1
|
Qin W, Yang X, Zhang L, Cao L, Ouyang S, Yang D, Zhou Y, Chen A, Liao T, Zhu X, Liu Y, Tang W, Ma T, Tang Y, Ding Y, Deng Y. Loss of lims1 causes aberrant cardiac remodeling and heart failure via activating gp130/Jak1/Stat3 pathway in zebrafish. J Genet Genomics 2025:S1673-8527(25)00112-2. [PMID: 40252966 DOI: 10.1016/j.jgg.2025.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 04/04/2025] [Accepted: 04/07/2025] [Indexed: 04/21/2025]
Abstract
LIM zinc finger domain containing 1 (LIMS1), an evolutionally conserved LIM domain adaptor protein, is implicated in diverse pathologies, including cancer and neurological disorders. However, its roles in cardiac diseases and the underlying mechanisms remain unclear. Here, we explore the functions and mechanisms of LIMS1 in cardiac remodeling and heart failure. We identify the elevated LIMS1 expression in patients with dilated cardiomyopathy (DCM) and murine cardiomyocytes, suggesting that LIMS1 dysregulation contributes to cardiac pathology. Using CRISPR/Cas9 technology, we generate a zebrafish model of lims1 loss-of-function mutant, which exhibits severe cardiac chamber remodeling, systolic dysfunction, and premature mortality, demonstrating the essential role of lims1 in maintaining cardiac integrity. Transcriptomic profiling reveals the activation of the gp130/Jak1/Stat3 signaling in the lims1-deficient hearts. Strikingly, pharmacological inhibition of Stat3 or c-Fos partially rescues cardiomyopathy phenotypes. Our findings reveal the underlying mechanism of lims1 deficiency-caused heart failure through gp130/Jak1/Stat3 hyperactivation, offering insights into cardiac remodeling and potential therapeutic strategies.
Collapse
Affiliation(s)
- Wuming Qin
- Laboratory of Zebrafish Genetics, College of Life Sciences, Hunan Normal University, Changsha, Hunan 410081, China
| | - Xiaobo Yang
- Laboratory of Zebrafish Genetics, College of Life Sciences, Hunan Normal University, Changsha, Hunan 410081, China
| | - Lu Zhang
- Department of Clinical Laboratory, Qingdao Women's and Children's Hospital, Qingdao, Shandong 266034, China
| | - Linghui Cao
- The Affiliated Changsha Central Hospital,Hengyang Medical School, University of South China,Changsha, Hunan 410004, China
| | - Shi Ouyang
- Laboratory of Zebrafish Genetics, College of Life Sciences, Hunan Normal University, Changsha, Hunan 410081, China
| | - Dafeng Yang
- Department of Cardiovascular Surgery, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China
| | - Yangzhao Zhou
- Department of Cardiovascular Surgery, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China
| | - Anji Chen
- Hunan Provincial Key Laboratory of Regional Hereditary Birth Defects Prevention and Control, Changsha Hospital for Maternal & Child Health Care Affiliated to Hunan Normal University, Changsha, Hunan 410007, China
| | - Tao Liao
- Laboratory of Zebrafish Genetics, College of Life Sciences, Hunan Normal University, Changsha, Hunan 410081, China
| | - Xinyu Zhu
- Laboratory of Zebrafish Genetics, College of Life Sciences, Hunan Normal University, Changsha, Hunan 410081, China
| | - Yuting Liu
- The Affiliated Hospital of Qingdao University & Biomedical Sciences Institute, Qingdao Medical College of Qingdao University, Qingdao, Shandong 266021, China
| | - Wei Tang
- Laboratory of Zebrafish Genetics, College of Life Sciences, Hunan Normal University, Changsha, Hunan 410081, China
| | - Tongtong Ma
- Laboratory of Zebrafish Genetics, College of Life Sciences, Hunan Normal University, Changsha, Hunan 410081, China
| | - Yiyue Tang
- Laboratory of Zebrafish Genetics, College of Life Sciences, Hunan Normal University, Changsha, Hunan 410081, China
| | - Yonghe Ding
- The Affiliated Hospital of Qingdao University & Biomedical Sciences Institute, Qingdao Medical College of Qingdao University, Qingdao, Shandong 266021, China.
| | - Yun Deng
- Laboratory of Zebrafish Genetics, College of Life Sciences, Hunan Normal University, Changsha, Hunan 410081, China.
| |
Collapse
|
2
|
Mukherjee A, Anoop C, Nongthomba U. What a tangled web we weave: crosstalk between JAK-STAT and other signalling pathways during development in Drosophila. FEBS J 2025. [PMID: 39821459 DOI: 10.1111/febs.17391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 09/26/2024] [Accepted: 12/23/2024] [Indexed: 01/19/2025]
Abstract
The Janus kinase-signal transducer and activator of transcription (JAK-STAT) signalling pathway is a key player in animal development and physiology. Although it functions in a variety of processes, the net output of JAK-STAT signalling depends on its spatiotemporal activation, as well as extensive crosstalk with other signalling pathways. Drosophila, with its relatively simple signal transduction pathways and plethora of genetic analysis tools, is an ideal system for dissecting JAK-STAT signalling interactions. In this review, we explore studies in Drosophila revealing that JAK-STAT signalling lies at the nexus of a complex network of interlinked pathways, including epidermal growth factor receptor (EGFR), c-Jun N-terminal kinase (JNK), Notch, Insulin, Hippo, bone morphogenetic protein (BMP), Hedgehog (Hh) and Wingless (Wg). These pathways can synergise with or antagonise one another to produce a variety of outcomes. Given the conserved nature of signal transduction pathways, we conclude with our perspective on the implication of JAK-STAT signalling dysregulation in human diseases, and how studies in Drosophila have the potential to inform and influence clinical research.
Collapse
Affiliation(s)
- Amartya Mukherjee
- Department of Developmental Biology and Genetics, Indian Institute of Science (IISc), Bangalore, India
| | - Chaithra Anoop
- Department of Biological Science, Indian Institute of Science Education and Research (IISER), Mohali, India
| | - Upendra Nongthomba
- Department of Developmental Biology and Genetics, Indian Institute of Science (IISc), Bangalore, India
| |
Collapse
|
3
|
Yao S, Zhu Y, He F, Yuan M, Jiang R, Zhang H, Fu Y, Wei K. JAK activity regulates mesoderm cell fate by controlling MESP1 expression. Eur J Cell Biol 2024; 103:151452. [PMID: 39182311 DOI: 10.1016/j.ejcb.2024.151452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 08/13/2024] [Accepted: 08/18/2024] [Indexed: 08/27/2024] Open
Abstract
Cardiac development requires precise gene expression programs at each developmental stage guided by multiple signaling pathways and transcription factors (TFs). MESP1 is transiently expressed in mesoderm, and is essential for subsequent cardiac development, while the precise mechanism regulating its own transcription and mesoderm cell fate is not fully understood. Therefore, we developed a high content screen assay to identify regulators of MESP1 expression in mesodermal cells differentiated from human pluripotent stem cells (hPSCs). The screen identified CYT387, a JAK1/JAK2 kinase inhibitor, as a potent activator of MESP1 expression, which was also found to promote cardiomyocyte differentiation in vitro. Mechanistic studies found that JAK inhibition promotes MESP1 expression by reducing cytoplasmic calcium concentration and subsequently activating canonical WNT signaling. Our study identified a role of JAK signaling in early mesodermal cells, and sheds light on the connection between the JAK-STAT pathway and transcriptional regulation of MESP1, which expands our understanding of mesoderm and cardiac development.
Collapse
Affiliation(s)
- Su Yao
- Institute for Regenerative Medicine, State Key Laboratory of Cardiology and Medical Innovation Center, Shanghai East Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Yalin Zhu
- Institute for Regenerative Medicine, State Key Laboratory of Cardiology and Medical Innovation Center, Shanghai East Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Fenglian He
- Institute for Regenerative Medicine, State Key Laboratory of Cardiology and Medical Innovation Center, Shanghai East Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Min Yuan
- Institute for Regenerative Medicine, State Key Laboratory of Cardiology and Medical Innovation Center, Shanghai East Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Rui Jiang
- Institute for Regenerative Medicine, State Key Laboratory of Cardiology and Medical Innovation Center, Shanghai East Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Hongjie Zhang
- Institute for Regenerative Medicine, State Key Laboratory of Cardiology and Medical Innovation Center, Shanghai East Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Yanbin Fu
- Shanghai Cancer Institute, Department of Biliary-Pancreatic Surgery, Renji Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ke Wei
- Institute for Regenerative Medicine, State Key Laboratory of Cardiology and Medical Innovation Center, Shanghai East Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China.
| |
Collapse
|
4
|
Yang S, Tian M, Dai Y, Wang R, Yamada S, Feng S, Wang Y, Chhangani D, Ou T, Li W, Guo X, McAdow J, Rincon-Limas DE, Yin X, Tai W, Cheng G, Johnson A. Infection and chronic disease activate a systemic brain-muscle signaling axis. Sci Immunol 2024; 9:eadm7908. [PMID: 38996009 DOI: 10.1126/sciimmunol.adm7908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 04/18/2024] [Accepted: 06/18/2024] [Indexed: 07/14/2024]
Abstract
Infections and neurodegenerative diseases induce neuroinflammation, but affected individuals often show nonneural symptoms including muscle pain and muscle fatigue. The molecular pathways by which neuroinflammation causes pathologies outside the central nervous system (CNS) are poorly understood. We developed multiple models to investigate the impact of CNS stressors on motor function and found that Escherichia coli infections and SARS-CoV-2 protein expression caused reactive oxygen species (ROS) to accumulate in the brain. ROS induced expression of the cytokine Unpaired 3 (Upd3) in Drosophila and its ortholog, IL-6, in mice. CNS-derived Upd3/IL-6 activated the JAK-STAT pathway in skeletal muscle, which caused muscle mitochondrial dysfunction and impaired motor function. We observed similar phenotypes after expressing toxic amyloid-β (Aβ42) in the CNS. Infection and chronic disease therefore activate a systemic brain-muscle signaling axis in which CNS-derived cytokines bypass the connectome and directly regulate muscle physiology, highlighting IL-6 as a therapeutic target to treat disease-associated muscle dysfunction.
Collapse
Affiliation(s)
- Shuo Yang
- Department of Developmental Biology, Washington University School of Medicine in St. Louis, St. Louis, MO 63110, USA
- Department of Genetics and Genetics Engineering, School of Life Science, Fudan University, Shanghai 200438, China
| | - Meijie Tian
- Genetics Branch, Oncogenomics Section, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Yulong Dai
- New Cornerstone Science Laboratory, Tsinghua University-Peking University Joint Center for Life Sciences, School of Basic Medical Sciences, Tsinghua University, Beijing 100084, China
- Institute of Infectious Diseases, Shenzhen Bay Laboratory, Shenzhen 518000, China
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China
| | - Rong Wang
- Department of Genetics and Genetics Engineering, School of Life Science, Fudan University, Shanghai 200438, China
| | - Shigehiro Yamada
- Department of Developmental Biology, Washington University School of Medicine in St. Louis, St. Louis, MO 63110, USA
| | - Shengyong Feng
- New Cornerstone Science Laboratory, Tsinghua University-Peking University Joint Center for Life Sciences, School of Basic Medical Sciences, Tsinghua University, Beijing 100084, China
| | - Yunyun Wang
- Department of Forensic Medicine, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Deepak Chhangani
- Department of Neurology and McKnight Brain Institute, Department of Neuroscience and Center for Translational Research in Neurodegenerative Disease, Genetics Institute, and Norman Fixel Institute for Neurological Diseases, University of Florida College of Medicine, Gainesville, FL 32611, USA
| | - Tiffany Ou
- Department of Developmental Biology, Washington University School of Medicine in St. Louis, St. Louis, MO 63110, USA
| | - Wenle Li
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Xuan Guo
- Life Science Institute, Jinzhou Medical University, Jinzhou 121001, China
| | - Jennifer McAdow
- Department of Developmental Biology, Washington University School of Medicine in St. Louis, St. Louis, MO 63110, USA
| | - Diego E Rincon-Limas
- Department of Neurology and McKnight Brain Institute, Department of Neuroscience and Center for Translational Research in Neurodegenerative Disease, Genetics Institute, and Norman Fixel Institute for Neurological Diseases, University of Florida College of Medicine, Gainesville, FL 32611, USA
| | - Xin Yin
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China
| | - Wanbo Tai
- Institute of Infectious Diseases, Shenzhen Bay Laboratory, Shenzhen 518000, China
| | - Gong Cheng
- New Cornerstone Science Laboratory, Tsinghua University-Peking University Joint Center for Life Sciences, School of Basic Medical Sciences, Tsinghua University, Beijing 100084, China
- Institute of Infectious Diseases, Shenzhen Bay Laboratory, Shenzhen 518000, China
- Institute of Pathogenic Organisms, Shenzhen Center for Disease Control and Prevention, Shenzhen 518055, China
- Southwest United Graduate School, Kunming 650092, China
| | - Aaron Johnson
- Department of Developmental Biology, Washington University School of Medicine in St. Louis, St. Louis, MO 63110, USA
| |
Collapse
|
5
|
Zandawala M, Gera J. Leptin- and cytokine-like unpaired signaling in Drosophila. Mol Cell Endocrinol 2024; 584:112165. [PMID: 38266772 DOI: 10.1016/j.mce.2024.112165] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 01/13/2024] [Accepted: 01/19/2024] [Indexed: 01/26/2024]
Abstract
Animals have evolved a multitude of signaling pathways that enable them to orchestrate diverse physiological processes to tightly regulate systemic homeostasis. This signaling is mediated by various families of peptide hormones and cytokines that are conserved across the animal kingdom. In this review, we primarily focus on the unpaired (Upd) family of proteins in Drosophila which are evolutionarily related to mammalian leptin and the cytokine interleukin 6. We summarize expression patterns of Upd in Drosophila and discuss the parallels in structure, signaling pathway, and functions between Upd and their mammalian counterparts. In particular, we focus on the roles of Upd in governing metabolic homeostasis, growth and development, and immune responses. We aim to stimulate future studies on leptin-like signaling in other phyla which can help bridge the evolutionary gap between insect Upd and vertebrate leptin and cytokines like interleukin 6.
Collapse
Affiliation(s)
- Meet Zandawala
- Neurobiology and Genetics, Theodor-Boveri Institute, Biocenter, University of Würzburg, 97074, Würzburg, Germany; Department of Biochemistry and Molecular Biology, University of Nevada, Reno, NV, 89557, USA.
| | - Jayati Gera
- Neurobiology and Genetics, Theodor-Boveri Institute, Biocenter, University of Würzburg, 97074, Würzburg, Germany
| |
Collapse
|
6
|
Zong Y, Chen Y, Wang Y, Wang J, Yu Z, Ou Z, Chen J, Zhang H, Liu C. Induction of cardiotoxicity in zebrafish embryos by 1,1-dichloro-2,2-bis(p-chlorophenyl)ethylene through the JAK-STAT and NOTCH signaling pathways. Chem Biol Interact 2022; 368:110226. [DOI: 10.1016/j.cbi.2022.110226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 10/02/2022] [Accepted: 10/18/2022] [Indexed: 11/29/2022]
|
7
|
Kikel-Coury NL, Brandt JP, Correia IA, O’Dea MR, DeSantis DF, Sterling F, Vaughan K, Ozcebe G, Zorlutuna P, Smith CJ. Identification of astroglia-like cardiac nexus glia that are critical regulators of cardiac development and function. PLoS Biol 2021; 19:e3001444. [PMID: 34793438 PMCID: PMC8601506 DOI: 10.1371/journal.pbio.3001444] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 10/18/2021] [Indexed: 01/09/2023] Open
Abstract
Glial cells are essential for functionality of the nervous system. Growing evidence underscores the importance of astrocytes; however, analogous astroglia in peripheral organs are poorly understood. Using confocal time-lapse imaging, fate mapping, and mutant genesis in a zebrafish model, we identify a neural crest-derived glial cell, termed nexus glia, which utilizes Meteorin signaling via Jak/Stat3 to drive differentiation and regulate heart rate and rhythm. Nexus glia are labeled with gfap, glast, and glutamine synthetase, markers that typically denote astroglia cells. Further, analysis of single-cell sequencing datasets of human and murine hearts across ages reveals astrocyte-like cells, which we confirm through a multispecies approach. We show that cardiac nexus glia at the outflow tract are critical regulators of both the sympathetic and parasympathetic system. These data establish the crucial role of glia on cardiac homeostasis and provide a description of nexus glia in the PNS.
Collapse
Affiliation(s)
- Nina L. Kikel-Coury
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana, United States of America
- Center for Stem Cells and Regenerative Medicine, University of Notre Dame, Notre Dame, Indiana, United States of America
| | - Jacob P. Brandt
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana, United States of America
- Center for Stem Cells and Regenerative Medicine, University of Notre Dame, Notre Dame, Indiana, United States of America
| | - Isabel A. Correia
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana, United States of America
| | - Michael R. O’Dea
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana, United States of America
| | - Dana F. DeSantis
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana, United States of America
- Center for Stem Cells and Regenerative Medicine, University of Notre Dame, Notre Dame, Indiana, United States of America
| | - Felicity Sterling
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana, United States of America
| | - Kevin Vaughan
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana, United States of America
| | - Gulberk Ozcebe
- Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, Indiana, United States of America
| | - Pinar Zorlutuna
- Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, Indiana, United States of America
| | - Cody J. Smith
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana, United States of America
- Center for Stem Cells and Regenerative Medicine, University of Notre Dame, Notre Dame, Indiana, United States of America
| |
Collapse
|
8
|
Wang C, Liu W, Shen Y, Chen J, Zhu H, Yang X, Jiang X, Wang Y, Zhou J. Cardiomyocyte dedifferentiation and remodeling in 3D scaffolds to generate the cellular diversity of engineering cardiac tissues. Biomater Sci 2019; 7:4636-4650. [PMID: 31455969 DOI: 10.1039/c9bm01003c] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The use of engineered cardiac tissues (ECTs) is a new strategy for the repair and replacement of cardiac tissues in patients with myocardial infarction, particularly at late stages. However, the mechanisms underlying the development of ECTs, including cell-scaffold interactions, are not fully understood, although they are closely related to their therapeutic effect. In the present study, we aimed to determine the cellular fate of cardiomyocytes in a 3D scaffold microenvironment, as well as their role in generating the cellular diversity of ECTs by single-cell sequencing analysis. Consistent with the observed plasticity of cardiomyocytes during cardiac regeneration, cardiomyocytes in 3D scaffolds appeared to dedifferentiate, showing an initial loss of normal cytoskeleton organization in the adaptive response to the new scaffold microenvironment. Cardiomyocytes undergoing this process regained their proliferation potential and gradually developed into myocardial cells at different developmental stages, generating heterogeneous regenerative ECTs. To better characterize the remodeled ECTs, high-throughput single-cell sequencing was performed. The ECTs contained a wide diversity of cells related to endogenous classes in the heart, including myocardial cells at different developmental stages and different kinds of interstitial cells. Non-cardiac cells seemed to play important roles in cardiac reconstruction, especially Cajal-like interstitial cells and macrophages. Altogether, our results showed for the first time that cells underwent adaptive dedifferentiation for survival in a 3D scaffold microenvironment to generate heterogeneous tissues. These findings provide an important basis for an improved understanding of the development and assembly of engineered tissues.
Collapse
Affiliation(s)
- Changyong Wang
- Tissue Engineering Research Center, Academy of Military Medical Sciences and Department of Neural Engineering and Biological Interdisciplinary Studies, Institute of Military Cognition and Brain Sciences, Academy of Military Medical Sciences, 27 Taiping Rd, Beijing 100850, PR China
| | - Wei Liu
- Tissue Engineering Research Center, Academy of Military Medical Sciences and Department of Neural Engineering and Biological Interdisciplinary Studies, Institute of Military Cognition and Brain Sciences, Academy of Military Medical Sciences, 27 Taiping Rd, Beijing 100850, PR China
| | - Yuan Shen
- Tissue Engineering Research Center, Academy of Military Medical Sciences and Department of Neural Engineering and Biological Interdisciplinary Studies, Institute of Military Cognition and Brain Sciences, Academy of Military Medical Sciences, 27 Taiping Rd, Beijing 100850, PR China
| | - Jiayun Chen
- College of Life Science and Technology, Huazhong Agricultural university, No.1, shizishan street, Wuhan 430070, PR China
| | - Huimin Zhu
- Tissue Engineering Research Center, Academy of Military Medical Sciences and Department of Neural Engineering and Biological Interdisciplinary Studies, Institute of Military Cognition and Brain Sciences, Academy of Military Medical Sciences, 27 Taiping Rd, Beijing 100850, PR China
| | - Xiaoning Yang
- Tissue Engineering Research Center, Academy of Military Medical Sciences and Department of Neural Engineering and Biological Interdisciplinary Studies, Institute of Military Cognition and Brain Sciences, Academy of Military Medical Sciences, 27 Taiping Rd, Beijing 100850, PR China
| | - Xiaoxia Jiang
- Tissue Engineering Research Center, Academy of Military Medical Sciences and Department of Neural Engineering and Biological Interdisciplinary Studies, Institute of Military Cognition and Brain Sciences, Academy of Military Medical Sciences, 27 Taiping Rd, Beijing 100850, PR China
| | - Yan Wang
- Tissue Engineering Research Center, Academy of Military Medical Sciences and Department of Neural Engineering and Biological Interdisciplinary Studies, Institute of Military Cognition and Brain Sciences, Academy of Military Medical Sciences, 27 Taiping Rd, Beijing 100850, PR China
| | - Jin Zhou
- Tissue Engineering Research Center, Academy of Military Medical Sciences and Department of Neural Engineering and Biological Interdisciplinary Studies, Institute of Military Cognition and Brain Sciences, Academy of Military Medical Sciences, 27 Taiping Rd, Beijing 100850, PR China
| |
Collapse
|
9
|
He L, Binari R, Huang J, Falo-Sanjuan J, Perrimon N. In vivo study of gene expression with an enhanced dual-color fluorescent transcriptional timer. eLife 2019; 8:46181. [PMID: 31140975 PMCID: PMC6660218 DOI: 10.7554/elife.46181] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Accepted: 05/28/2019] [Indexed: 12/28/2022] Open
Abstract
Fluorescent transcriptional reporters are widely used as signaling reporters and biomarkers to monitor pathway activities and determine cell type identities. However, a large amount of dynamic information is lost due to the long half-life of the fluorescent proteins. To better detect dynamics, fluorescent transcriptional reporters can be destabilized to shorten their half-lives. However, applications of this approach in vivo are limited due to significant reduction of signal intensities. To overcome this limitation, we enhanced translation of a destabilized fluorescent protein and demonstrate the advantages of this approach by characterizing spatio-temporal changes of transcriptional activities in Drosophila. In addition, by combining a fast-folding destabilized fluorescent protein and a slow-folding long-lived fluorescent protein, we generated a dual-color transcriptional timer that provides spatio-temporal information about signaling pathway activities. Finally, we demonstrate the use of this transcriptional timer to identify new genes with dynamic expression patterns.
Collapse
Affiliation(s)
- Li He
- Department of Genetics, Harvard Medical School, Boston, United States
| | - Richard Binari
- Department of Genetics, Harvard Medical School, Boston, United States.,Howard Hughes Medical Institute, Boston, United States
| | - Jiuhong Huang
- International Academy of Targeted Therapeutics and Innovation, Chongqing University of Arts and Sciences, Chongqing, China
| | | | - Norbert Perrimon
- Department of Genetics, Harvard Medical School, Boston, United States.,Howard Hughes Medical Institute, Boston, United States
| |
Collapse
|
10
|
A cell surface protein controls endocrine ring gland morphogenesis and steroid production. Dev Biol 2018; 445:16-28. [PMID: 30367846 DOI: 10.1016/j.ydbio.2018.10.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 10/09/2018] [Accepted: 10/15/2018] [Indexed: 12/14/2022]
Abstract
Identification of signals for systemic adaption of hormonal regulation would help to understand the crosstalk between cells and environmental cues contributing to growth, metabolic homeostasis and development. Physiological states are controlled by precise pulsatile hormonal release, including endocrine steroids in human and ecdysteroids in insects. We show in Drosophila that regulation of genes that control biosynthesis and signaling of the steroid hormone ecdysone, a central regulator of developmental progress, depends on the extracellular matrix protein Obstructor-A (Obst-A). Ecdysone is produced by the prothoracic gland (PG), where sensory neurons projecting axons from the brain integrate stimuli for endocrine control. By defining the extracellular surface, Obst-A promotes morphogenesis and axonal growth in the PG. This process requires Obst-A-matrix reorganization by Clathrin/Wurst-mediated endocytosis. Our data identifies the extracellular matrix as essential for endocrine ring gland function, which coordinates physiology, axon morphogenesis, and developmental programs. As Obst-A and Wurst homologs are found among all arthropods, we propose that this mechanism is evolutionary conserved.
Collapse
|
11
|
Dubois L, Frendo JL, Chanut-Delalande H, Crozatier M, Vincent A. Genetic dissection of the Transcription Factor code controlling serial specification of muscle identities in Drosophila. eLife 2016; 5. [PMID: 27438571 PMCID: PMC4954755 DOI: 10.7554/elife.14979] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Accepted: 07/11/2016] [Indexed: 12/30/2022] Open
Abstract
Each Drosophila muscle is seeded by one Founder Cell issued from terminal division of a Progenitor Cell (PC). Muscle identity reflects the expression by each PC of a specific combination of identity Transcription Factors (iTFs). Sequential emergence of several PCs at the same position raised the question of how developmental time controlled muscle identity. Here, we identified roles of Anterior Open and ETS domain lacking in controlling PC birth time and Eyes absent, No Ocelli, and Sine oculis in specifying PC identity. The windows of transcription of these and other TFs in wild type and mutant embryos, revealed a cascade of regulation integrating time and space, feed-forward loops and use of alternative transcription start sites. These data provide a dynamic view of the transcriptional control of muscle identity in Drosophila and an extended framework for studying interactions between general myogenic factors and iTFs in evolutionary diversification of muscle shapes. DOI:http://dx.doi.org/10.7554/eLife.14979.001 Animals have many different muscles of various shapes and sizes that are suited to specific tasks and behaviors. The fruit fly known as Drosophila has a fairly simple musculature, which makes it an ideal model animal to investigate how different muscles form. In fruit fly embryos, cells called progenitor cells divide to produce the cells that will go on to form the different muscles. Proteins called identity Transcription Factors are present in progenitor cells. Different combinations of identity Transcription Factors can switch certain genes on or off to control the muscle shapes in specific areas of an embryo. However, progenitor cells born in the same area but at different times display different patterns of identity Transcription Factors; this suggests that timing also influences the orientation, shape and size of a developing muscle, also known as muscle identity. Dubois et al. used a genetic screen to look for identity Transcription Factors and the roles these proteins play in muscle formation in fruit flies. Tracking the activity of these proteins revealed a precise timeline for specifying muscle identity. This timeline involves cascades of different identity Transcription Factors accumulating in the cells, which act to make sure that distinct muscle shapes are made. In flies with specific mutations, the timing of these events is disrupted, which results in muscles forming with different shapes to those seen in normal flies. The findings of Dubois et al. suggest that the timing of when particular progenitor cells form, as well as their location in the embryo, contribute to determine the shapes of muscles. The next step following on from this work is to use video-microscopy to track identity Transcription Factors when the final muscle shapes emerge. Further experiments will investigate how identity Transcription Factors work together with proteins that are directly involved in muscle development. DOI:http://dx.doi.org/10.7554/eLife.14979.002
Collapse
Affiliation(s)
- Laurence Dubois
- Centre de Biologie du Développement (CBD), CNRS and Université de Toulouse, Toulouse, France.,Centre de Biologie Intégrative (CBI), CNRS and Université de Toulouse, Toulouse, France
| | - Jean-Louis Frendo
- Centre de Biologie du Développement (CBD), CNRS and Université de Toulouse, Toulouse, France.,Centre de Biologie Intégrative (CBI), CNRS and Université de Toulouse, Toulouse, France
| | - Hélène Chanut-Delalande
- Centre de Biologie du Développement (CBD), CNRS and Université de Toulouse, Toulouse, France.,Centre de Biologie Intégrative (CBI), CNRS and Université de Toulouse, Toulouse, France
| | - Michèle Crozatier
- Centre de Biologie du Développement (CBD), CNRS and Université de Toulouse, Toulouse, France.,Centre de Biologie Intégrative (CBI), CNRS and Université de Toulouse, Toulouse, France
| | - Alain Vincent
- Centre de Biologie du Développement (CBD), CNRS and Université de Toulouse, Toulouse, France.,Centre de Biologie Intégrative (CBI), CNRS and Université de Toulouse, Toulouse, France
| |
Collapse
|
12
|
Wang L, Li Z, Song X, Liu L, Su G, Cui Y. Bioinformatic Analysis of Genes and MicroRNAs Associated With Atrioventricular Septal Defect in Down Syndrome Patients. Int Heart J 2016; 57:490-5. [PMID: 27396555 DOI: 10.1536/ihj.15-319] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Down syndrome (DS) is a common chromosome 21 abnormality disease, leading to various health problems, especially atrioventricular septal defect (AVSD). Genes and microRNAs (miRNAs) associated with AVSD in DS patients still need in-depth study.Gene expression data (GSE34457) of 22 DS patients without congenital heart disease and 7 DS patients with AVSD were downloaded from Gene Expression Omnibus. After screening differentially expressed genes (DEGs) based on limma package in R (criteria: P < 0.05 and |log2 fold change (FC)| > 0.5), pathway and functional enrichment analyses were performed using the online software DAVID (criterion: P < 0.05). The protein-protein interaction (PPI) networks of DEGs were constructed based on the online server STRING (criterion: combined score > 0.4). Next, miRNAs that targeted DEGs were predicted based on Webgestalt (criteria: P < 0.05 and target DEGs ≥ 2), and miRNA-DEG regulatory networks were visualized through Cytoscape.A total of 179 DEGs were identified. Next, 5 functions and 1 pathway were enriched by up-regulated DEGs, while 4 functions were enriched by down-regulated DEGs. Furthermore, miRNA-DEG regulatory networks were constructed. IL1B was the hub-gene of PPI networks, and AUTS2 and KIAA2022 were predicted to be targeted by miR-518a, miR518e, miR-518f, miR-528a, and miR-96.IL1B, IL12RB2, AUTS2, and KIAA2022 might participate in AVSD in DS patients, and AUTS2 and KIAA2022 might be targeted by miR-518a, miR-518e, miR-518f, miR-528a, and miR-96. The identified genes and miRNAs might provide a theoretical basis for understanding AVSD in DS patients.
Collapse
Affiliation(s)
- Lei Wang
- Department of Cardiology, Jinan Central Hospital Affiliated to Shandong University
| | | | | | | | | | | |
Collapse
|
13
|
Liongue C, Taznin T, Ward AC. Signaling via the CytoR/JAK/STAT/SOCS pathway: Emergence during evolution. Mol Immunol 2016; 71:166-175. [PMID: 26897340 DOI: 10.1016/j.molimm.2016.02.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2015] [Revised: 02/05/2016] [Accepted: 02/08/2016] [Indexed: 12/24/2022]
Abstract
Cell-cell signaling represents an essential hallmark of multicellular organisms, which necessarily require a means of communicating between different cell populations, particularly immune cells. Cytokine receptor signaling through the Janus kinase/Signal Transducer and Activator of Transcription/Suppressor of Cytokine Signaling (CytoR/JAK/STAT/SOCS) pathway embodies one important paradigm by which this is achieved. This pathway has been extensively studied in vertebrates and protostomes and shown to play fundamental roles in development and function of immune and other cells. However, our understanding of the origins of the individual pathway components and their assembly into a functional pathway has remained limited. This study examined the origins of each component of this pathway through bioinformatics analysis of key extant species. This has revealed step-wise accretion of individual components over a large evolutionary time-frame, but only in bilateria did a series of innovations allow their final coalescence to form a complete pathway. Assembly of the CytoR/JAK/STAT pathway has followed the retrograde model of pathway evolution, whereas addition of the SOCS component has adhered to the patchwork model.
Collapse
Affiliation(s)
- Clifford Liongue
- School of Medicine, Deakin University, Geelong, Victoria 3216, Australia; Centre for Molecular and Medical Research, Deakin University, Geelong, Victoria 3216, Australia
| | - Tarannum Taznin
- School of Medicine, Deakin University, Geelong, Victoria 3216, Australia
| | - Alister C Ward
- School of Medicine, Deakin University, Geelong, Victoria 3216, Australia; Centre for Molecular and Medical Research, Deakin University, Geelong, Victoria 3216, Australia.
| |
Collapse
|
14
|
Meganathan K, Sotiriadou I, Natarajan K, Hescheler J, Sachinidis A. Signaling molecules, transcription growth factors and other regulators revealed from in-vivo and in-vitro models for the regulation of cardiac development. Int J Cardiol 2015; 183:117-28. [PMID: 25662074 DOI: 10.1016/j.ijcard.2015.01.049] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Revised: 11/19/2014] [Accepted: 01/25/2015] [Indexed: 02/08/2023]
Abstract
Several in-vivo heart developmental models have been applied to decipher the cardiac developmental patterning encompassing early, dorsal, cardiac and visceral mesoderm as well as various transcription factors such as Gata, Hand, Tin, Dpp, Pnr. The expression of cardiac specific transcription factors, such as Gata4, Tbx5, Tbx20, Tbx2, Tbx3, Mef2c, Hey1 and Hand1 are of fundamental significance for the in-vivo cardiac development. Not only the transcription factors, but also the signaling molecules involved in cardiac development were conserved among various species. Enrichment of the bone morphogenic proteins (BMPs) in the anterior lateral plate mesoderm is essential for the initiation of myocardial differentiation and the cardiac developmental process. Moreover, the expression of a number of cardiac transcription factors and structural genes initiate cardiac differentiation in the medial mesoderm. Other signaling molecules such as TGF-beta, IGF-1/2 and the fibroblast growth factor (FGF) play a significant role in cardiac repair/regeneration, ventricular heart development and specification of early cardiac mesoderm, respectively. The role of the Wnt signaling in cardiac development is still controversial discussed, as in-vitro results differ dramatically in relation to the animal models. Embryonic stem cells (ESC) were utilized as an important in-vitro model for the elucidation of the cardiac developmental processes since they can be easily manipulated by numerous signaling molecules, growth factors, small molecules and genetic manipulation. Finally, in the present review the dynamic role of the long noncoding RNA and miRNAs in the regulation of cardiac development are summarized and discussed.
Collapse
Affiliation(s)
- Kesavan Meganathan
- Center of Physiology and Pathophysiology, Institute of Neurophysiology and Center for Molecular Medicine Cologne (CMMC), University of Cologne, Germany
| | - Isaia Sotiriadou
- Center of Physiology and Pathophysiology, Institute of Neurophysiology and Center for Molecular Medicine Cologne (CMMC), University of Cologne, Germany
| | - Karthick Natarajan
- Center of Physiology and Pathophysiology, Institute of Neurophysiology and Center for Molecular Medicine Cologne (CMMC), University of Cologne, Germany
| | - Jürgen Hescheler
- Center of Physiology and Pathophysiology, Institute of Neurophysiology and Center for Molecular Medicine Cologne (CMMC), University of Cologne, Germany
| | - Agapios Sachinidis
- Center of Physiology and Pathophysiology, Institute of Neurophysiology and Center for Molecular Medicine Cologne (CMMC), University of Cologne, Germany.
| |
Collapse
|
15
|
Ectopic expression screen identifies genes affecting Drosophila mesoderm development including the HSPG Trol. G3-GENES GENOMES GENETICS 2014; 5:301-13. [PMID: 25538103 PMCID: PMC4321038 DOI: 10.1534/g3.114.015891] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Gastrulation of the embryo involves coordinate cell movements likely supported by multiple signaling pathways, adhesion molecules, and extracellular matrix components. Fibroblast growth factors (FGFs) have a major role in Drosophila melanogaster mesoderm migration; however, few other inputs are known and the mechanism supporting cell movement is unclear. To provide insight, we performed an ectopic expression screen to identify secreted or membrane-associated molecules that act to support mesoderm migration. Twenty-four UAS insertions were identified that cause lethality when expressed in either the mesoderm (Twi-Gal4) or the ectoderm (69B-Gal4). The list was narrowed to a subset of 10 genes that were shown to exhibit loss-of-function mutant phenotypes specifically affecting mesoderm migration. These include the FGF ligand Pyramus, α-integrins, E-cadherin, Cueball, EGFR, JAK/STAT signaling components, as well as the heparan sulfate proteoglycan (HSPG) Terribly reduced optic lobes (Trol). Trol encodes the ortholog of mammalian HSPG Perlecan, a demonstrated FGF signaling cofactor. Here, we examine the role of Trol in Drosophila mesoderm migration and compare and contrast its role with that of Syndecan (Sdc), another HSPG previously implicated in this process. Embryos mutant for Trol or Sdc were obtained and analyzed. Our data support the view that both HSPGs function to support FGF-dependent processes in the early embryo as they share phenotypes with FGF mutants: Trol in terms of effects on mesoderm migration and caudal visceral mesoderm (CVM) migration and Sdc in terms of dorsal mesoderm specification. The differential roles uncovered for these two HSPGs suggest that HSPG cofactor choice may modify FGF-signaling outputs.
Collapse
|
16
|
Pagliari S, Jelinek J, Grassi G, Forte G. Targeting pleiotropic signaling pathways to control adult cardiac stem cell fate and function. Front Physiol 2014; 5:219. [PMID: 25071583 PMCID: PMC4076671 DOI: 10.3389/fphys.2014.00219] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2014] [Accepted: 05/26/2014] [Indexed: 11/13/2022] Open
Abstract
The identification of different pools of cardiac progenitor cells resident in the adult mammalian heart opened a new era in heart regeneration as a means to restore the loss of functional cardiac tissue and overcome the limited availability of donor organs. Indeed, resident stem cells are believed to participate to tissue homeostasis and renewal in healthy and damaged myocardium although their actual contribution to these processes remain unclear. The poor outcome in terms of cardiac regeneration following tissue damage point out at the need for a deeper understanding of the molecular mechanisms controlling CPC behavior and fate determination before new therapeutic strategies can be developed. The regulation of cardiac resident stem cell fate and function is likely to result from the interplay between pleiotropic signaling pathways as well as tissue- and cell-specific regulators. Such a modular interaction-which has already been described in the nucleus of a number of different cells where transcriptional complexes form to activate specific gene programs-would account for the unique responses of cardiac progenitors to general and tissue-specific stimuli. The study of the molecular determinants involved in cardiac stem/progenitor cell regulatory mechanisms may shed light on the processes of cardiac homeostasis in health and disease and thus provide clues on the actual feasibility of cardiac cell therapy through tissue-specific progenitors.
Collapse
Affiliation(s)
- Stefania Pagliari
- Integrated Center for Cell Therapy and Regenerative Medicine (ICCT), International Clinical Research Center, St. Anne's University HospitalBrno, Czech Republic
| | - Jakub Jelinek
- Integrated Center for Cell Therapy and Regenerative Medicine (ICCT), International Clinical Research Center, St. Anne's University HospitalBrno, Czech Republic
| | - Gabriele Grassi
- Department of Life Sciences, University of TriesteTrieste, Italy
| | - Giancarlo Forte
- Integrated Center for Cell Therapy and Regenerative Medicine (ICCT), International Clinical Research Center, St. Anne's University HospitalBrno, Czech Republic
| |
Collapse
|
17
|
Heart- and muscle-derived signaling system dependent on MED13 and Wingless controls obesity in Drosophila. Proc Natl Acad Sci U S A 2014; 111:9491-6. [PMID: 24979807 DOI: 10.1073/pnas.1409427111] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Obesity develops in response to an imbalance of energy homeostasis and whole-body metabolism. Muscle plays a central role in the control of energy homeostasis through consumption of energy and signaling to adipose tissue. We reported previously that MED13, a subunit of the Mediator complex, acts in the heart to control obesity in mice. To further explore the generality and mechanistic basis of this observation, we investigated the potential influence of MED13 expression in heart and muscle on the susceptibility of Drosophila to obesity. Here, we show that heart/muscle-specific knockdown of MED13 or MED12, another Mediator subunit, increases susceptibility to obesity in adult flies. To identify possible muscle-secreted obesity regulators, we performed an RNAi-based genetic screen of 150 genes that encode secreted proteins and found that Wingless inhibition also caused obesity. Consistent with these findings, muscle-specific inhibition of Armadillo, the downstream transcriptional effector of the Wingless pathway, also evoked an obese phenotype in flies. Epistasis experiments further demonstrated that Wingless functions downstream of MED13 within a muscle-regulatory pathway. Together, these findings reveal an intertissue signaling system in which Wingless acts as an effector of MED13 in heart and muscle and suggest that Wingless-mediated cross-talk between striated muscle and adipose tissue controls obesity in Drosophila. This signaling system appears to represent an ancestral mechanism for the control of systemic energy homeostasis.
Collapse
|
18
|
Ahmad SM, Busser BW, Huang D, Cozart EJ, Michaud S, Zhu X, Jeffries N, Aboukhalil A, Bulyk ML, Ovcharenko I, Michelson AM. Machine learning classification of cell-specific cardiac enhancers uncovers developmental subnetworks regulating progenitor cell division and cell fate specification. Development 2014; 141:878-88. [PMID: 24496624 PMCID: PMC3912831 DOI: 10.1242/dev.101709] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The Drosophila heart is composed of two distinct cell types, the contractile cardial cells (CCs) and the surrounding non-muscle pericardial cells (PCs), development of which is regulated by a network of conserved signaling molecules and transcription factors (TFs). Here, we used machine learning with array-based chromatin immunoprecipitation (ChIP) data and TF sequence motifs to computationally classify cell type-specific cardiac enhancers. Extensive testing of predicted enhancers at single-cell resolution revealed the added value of ChIP data for modeling cell type-specific activities. Furthermore, clustering the top-scoring classifier sequence features identified novel cardiac and cell type-specific regulatory motifs. For example, we found that the Myb motif learned by the classifier is crucial for CC activity, and the Myb TF acts in concert with two forkhead domain TFs and Polo kinase to regulate cardiac progenitor cell divisions. In addition, differential motif enrichment and cis-trans genetic studies revealed that the Notch signaling pathway TF Suppressor of Hairless [Su(H)] discriminates PC from CC enhancer activities. Collectively, these studies elucidate molecular pathways used in the regulatory decisions for proliferation and differentiation of cardiac progenitor cells, implicate Su(H) in regulating cell fate decisions of these progenitors, and document the utility of enhancer modeling in uncovering developmental regulatory subnetworks.
Collapse
Affiliation(s)
- Shaad M Ahmad
- Laboratory of Developmental Systems Biology, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
|
20
|
Johnson AN, Mokalled MH, Valera JM, Poss KD, Olson EN. Post-transcriptional regulation of myotube elongation and myogenesis by Hoi Polloi. Development 2013; 140:3645-56. [PMID: 23942517 DOI: 10.1242/dev.095596] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Striated muscle development requires the coordinated expression of genes involved in sarcomere formation and contractility, as well as genes that determine muscle morphology. However, relatively little is known about the molecular mechanisms that control the early stages of muscle morphogenesis. To explore this facet of myogenesis, we performed a genetic screen for regulators of somatic muscle morphology in Drosophila, and identified the putative RNA-binding protein (RBP) Hoi Polloi (Hoip). Hoip is expressed in striated muscle precursors within the muscle lineage and controls two genetically separable events: myotube elongation and sarcomeric protein expression. Myotubes fail to elongate in hoip mutant embryos, even though the known regulators of somatic muscle elongation, target recognition and muscle attachment are expressed normally. In addition, a majority of sarcomeric proteins, including Myosin Heavy Chain (MHC) and Tropomyosin, require Hoip for their expression. A transgenic MHC construct that contains the endogenous MHC promoter and a spliced open reading frame rescues MHC protein expression in hoip embryos, demonstrating the involvement of Hoip in pre-mRNA splicing, but not in transcription, of muscle structural genes. In addition, the human Hoip ortholog NHP2L1 rescues muscle defects in hoip embryos, and knockdown of endogenous nhp2l1 in zebrafish disrupts skeletal muscle development. We conclude that Hoip is a conserved, post-transcriptional regulator of muscle morphogenesis and structural gene expression.
Collapse
Affiliation(s)
- Aaron N Johnson
- Department of Molecular Biology, University of Texas Southwestern Medical Center at Dallas, TX 75390-9148, USA.
| | | | | | | | | |
Collapse
|
21
|
Abstract
The evolutionarily conserved JAK/STAT pathway plays important roles in development and disease processes in humans. Although the signaling process has been well established, we know relatively little about what the relevant target genes are that mediate JAK/STAT activation during development. Here, we have used genome-wide microarrays to identify JAK/STAT targets in the optic lobes of the Drosophila brain and identified 47 genes that are positively regulated by JAK/STAT. About two-thirds of the genes encode proteins that have orthologs in humans. The STAT targets in the optic lobe appear to be different from the targets identified in other tissues, suggesting that JAK/STAT signaling may regulate different target genes in a tissue-specific manner. Functional analysis of Nop56, a cell-autonomous STAT target, revealed an essential role for this gene in the growth and proliferation of neuroepithelial stem cells in the optic lobe and an inhibitory role in lamina neurogenesis.
Collapse
|
22
|
The Iroquois complex is required in the dorsal mesoderm to ensure normal heart development in Drosophila. PLoS One 2013; 8:e76498. [PMID: 24086746 PMCID: PMC3781054 DOI: 10.1371/journal.pone.0076498] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2013] [Accepted: 08/27/2013] [Indexed: 12/23/2022] Open
Abstract
Drosophila heart development is an invaluable system to study the orchestrated action of numerous factors that govern cardiogenesis. Cardiac progenitors arise within specific dorsal mesodermal regions that are under the influence of temporally coordinated actions of multiple signaling pathways. The Drosophila Iroquois complex (Iro-C) consists of the three homeobox transcription factors araucan (ara), caupolican (caup) and mirror (mirr). The Iro-C has been shown to be involved in tissue patterning leading to the differentiation of specific structures, such as the lateral notum and dorsal head structures and in establishing the dorsal-ventral border of the eye. A function for Iro-C in cardiogenesis has not been investigated yet. Our data demonstrate that loss of the whole Iro complex, as well as loss of either ara/caup or mirr only, affect heart development in Drosophila. Furthermore, the data indicate that the GATA factor Pannier requires the presence of Iro-C to function in cardiogenesis. Furthermore, a detailed expression pattern analysis of the members of the Iro-C revealed the presence of a possibly novel subpopulation of Even-skipped expressing pericardial cells and seven pairs of heart-associated cells that have not been described before. Taken together, this work introduces Iro-C as a new set of transcription factors that are required for normal development of the heart. As the members of the Iro-C may function, at least partly, as competence factors in the dorsal mesoderm, our results are fundamental for future studies aiming to decipher the regulatory interactions between factors that determine different cell fates in the dorsal mesoderm.
Collapse
|
23
|
Hombría JCG, Sotillos S. JAK-STAT pathway in Drosophila morphogenesis: From organ selector to cell behavior regulator. JAKSTAT 2013; 2:e26089. [PMID: 24069568 PMCID: PMC3772120 DOI: 10.4161/jkst.26089] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2013] [Revised: 08/07/2013] [Accepted: 08/08/2013] [Indexed: 11/19/2022] Open
Abstract
One of the main contributions of Drosophila to the JAK-STAT field is the study of morphogenesis. JAK-STAT signaling controls the formation of many different structures through surprisingly different morphogenetic behaviors that include induction of cell rearrangements, invagination, folding of tissues, modulation of cell shape, and migration. This variability may be explained by the many transcription factors and signaling molecules STAT regulates at early stages of development. But is STAT just acting as an upstream inducer of morphogenesis or does it have a more direct role in controlling cell behaviors? Here we review what is known about how the canonical phosphorylation of STAT contributes to shaping the embryonic and imaginal structures.
Collapse
|
24
|
Boukhatmi H, Frendo JL, Enriquez J, Crozatier M, Dubois L, Vincent A. Tup/Islet1 integrates time and position to specify muscle identity in Drosophila. Development 2012; 139:3572-82. [DOI: 10.1242/dev.083410] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The LIM-homeodomain transcription factor Tailup/Islet1 (Tup) is a key component of cardiogenesis in Drosophila and vertebrates. We report here an additional major role for Drosophila Tup in specifying dorsal muscles. Tup is expressed in the four dorsal muscle progenitors (PCs) and tup-null embryos display a severely disorganized dorsal musculature, including a transformation of the dorsal DA2 into dorsolateral DA3 muscle. This transformation is reciprocal to the DA3 to DA2 transformation observed in collier (col) mutants. The DA2 PC, which gives rise to the DA2 muscle and to an adult muscle precursor, is selected from a cluster of myoblasts transiently expressing both Tinman (Tin) and Col. The activation of tup by Tin in the DA2 PC is required to repress col transcription and establish DA2 identity. The transient, partial overlap between Tin and Col expression provides a window of opportunity to distinguish between DA2 and DA3 muscle identities. The function of Tup in the DA2 PC illustrates how single cell precision can be reached in cell specification when temporal dynamics are combined with positional information. The contributions of Tin, Tup and Col to patterning Drosophila dorsal muscles bring novel parallels with chordate pharyngeal muscle development.
Collapse
Affiliation(s)
- Hadi Boukhatmi
- Université de Toulouse 3, Centre de Biologie du Développement, UMR 5547 CNRS and FRBT, 118 route de Narbonne, F-31062 Toulouse cedex 09, France
| | - Jean Louis Frendo
- Université de Toulouse 3, Centre de Biologie du Développement, UMR 5547 CNRS and FRBT, 118 route de Narbonne, F-31062 Toulouse cedex 09, France
| | - Jonathan Enriquez
- Université de Toulouse 3, Centre de Biologie du Développement, UMR 5547 CNRS and FRBT, 118 route de Narbonne, F-31062 Toulouse cedex 09, France
| | - Michèle Crozatier
- Université de Toulouse 3, Centre de Biologie du Développement, UMR 5547 CNRS and FRBT, 118 route de Narbonne, F-31062 Toulouse cedex 09, France
| | - Laurence Dubois
- Université de Toulouse 3, Centre de Biologie du Développement, UMR 5547 CNRS and FRBT, 118 route de Narbonne, F-31062 Toulouse cedex 09, France
| | - Alain Vincent
- Université de Toulouse 3, Centre de Biologie du Développement, UMR 5547 CNRS and FRBT, 118 route de Narbonne, F-31062 Toulouse cedex 09, France
| |
Collapse
|
25
|
Ripoll C, Rivals I, Ait Yahya-Graison E, Dauphinot L, Paly E, Mircher C, Ravel A, Grattau Y, Bléhaut H, Mégarbane A, Dembour G, de Fréminville B, Touraine R, Créau N, Potier MC, Delabar JM. Molecular signatures of cardiac defects in Down syndrome lymphoblastoid cell lines suggest altered ciliome and Hedgehog pathways. PLoS One 2012; 7:e41616. [PMID: 22912673 PMCID: PMC3415405 DOI: 10.1371/journal.pone.0041616] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2012] [Accepted: 06/22/2012] [Indexed: 12/15/2022] Open
Abstract
Forty percent of people with Down syndrome exhibit heart defects, most often an atrioventricular septal defect (AVSD) and less frequently a ventricular septal defect (VSD) or atrial septal defect (ASD). Lymphoblastoid cell lines (LCLs) were established from lymphocytes of individuals with trisomy 21, the chromosomal abnormality causing Down syndrome. Gene expression profiles generated from DNA microarrays of LCLs from individuals without heart defects (CHD−; n = 22) were compared with those of LCLs from patients with cardiac malformations (CHD+; n = 21). After quantile normalization, principal component analysis revealed that AVSD carriers could be distinguished from a combined group of ASD or VSD (ASD+VSD) carriers. From 9,758 expressed genes, we identified 889 and 1,016 genes differentially expressed between CHD− and AVSD and CHD− and ASD+VSD, respectively, with only 119 genes in common. A specific chromosomal enrichment was found in each group of affected genes. Among the differentially expressed genes, more than 65% are expressed in human or mouse fetal heart tissues (GEO dataset). Additional LCLs from new groups of AVSD and ASD+VSD patients were analyzed by quantitative PCR; observed expression ratios were similar to microarray results. Analysis of GO categories revealed enrichment of genes from pathways regulating clathrin-mediated endocytosis in patients with AVSD and of genes involved in semaphorin-plexin-driven cardiogenesis and the formation of cytoplasmic microtubules in patients with ASD-VSD. A pathway-oriented search revealed enrichment in the ciliome for both groups and a specific enrichment in Hedgehog and Jak-stat pathways among ASD+VSD patients. These genes or related pathways are therefore potentially involved in normal cardiogenesis as well as in cardiac malformations observed in individuals with trisomy 21.
Collapse
Affiliation(s)
- Clémentine Ripoll
- Univ Paris Diderot, Sorbonne Paris Cité, Unité de Biologie Fonctionnelle et Adaptative, EAC4413 CNRS, Paris, France
| | - Isabelle Rivals
- Equipe de Statistique Appliquée, ESPCI ParisTech, Paris, France
| | - Emilie Ait Yahya-Graison
- Univ Paris Diderot, Sorbonne Paris Cité, Unité de Biologie Fonctionnelle et Adaptative, EAC4413 CNRS, Paris, France
| | - Luce Dauphinot
- CRICM, CNRS UMR7225, INSERM UMR975, UPMC Hôpital de la Pitié-Salpêtrière, Paris, France
| | - Evelyne Paly
- Univ Paris Diderot, Sorbonne Paris Cité, Unité de Biologie Fonctionnelle et Adaptative, EAC4413 CNRS, Paris, France
| | - Clothilde Mircher
- Institut Médical Jérôme Lejeune et Fondation Jérome Lejeune, Paris, France
| | - Aimé Ravel
- Institut Médical Jérôme Lejeune et Fondation Jérome Lejeune, Paris, France
| | - Yann Grattau
- Institut Médical Jérôme Lejeune et Fondation Jérome Lejeune, Paris, France
| | - Henri Bléhaut
- Institut Médical Jérôme Lejeune et Fondation Jérome Lejeune, Paris, France
| | - André Mégarbane
- Institut Médical Jérôme Lejeune et Fondation Jérome Lejeune, Paris, France
- Unité de Génétique Médicale, Faculté de Médecine, Université Saint-Joseph, Beirut, Lebanon
| | - Guy Dembour
- Cardiologie pédiatrique, Cliniques Universitaires St Luc, Bruxelles, Belgique
| | | | - Renaud Touraine
- Service de Génétique, Centre Hospitalier Universitaire de Saint-Etienne, Saint-Etienne, France
| | - Nicole Créau
- Univ Paris Diderot, Sorbonne Paris Cité, Unité de Biologie Fonctionnelle et Adaptative, EAC4413 CNRS, Paris, France
| | - Marie Claude Potier
- CRICM, CNRS UMR7225, INSERM UMR975, UPMC Hôpital de la Pitié-Salpêtrière, Paris, France
| | - Jean Maurice Delabar
- Univ Paris Diderot, Sorbonne Paris Cité, Unité de Biologie Fonctionnelle et Adaptative, EAC4413 CNRS, Paris, France
- * E-mail:
| |
Collapse
|
26
|
Bausek N, Zeidler MP. Matters of the heart. JAKSTAT 2012; 1:208-10. [PMID: 24058774 PMCID: PMC3670248 DOI: 10.4161/jkst.21361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2012] [Accepted: 07/04/2012] [Indexed: 11/19/2022] Open
Abstract
What does it take to make a heart? Even in the fruit fly, in which matters of the heart don’t extend to either pop music or pulp fiction, making a heart requires big decisions and processes of surprising complexity.
Collapse
|
27
|
Liongue C, O'Sullivan LA, Trengove MC, Ward AC. Evolution of JAK-STAT pathway components: mechanisms and role in immune system development. PLoS One 2012; 7:e32777. [PMID: 22412924 PMCID: PMC3296744 DOI: 10.1371/journal.pone.0032777] [Citation(s) in RCA: 109] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2012] [Accepted: 01/30/2012] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Lying downstream of a myriad of cytokine receptors, the Janus kinase (JAK)-Signal transducer and activator of transcription (STAT) pathway is pivotal for the development and function of the immune system, with additional important roles in other biological systems. To gain further insight into immune system evolution, we have performed a comprehensive bioinformatic analysis of the JAK-STAT pathway components, including the key negative regulators of this pathway, the SH2-domain containing tyrosine phosphatase (SHP), Protein inhibitors against Stats (PIAS), and Suppressor of cytokine signaling (SOCS) proteins across a diverse range of organisms. RESULTS Our analysis has demonstrated significant expansion of JAK-STAT pathway components co-incident with the emergence of adaptive immunity, with whole genome duplication being the principal mechanism for generating this additional diversity. In contrast, expansion of upstream cytokine receptors appears to be a pivotal driver for the differential diversification of specific pathway components. CONCLUSION Diversification of JAK-STAT pathway components during early vertebrate development occurred concurrently with a major expansion of upstream cytokine receptors and two rounds of whole genome duplications. This produced an intricate cell-cell communication system that has made a significant contribution to the evolution of the immune system, particularly the emergence of adaptive immunity.
Collapse
Affiliation(s)
- Clifford Liongue
- School of Medicine, Deakin University, Victoria, Australia
- Strategic Research Centre in Molecular & Medical Research, Deakin University, Victoria, Australia
| | - Lynda A. O'Sullivan
- School of Life & Environmental Sciences, Deakin University, Victoria, Australia
| | - Monique C. Trengove
- School of Medicine, Deakin University, Victoria, Australia
- Strategic Research Centre in Molecular & Medical Research, Deakin University, Victoria, Australia
| | - Alister C. Ward
- School of Medicine, Deakin University, Victoria, Australia
- Strategic Research Centre in Molecular & Medical Research, Deakin University, Victoria, Australia
| |
Collapse
|