interactions, revealing two distinct mechanisms responsible for NuMA cortical recruitment at different stages of mitosis. This work highlights the complexity of NuMA localization and reveals the importance of NuMA cortical stability for productive force generation during spindle orientation.
Collapse
Affiliation(s)
- Lindsey Seldin
- Department of Cell Biology, Duke University Medical Center, Durham, NC 27710 Department of Dermatology, Duke University Medical Center, Durham, NC 27710
| | | | | | | |
Collapse
|
12
|
Ishidate T, Kim S, Mello C, Shirayama M. Inductive asymmetric cell division: The WRM leads the way. WORM 2013; 2:e26276. [PMID: 24524013 PMCID: PMC3913193 DOI: 10.4161/worm.26276] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/10/2013] [Revised: 08/10/2013] [Accepted: 08/26/2013] [Indexed: 11/19/2022]
Abstract
C. elegans, with its invariant cell lineage, provides a powerful model system in which to study signaling-dependent asymmetric cell division. The C. elegans β-catenin-related protein, WRM-1, specifies endoderm at the 4-cell stage during the first cell signaling-induced asymmetric cell division of embryogenesis. During this interaction, Wnt signaling and the cell cycle regulator CDK-1 act together to induce the asymmetric cortical release of WRM-1 at prophase of the EMS cell cycle. Genetic studies suggest that release of WRM-1 unmasks a cortical site that drives EMS spindle rotation onto the polarized axis of the cell, simultaneously making WRM-1 available for nuclear translocation, and downstream signaling to specify endoderm. These studies suggest a general paradigm for how cortical factors like WRM-1 can function at the cell cortex to mask potentially confounding polarity cues, and when released with appropriate cell cycle timing, can also function downstream to define cell fate.
Collapse
Affiliation(s)
- Takao Ishidate
- RNA Therapeutics Institute; Program in Molecular Medicine; University of Massachusetts Medical School; Howard Hughes Medical Institute; Worcester, MA USA
| | - Soyoung Kim
- RNA Therapeutics Institute; Program in Molecular Medicine; University of Massachusetts Medical School; Howard Hughes Medical Institute; Worcester, MA USA
| | - Craig Mello
- RNA Therapeutics Institute; Program in Molecular Medicine; University of Massachusetts Medical School; Howard Hughes Medical Institute; Worcester, MA USA
| | - Masaki Shirayama
- RNA Therapeutics Institute; Program in Molecular Medicine; University of Massachusetts Medical School; Howard Hughes Medical Institute; Worcester, MA USA
| |
Collapse
|
13
|
Lu MS, Johnston CA. Molecular pathways regulating mitotic spindle orientation in animal cells. Development 2013; 140:1843-56. [PMID: 23571210 DOI: 10.1242/dev.087627] [Citation(s) in RCA: 138] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Orientation of the cell division axis is essential for the correct development and maintenance of tissue morphology, both for symmetric cell divisions and for the asymmetric distribution of fate determinants during, for example, stem cell divisions. Oriented cell division depends on the positioning of the mitotic spindle relative to an axis of polarity. Recent studies have illuminated an expanding list of spindle orientation regulators, and a molecular model for how cells couple cortical polarity with spindle positioning has begun to emerge. Here, we review both the well-established spindle orientation pathways and recently identified regulators, focusing on how communication between the cell cortex and the spindle is achieved, to provide a contemporary view of how positioning of the mitotic spindle occurs.
Collapse
Affiliation(s)
- Michelle S Lu
- Institute of Molecular Biology, University of Oregon, Eugene, OR 97403, USA
| | | |
Collapse
|
14
|
Berends CWH, Muñoz J, Portegijs V, Schmidt R, Grigoriev I, Boxem M, Akhmanova A, Heck AJR, van den Heuvel S. F-actin asymmetry and the endoplasmic reticulum-associated TCC-1 protein contribute to stereotypic spindle movements in the Caenorhabditis elegans embryo. Mol Biol Cell 2013; 24:2201-15. [PMID: 23699393 PMCID: PMC3708726 DOI: 10.1091/mbc.e13-02-0076] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The position of the spindle apparatus determines the plane of cell cleavage and, therefore, the size and position of daughter cells, as well as the decision between symmetric and asymmetric cell division. We show that asymmetry in cortical actin and, remarkably, an endoplasmic reticulum–localized protein contribute to proper spindle positioning in the Caenorhabditis elegans embryo. The microtubule spindle apparatus dictates the plane of cell cleavage in animal cells. During development, dividing cells control the position of the spindle to determine the size, location, and fate of daughter cells. Spindle positioning depends on pulling forces that act between the cell periphery and astral microtubules. This involves dynein recruitment to the cell cortex by a heterotrimeric G-protein α subunit in complex with a TPR-GoLoco motif protein (GPR-1/2, Pins, LGN) and coiled-coil protein (LIN-5, Mud, NuMA). In this study, we searched for additional factors that contribute to spindle positioning in the one-cell Caenorhabditis elegans embryo. We show that cortical actin is not needed for Gα–GPR–LIN-5 localization and pulling force generation. Instead, actin accumulation in the anterior actually reduces pulling forces, possibly by increasing cortical rigidity. Examining membrane-associated proteins that copurified with GOA-1 Gα, we found that the transmembrane and coiled-coil domain protein 1 (TCC-1) contributes to proper spindle movements. TCC-1 localizes to the endoplasmic reticulum membrane and interacts with UNC-116 kinesin-1 heavy chain in yeast two-hybrid assays. RNA interference of tcc-1 and unc-116 causes similar defects in meiotic spindle positioning, supporting the concept of TCC-1 acting with kinesin-1 in vivo. These results emphasize the contribution of membrane-associated and cortical proteins other than Gα–GPR–LIN-5 in balancing the pulling forces that position the spindle during asymmetric cell division.
Collapse
|
15
|
Riche S, Zouak M, Argoul F, Arneodo A, Pecreaux J, Delattre M. Evolutionary comparisons reveal a positional switch for spindle pole oscillations in Caenorhabditis embryos. ACTA ACUST UNITED AC 2013; 201:653-62. [PMID: 23690175 PMCID: PMC3664713 DOI: 10.1083/jcb.201210110] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In one-cell stage embryos of different worm species, a conserved positional switch controls the onset of mitotic spindle oscillations, whereas the maximum amplitude of oscillations is determined by the time spent in the oscillating phase. During the first embryonic division in Caenorhabditis elegans, the mitotic spindle is pulled toward the posterior pole of the cell and undergoes vigorous transverse oscillations. We identified variations in spindle trajectories by analyzing the outwardly similar one-cell stage embryo of its close relative Caenorhabditis briggsae. Compared with C. elegans, C. briggsae embryos exhibit an anterior shifting of nuclei in prophase and reduced anaphase spindle oscillations. By combining physical perturbations and mutant analysis in both species, we show that differences can be explained by interspecies changes in the regulation of the cortical Gα–GPR–LIN-5 complex. However, we found that in both species (1) a conserved positional switch controls the onset of spindle oscillations, (2) GPR posterior localization may set this positional switch, and (3) the maximum amplitude of spindle oscillations is determined by the time spent in the oscillating phase. By investigating microevolution of a subcellular process, we identify new mechanisms that are instrumental to decipher spindle positioning.
Collapse
Affiliation(s)
- Soizic Riche
- Laboratory of Molecular Biology of the Cell, UMR5239, Ecole Normale Supérieure de Lyon, Centre National de la Recherche Scientifique, 69007 Lyon, France
| | | | | | | | | | | |
Collapse
|
16
|
Wnt and CDK-1 regulate cortical release of WRM-1/β-catenin to control cell division orientation in early Caenorhabditis elegans embryos. Proc Natl Acad Sci U S A 2013; 110:E918-27. [PMID: 23431196 DOI: 10.1073/pnas.1300769110] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In early Caenorhabditis elegans embryos, the Wingless/int (Wnt)- and Src-signaling pathways function in parallel to induce both the division orientation of the endomesoderm (EMS) blastomere and the endoderm fate of the posterior EMS daughter cell, called E. Here, we show that, in addition to its role in endoderm specification, the β-catenin-related protein Worm armadillo 1 (WRM-1) also plays a role in controlling EMS division orientation. WRM-1 localizes to the cortex of cells in both embryos and larvae and is released from the cortex in a Wnt-responsive manner. We show that WRM-1 cortical release is disrupted in a hypomorphic cyclin-dependent protein kinase 1 (cdk-1) mutant and that WRM-1 lacking potential CDK-1 phosphoacceptor sites is retained at the cortex. In both cases, cortical WRM-1 interferes with EMS spindle rotation without affecting endoderm specification. Finally, we show that removal of WRM-1 from the cortex can restore WT division orientation, even when both Wnt- and Src-signaling pathways are compromised. Our findings are consistent with a model in which Wnt signaling and CDK-1 modify WRM-1 in a temporal and spatial manner to unmask an intrinsic polarity cue required for proper orientation of the EMS cell division axis.
Collapse
|
17
|
Zheng Z, Wan Q, Liu J, Zhu H, Chu X, Du Q. Evidence for dynein and astral microtubule-mediated cortical release and transport of Gαi/LGN/NuMA complex in mitotic cells. Mol Biol Cell 2013; 24:901-13. [PMID: 23389635 PMCID: PMC3608500 DOI: 10.1091/mbc.e12-06-0458] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Spindle positioning is believed to be governed by the interaction between astral microtubules and the cell cortex and involve cortically anchored motor protein dynein. How dynein is recruited to and regulated at the cell cortex to generate forces on astral microtubules is not clear. Here we show that mammalian homologue of Drosophila Pins (Partner of Inscuteable) (LGN), a Gαi-binding protein that is critical for spindle positioning in different systems, associates with cytoplasmic dynein heavy chain (DYNC1H1) in a Gαi-regulated manner. LGN is required for the mitotic cortical localization of DYNC1H1, which, in turn, also modulates the cortical accumulation of LGN. Using fluorescence recovery after photobleaching analysis, we show that cortical LGN is dynamic and the turnover of LGN relies, at least partially, on astral microtubules and DYNC1H1. We provide evidence for dynein- and astral microtubule-mediated transport of Gαi/LGN/nuclear mitotic apparatus (NuMA) complex from cell cortex to spindle poles and show that actin filaments counteract such transport by maintaining Gαi/LGN/NuMA and dynein at the cell cortex. Our results indicate that astral microtubules are required for establishing bipolar, symmetrical cortical LGN distribution during metaphase. We propose that regulated cortical release and transport of LGN complex along astral microtubules may contribute to spindle positioning in mammalian cells.
Collapse
Affiliation(s)
- Zhen Zheng
- Department of Neurology, Medical College of Georgia, Georgia Regents University, Augusta, GA, USA
| | | | | | | | | | | |
Collapse
|
18
|
Abstract
Polarized cortical cues are known to guide spindle movements to dictate division axis and cleavage site during asymmetric cell division. In a recent issue of Nature Cell Biology, Kiyomitsu and Cheeseman (2012) report two novel spindle-intrinsic signals that regulate spindle orientation and position in symmetrically dividing human cells.
Collapse
Affiliation(s)
- Chii Shyang Fong
- Cell Biology Program, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA
| | | |
Collapse
|
19
|
|
20
|
Werts AD, Roh-Johnson M, Goldstein B. Dynamic localization of C. elegans TPR-GoLoco proteins mediates mitotic spindle orientation by extrinsic signaling. J Cell Sci 2011. [DOI: 10.1242/jcs.100750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|