1
|
Rosenbaum SR, Hughes CJ, Fields KM, Purdy SC, Gustafson AL, Wolin A, Hampton D, Shrivastava NM, Turner N, Danis E, Ebmeier C, Spoelstra N, Richer J, Jedlicka P, Costello JC, Zhao R, Ford HL. EYA3 regulation of NF-κB and CCL2 suppresses cytotoxic NK cells in the premetastatic niche to promote TNBC metastasis. SCIENCE ADVANCES 2025; 11:eadt0504. [PMID: 40333987 PMCID: PMC12057687 DOI: 10.1126/sciadv.adt0504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Accepted: 04/02/2025] [Indexed: 05/09/2025]
Abstract
Triple-negative breast cancer cells must evade immune surveillance to metastasize to distant sites, yet this process is not well understood. The Eyes absent (EYA) family of proteins, which are crucial for embryonic development, become dysregulated in cancer, where they have been shown to mediate proliferation, migration, and invasion. Our study reveals an unusual mechanism by which EYA3 reduces the presence of cytotoxic natural killer (NK) cells in the premetastatic niche (PMN) to enhance metastasis, independent of its effects on the primary tumor. We find that EYA3 up-regulates nuclear factor κB signaling to enhance CCL2 expression, which, in contrast to previous findings, suppresses cytotoxic NK cell activation in vitro and their infiltration into the PMN in vivo. These findings uncover an unexpected role for CCL2 in inhibiting NK cell responses at the PMN and suggest that targeting EYA3 could be an effective strategy to reactivate antitumor immune responses to inhibit metastasis.
Collapse
Affiliation(s)
- Sheera R. Rosenbaum
- Department of Pharmacology, University of Colorado Anschutz Medical Campus (AMC), Aurora, CO, USA
| | - Connor J. Hughes
- Department of Pharmacology, University of Colorado Anschutz Medical Campus (AMC), Aurora, CO, USA
- Pharmacology and Molecular Medicine Program, University of Colorado Anschutz Medical Campus (AMC), Aurora, CO, USA
- Medical Scientist Training Program, University of Colorado Anschutz Medical Campus (AMC), Aurora, CO, USA
| | - Kaiah M. Fields
- Department of Pharmacology, University of Colorado Anschutz Medical Campus (AMC), Aurora, CO, USA
- Molecular Biology Program, University of Colorado Anschutz Medical Campus (AMC), Aurora, CO, USA
| | - Stephen Connor Purdy
- Department of Pharmacology, University of Colorado Anschutz Medical Campus (AMC), Aurora, CO, USA
- Cancer Biology Program, University of Colorado Anschutz Medical Campus (AMC), Aurora, CO, USA
| | - Annika L. Gustafson
- Medical Scientist Training Program, University of Colorado Anschutz Medical Campus (AMC), Aurora, CO, USA
- Molecular Biology Program, University of Colorado Anschutz Medical Campus (AMC), Aurora, CO, USA
| | - Arthur Wolin
- Department of Pharmacology, University of Colorado Anschutz Medical Campus (AMC), Aurora, CO, USA
- Molecular Biology Program, University of Colorado Anschutz Medical Campus (AMC), Aurora, CO, USA
| | - Drake Hampton
- Department of Pharmacology, University of Colorado Anschutz Medical Campus (AMC), Aurora, CO, USA
| | - Natasha M. Shrivastava
- Department of Pharmacology, University of Colorado Anschutz Medical Campus (AMC), Aurora, CO, USA
| | - Nicholas Turner
- Department of Pharmacology, University of Colorado Anschutz Medical Campus (AMC), Aurora, CO, USA
| | - Etienne Danis
- Department of Biomedical Informatics, University of Colorado Anschutz Medical Campus (AMC), Aurora, CO, USA
- Department of Pathology, University of Colorado Anschutz Medical Campus (AMC), Aurora, CO, USA
| | - Christopher Ebmeier
- Department of Biochemistry and BioFrontiers Institute, University of Colorado Boulder, Boulder, CO, USA
| | - Nicole Spoelstra
- Department of Pathology, University of Colorado Anschutz Medical Campus (AMC), Aurora, CO, USA
| | - Jennifer Richer
- Department of Pathology, University of Colorado Anschutz Medical Campus (AMC), Aurora, CO, USA
| | - Paul Jedlicka
- Medical Scientist Training Program, University of Colorado Anschutz Medical Campus (AMC), Aurora, CO, USA
- Cancer Biology Program, University of Colorado Anschutz Medical Campus (AMC), Aurora, CO, USA
- Department of Pathology, University of Colorado Anschutz Medical Campus (AMC), Aurora, CO, USA
| | - James C. Costello
- Department of Pharmacology, University of Colorado Anschutz Medical Campus (AMC), Aurora, CO, USA
- Pharmacology and Molecular Medicine Program, University of Colorado Anschutz Medical Campus (AMC), Aurora, CO, USA
- University of Colorado Cancer Center, Aurora, CO, USA
| | - Rui Zhao
- Medical Scientist Training Program, University of Colorado Anschutz Medical Campus (AMC), Aurora, CO, USA
- Molecular Biology Program, University of Colorado Anschutz Medical Campus (AMC), Aurora, CO, USA
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus (AMC), Aurora, CO, USA
| | - Heide L. Ford
- Department of Pharmacology, University of Colorado Anschutz Medical Campus (AMC), Aurora, CO, USA
- Pharmacology and Molecular Medicine Program, University of Colorado Anschutz Medical Campus (AMC), Aurora, CO, USA
- Medical Scientist Training Program, University of Colorado Anschutz Medical Campus (AMC), Aurora, CO, USA
- Molecular Biology Program, University of Colorado Anschutz Medical Campus (AMC), Aurora, CO, USA
- Cancer Biology Program, University of Colorado Anschutz Medical Campus (AMC), Aurora, CO, USA
- University of Colorado Cancer Center, Aurora, CO, USA
| |
Collapse
|
2
|
Huang Y, Chen Z, Chen J, Liu J, Qiu C, Liu Q, Zhang L, Zhu G, Ma X, Sun S, Shi YS, Wan G. Direct reprogramming of fibroblasts into spiral ganglion neurons by defined transcription factors. Cell Prolif 2025; 58:e13775. [PMID: 39551613 PMCID: PMC11969255 DOI: 10.1111/cpr.13775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 10/28/2024] [Accepted: 10/30/2024] [Indexed: 11/19/2024] Open
Abstract
Degeneration of the cochlear spiral ganglion neurons (SGNs) is one of the major causes of sensorineural hearing loss and significantly impacts the outcomes of cochlear implantation. Functional regeneration of SGNs holds great promise for treating sensorineural hearing loss. In this study, we systematically screened 33 transcriptional regulators implicated in neuronal and SGN fate. Using gene expression array and principal component analyses, we identified a sequential combination of Ascl1, Pou4f1 and Myt1l (APM) in promoting functional reprogramming of SGNs. The neurons induced by APM expressed mature neuronal and SGN lineage-specific markers, displayed mature SGN-like electrophysiological characteristics and exhibited single-cell transcriptomes resembling the endogenous SGNs. Thus, transcription factors APM may serve as novel candidates for direct reprogramming of SGNs and hearing recovery due to SGN damages.
Collapse
Affiliation(s)
- Yuhang Huang
- MOE Key Laboratory of Model Animal for Disease Study, Department of Otolaryngology Head and Neck Surgery, Jiangsu Provincial Key Medical Discipline (Laboratory), The Affiliated Drum Tower Hospital of Medical School and the Model Animal Research Center of Medical SchoolNanjing UniversityNanjingChina
- State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Key Laboratory of Molecular Medicine, National Resource Center for Mutant Mice of ChinaNanjing UniversityNanjingChina
| | - Zhen Chen
- MOE Key Laboratory of Model Animal for Disease Study, Department of Otolaryngology Head and Neck Surgery, Jiangsu Provincial Key Medical Discipline (Laboratory), The Affiliated Drum Tower Hospital of Medical School and the Model Animal Research Center of Medical SchoolNanjing UniversityNanjingChina
- State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Key Laboratory of Molecular Medicine, National Resource Center for Mutant Mice of ChinaNanjing UniversityNanjingChina
| | - Jiang Chen
- State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Key Laboratory of Molecular Medicine, National Resource Center for Mutant Mice of ChinaNanjing UniversityNanjingChina
- Department of Neurology, The Affiliated Drum Tower Hospital of Medical School and Institute of Translational Medicine for Brain Critical DiseasesNanjing UniversityNanjingChina
| | - Jingyue Liu
- National Institute of Biological SciencesBeijingChina
- Tsinghua Institute of Multidisciplinary Biomedical ResearchTsinghua UniversityBeijingChina
| | - Cui Qiu
- MOE Key Laboratory of Model Animal for Disease Study, Department of Otolaryngology Head and Neck Surgery, Jiangsu Provincial Key Medical Discipline (Laboratory), The Affiliated Drum Tower Hospital of Medical School and the Model Animal Research Center of Medical SchoolNanjing UniversityNanjingChina
- State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Key Laboratory of Molecular Medicine, National Resource Center for Mutant Mice of ChinaNanjing UniversityNanjingChina
| | - Qing Liu
- MOE Key Laboratory of Model Animal for Disease Study, Department of Otolaryngology Head and Neck Surgery, Jiangsu Provincial Key Medical Discipline (Laboratory), The Affiliated Drum Tower Hospital of Medical School and the Model Animal Research Center of Medical SchoolNanjing UniversityNanjingChina
- State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Key Laboratory of Molecular Medicine, National Resource Center for Mutant Mice of ChinaNanjing UniversityNanjingChina
- Research Institute of OtolaryngologyNanjingChina
| | - Linqing Zhang
- MOE Key Laboratory of Model Animal for Disease Study, Department of Otolaryngology Head and Neck Surgery, Jiangsu Provincial Key Medical Discipline (Laboratory), The Affiliated Drum Tower Hospital of Medical School and the Model Animal Research Center of Medical SchoolNanjing UniversityNanjingChina
- State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Key Laboratory of Molecular Medicine, National Resource Center for Mutant Mice of ChinaNanjing UniversityNanjingChina
| | - Guang‐Jie Zhu
- MOE Key Laboratory of Model Animal for Disease Study, Department of Otolaryngology Head and Neck Surgery, Jiangsu Provincial Key Medical Discipline (Laboratory), The Affiliated Drum Tower Hospital of Medical School and the Model Animal Research Center of Medical SchoolNanjing UniversityNanjingChina
- Research Institute of OtolaryngologyNanjingChina
| | - Xiaofeng Ma
- MOE Key Laboratory of Model Animal for Disease Study, Department of Otolaryngology Head and Neck Surgery, Jiangsu Provincial Key Medical Discipline (Laboratory), The Affiliated Drum Tower Hospital of Medical School and the Model Animal Research Center of Medical SchoolNanjing UniversityNanjingChina
- Research Institute of OtolaryngologyNanjingChina
| | - Shuohao Sun
- National Institute of Biological SciencesBeijingChina
- Tsinghua Institute of Multidisciplinary Biomedical ResearchTsinghua UniversityBeijingChina
| | - Yun Stone Shi
- MOE Key Laboratory of Model Animal for Disease Study, Department of Otolaryngology Head and Neck Surgery, Jiangsu Provincial Key Medical Discipline (Laboratory), The Affiliated Drum Tower Hospital of Medical School and the Model Animal Research Center of Medical SchoolNanjing UniversityNanjingChina
- State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Key Laboratory of Molecular Medicine, National Resource Center for Mutant Mice of ChinaNanjing UniversityNanjingChina
- Guangdong Institute of Intelligence Science and TechnologyZhuhaiChina
| | - Guoqiang Wan
- MOE Key Laboratory of Model Animal for Disease Study, Department of Otolaryngology Head and Neck Surgery, Jiangsu Provincial Key Medical Discipline (Laboratory), The Affiliated Drum Tower Hospital of Medical School and the Model Animal Research Center of Medical SchoolNanjing UniversityNanjingChina
- State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Key Laboratory of Molecular Medicine, National Resource Center for Mutant Mice of ChinaNanjing UniversityNanjingChina
- Research Institute of OtolaryngologyNanjingChina
| |
Collapse
|
3
|
Fox A, Oliva J, Vangipurapu R, Sverdrup FM. SIX transcription factors are necessary for the activation of DUX4 expression in facioscapulohumeral muscular dystrophy. Skelet Muscle 2024; 14:30. [PMID: 39627769 PMCID: PMC11613756 DOI: 10.1186/s13395-024-00361-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 11/15/2024] [Indexed: 12/06/2024] Open
Abstract
BACKGROUND Facioscapulohumeral muscular dystrophy (FSHD) is a common and progressive muscle wasting disease that is characterized by muscle weakness often first noticed in the face, the shoulder girdle and upper arms before progressing to the lower limb muscles. FSHD is caused by the misexpression of the Double Homeobox 4 (DUX4) transcription factor in skeletal muscle. While epigenetic derepression of D4Z4 macrosatellite repeats underlies DUX4 misexpression, our understanding of the complex transcriptional activation of DUX4 is incomplete. METHODS To identify potential DUX4-regulatory factors, we used small interfering RNAs (siRNAs) to knockdown SIX family transcription factors (SIX1, 2, 4, 5) in patient-derived FSHD1 and FSHD2 myoblasts that were differentiated to form multinucleated myotubes. Quantitative real-time polymerase chain reaction was used to measure changes in DUX4 mRNA, DUX4 target gene expression and myogenic markers. Staining for SIX1 and SIX2 with specific antibodies was performed in FSHD myoblasts and myotubes. To assess reciprocal effects of DUX4 on SIX1, 2, and 4 expression, we utilized a doxycycline-inducible DUX4 myoblast cell line. RESULT We show that SIX1, 2 and 4 transcription factors, regulators of embryonic development, muscle differentiation, regeneration and homeostasis, are necessary for myogenic differentiation-dependent DUX4 expression in FSHD muscle cells. Using siRNA, we demonstrate SIX1, SIX2, and SIX4 to be critical factors involved in the induction of DUX4 transcription in differentiating FSHD myotubes in vitro. siRNA dual knockdown of SIX1 and SIX2 resulted in a ~ 98% decrease of DUX4 and DUX4 target genes, suggesting that SIX1 and SIX2 are the most critical in promoting DUX4 expression. Importantly, we show that DUX4 downregulates SIX RNA levels, suggesting negative feedback regulation. CONCLUSIONS In this study, we identified a family of developmental regulators that promote aberrant DUX4 expression in FSHD1 and FSHD2 differentiating muscle cells. Our findings highlight the critical involvement of SIX transcription factors (SIX1, 2, 4) in the pathogenesis of FSHD by serving as necessary factors that function in the promotion of DUX4 expression following epigenetic derepression of the D4Z4 repeats.
Collapse
Affiliation(s)
- Amelia Fox
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, Saint Louis, MO, USA
| | - Jonathan Oliva
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, Saint Louis, MO, USA
| | - Rajanikanth Vangipurapu
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, Saint Louis, MO, USA
| | - Francis M Sverdrup
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, Saint Louis, MO, USA.
| |
Collapse
|
4
|
Kim SH, Lee B, Lee SM, Kim Y. Restoring social deficits in IRSp53-deleted mice: chemogenetic inhibition of ventral dentate gyrus Emx1-expressing cells. Transl Psychiatry 2024; 14:425. [PMID: 39375329 PMCID: PMC11458854 DOI: 10.1038/s41398-024-03104-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 09/18/2024] [Accepted: 09/20/2024] [Indexed: 10/09/2024] Open
Abstract
IRSp53 is a synaptic scaffold protein reported to be involved in schizophrenia, autism spectrum disorders, and social deficits in knockout mice. Identifying critical brain regions and cells related to IRSp53 deletion is expected to be of great help in the treatment of psychiatric problems. In this study, we performed chemogenetic inhibition within the ventral dentate gyrus (vDG) of mice with IRSp53 deletion in Emx1-expressing cells (Emx1-Cre;IRSp53 flox/flox). We observed the recovery of social deficits after chemogenetic inhibition within vDG of Emx1-Cre;IRSp53 flox/flox mice. Additionally, chemogenetic activation induced social deficits in Emx1-Cre mice. CRHR1 expression increased in the hippocampus of Emx1-Cre;IRSp53 flox/flox mice, and CRHR1 was reduced by chemogenetic inhibition. Htd2, Ccn1, and Atp61l were decreased in bulk RNA sequencing, and Eya1 and Ecrg4 were decreased in single-cell RNA sequencing of the hippocampus in Emx1-Cre;IRSp53 flox/flox mice compared to control mice. This study determined that the vDG is a critical brain region for social deficits caused by IRSp53 deletion. Social deficits in Emx1-Cre;IRSp53 flox/flox mice were recovered through chemogenetic inhibition, providing clues for new treatment methods for psychiatric disorders accompanied by social deficits.
Collapse
Affiliation(s)
- Su Hyun Kim
- Mental Health Research Institute, National Center for Mental Health, Seoul, South Korea
| | - Bomee Lee
- Mental Health Research Institute, National Center for Mental Health, Seoul, South Korea
| | - Seong Mi Lee
- Mental Health Research Institute, National Center for Mental Health, Seoul, South Korea
| | - Yangsik Kim
- Department of Psychiatry, Inha University Hospital, College of Medicine, Inha University, Incheon, South Korea.
| |
Collapse
|
5
|
Rosenbaum SR, Hughes CJ, Fields KM, Purdy SC, Gustafson A, Wolin A, Hampton D, Turner N, Ebmeier C, Costello JC, Ford HL. An EYA3/NF-κB/CCL2 signaling axis suppresses cytotoxic NK cells in the pre-metastatic niche to promote triple negative breast cancer metastasis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.31.606072. [PMID: 39211066 PMCID: PMC11360953 DOI: 10.1101/2024.07.31.606072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Patients with Triple Negative Breast Cancer (TNBC) exhibit high rates of metastases and poor prognoses. The Eyes absent (EYA) family of proteins are developmental transcriptional cofactors/phosphatases that are re-expressed and/or upregulated in numerous cancers. Herein, we demonstrate that EYA3 correlates with decreased survival in breast cancer, and that it strongly, and specifically, regulates metastasis via a novel mechanism that involves NF-kB signaling and an altered innate immune profile at the pre-metastatic niche (PMN). Remarkably, restoration of NF-kB signaling downstream of Eya3 knockdown (KD) restores metastasis without restoring primary tumor growth, isolating EYA3/NF-kB effects to the metastatic site. We show that secreted CCL2, regulated downstream of EYA3/NF-kB, specifically decreases cytotoxic NK cells in the PMN and that re-expression of Ccl2 in Eya3 -KD cells is sufficient to rescue activation/levels of cytotoxic NK cells in vitro and at the PMN, where EYA3-mediated decreases in cytotoxic NK cells are required for metastatic outgrowth. Importantly, analysis of public breast cancer datasets uncovers a significant correlation of EYA3 with NF-kB/CCL2, underscoring the relevance of EYA3/NF-kB/CCL2 to human disease. Our findings suggest that inhibition of EYA3 could be a powerful means to re-activate the innate immune response at the PMN, inhibiting TNBC metastasis. Significance EYA3 promotes metastasis of TNBC cells by promoting NF-kB-mediated CCL2 expression and inhibiting cytotoxic NK cells at the pre-metastatic niche, highlighting a potential therapeutic target in this subset of breast cancer.
Collapse
|
6
|
Zhang B, Hu Y, Du H, Han S, Ren L, Cheng H, Wang Y, Gao X, Zheng S, Cui Q, Tian L, Liu T, Sun J, Chai R. Tissue engineering strategies for spiral ganglion neuron protection and regeneration. J Nanobiotechnology 2024; 22:458. [PMID: 39085923 PMCID: PMC11293049 DOI: 10.1186/s12951-024-02742-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 07/25/2024] [Indexed: 08/02/2024] Open
Abstract
Cochlear implants can directly activate the auditory system's primary sensory neurons, the spiral ganglion neurons (SGNs), via circumvention of defective cochlear hair cells. This bypass restores auditory input to the brainstem. SGN loss etiologies are complex, with limited mammalian regeneration. Protecting and revitalizing SGN is critical. Tissue engineering offers a novel therapeutic strategy, utilizing seed cells, biomolecules, and scaffold materials to create a cellular environment and regulate molecular cues. This review encapsulates the spectrum of both human and animal research, collating the factors contributing to SGN loss, the latest advancements in the utilization of exogenous stem cells for auditory nerve repair and preservation, the taxonomy and mechanism of action of standard biomolecules, and the architectural components of scaffold materials tailored for the inner ear. Furthermore, we delineate the potential and benefits of the biohybrid neural interface, an incipient technology in the realm of implantable devices. Nonetheless, tissue engineering requires refined cell selection and differentiation protocols for consistent SGN quality. In addition, strategies to improve stem cell survival, scaffold biocompatibility, and molecular cue timing are essential for biohybrid neural interface integration.
Collapse
Affiliation(s)
- Bin Zhang
- State Key Laboratory of Digital Medical Engineering, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Public Health, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, 210096, China
- Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, 226001, China
| | - Yangnan Hu
- State Key Laboratory of Digital Medical Engineering, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Public Health, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, 210096, China.
- Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, 226001, China.
| | - Haoliang Du
- Department of Otolaryngology Head and Neck Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Jiangsu Provincial Key Medical Discipline (Laboratory), Nanjing University, Nanjing, 210008, China
| | - Shanying Han
- Department of Otolaryngology Head and Neck Surgery, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610072, China
| | - Lei Ren
- State Key Laboratory of Digital Medical Engineering, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Public Health, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, 210096, China
| | - Hong Cheng
- State Key Laboratory of Digital Medical Engineering, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Public Health, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, 210096, China
| | - Yusong Wang
- State Key Laboratory of Digital Medical Engineering, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Public Health, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, 210096, China
| | - Xin Gao
- State Key Laboratory of Digital Medical Engineering, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Public Health, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, 210096, China
| | - Shasha Zheng
- State Key Laboratory of Digital Medical Engineering, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Public Health, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, 210096, China
| | - Qingyue Cui
- State Key Laboratory of Digital Medical Engineering, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Public Health, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, 210096, China
| | - Lei Tian
- State Key Laboratory of Digital Medical Engineering, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Public Health, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, 210096, China.
| | - Tingting Liu
- State Key Laboratory of Digital Medical Engineering, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Public Health, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, 210096, China.
| | - Jiaqiang Sun
- Department of Otolaryngology-Head and Neck Surgery, Division of Life Sciences and Medicine, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, Anhui, 230001, China.
| | - Renjie Chai
- State Key Laboratory of Digital Medical Engineering, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Public Health, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, 210096, China.
- Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, 226001, China.
- Department of Otolaryngology Head and Neck Surgery, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610072, China.
- Department of Neurology, Aerospace Center Hospital, School of Life Science, Beijing Institute of Technology, Beijing, 100081, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Science, Beijing, China.
- Southeast University Shenzhen Research Institute, Shenzhen, 518063, China.
| |
Collapse
|
7
|
Yi H, Yun Y, Choi WH, Hwang HY, Cha JH, Seok H, Song JJ, Lee JH, Lee SY, Kim D. CRISPR-based editing strategies to rectify EYA1 complex genomic rearrangement linked to haploinsufficiency. MOLECULAR THERAPY. NUCLEIC ACIDS 2024; 35:102199. [PMID: 38766525 PMCID: PMC11101721 DOI: 10.1016/j.omtn.2024.102199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 04/21/2024] [Indexed: 05/22/2024]
Abstract
Pathogenic structure variations (SVs) are associated with various types of cancer and rare genetic diseases. Recent studies have used Cas9 nuclease with paired guide RNAs (gRNAs) to generate targeted chromosomal rearrangements, focusing on producing fusion proteins that cause cancer, whereas research on precision genome editing for rectifying SVs is limited. In this study, we identified a novel complex genomic rearrangement (CGR), specifically an EYA1 inversion with a deletion, implicated in branchio-oto-renal/branchio-oto syndrome. To address this, two CRISPR-based approaches were tested. First, we used Cas9 nuclease and paired gRNAs tailored to the patient's genome. The dual CRISPR-Cas9 system induced efficient correction of paracentric inversion in patient-derived fibroblast, and effectively restored the expression of EYA1 mRNA and protein, along with its transcriptional activity required to regulate the target gene expression. Additionally, we used CRISPR activation (CRISPRa), which leads to the upregulation of EYA1 mRNA expression in patient-derived fibroblasts. Moreover, CRISPRa significantly improved EYA1 protein expression and transcriptional activity essential for target gene expression. This suggests that CRISPRa-based gene therapies could offer substantial translational potential for approximately 70% of disease-causing EYA1 variants responsible for haploinsufficiency. Our findings demonstrate the potential of CRISPR-guided genome editing for correcting SVs, including those with EYA1 CGR linked to haploinsufficiency.
Collapse
Affiliation(s)
- Hwalin Yi
- Department of Precision Medicine, Sungkyunkwan University School of Medicine, Suwon 16419, Republic of Korea
| | - Yejin Yun
- Department of Otorhinolaryngology, Seoul National University College of Medicine, Seoul National University Hospital, Seoul 03080, South Korea
| | - Won Hoon Choi
- Department of Otorhinolaryngology, Seoul National University College of Medicine, Seoul National University Hospital, Seoul 03080, South Korea
| | - Hye-Yeon Hwang
- Department of Precision Medicine, Sungkyunkwan University School of Medicine, Suwon 16419, Republic of Korea
| | - Ju Hyuen Cha
- Department of Otorhinolaryngology, Seoul National University College of Medicine, Seoul National University Hospital, Seoul 03080, South Korea
| | - Heeyoung Seok
- Department of Transdisciplinary Research and Collaboration, Genomics Core Facility, Biomedical Research Institute, Seoul National University Hospital, Seoul 03080, South Korea
| | - Jae-Jin Song
- Department of Otorhinolaryngology, Seoul National University College of Medicine, Seoul National University Bundang Hospital, Seongnam, South Korea
| | - Jun Ho Lee
- Department of Otorhinolaryngology, Seoul National University College of Medicine, Seoul National University Hospital, Seoul 03080, South Korea
| | - Sang-Yeon Lee
- Department of Otorhinolaryngology, Seoul National University College of Medicine, Seoul National University Hospital, Seoul 03080, South Korea
- Department of Genomic Medicine, Seoul National University Hospital, Seoul 03080, Republic of Korea
- Sensory Organ Research Institute, Seoul National University Medical Research Center, Seoul 03080, Republic of Korea
| | - Daesik Kim
- Department of Precision Medicine, Sungkyunkwan University School of Medicine, Suwon 16419, Republic of Korea
| |
Collapse
|
8
|
Hughes CJ, Alderman C, Wolin AR, Fields KM, Zhao R, Ford HL. All eyes on Eya: A unique transcriptional co-activator and phosphatase in cancer. Biochim Biophys Acta Rev Cancer 2024; 1879:189098. [PMID: 38555001 PMCID: PMC11111358 DOI: 10.1016/j.bbcan.2024.189098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 03/26/2024] [Accepted: 03/27/2024] [Indexed: 04/02/2024]
Abstract
The Eya family of proteins (consisting of Eyas1-4 in mammals) play vital roles in embryogenesis by regulating processes such as proliferation, migration/invasion, cellular survival and pluripotency/plasticity of epithelial and mesenchymal states. Eya proteins carry out such diverse functions through a unique combination of transcriptional co-factor, Tyr phosphatase, and PP2A/B55α-mediated Ser/Thr phosphatase activities. Since their initial discovery, re-expression of Eyas has been observed in numerous tumor types, where they are known to promote tumor progression through a combination of their transcriptional and enzymatic activities. Eya proteins thus reinstate developmental processes during malignancy and represent a compelling class of therapeutic targets for inhibiting tumor progression.
Collapse
Affiliation(s)
- Connor J Hughes
- Medical Scientist Training Program, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, United States of America; Department of Pharmacology, University of Colorado Anschutz Medical Campus, 12800 East 19th Avenue, Aurora, CO 80045, United States of America
| | - Christopher Alderman
- Medical Scientist Training Program, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, United States of America; Molecular Biology Program, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, United States of America; Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, United States of America
| | - Arthur R Wolin
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, 12800 East 19th Avenue, Aurora, CO 80045, United States of America; Molecular Biology Program, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, United States of America
| | - Kaiah M Fields
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, 12800 East 19th Avenue, Aurora, CO 80045, United States of America; Molecular Biology Program, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, United States of America
| | - Rui Zhao
- Medical Scientist Training Program, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, United States of America; Molecular Biology Program, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, United States of America; Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, United States of America.
| | - Heide L Ford
- Medical Scientist Training Program, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, United States of America; Department of Pharmacology, University of Colorado Anschutz Medical Campus, 12800 East 19th Avenue, Aurora, CO 80045, United States of America; Molecular Biology Program, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, United States of America.
| |
Collapse
|
9
|
Xu M, Li S, Xie X, Guo L, Yu D, Zhuo J, Lin J, Kol L, Gan L. ISL1 and POU4F1 Directly Interact to Regulate the Differentiation and Survival of Inner Ear Sensory Neurons. J Neurosci 2024; 44:e1718232024. [PMID: 38267260 PMCID: PMC10883659 DOI: 10.1523/jneurosci.1718-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 01/05/2024] [Accepted: 01/11/2024] [Indexed: 01/26/2024] Open
Abstract
The inner ear sensory neurons play a pivotal role in auditory processing and balance control. Though significant progresses have been made, the underlying mechanisms controlling the differentiation and survival of the inner ear sensory neurons remain largely unknown. During development, ISL1 and POU4F transcription factors are co-expressed and are required for terminal differentiation, pathfinding, axon outgrowth and the survival of neurons in the central and peripheral nervous systems. However, little is understood about their functional relationship and regulatory mechanism in neural development. Here, we have knocked out Isl1 or Pou4f1 or both in mice of both sexes. In the absence of Isl1, the differentiation of cochleovestibular ganglion (CVG) neurons is disturbed and with that Isl1-deficient CVG neurons display defects in migration and axon pathfinding. Compound deletion of Isl1 and Pou4f1 causes a delay in CVG differentiation and results in a more severe CVG defect with a loss of nearly all of spiral ganglion neurons (SGNs). Moreover, ISL1 and POU4F1 interact directly in developing CVG neurons and act cooperatively as well as independently in regulating the expression of unique sets of CVG-specific genes crucial for CVG development and survival by binding to the cis-regulatory elements including the promoters of Fgf10, Pou4f2, and Epha5 and enhancers of Eya1 and Ntng2 These findings demonstrate that Isl1 and Pou4f1 are indispensable for CVG development and maintenance by acting epistatically to regulate genes essential for CVG development.
Collapse
Affiliation(s)
- Mei Xu
- College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
- Department of Neuroscience and Regenerative Medicine, Augusta University, Augusta, Georgia 30912
- Institution of Life Sciences, Hangzhou Normal University, Hangzhou 310036, China
| | - Shuchun Li
- Department of Neuroscience and Regenerative Medicine, Augusta University, Augusta, Georgia 30912
| | - Xiaoling Xie
- Department of Neuroscience and Regenerative Medicine, Augusta University, Augusta, Georgia 30912
| | - Luming Guo
- College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
- Department of Neuroscience and Regenerative Medicine, Augusta University, Augusta, Georgia 30912
- Institution of Life Sciences, Hangzhou Normal University, Hangzhou 310036, China
| | - Dongliang Yu
- College of Life Science and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Jiaping Zhuo
- Department of Neuroscience and Regenerative Medicine, Augusta University, Augusta, Georgia 30912
| | - Jacey Lin
- Department of Neuroscience and Regenerative Medicine, Augusta University, Augusta, Georgia 30912
| | - Lotem Kol
- Department of Neuroscience and Regenerative Medicine, Augusta University, Augusta, Georgia 30912
| | - Lin Gan
- Department of Neuroscience and Regenerative Medicine, Augusta University, Augusta, Georgia 30912
- James and Jean Culver Vision Discovery Institute, Medical College of Georgia, Augusta University, Georgia 30912
| |
Collapse
|
10
|
Wang SX, Streit A. Shared features in ear and kidney development - implications for oto-renal syndromes. Dis Model Mech 2024; 17:dmm050447. [PMID: 38353121 PMCID: PMC10886756 DOI: 10.1242/dmm.050447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2024] Open
Abstract
The association between ear and kidney anomalies has long been recognized. However, little is known about the underlying mechanisms. In the last two decades, embryonic development of the inner ear and kidney has been studied extensively. Here, we describe the developmental pathways shared between both organs with particular emphasis on the genes that regulate signalling cross talk and the specification of progenitor cells and specialised cell types. We relate this to the clinical features of oto-renal syndromes and explore links to developmental mechanisms.
Collapse
Affiliation(s)
- Scarlet Xiaoyan Wang
- Centre for Craniofacial and Regenerative Biology, King's College London, London SE1 9RT, UK
| | - Andrea Streit
- Centre for Craniofacial and Regenerative Biology, King's College London, London SE1 9RT, UK
| |
Collapse
|
11
|
Lee S, Yun Y, Cha JH, Han JH, Lee DH, Song JJ, Park MK, Lee JH, Oh SH, Choi BY, Lee SY. Phenotypic and molecular basis of SIX1 variants linked to non-syndromic deafness and atypical branchio-otic syndrome in South Korea. Sci Rep 2023; 13:11776. [PMID: 37479820 PMCID: PMC10361970 DOI: 10.1038/s41598-023-38909-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 07/17/2023] [Indexed: 07/23/2023] Open
Abstract
Branchio-oto-renal (BOR)/branchio-otic (BO) syndrome is a rare disorder and exhibits clinically heterogenous phenotypes, marked by abnormalities in the ear, branchial arch, and renal system. Sporadic cases of atypical BOR/BO syndrome have been recently reported; however, evidence on genotype-phenotype correlations and molecular mechanisms of those cases is lacking. We herein identified five SIX1 heterozygous variants (c.307dupC:p.Leu103Profs*51, c.373G>A:p.Glu125Lys, c.386_391del:p.Tyr129_Cys130del, c.397_399del:p.Glu133del, and c.501G>C:p.Gln167His), including three novel variants, through whole-exome sequencing in five unrelated Korean families. All eight affected individuals with SIX1 variants displayed non-syndromic hearing loss (DFNA23) or atypical BO syndrome. The prevalence of major and minor criteria for BOR/BO syndrome was significantly reduced among individuals with SIX1 variants, compared to 15 BOR/BO syndrome families with EYA1 variants. All SIX1 variants interacted with the EYA1 wild-type; their complexes were localized in the nucleus except for the p.Leu103Profs*51 variant. All mutants also showed obvious but varying degrees of reduction in DNA binding affinity, leading to a significant decrease in transcriptional activity. This study presents the first report of SIX1 variants in South Korea, expanding the genotypic and phenotypic spectrum of SIX1 variants, characterized by DFNA23 or atypical BO syndrome, and refines the diverse molecular aspects of SIX1 variants according to the EYA1-SIX1-DNA complex theory.
Collapse
Affiliation(s)
- Somin Lee
- Department of Otorhinolaryngology-Head and Neck Surgery, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, South Korea
| | - Yejin Yun
- Department of Otorhinolaryngology-Head and Neck Surgery, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, South Korea
| | - Ju Hyuen Cha
- Department of Otorhinolaryngology-Head and Neck Surgery, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, South Korea
| | - Jin Hee Han
- Department of Otorhinolaryngology-Head and Neck Surgery, Seoul National University Bundang Hospital, Seoul, South Korea
| | - Dae Hee Lee
- CTCELLS, Inc., 21, Yuseong-Daero, 1205 Beon-Gil, Yuseong-Gu, Daejeon, Republic of Korea
| | - Jae-Jin Song
- Department of Otorhinolaryngology-Head and Neck Surgery, Seoul National University Bundang Hospital, Seoul, South Korea
| | - Moo Kyun Park
- Department of Otorhinolaryngology-Head and Neck Surgery, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, South Korea
| | - Jun Ho Lee
- Department of Otorhinolaryngology-Head and Neck Surgery, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, South Korea
| | - Seung Ha Oh
- Department of Otorhinolaryngology-Head and Neck Surgery, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, South Korea
| | - Byung Yoon Choi
- Department of Otorhinolaryngology-Head and Neck Surgery, Seoul National University Bundang Hospital, Seoul, South Korea
| | - Sang-Yeon Lee
- Department of Otorhinolaryngology-Head and Neck Surgery, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, South Korea.
- Department of Genomic Medicine, Precision Medicine & Rare Disease Center, Seoul National University Hospital, Jongno-Gu, Daehak-Ro, 101, Seoul, South Korea.
- Sensory Organ Research Institute, Seoul National University Medical Research Center, Seoul, South Korea.
| |
Collapse
|
12
|
Fritzsch B, Schultze HP, Elliott KL. The evolution of the various structures required for hearing in Latimeria and tetrapods. IBRO Neurosci Rep 2023; 14:325-341. [PMID: 37006720 PMCID: PMC10063410 DOI: 10.1016/j.ibneur.2023.03.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Accepted: 03/20/2023] [Indexed: 03/30/2023] Open
Abstract
Sarcopterygians evolved around 415 Ma and have developed a unique set of features, including the basilar papilla and the cochlear aqueduct of the inner ear. We provide an overview that shows the morphological integration of the various parts needed for hearing, e.g., basilar papilla, tectorial membrane, cochlear aqueduct, lungs, and tympanic membranes. The lagena of the inner ear evolved from a common macula of the saccule several times. It is near this lagena where the basilar papilla forms in Latimeria and tetrapods. The basilar papilla is lost in lungfish, certain caecilians and salamanders, but is transformed into the cochlea of mammals. Hearing in bony fish and tetrapods involves particle motion to improve sound pressure reception within the ear but also works without air. Lungs evolved after the chondrichthyans diverged and are present in sarcopterygians and actinopterygians. Lungs open to the outside in tetraposomorph sarcopterygians but are transformed from a lung into a swim bladder in ray-finned fishes. Elasmobranchs, polypterids, and many fossil fishes have open spiracles. In Latimeria, most frogs, and all amniotes, a tympanic membrane covering the spiracle evolved independently. The tympanic membrane is displaced by pressure changes and enabled tetrapods to perceive airborne sound pressure waves. The hyomandibular bone is associated with the spiracle/tympanic membrane in actinopterygians and piscine sarcopterygians. In tetrapods, it transforms into the stapes that connects the oval window of the inner ear with the tympanic membrane and allows hearing at higher frequencies by providing an impedance matching and amplification mechanism. The three characters-basilar papilla, cochlear aqueduct, and tympanic membrane-are fluid related elements in sarcopterygians, which interact with a set of unique features in Latimeria. Finally, we explore the possible interaction between the unique intracranial joint, basicranial muscle, and an enlarged notochord that allows fluid flow to the foramen magnum and the cochlear aqueduct which houses a comparatively small brain.
Collapse
Affiliation(s)
- Bernd Fritzsch
- Department of Biology & Department of Otolaryngology, University of Iowa, IA, USA
- Correspondence to: Department of Biology & Department of Otolaryngology, University of Iowa, Iowa City, IA, 52242, USA.
| | | | - Karen L. Elliott
- Department of Biology & Department of Otolaryngology, University of Iowa, IA, USA
| |
Collapse
|
13
|
Fang Q, Tian GG, Wang Q, Liu M, He L, Li S, Wu J. YTHDF1 phase separation triggers the fate transition of spermatogonial stem cells by activating the IκB-NF-κB-CCND1 axis. Cell Rep 2023; 42:112403. [PMID: 37060562 DOI: 10.1016/j.celrep.2023.112403] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 12/29/2022] [Accepted: 04/03/2023] [Indexed: 04/16/2023] Open
Abstract
N6-methyladenosine (m6A) modification controls cell fate determination. Here, we show that liquid-liquid phase separation (LLPS) of YTH N6-methyladenosine RNA binding protein 1 (YTHDF1), a pivotal m6A "reader" protein, promotes the transdifferentiation of spermatogonial stem cells (SSCs) into neural stem cell-like cells by activating the IκB-nuclear factor κB (NF-κB)-CCND1 axis. The inhibition of IκBα/β mRNA translation mediated by YTHDF1 LLPS is the key to the activation of the IκB-NF-κB-CCND1 axis. Disrupting either YTHDF1 LLPS or NF-κB activation inhibits transdifferentiation efficiency. Moreover, overexpression of the YTH domain of YTHDF1 inhibits the activation of the IκB-NF-κB-CCND1 axis by promoting IκBα/β mRNA translation. Overexpression of the tau-YTH fusion protein reactivates IκB-NF-κB-CCND1 axis by inhibiting the translation of IκBα/β mRNAs, and tau LLPS is observed, which can restore transdifferentiation efficiency. Our findings demonstrate that the protein-RNA LLPS plays essential roles in cell fate transition and provide insights into translational medicine and the therapy of neurological diseases.
Collapse
Affiliation(s)
- Qian Fang
- Key Laboratory for the Genetics of Development & Neuropsychiatric Disorders (Ministry of Education), Bio-X Institutes, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Geng G Tian
- Key Laboratory for the Genetics of Development & Neuropsychiatric Disorders (Ministry of Education), Bio-X Institutes, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Qian Wang
- Key Laboratory for the Genetics of Development & Neuropsychiatric Disorders (Ministry of Education), Bio-X Institutes, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Mengyao Liu
- Key Laboratory for the Genetics of Development & Neuropsychiatric Disorders (Ministry of Education), Bio-X Institutes, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Lin He
- Key Laboratory for the Genetics of Development & Neuropsychiatric Disorders (Ministry of Education), Bio-X Institutes, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Shengtian Li
- Key Laboratory for the Genetics of Development & Neuropsychiatric Disorders (Ministry of Education), Bio-X Institutes, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Ji Wu
- Key Laboratory for the Genetics of Development & Neuropsychiatric Disorders (Ministry of Education), Bio-X Institutes, Shanghai Jiao Tong University, Shanghai 200240, China; Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, Ningxia Medical University, Yinchuan 750004, China.
| |
Collapse
|
14
|
Zhang T, Xu PX. The role of Eya1 and Eya2 in the taste system of mice from embryonic stage to adulthood. Front Cell Dev Biol 2023; 11:1126968. [PMID: 37181748 PMCID: PMC10167055 DOI: 10.3389/fcell.2023.1126968] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Accepted: 04/10/2023] [Indexed: 05/16/2023] Open
Abstract
Members of the Eya family, which are a class of transcription factors with phosphatase activity, are widely expressed in cranial sensory organs during development. However, it is unclear whether these genes are expressed in the taste system during development and whether they play any role in specifying taste cell fate. In this study, we report that Eya1 is not expressed during embryonic tongue development but that Eya1-expressing progenitors in somites or pharyngeal endoderm give rise to tongue musculature or taste organs, respectively. In the Eya1-deficient tongues, these progenitors do not proliferate properly, resulting in a smaller tongue at birth, impaired growth of taste papillae, and disrupted expression of Six1 in the papillary epithelium. On the other hand, Eya2 is specifically expressed in endoderm-derived circumvallate and foliate papillae located on the posterior tongue during development. In adult tongues, Eya1 is predominantly expressed in IP3R3-positive taste cells in the taste buds of the circumvallate and foliate papillae, while Eya2 is persistently expressed in these papillae at higher levels in some epithelial progenitors and at lower levels in some taste cells. We found that conditional knockout of Eya1 in the third week or Eya2 knockout reduced Pou2f3+, Six1+ and IP3R3+ taste cells. Our data define for the first time the expression patterns of Eya1 and Eya2 during the development and maintenance of the mouse taste system and suggest that Eya1 and Eya2 may act together to promote lineage commitment of taste cell subtypes.
Collapse
Affiliation(s)
- Ting Zhang
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Pin-Xian Xu
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, United States
- Department of Cell Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| |
Collapse
|
15
|
Chohra I, Chung K, Giri S, Malgrange B. ATP-Dependent Chromatin Remodellers in Inner Ear Development. Cells 2023; 12:cells12040532. [PMID: 36831199 PMCID: PMC9954591 DOI: 10.3390/cells12040532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 01/30/2023] [Accepted: 02/01/2023] [Indexed: 02/11/2023] Open
Abstract
During transcription, DNA replication and repair, chromatin structure is constantly modified to reveal specific genetic regions and allow access to DNA-interacting enzymes. ATP-dependent chromatin remodelling complexes use the energy of ATP hydrolysis to modify chromatin architecture by repositioning and rearranging nucleosomes. These complexes are defined by a conserved SNF2-like, catalytic ATPase subunit and are divided into four families: CHD, SWI/SNF, ISWI and INO80. ATP-dependent chromatin remodellers are crucial in regulating development and stem cell biology in numerous organs, including the inner ear. In addition, mutations in genes coding for proteins that are part of chromatin remodellers have been implicated in numerous cases of neurosensory deafness. In this review, we describe the composition, structure and functional activity of these complexes and discuss how they contribute to hearing and neurosensory deafness.
Collapse
|
16
|
Song H, Morrow BE. Tbx2 and Tbx3 regulate cell fate progression of the otic vesicle for inner ear development. Dev Biol 2023; 494:71-84. [PMID: 36521641 PMCID: PMC9870991 DOI: 10.1016/j.ydbio.2022.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 12/05/2022] [Accepted: 12/10/2022] [Indexed: 12/14/2022]
Abstract
The morphogenesis of the otic vesicle (OV) to form inner ear organs serves as an excellent model system to understand cell fate acquisition on a single cell level. Tbx2 and Tbx3 (Tbx2/3) encode closely related T-box transcription factors that are expressed widely in the mammalian OV. Inactivation of both genes in the OV (Tbx2/3cKO) results in failed morphogenesis into inner ear organs. To understand the basis of these defects, single cell RNA-sequencing (scRNA-seq) was performed on the OV lineage, in controls versus Tbx2/3cKO embryos. We identified a multipotent population termed otic progenitors in controls that are marked by expression of the known otic placode markers Eya1, Sox2, and Sox3 as well as new markers Fgf18, Cxcl12, and Pou3f3. The otic progenitor population was increased three-fold in Tbx2/3cKO embryos, concomitant with dysregulation of genes in these cells as well as reduced progression to more differentiated states of prosensory and nonsensory cells. An ectopic neural population of cells was detected in the posterior OV of Tbx2/3cKO embryos but had reduced maturation to delaminated neural cells. As all three cell fates were affected in Tbx2/3cKO embryos, we suggest that Tbx2/3 promotes progression of multipotent otic progenitors to more differentiated cell types in the OV.
Collapse
Affiliation(s)
- Hansoo Song
- Department of Genetics, Albert Einstein College of Medicine, 1301 Morris Park Ave., Bronx, NY, USA
| | - Bernice E Morrow
- Department of Genetics, Albert Einstein College of Medicine, 1301 Morris Park Ave., Bronx, NY, USA.
| |
Collapse
|
17
|
Glover JC, Fritzsch B. Molecular mechanisms governing development of the hindbrain choroid plexus and auditory projection: A validation of the seminal observations of Wilhelm His. IBRO Neurosci Rep 2022; 13:306-313. [PMID: 36247525 PMCID: PMC9561746 DOI: 10.1016/j.ibneur.2022.09.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 09/29/2022] [Accepted: 09/29/2022] [Indexed: 11/05/2022] Open
Abstract
Studies by His from 1868 to 1904 delineated the critical role of the dorsal roof plate in the development of the hindbrain choroid plexus, and of the rhombic lips in the development of hindbrain auditory centers. Modern molecular studies have confirmed these observations and placed them in a mechanistic context. Expression of the transcription factor Lmx1a/b is crucial to the development of the hindbrain choroid plexus, and also regulates the expression of Atoh1, a transcription factor that is essential for the formation of the cochlear hair cells and auditory nuclei. By contrast, development of the vestibular hair cells, vestibular ganglion and vestibular nuclei does not depend on Lmx1a/b. These findings demonstrate a common dependence on a specific gene for the hindbrain choroid plexus and the primary auditory projection from hair cells to sensory neurons to hindbrain nuclei. Thus, His' conclusions regarding the origins of specific hindbrain structures are borne out by molecular genetic experiments conducted more than a hundred years later.
Collapse
Affiliation(s)
- Joel C. Glover
- Department of Molecular Medicine, University of Oslo, Oslo, Norway
- Norwegian Center for Stem Cell Research, Oslo University Hospital, Oslo, Norway
- Sars International Centre for Marine Molecular Biology, University of Bergen, Bergen, Norway
| | - Bernd Fritzsch
- Department of Biology, University of Iowa, Iowa, IA 52242, USA
| |
Collapse
|
18
|
Balendran V, Ritter KE, Martin DM. Epigenetic mechanisms of inner ear development. Hear Res 2022; 426:108440. [PMID: 35063312 PMCID: PMC9276839 DOI: 10.1016/j.heares.2022.108440] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 12/21/2021] [Accepted: 01/11/2022] [Indexed: 12/16/2022]
Abstract
Epigenetic factors are critically important for embryonic and postnatal development. Over the past decade, substantial technological advancements have occurred that now permit the study of epigenetic mechanisms that govern all aspects of inner ear development, from otocyst patterning to maturation and maintenance of hair cell stereocilia. In this review, we highlight how three major classes of epigenetic regulation (DNA methylation, histone modification, and chromatin remodeling) are essential for the development of the inner ear. We highlight open avenues for research and discuss how new tools enable the employment of epigenetic factors in regenerative and therapeutic approaches for hearing and balance disorders.
Collapse
Affiliation(s)
- Vinodh Balendran
- Neuroscience Graduate Program, University of Michigan Medical School, Ann Arbor, MI, United States
| | - K Elaine Ritter
- Department of Pediatrics, Medical Center Drive, University of Michigan Medical School, 8220C MSRB III, 1150 W, Ann Arbor, MI 48109-5652, United States
| | - Donna M Martin
- Neuroscience Graduate Program, University of Michigan Medical School, Ann Arbor, MI, United States; Department of Pediatrics, Medical Center Drive, University of Michigan Medical School, 8220C MSRB III, 1150 W, Ann Arbor, MI 48109-5652, United States; Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI, United States.
| |
Collapse
|
19
|
Li J, Cheng C, Xu J, Zhang T, Tokat B, Dolios G, Ramakrishnan A, Shen L, Wang R, Xu PX. The transcriptional coactivator Eya1 exerts transcriptional repressive activity by interacting with REST corepressors and REST-binding sequences to maintain nephron progenitor identity. Nucleic Acids Res 2022; 50:10343-10359. [PMID: 36130284 PMCID: PMC9561260 DOI: 10.1093/nar/gkac760] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 08/18/2022] [Accepted: 08/27/2022] [Indexed: 11/15/2022] Open
Abstract
Eya1 is critical for establishing and maintaining nephron progenitor cells (NPCs). It belongs to a family of proteins called phosphatase-transcriptional activators but without intrinsic DNA-binding activity. However, the spectrum of the Eya1-centered networks is underexplored. Here, we combined transcriptomic, genomic and proteomic approaches to characterize gene regulation by Eya1 in the NPCs. We identified Eya1 target genes, associated cis-regulatory elements and partner proteins. Eya1 preferentially occupies promoter sequences and interacts with general transcription factors (TFs), RNA polymerases, different types of TFs, chromatin-remodeling factors with ATPase or helicase activity, and DNA replication/repair proteins. Intriguingly, we identified REST-binding motifs in 76% of Eya1-occupied sites without H3K27ac-deposition, which were present in many Eya1 target genes upregulated in Eya1-deficient NPCs. Eya1 copurified REST-interacting chromatin-remodeling factors, histone deacetylase/lysine demethylase, and corepressors. Coimmunoprecipitation validated physical interaction between Eya1 and Rest/Hdac1/Cdyl/Hltf in the kidneys. Collectively, our results suggest that through interactions with chromatin-remodeling factors and specialized DNA-binding proteins, Eya1 may modify chromatin structure to facilitate the assembly of regulatory complexes that regulate transcription positively or negatively. These findings provide a mechanistic basis for how Eya1 exerts its activity by forming unique multiprotein complexes in various biological processes to maintain the cellular state of NPCs.
Collapse
Affiliation(s)
- Jun Li
- Department of Genetics and Genomic Sciences, New York, NY 10029, USA
| | - Chunming Cheng
- Department of Genetics and Genomic Sciences, New York, NY 10029, USA
| | - Jinshu Xu
- Department of Genetics and Genomic Sciences, New York, NY 10029, USA
| | - Ting Zhang
- Department of Genetics and Genomic Sciences, New York, NY 10029, USA
| | - Bengu Tokat
- Department of Genetics and Genomic Sciences, New York, NY 10029, USA
| | - Georgia Dolios
- Department of Genetics and Genomic Sciences, New York, NY 10029, USA
| | | | - Li Shen
- Department of Neurosciences, New York, NY 10029, USA
| | - Rong Wang
- Department of Genetics and Genomic Sciences, New York, NY 10029, USA
| | - Pin-Xian Xu
- Department of Genetics and Genomic Sciences, New York, NY 10029, USA.,Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| |
Collapse
|
20
|
Kelley MW. Cochlear Development; New Tools and Approaches. Front Cell Dev Biol 2022; 10:884240. [PMID: 35813214 PMCID: PMC9260282 DOI: 10.3389/fcell.2022.884240] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 05/19/2022] [Indexed: 12/21/2022] Open
Abstract
The sensory epithelium of the mammalian cochlea, the organ of Corti, is comprised of at least seven unique cell types including two functionally distinct types of mechanosensory hair cells. All of the cell types within the organ of Corti are believed to develop from a population of precursor cells referred to as prosensory cells. Results from previous studies have begun to identify the developmental processes, lineage restrictions and signaling networks that mediate the specification of many of these cell types, however, the small size of the organ and the limited number of each cell type has hampered progress. Recent technical advances, in particular relating to the ability to capture and characterize gene expression at the single cell level, have opened new avenues for understanding cellular specification in the organ of Corti. This review will cover our current understanding of cellular specification in the cochlea, discuss the most commonly used methods for single cell RNA sequencing and describe how results from a recent study using single cell sequencing provided new insights regarding cellular specification.
Collapse
|
21
|
Mackowetzky K, Dicipulo R, Fox SC, Philibert DA, Todesco H, Doshi JD, Kawakami K, Tierney K, Waskiewicz AJ. Retinoic acid signaling regulates late stages of semicircular canal morphogenesis and otolith maintenance in the zebrafish inner ear. Dev Dyn 2022; 251:1798-1815. [PMID: 35710880 DOI: 10.1002/dvdy.510] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 03/09/2022] [Accepted: 03/10/2022] [Indexed: 11/08/2022] Open
Abstract
BACKGROUND The vitamin A derivative all-trans retinoic acid (RA) regulates early stages of inner ear development. As the early disruption of the RA pathway results in profound mispatterning of the developing inner ear, this confounds analyses of specific roles in later stages. Therefore, we used the temporal-specific exposure of all-trans RA or diethylaminobenzaldehyde to evaluate RA functions in late otic development. RESULTS Perturbing late RA signaling causes behavioral defects analogous to those expected in larvae suffering from vestibular dysfunction. These larvae also demonstrate malformations of the semi-circular canals, as visualized through (a) use of the transgenic strain nkhspdmc12a, a fluorescent reporter expressed in otic epithelium; and (b) injection of the fluorescent lipophilic dye DiI. We also noted the altered expression of genes encoding ECM proteins or modifying enzymes. Other malformations of the inner ear observed in our work include the loss or reduced size of the utricular and saccular otoliths, suggesting a role for RA in otolith maintenance. CONCLUSION Our work has identified a previously undescribed late phase of RA activity in otic development, demonstrating that vestibular defects observed in human patients in relation to perturbed RA signaling are not solely due to its early disruption in otic development.
Collapse
Affiliation(s)
- Kacey Mackowetzky
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Renée Dicipulo
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Sabrina C Fox
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada.,Women & Children's Health Research Institute, Edmonton, Alberta, Canada
| | - Danielle A Philibert
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Hayley Todesco
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Jainil D Doshi
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Koichi Kawakami
- Laboratory of Molecular and Developmental Biology, National Institute of Genetics, Shizuoka, Japan
| | - Keith Tierney
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada.,School of Public Health, University of Alberta, Edmonton, Alberta, Canada
| | - Andrew J Waskiewicz
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada.,Women & Children's Health Research Institute, Edmonton, Alberta, Canada
| |
Collapse
|
22
|
Xue R, Tang Q, Zhang Y, Xie M, Li C, Wang S, Yang H. Integrative Analyses of Genes Associated With Otologic Disorders in Turner Syndrome. Front Genet 2022; 13:799783. [PMID: 35273637 PMCID: PMC8902304 DOI: 10.3389/fgene.2022.799783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 02/08/2022] [Indexed: 12/02/2022] Open
Abstract
Background: Loss or partial loss of one X chromosome induces Turner syndrome (TS) in females, causing major medical concerns, including otologic disorders. However, the underlying genetic pathophysiology of otologic disorders in TS is mostly unclear. Methods: Ear-related genes of TS (TSEs) were identified by analyzing differentially expressed genes (DEGs) in two Gene Expression Omnibus (GEO)-derived expression profiles and ear-genes in the Comparative Toxicogenomic Database (CTD). Subsequently, Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), and Disease Ontology (DO) analyses; Gene Set Enrichment Analysis (GSEA); and Gene Set Variation Analysis (GSVA) were adopted to study biological functions. Moreover, hub genes within the TSEs were identified by assessing protein-protein interaction (PPI), gene-microRNA, and gene-transcription factor (TF) networks. Drug-Gene Interaction Database (DGIdb) analysis was performed to predict molecular drugs for TS. Furthermore, three machine-learning analysis outcomes were comprehensively compared to explore optimal biomarkers of otologic disorders in TS. Finally, immune cell infiltration was analyzed. Results: The TSEs included 30 significantly upregulated genes and 14 significantly downregulated genes. Enrichment analyses suggested that TSEs play crucial roles in inflammatory responses, phospholipid and glycerolipid metabolism, transcriptional processes, and epigenetic processes, such as histone acetylation, and their importance for inner ear development. Subsequently, we described three hub genes in the PPI network and confirmed their involvement in Wnt/β-catenin signaling pathway and immune cell regulation and roles in maintaining normal auditory function. We also constructed gene-microRNA and gene-TF networks. A novel biomarker (SLC25A6) of the pathogenesis of otologic disorders in TS was identified by comprehensive comparisons of three machine-learning analyses with the best predictive performance. Potential therapeutic agents in TS were predicted using the DGIdb. Immune cell infiltration analysis showed that TSEs are related to immune-infiltrating cells. Conclusion: Overall, our findings have deepened the understanding of the pathophysiology of otologic disorders in TS and made contributions to present a promising biomarker and treatment targets for in-depth research.
Collapse
Affiliation(s)
- Ruoyan Xue
- Department of Otolaryngology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Qi Tang
- Department of Otolaryngology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yongli Zhang
- Department of Otolaryngology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Mengyao Xie
- Department of Otolaryngology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Chen Li
- Department of Otolaryngology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Shu Wang
- Department of Otolaryngology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Hua Yang
- Department of Otolaryngology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
23
|
Xu J, Li J, Ramakrishnan A, Yan H, Shen L, Xu PX. Six1 and Six2 of the Sine Oculis Homeobox Subfamily are Not Functionally Interchangeable in Mouse Nephron Formation. Front Cell Dev Biol 2022; 10:815249. [PMID: 35178390 PMCID: PMC8844495 DOI: 10.3389/fcell.2022.815249] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 01/05/2022] [Indexed: 11/25/2022] Open
Abstract
The vertebrate Six1 and Six2 arose by gene duplication from the Drosophila sine oculis and have since diverged in their developmental expression patterns. Both genes are expressed in nephron progenitors of human fetal kidneys, and mutations in SIX1 or SIX2 cause branchio-oto-renal syndrome or renal hypodysplasia respectively. Since ∼80% of SIX1 target sites are shared by SIX2, it is speculated that SIX1 and SIX2 may be functionally interchangeable by targeting common downstream genes. In contrast, in mouse kidneys, Six1 expression in the metanephric mesenchyme lineage overlaps with Six2 only transiently, while Six2 expression is maintained in the nephron progenitors throughout development. This non-overlapping expression between Six1 and Six2 in mouse nephron progenitors promoted us to examine if Six1 can replace Six2. Surprisingly, forced expression of Six1 failed to rescue Six2-deficient kidney phenotype. We found that Six1 mediated Eya1 nuclear translocation and inhibited premature epithelialization of the progenitors but failed to rescue the proliferation defects and cell death caused by Six2-knockout. Genome-wide binding analyses showed that Six1 selectively occupied a small subset of Six2 target sites, but many Six2-bound loci crucial to the renewal and differentiation of nephron progenitors lacked Six1 occupancy. Altogether, these data indicate that Six1 cannot substitute Six2 to drive nephrogenesis in mouse kidneys, thus demonstrating that the difference in physiological roles of Six1 and Six2 in kidney development stems from both transcriptional regulations of the genes and divergent biochemical properties of the proteins.
Collapse
Affiliation(s)
- Jinshu Xu
- Department of Genetics and Genomic Sciences, New York, NY, United States
| | - Jun Li
- Department of Genetics and Genomic Sciences, New York, NY, United States
| | | | - Hanen Yan
- Department of Genetics and Genomic Sciences, New York, NY, United States
| | - Li Shen
- Department of Neurosciences, New York, NY, United States
| | - Pin-Xian Xu
- Department of Genetics and Genomic Sciences, New York, NY, United States.,Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| |
Collapse
|
24
|
Langlie J, Finberg A, Bencie NB, Mittal J, Omidian H, Omidi Y, Mittal R, Eshraghi AA. Recent advancements in cell-based models for auditory disorders. BIOIMPACTS 2022; 12:155-169. [PMID: 35411298 PMCID: PMC8905588 DOI: 10.34172/bi.2022.23900] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 10/09/2021] [Accepted: 11/15/2021] [Indexed: 11/24/2022]
Abstract
![]()
Introduction: Cell-based models play an important role in understanding the pathophysiology and etiology of auditory disorders. For the auditory system, models have primarily focused on restoring inner and outer hair cells. However, they have largely underrepresented the surrounding structures and cells that support the function of the hair cells.
Methods: In this article, we will review recent advancements in the evolution of cell-based models of auditory disorders in their progression towards three dimensional (3D) models and organoids that more closely mimic the pathophysiology in vivo.
Results: With the elucidation of the molecular targets and transcription factors required to generate diverse cell lines of the components of inner ear, research is starting to progress from two dimensional (2D) models to a greater 3D approach. Of note, the 3D models of the inner ear, including organoids, are relatively new and emerging in the field. As 3D models of the inner ear continue to evolve in complexity, their role in modeling disease will grow as they bridge the gap between cell culture and in vivo models.
Conclusion: Using 3D cell models to understand the etiology and molecular mechanisms underlying auditory disorders holds great potential for developing more targeted and effective novel therapeutics.
Collapse
Affiliation(s)
- Jake Langlie
- Department of Otolaryngology, Cochlear Implant and Hearing Research Laboratory, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Ariel Finberg
- Department of Otolaryngology, Cochlear Implant and Hearing Research Laboratory, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Nathalie B. Bencie
- Department of Otolaryngology, Cochlear Implant and Hearing Research Laboratory, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Jeenu Mittal
- Department of Otolaryngology, Cochlear Implant and Hearing Research Laboratory, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Hossein Omidian
- Department of Pharmaceutical Sciences, College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL 33328, USA
| | - Yadollah Omidi
- Department of Pharmaceutical Sciences, College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL 33328, USA
| | - Rahul Mittal
- Department of Otolaryngology, Cochlear Implant and Hearing Research Laboratory, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Adrien A. Eshraghi
- Department of Otolaryngology, Cochlear Implant and Hearing Research Laboratory, University of Miami Miller School of Medicine, Miami, Florida, USA
- Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, Florida, USA
- Department of Biomedical Engineering, University of Miami, Coral Gables, Florida, USA
- Department of Pediatrics, University of Miami Miller School of Medicine, Miami, Florida, USA
| |
Collapse
|
25
|
Girgis J, Yang D, Chakroun I, Liu Y, Blais A. Six1 promotes skeletal muscle thyroid hormone response through regulation of the MCT10 transporter. Skelet Muscle 2021; 11:26. [PMID: 34809717 PMCID: PMC8607597 DOI: 10.1186/s13395-021-00281-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 10/29/2021] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND The Six1 transcription factor is implicated in controlling the development of several tissue types, notably skeletal muscle. Six1 also contributes to muscle metabolism and its activity is associated with the fast-twitch, glycolytic phenotype. Six1 regulates the expression of certain genes of the fast muscle program by directly stimulating their transcription or indirectly acting through a long non-coding RNA. We hypothesized that additional mechanisms of action of Six1 might be at play. METHODS A combined analysis of gene expression profiling and genome-wide location analysis data was performed. Results were validated using in vivo RNA interference loss-of-function assays followed by measurement of gene expression by RT-PCR and transcriptional reporter assays. RESULTS The Slc16a10 gene, encoding the thyroid hormone transmembrane transporter MCT10, was identified as a gene with a transcriptional enhancer directly bound by Six1 and requiring Six1 activity for full expression in adult mouse tibialis anterior, a predominantly fast-twitch muscle. Of the various thyroid hormone transporters, MCT10 mRNA was found to be the most abundant in skeletal muscle, and to have a stronger expression in fast-twitch compared to slow-twitch muscle groups. Loss-of-function of MCT10 in the tibialis anterior recapitulated the effect of Six1 on the expression of fast-twitch muscle genes and led to lower activity of a thyroid hormone receptor-dependent reporter gene. CONCLUSIONS These results shed light on the molecular mechanisms controlling the tissue expression profile of MCT10 and identify modulation of the thyroid hormone signaling pathway as an additional mechanism by which Six1 influences skeletal muscle metabolism.
Collapse
Affiliation(s)
- John Girgis
- Faculty of Medicine, Department of Biochemistry, Microbiology and Immunology, University of Ottawa, 451 Smyth Road, Ottawa, Ontario, K1H 8M5, Canada.,Ottawa Institute of Systems Biology, Ottawa, Ontario, Canada.,Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Dabo Yang
- Faculty of Medicine, Department of Biochemistry, Microbiology and Immunology, University of Ottawa, 451 Smyth Road, Ottawa, Ontario, K1H 8M5, Canada.,Ottawa Institute of Systems Biology, Ottawa, Ontario, Canada
| | - Imane Chakroun
- Faculty of Medicine, Department of Biochemistry, Microbiology and Immunology, University of Ottawa, 451 Smyth Road, Ottawa, Ontario, K1H 8M5, Canada.,Ottawa Institute of Systems Biology, Ottawa, Ontario, Canada
| | - Yubing Liu
- Faculty of Medicine, Department of Biochemistry, Microbiology and Immunology, University of Ottawa, 451 Smyth Road, Ottawa, Ontario, K1H 8M5, Canada.,Ottawa Institute of Systems Biology, Ottawa, Ontario, Canada
| | - Alexandre Blais
- Faculty of Medicine, Department of Biochemistry, Microbiology and Immunology, University of Ottawa, 451 Smyth Road, Ottawa, Ontario, K1H 8M5, Canada. .,Ottawa Institute of Systems Biology, Ottawa, Ontario, Canada. .,University of Ottawa Centre for Inflammation, Immunity and Infection (CI3), Ottawa, Ontario, Canada.
| |
Collapse
|
26
|
Li J, Xu J, Jiang H, Zhang T, Ramakrishnan A, Shen L, Xu PX. Chromatin Remodelers Interact with Eya1 and Six2 to Target Enhancers to Control Nephron Progenitor Cell Maintenance. J Am Soc Nephrol 2021; 32:2815-2833. [PMID: 34716243 PMCID: PMC8806105 DOI: 10.1681/asn.2021040525] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 08/26/2021] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND Eya1 is a critical regulator of nephron progenitor cell specification and interacts with Six2 to promote NPC self-renewal. Haploinsufficiency of these genes causes kidney hypoplasia. However, how the Eya1-centered network operates remains unknown. METHODS We engineered a 2×HA-3×Flag-Eya1 knock-in mouse line and performed coimmunoprecipitation with anti-HA or -Flag to precipitate the multitagged-Eya1 and its associated proteins. Loss-of-function, transcriptome profiling, and genome-wide binding analyses for Eya1's interacting chromatin-remodeling ATPase Brg1 were carried out. We assayed the activity of the cis-regulatory elements co-occupied by Brg1/Six2 in vivo. RESULTS Eya1 and Six2 interact with the Brg1-based SWI/SNF complex during kidney development. Knockout of Brg1 results in failure of metanephric mesenchyme formation and depletion of nephron progenitors, which has been linked to loss of Eya1 expression. Transcriptional profiling shows conspicuous downregulation of important regulators for nephrogenesis in Brg1-deficient cells, including Lin28, Pbx1, and Dchs1-Fat4 signaling, but upregulation of podocyte lineage, oncogenic, and cell death-inducing genes, many of which Brg1 targets. Genome-wide binding analysis identifies Brg1 occupancy to a distal enhancer of Eya1 that drives nephron progenitor-specific expression. We demonstrate that Brg1 enrichment to two distal intronic enhancers of Pbx1 and a proximal promoter region of Mycn requires Six2 activity and that these Brg1/Six2-bound enhancers govern nephron progenitor-specific expression in response to Six2 activity. CONCLUSIONS Our results reveal an essential role for Brg1, its downstream pathways, and its interaction with Eya1-Six2 in mediating the fine balance among the self-renewal, differentiation, and survival of nephron progenitors.
Collapse
Affiliation(s)
- Jun Li
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Jinshu Xu
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Huihui Jiang
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Ting Zhang
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Aarthi Ramakrishnan
- Department of Neurosciences, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Li Shen
- Department of Neurosciences, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Pin-Xian Xu
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York,Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, New York
| |
Collapse
|
27
|
Almasoudi SH, Schlosser G. Otic Neurogenesis in Xenopus laevis: Proliferation, Differentiation, and the Role of Eya1. Front Neuroanat 2021; 15:722374. [PMID: 34616280 PMCID: PMC8488300 DOI: 10.3389/fnana.2021.722374] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 08/27/2021] [Indexed: 11/15/2022] Open
Abstract
Using immunostaining and confocal microscopy, we here provide the first detailed description of otic neurogenesis in Xenopus laevis. We show that the otic vesicle comprises a pseudostratified epithelium with apicobasal polarity (apical enrichment of Par3, aPKC, phosphorylated Myosin light chain, N-cadherin) and interkinetic nuclear migration (apical localization of mitotic, pH3-positive cells). A Sox3-immunopositive neurosensory area in the ventromedial otic vesicle gives rise to neuroblasts, which delaminate through breaches in the basal lamina between stages 26/27 and 39. Delaminated cells congregate to form the vestibulocochlear ganglion, whose peripheral cells continue to proliferate (as judged by EdU incorporation), while central cells differentiate into Islet1/2-immunopositive neurons from stage 29 on and send out neurites at stage 31. The central part of the neurosensory area retains Sox3 but stops proliferating from stage 33, forming the first sensory areas (utricular/saccular maculae). The phosphatase and transcriptional coactivator Eya1 has previously been shown to play a central role for otic neurogenesis but the underlying mechanism is poorly understood. Using an antibody specifically raised against Xenopus Eya1, we characterize the subcellular localization of Eya1 proteins, their levels of expression as well as their distribution in relation to progenitor and neuronal differentiation markers during otic neurogenesis. We show that Eya1 protein localizes to both nuclei and cytoplasm in the otic epithelium, with levels of nuclear Eya1 declining in differentiating (Islet1/2+) vestibulocochlear ganglion neurons and in the developing sensory areas. Morpholino-based knockdown of Eya1 leads to reduction of proliferating, Sox3- and Islet1/2-immunopositive cells, redistribution of cell polarity proteins and loss of N-cadherin suggesting that Eya1 is required for maintenance of epithelial cells with apicobasal polarity, progenitor proliferation and neuronal differentiation during otic neurogenesis.
Collapse
Affiliation(s)
| | - Gerhard Schlosser
- School of Natural Sciences, National University of Galway, Galway, Ireland
| |
Collapse
|
28
|
Mackowetzky K, Yoon KH, Mackowetzky EJ, Waskiewicz AJ. Development and evolution of the vestibular apparatuses of the inner ear. J Anat 2021; 239:801-828. [PMID: 34047378 PMCID: PMC8450482 DOI: 10.1111/joa.13459] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 04/07/2021] [Accepted: 05/06/2021] [Indexed: 12/16/2022] Open
Abstract
The vertebrate inner ear is a labyrinthine sensory organ responsible for perceiving sound and body motion. While a great deal of research has been invested in understanding the auditory system, a growing body of work has begun to delineate the complex developmental program behind the apparatuses of the inner ear involved with vestibular function. These animal studies have helped identify genes involved in inner ear development and model syndromes known to include vestibular dysfunction, paving the way for generating treatments for people suffering from these disorders. This review will provide an overview of known inner ear anatomy and function and summarize the exciting discoveries behind inner ear development and the evolution of its vestibular apparatuses.
Collapse
Affiliation(s)
- Kacey Mackowetzky
- Department of Biological SciencesUniversity of AlbertaEdmontonAlbertaCanada
| | - Kevin H. Yoon
- Department of Biological SciencesUniversity of AlbertaEdmontonAlbertaCanada
| | | | - Andrew J. Waskiewicz
- Department of Biological SciencesUniversity of AlbertaEdmontonAlbertaCanada
- Women & Children’s Health Research InstituteUniversity of AlbertaEdmontonAlbertaCanada
| |
Collapse
|
29
|
Almasoudi SH, Schlosser G. Eya1 protein distribution during embryonic development of Xenopus laevis. Gene Expr Patterns 2021; 42:119213. [PMID: 34536585 DOI: 10.1016/j.gep.2021.119213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 09/10/2021] [Accepted: 09/10/2021] [Indexed: 11/24/2022]
Abstract
Eya1 and other Eya proteins are important regulators of progenitor proliferation, cell differentiation and morphogenesis in all three germ layers. At present, most of our knowledge of Eya1 distribution is based on in situ hybridization for Eya1 mRNA. However, to begin to dissect the mechanisms underlying Eya1 functions, we need a better understanding of the spatiotemporal distribution of Eya1 proteins during embryonic development, their subcellular localization and their levels of expression in various tissues. Here we report the localization of Eya1 protein throughout embryonic development from neural plate stages to tadpole stages of Xenopus laevis using a specific antibody for Xenopus Eya1. Our study confirms the expression of Eya1 protein in cranial placodes, placodally derived sensory primordia (olfactory epithelium, otic vesicle, lateral line primordia) and cranial ganglia, as well as in somites, secondary heart field and pharyngeal endoderm. In addition, we report here a novel expression of Eya1 proteins in scattered epidermal cells in Xenopus. Our findings also reveal that, while being predominantly expressed in nuclei in most expression domains, Eya1 protein is also localized to the cytoplasm, in particular in the early preplacodal ectoderm, some placode-derived ganglia and a subset of epidermal cells. While some cytoplasmic roles of Eya1 have been previously described in other contexts, the functions of cytoplasmic Eya1 in the preplacodal ectoderm, cranial ganglia and epidermal cells remain to be investigated.
Collapse
Affiliation(s)
| | - Gerhard Schlosser
- School of Natural Sciences, National University of Galway, Galway, Ireland.
| |
Collapse
|
30
|
Chromatin remodelers and lineage-specific factors interact to target enhancers to establish proneurosensory fate within otic ectoderm. Proc Natl Acad Sci U S A 2021; 118:2025196118. [PMID: 33723076 DOI: 10.1073/pnas.2025196118] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Specification of Sox2+ proneurosensory progenitors within otic ectoderm is a prerequisite for the production of sensory cells and neurons for hearing. However, the underlying molecular mechanisms driving this lineage specification remain unknown. Here, we show that the Brg1-based SWI/SNF chromatin-remodeling complex interacts with the neurosensory-specific transcriptional regulators Eya1/Six1 to induce Sox2 expression and promote proneurosensory-lineage specification. Ablation of the ATPase-subunit Brg1 or both Eya1/Six1 results in loss of Sox2 expression and lack of neurosensory identity, leading to abnormal apoptosis within the otic ectoderm. Brg1 binds to two of three distal 3' Sox2 enhancers occupied by Six1, and Brg1-binding to these regions depends on Eya1-Six1 activity. We demonstrate that the activity of these Sox2 enhancers in otic neurosensory cells specifically depends on binding to Six1. Furthermore, genome-wide and transcriptome profiling indicate that Brg1 may suppress apoptotic factor Map3k5 to inhibit apoptosis. Together, our findings reveal an essential role for Brg1, its downstream pathways, and their interactions with Six1/Eya1 in promoting proneurosensory fate induction in the otic ectoderm and subsequent neuronal lineage commitment and survival of otic cells.
Collapse
|
31
|
Fritzsch B. An Integrated Perspective of Evolution and Development: From Genes to Function to Ear, Lateral Line and Electroreception. DIVERSITY 2021; 13:364. [PMID: 35505776 PMCID: PMC9060560 DOI: 10.3390/d13080364] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Four sensory systems (vestibular, lateral line, electroreception, auditory) are unique and project exclusively to the brainstem of vertebrates. All sensory neurons depend on a common set of genes (Eya1, Sox2, Neurog1, Neurod1) that project to a dorsal nucleus and an intermediate nucleus, which differentiate into the vestibular ear, lateral line and electroreception in vertebrates. In tetrapods, a loss of two sensory systems (lateral line, electroreception) leads to the development of a unique ear and auditory system in amniotes. Lmx1a/b, Gdf7, Wnt1/3a, BMP4/7 and Atoh1 define the lateral line, electroreception and auditory nuclei. In contrast, vestibular nuclei depend on Neurog1/2, Ascl1, Ptf1a and Olig3, among others, to develop an independent origin of the vestibular nuclei. A common origin of hair cells depends on Eya1, Sox2 and Atoh1, which generate the mechanosensory cells. Several proteins define the polarity of hair cells in the ear and lateral line. A unique connection of stereocilia requires CDH23 and PCDH15 for connections and TMC1/2 proteins to perceive mechanosensory input. Electroreception has no polarity, and a different system is used to drive electroreceptors. All hair cells function by excitation via ribbons to activate neurons that innervate the distinct target areas. An integrated perspective is presented to understand the gain and loss of different sensory systems.
Collapse
Affiliation(s)
- Bernd Fritzsch
- Department of Biology & Department of Otolaryngology, University of Iowa, Iowa City, IA 52242, USA
| |
Collapse
|
32
|
Xu B, Yang Q, Tang Y, Tan Z, Fu H, Peng J, Xiang X, Gan L, Deng G, Mao Q, Xu PX, Jiang Y, Ding J. SIX1/EYA1 are novel liver damage biomarkers in chronic hepatitis B and other liver diseases. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:992. [PMID: 34277792 PMCID: PMC8267256 DOI: 10.21037/atm-21-2526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 06/11/2021] [Indexed: 11/06/2022]
Abstract
Background This study aimed to investigate the clinicopathological significance of sine oculis homeobox homolog 1 (SIX1) and eyes absent 1 (EYA1) in patients with chronic hepatitis B (CHB) and other liver diseases. Methods SIX1 and EYA1 levels were detected in human serum and liver tissues by enzyme linked immunosorbent assay (ELISA) and immunofluorescent staining method, respectively. Results The serum SIX1 and EYA1 levels in 313 CHB patients were 7.24±0.11 and 25.21±0.51 ng/mL, respectively, and these values were significantly higher than those in 33 healthy controls (2.84±0.15 and 13.11±1.01 ng/mL, respectively; P<0.05). Serum SIX1 and EYA1 levels were also markedly increased in patients with numerous other liver diseases, including liver fibrosis, hepatocellular carcinoma, fatty liver disease, alcoholic liver disease, fulminant hepatic failure, autoimmune liver disease, and hepatitis C, compared to the healthy controls (P<0.05). Dynamic observation of these proteins over time in 35 selected CHB patients revealed that SIX1 and EYA1 serum levels increased over an interval. Immunofluorescent staining revealed that both SIX1 and EYA1 were only expressed in hepatic stellate cells (HSCs), and their increased expression was evident in CHB liver tissue. Conclusions SIX1 and EYA1 are novel biomarkers of liver damage in patients of CHB and other liver diseases, with potential clinical utility.
Collapse
Affiliation(s)
- Baoyan Xu
- Department of Infectious Diseases, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Qiao Yang
- Department of General Medicine, Chongqing University Central Hospital, Chongqing Emergency Medical Center, Chongqing, China
| | - Yingzi Tang
- Department of Infectious Diseases, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Zhaoxia Tan
- Department of Infectious Diseases, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Haiyan Fu
- Health Management Center, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Jing Peng
- Department of Infectious Diseases, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Xiaomei Xiang
- Department of Infectious Diseases, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Linlin Gan
- Department of Infectious Diseases, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Guohong Deng
- Department of Infectious Diseases, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Qing Mao
- Department of Infectious Diseases, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Pin-Xian Xu
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Yi Jiang
- Department of General Medicine, Chongqing University Central Hospital, Chongqing Emergency Medical Center, Chongqing, China
| | - Jianqiang Ding
- Department of Infectious Diseases, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| |
Collapse
|
33
|
Elliott KL, Pavlinkova G, Chizhikov VV, Yamoah EN, Fritzsch B. Neurog1, Neurod1, and Atoh1 are essential for spiral ganglia, cochlear nuclei, and cochlear hair cell development. Fac Rev 2021; 10:47. [PMID: 34131657 PMCID: PMC8170689 DOI: 10.12703/r/10-47] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
We review the molecular basis of three related basic helix–loop–helix (bHLH) genes (Neurog1, Neurod1, and Atoh1) and upstream regulators Eya1/Six1, Sox2, Pax2, Gata3, Fgfr2b, Foxg1, and Lmx1a/b during the development of spiral ganglia, cochlear nuclei, and cochlear hair cells. Neuronal development requires early expression of Neurog1, followed by its downstream target Neurod1, which downregulates Atoh1 expression. In contrast, hair cells and cochlear nuclei critically depend on Atoh1 and require Neurod1 and Neurog1 expression for various aspects of development. Several experiments show a partial uncoupling of Atoh1/Neurod1 (spiral ganglia and cochlea) and Atoh1/Neurog1/Neurod1 (cochlear nuclei). In this review, we integrate the cellular and molecular mechanisms that regulate the development of auditory system and provide novel insights into the restoration of hearing loss, beyond the limited generation of lost sensory neurons and hair cells.
Collapse
Affiliation(s)
- Karen L Elliott
- Department of Biology, University of Iowa, Iowa City, IA, USA
| | - Gabriela Pavlinkova
- Institute of Biotechnology of the Czech Academy of Sciences, Vestec, Czechia
| | - Victor V Chizhikov
- Department of Anatomy and Neurobiology, The University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Ebenezer N Yamoah
- Department of Physiology and Cell Biology, University of Nevada, Reno, NV, USA
| | - Bernd Fritzsch
- Department of Biology, University of Iowa, Iowa City, IA, USA
| |
Collapse
|
34
|
Elliott KL, Pavlínková G, Chizhikov VV, Yamoah EN, Fritzsch B. Development in the Mammalian Auditory System Depends on Transcription Factors. Int J Mol Sci 2021; 22:ijms22084189. [PMID: 33919542 PMCID: PMC8074135 DOI: 10.3390/ijms22084189] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Revised: 04/15/2021] [Accepted: 04/16/2021] [Indexed: 12/16/2022] Open
Abstract
We review the molecular basis of several transcription factors (Eya1, Sox2), including the three related genes coding basic helix–loop–helix (bHLH; see abbreviations) proteins (Neurog1, Neurod1, Atoh1) during the development of spiral ganglia, cochlear nuclei, and cochlear hair cells. Neuronal development requires Neurog1, followed by its downstream target Neurod1, to cross-regulate Atoh1 expression. In contrast, hair cells and cochlear nuclei critically depend on Atoh1 and require Neurod1 expression for interactions with Atoh1. Upregulation of Atoh1 following Neurod1 loss changes some vestibular neurons’ fate into “hair cells”, highlighting the significant interplay between the bHLH genes. Further work showed that replacing Atoh1 by Neurog1 rescues some hair cells from complete absence observed in Atoh1 null mutants, suggesting that bHLH genes can partially replace one another. The inhibition of Atoh1 by Neurod1 is essential for proper neuronal cell fate, and in the absence of Neurod1, Atoh1 is upregulated, resulting in the formation of “intraganglionic” HCs. Additional genes, such as Eya1/Six1, Sox2, Pax2, Gata3, Fgfr2b, Foxg1, and Lmx1a/b, play a role in the auditory system. Finally, both Lmx1a and Lmx1b genes are essential for the cochlear organ of Corti, spiral ganglion neuron, and cochlear nuclei formation. We integrate the mammalian auditory system development to provide comprehensive insights beyond the limited perception driven by singular investigations of cochlear neurons, cochlear hair cells, and cochlear nuclei. A detailed analysis of gene expression is needed to understand better how upstream regulators facilitate gene interactions and mammalian auditory system development.
Collapse
Affiliation(s)
- Karen L. Elliott
- Department of Biology, University of Iowa, Iowa City, IA 52242, USA;
| | - Gabriela Pavlínková
- Institute of Biotechnology of the Czech Academy of Sciences, 25250 Vestec, Czechia;
| | - Victor V. Chizhikov
- Department of Anatomy and Neurobiology, The University of Tennessee Health Science Center, Memphis, TN 38163, USA;
| | - Ebenezer N. Yamoah
- Department of Physiology and Cell Biology, School of Medicine, University of Nevada, Reno, NV 89557, USA;
| | - Bernd Fritzsch
- Department of Biology, University of Iowa, Iowa City, IA 52242, USA;
- Correspondence:
| |
Collapse
|
35
|
Pavlinkova G. Molecular Aspects of the Development and Function of Auditory Neurons. Int J Mol Sci 2020; 22:ijms22010131. [PMID: 33374462 PMCID: PMC7796308 DOI: 10.3390/ijms22010131] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 12/21/2020] [Accepted: 12/22/2020] [Indexed: 01/08/2023] Open
Abstract
This review provides an up-to-date source of information on the primary auditory neurons or spiral ganglion neurons in the cochlea. These neurons transmit auditory information in the form of electric signals from sensory hair cells to the first auditory nuclei of the brain stem, the cochlear nuclei. Congenital and acquired neurosensory hearing loss affects millions of people worldwide. An increasing body of evidence suggest that the primary auditory neurons degenerate due to noise exposure and aging more readily than sensory cells, and thus, auditory neurons are a primary target for regenerative therapy. A better understanding of the development and function of these neurons is the ultimate goal for long-term maintenance, regeneration, and stem cell replacement therapy. In this review, we provide an overview of the key molecular factors responsible for the function and neurogenesis of the primary auditory neurons, as well as a brief introduction to stem cell research focused on the replacement and generation of auditory neurons.
Collapse
Affiliation(s)
- Gabriela Pavlinkova
- BIOCEV, Institute of Biotechnology of the Czech Academy of Sciences, 25250 Vestec, Czech Republic
| |
Collapse
|
36
|
Thawani A, Groves AK. Building the Border: Development of the Chordate Neural Plate Border Region and Its Derivatives. Front Physiol 2020; 11:608880. [PMID: 33364980 PMCID: PMC7750469 DOI: 10.3389/fphys.2020.608880] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 11/19/2020] [Indexed: 01/04/2023] Open
Abstract
The paired cranial sensory organs and peripheral nervous system of vertebrates arise from a thin strip of cells immediately adjacent to the developing neural plate. The neural plate border region comprises progenitors for four key populations of cells: neural plate cells, neural crest cells, the cranial placodes, and epidermis. Putative homologues of these neural plate border derivatives can be found in protochordates such as amphioxus and tunicates. In this review, we summarize key signaling pathways and transcription factors that regulate the inductive and patterning events at the neural plate border region that give rise to the neural crest and placodal lineages. Gene regulatory networks driven by signals from WNT, fibroblast growth factor (FGF), and bone morphogenetic protein (BMP) signaling primarily dictate the formation of the crest and placodal lineages. We review these studies and discuss the potential of recent advances in spatio-temporal transcriptomic and epigenomic analyses that would allow a mechanistic understanding of how these signaling pathways and their downstream transcriptional cascades regulate the formation of the neural plate border region.
Collapse
Affiliation(s)
- Ankita Thawani
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, United States
| | - Andrew K Groves
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, United States.,Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, United States
| |
Collapse
|
37
|
Vermeiren S, Bellefroid EJ, Desiderio S. Vertebrate Sensory Ganglia: Common and Divergent Features of the Transcriptional Programs Generating Their Functional Specialization. Front Cell Dev Biol 2020; 8:587699. [PMID: 33195244 PMCID: PMC7649826 DOI: 10.3389/fcell.2020.587699] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 09/08/2020] [Indexed: 12/13/2022] Open
Abstract
Sensory fibers of the peripheral nervous system carry sensation from specific sense structures or use different tissues and organs as receptive fields, and convey this information to the central nervous system. In the head of vertebrates, each cranial sensory ganglia and associated nerves perform specific functions. Sensory ganglia are composed of different types of specialized neurons in which two broad categories can be distinguished, somatosensory neurons relaying all sensations that are felt and visceral sensory neurons sensing the internal milieu and controlling body homeostasis. While in the trunk somatosensory neurons composing the dorsal root ganglia are derived exclusively from neural crest cells, somato- and visceral sensory neurons of cranial sensory ganglia have a dual origin, with contributions from both neural crest and placodes. As most studies on sensory neurogenesis have focused on dorsal root ganglia, our understanding of the molecular mechanisms underlying the embryonic development of the different cranial sensory ganglia remains today rudimentary. However, using single-cell RNA sequencing, recent studies have made significant advances in the characterization of the neuronal diversity of most sensory ganglia. Here we summarize the general anatomy, function and neuronal diversity of cranial sensory ganglia. We then provide an overview of our current knowledge of the transcriptional networks controlling neurogenesis and neuronal diversification in the developing sensory system, focusing on cranial sensory ganglia, highlighting specific aspects of their development and comparing it to that of trunk sensory ganglia.
Collapse
Affiliation(s)
- Simon Vermeiren
- ULB Neuroscience Institute, Université Libre de Bruxelles, Gosselies, Belgium
| | - Eric J Bellefroid
- ULB Neuroscience Institute, Université Libre de Bruxelles, Gosselies, Belgium
| | - Simon Desiderio
- Institute for Neurosciences of Montpellier, INSERM U1051, University of Montpellier, Montpellier, France
| |
Collapse
|
38
|
Li J, Zhang T, Ramakrishnan A, Fritzsch B, Xu J, Wong EYM, Loh YHE, Ding J, Shen L, Xu PX. Dynamic changes in cis-regulatory occupancy by Six1 and its cooperative interactions with distinct cofactors drive lineage-specific gene expression programs during progressive differentiation of the auditory sensory epithelium. Nucleic Acids Res 2020; 48:2880-2896. [PMID: 31956913 PMCID: PMC7102962 DOI: 10.1093/nar/gkaa012] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 12/16/2019] [Accepted: 01/17/2020] [Indexed: 12/23/2022] Open
Abstract
The transcription factor Six1 is essential for induction of sensory cell fate and formation of auditory sensory epithelium, but how it activates gene expression programs to generate distinct cell-types remains unknown. Here, we perform genome-wide characterization of Six1 binding at different stages of auditory sensory epithelium development and find that Six1-binding to cis-regulatory elements changes dramatically at cell-state transitions. Intriguingly, Six1 pre-occupies enhancers of cell-type-specific regulators and effectors before their expression. We demonstrate in-vivo cell-type-specific activity of Six1-bound novel enhancers of Pbx1, Fgf8, Dusp6, Vangl2, the hair-cell master regulator Atoh1 and a cascade of Atoh1's downstream factors, including Pou4f3 and Gfi1. A subset of Six1-bound sites carry consensus-sequences for its downstream factors, including Atoh1, Gfi1, Pou4f3, Gata3 and Pbx1, all of which physically interact with Six1. Motif analysis identifies RFX/X-box as one of the most significantly enriched motifs in Six1-bound sites, and we demonstrate that Six1-RFX proteins cooperatively regulate gene expression through binding to SIX:RFX-motifs. Six1 targets a wide range of hair-bundle regulators and late Six1 deletion disrupts hair-bundle polarity. This study provides a mechanistic understanding of how Six1 cooperates with distinct cofactors in feedforward loops to control lineage-specific gene expression programs during progressive differentiation of the auditory sensory epithelium.
Collapse
Affiliation(s)
- Jun Li
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Ting Zhang
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Aarthi Ramakrishnan
- Department of Neurosciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Bernd Fritzsch
- Department of Biology, University of Iowa, Iowa, IA 52242-1324
| | - Jinshu Xu
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Elaine Y M Wong
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Yong-Hwee Eddie Loh
- Department of Neurosciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Jianqiang Ding
- Department of Infectious Diseases, Shunde Hospital, Southern Medical University, Shunde 528308, Guangdong, China
| | - Li Shen
- Department of Neurosciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Pin-Xian Xu
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.,Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| |
Collapse
|
39
|
Chen G, Chen Z, Zhao H. MicroRNA-155-3p promotes glioma progression and temozolomide resistance by targeting Six1. J Cell Mol Med 2020; 24:5363-5374. [PMID: 32220051 PMCID: PMC7205810 DOI: 10.1111/jcmm.15192] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 02/29/2020] [Accepted: 03/09/2020] [Indexed: 12/13/2022] Open
Abstract
The prognosis of glioma is generally poor and is the cause of primary malignancy in the brain. The role of microRNAs has been implicated in tumour inhibition or activation. In several cancers, the Six1 signalling pathway has been found to be aberrant and also relates to the formation of tumours. We analysed the database for expression profiles and clinical specimens of various grades of glioma to assess microRNA-155-3p (miR-155-3p) expression. The role of miR-155-3p in glioblastoma, cell cycle, proliferation, apoptosis and resistance to temozolomide was assessed in vitro through flow cytometry and cell proliferation assays. Bioinformatics analyses, and assays using luciferase reporter, and immunoblotting revealed that miR-155-3p targets Six1 and that the relationship between glioma and healthy brain tissues was significantly inverse. In rescue experiments, overexpressed Six1 revoked the changes in cell cycle distribution, proliferation and resistance to temozolomide estimated by apoptosis induced by overexpressed miR-155-3p. MiR-155-3p inhibition reduced glioma cell growth and proliferation in the brain of a mouse model and increased the survival of mice with gliomas. Thus, miR-155-3p modulates Six1 expression and facilitates the progression of glioblastoma and resistance to temozolomide and may act as a novel diagnostic biomarker and a target for glioma treatment.
Collapse
Affiliation(s)
- Guangyong Chen
- Neurosurgery DepartmentChina‐Japan Union Hospital of Jilin UniversityChangchunChina
| | - Zhuo Chen
- Neurosurgery DepartmentChina‐Japan Union Hospital of Jilin UniversityChangchunChina
| | - Hang Zhao
- Neurosurgery DepartmentChina‐Japan Union Hospital of Jilin UniversityChangchunChina
| |
Collapse
|
40
|
Maire P, Dos Santos M, Madani R, Sakakibara I, Viaut C, Wurmser M. Myogenesis control by SIX transcriptional complexes. Semin Cell Dev Biol 2020; 104:51-64. [PMID: 32247726 DOI: 10.1016/j.semcdb.2020.03.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 03/10/2020] [Accepted: 03/11/2020] [Indexed: 02/07/2023]
Abstract
SIX homeoproteins were first described in Drosophila, where they participate in the Pax-Six-Eya-Dach (PSED) network with eyeless, eyes absent and dachsund to drive synergistically eye development through genetic and biochemical interactions. The role of the PSED network and SIX proteins in muscle formation in vertebrates was subsequently identified. Evolutionary conserved interactions with EYA and DACH proteins underlie the activity of SIX transcriptional complexes (STC) both during embryogenesis and in adult myofibers. Six genes are expressed throughout muscle development, in embryonic and adult proliferating myogenic stem cells and in fetal and adult post-mitotic myofibers, where SIX proteins regulate the expression of various categories of genes. In vivo, SIX proteins control many steps of muscle development, acting through feedforward mechanisms: in the embryo for myogenic fate acquisition through the direct control of Myogenic Regulatory Factors; in adult myofibers for their contraction/relaxation and fatigability properties through the control of genes involved in metabolism, sarcomeric organization and calcium homeostasis. Furthermore, during development and in the adult, SIX homeoproteins participate in the genesis and the maintenance of myofibers diversity.
Collapse
Affiliation(s)
- Pascal Maire
- Université de Paris, Institut Cochin, INSERM, CNRS, 75014, Paris, France.
| | | | - Rouba Madani
- Université de Paris, Institut Cochin, INSERM, CNRS, 75014, Paris, France
| | - Iori Sakakibara
- Research Center for Advanced Science and Technology, The University of Tokyo, Japan
| | - Camille Viaut
- Université de Paris, Institut Cochin, INSERM, CNRS, 75014, Paris, France
| | - Maud Wurmser
- Department of Integrative Medical Biology (IMB), Umeå universitet, Sweden
| |
Collapse
|
41
|
Transcriptome signatures in the brain of a migratory songbird. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2020; 34:100681. [PMID: 32222683 DOI: 10.1016/j.cbd.2020.100681] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 02/06/2020] [Accepted: 03/15/2020] [Indexed: 12/22/2022]
Abstract
Most of the birds's adaptations for migration have a neuroendocrine origin, triggered by changes in photoperiod and the patterns of Earth's magnetic field. Migration phenomenology has been well described in the past decades, yet the genetic structure behind it remains terra incognita. We used RNA-Seq data to investigate which biological functions are linked with the seasonal brain adaptations of a long-distance trans-continental migratory passerine, the Northern Wheatear (Oenanthe oenanthe). We sequenced the wheatear's transcriptomes at three different stages: lean birds, a characteristic phenotype before the onset of migration, during fattening, and at their maximal migratory body mass. We identified a total of 15,357 genes in the brain of wheatears, of which 84 were differentially expressed. These were mostly related to nervous tissue development, angiogenesis, ATP production, innate immune response, and antioxidant protection, as well as GABA and dopamine signalling. The expression pattern of differentially expressed genes is correlated with typical phenotypic changes before migration, such as hyperphagia, migratory restlessness, and a potential increment in the visual and spatial memory capacities. Our work points out, for future studies, biological functions found to be involved in the development of the migratory phenotype -a unique model to study the core of neural, energetic and muscular adaptations for endurance exercise. Comparison of wheatears' transcriptomic data with two other studies with similar goals shows no correlation among the trends in the gene expression. It highlights the complexity and diversity of adaptations for long-distance migration in birds.
Collapse
|
42
|
Barabino A, Flamier A, Hanna R, Héon E, Freedman BS, Bernier G. Deregulation of Neuro-Developmental Genes and Primary Cilium Cytoskeleton Anomalies in iPSC Retinal Sheets from Human Syndromic Ciliopathies. Stem Cell Reports 2020; 14:357-373. [PMID: 32160518 PMCID: PMC7066374 DOI: 10.1016/j.stemcr.2020.02.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 02/10/2020] [Accepted: 02/11/2020] [Indexed: 01/22/2023] Open
Abstract
Ciliopathies are heterogeneous genetic diseases affecting primary cilium structure and function. Meckel-Gruber (MKS) and Bardet-Biedl (BBS) syndromes are severe ciliopathies characterized by skeletal and neurodevelopment anomalies, including polydactyly, cognitive impairment, and retinal degeneration. We describe the generation and molecular characterization of human induced pluripotent stem cell (iPSC)-derived retinal sheets (RSs) from controls, and MKS (TMEM67) and BBS (BBS10) cases. MKS and BBS RSs displayed significant common alterations in the expression of hundreds of developmental genes and members of the WNT and BMP pathways. Induction of crystallin molecular chaperones was prominent in MKS and BBS RSs suggesting a stress response to misfolded proteins. Unique to MKS photoreceptors was the presence of supernumerary centrioles and cilia, and aggregation of ciliary proteins. Unique to BBS photoreceptors was the accumulation of DNA damage and activation of the mitotic spindle checkpoint. This study reveals how combining cell reprogramming, organogenesis, and next-generation sequencing enables the elucidation of mechanisms involved in human ciliopathies.
Collapse
Affiliation(s)
- Andrea Barabino
- Stem Cell and Developmental Biology Laboratory, Hôpital Maisonneuve-Rosemont, 5415 Boul. Assomption, Montreal, QC H1T 2M4, Canada
| | - Anthony Flamier
- Stem Cell and Developmental Biology Laboratory, Hôpital Maisonneuve-Rosemont, 5415 Boul. Assomption, Montreal, QC H1T 2M4, Canada
| | - Roy Hanna
- Stem Cell and Developmental Biology Laboratory, Hôpital Maisonneuve-Rosemont, 5415 Boul. Assomption, Montreal, QC H1T 2M4, Canada
| | - Elise Héon
- Hospital for Sick Children, Department of Ophthalmology and Vision Sciences, Program of Genetics and Genome Biology, 555 University av., Toronto, ON M5G 1X8, Canada
| | - Benjamin S Freedman
- Department of Medicine, Division of Nephrology, Kidney Research Institute, and Institute of Stem Cell and Regenerative Medicine, and Department of Pathology, University of Washington School of Medicine, Seattle, WA 98109, USA.
| | - Gilbert Bernier
- Stem Cell and Developmental Biology Laboratory, Hôpital Maisonneuve-Rosemont, 5415 Boul. Assomption, Montreal, QC H1T 2M4, Canada; Department of Neurosciences, University of Montreal, Montreal, QC H3C 3J7, Canada; Department of Ophthalmology, University of Montreal, Montreal, QC H3C 3J7, Canada.
| |
Collapse
|
43
|
Shah AM, Krohn P, Baxi AB, Tavares ALP, Sullivan CH, Chillakuru YR, Majumdar HD, Neilson KM, Moody SA. Six1 proteins with human branchio-oto-renal mutations differentially affect cranial gene expression and otic development. Dis Model Mech 2020; 13:dmm043489. [PMID: 31980437 PMCID: PMC7063838 DOI: 10.1242/dmm.043489] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Accepted: 01/14/2020] [Indexed: 12/15/2022] Open
Abstract
Single-nucleotide mutations in human SIX1 result in amino acid substitutions in either the protein-protein interaction domain or the homeodomain, and cause ∼4% of branchio-otic (BOS) and branchio-oto-renal (BOR) cases. The phenotypic variation between patients with the same mutation, even within affected members of the same family, make it difficult to functionally distinguish between the different SIX1 mutations. We made four of the BOS/BOR substitutions in the Xenopus Six1 protein (V17E, R110W, W122R, Y129C), which is 100% identical to human in both the protein-protein interaction domain and the homeodomain, and expressed them in embryos to determine whether they cause differential changes in early craniofacial gene expression, otic gene expression or otic morphology. We confirmed that, similar to the human mutants, all four mutant Xenopus Six1 proteins access the nucleus but are transcriptionally deficient. Analysis of craniofacial gene expression showed that each mutant causes specific, often different and highly variable disruptions in the size of the domains of neural border zone, neural crest and pre-placodal ectoderm genes. Each mutant also had differential effects on genes that pattern the otic vesicle. Assessment of the tadpole inner ear demonstrated that while the auditory and vestibular structures formed, the volume of the otic cartilaginous capsule, otoliths, lumen and a subset of the hair cell-containing sensory patches were reduced. This detailed description of the effects of BOS/BOR-associated SIX1 mutations in the embryo indicates that each causes subtle changes in gene expression in the embryonic ectoderm and otocyst, leading to inner ear morphological anomalies.
Collapse
Affiliation(s)
- Ankita M Shah
- Department of Anatomy and Cell Biology, George Washington University School of Medicine and Health Sciences, Washington, DC 20037, USA
| | - Patrick Krohn
- Department of Anatomy and Cell Biology, George Washington University School of Medicine and Health Sciences, Washington, DC 20037, USA
- Institute of Zoology, University of Hohenheim, Stuttgart 70599, Germany
| | - Aparna B Baxi
- Department of Anatomy and Cell Biology, George Washington University School of Medicine and Health Sciences, Washington, DC 20037, USA
| | - Andre L P Tavares
- Department of Anatomy and Cell Biology, George Washington University School of Medicine and Health Sciences, Washington, DC 20037, USA
| | - Charles H Sullivan
- Department of Anatomy and Cell Biology, George Washington University School of Medicine and Health Sciences, Washington, DC 20037, USA
- Department of Biology, Grinnell College, Grinnell, IA 50112, USA
| | - Yeshwant R Chillakuru
- Department of Anatomy and Cell Biology, George Washington University School of Medicine and Health Sciences, Washington, DC 20037, USA
| | - Himani D Majumdar
- Department of Anatomy and Cell Biology, George Washington University School of Medicine and Health Sciences, Washington, DC 20037, USA
| | - Karen M Neilson
- Department of Anatomy and Cell Biology, George Washington University School of Medicine and Health Sciences, Washington, DC 20037, USA
| | - Sally A Moody
- Department of Anatomy and Cell Biology, George Washington University School of Medicine and Health Sciences, Washington, DC 20037, USA
| |
Collapse
|
44
|
Dvorakova M, Macova I, Bohuslavova R, Anderova M, Fritzsch B, Pavlinkova G. Early ear neuronal development, but not olfactory or lens development, can proceed without SOX2. Dev Biol 2020; 457:43-56. [PMID: 31526806 PMCID: PMC6938654 DOI: 10.1016/j.ydbio.2019.09.003] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 09/12/2019] [Accepted: 09/13/2019] [Indexed: 12/25/2022]
Abstract
SOX2 is essential for maintaining neurosensory stem cell properties, although its involvement in the early neurosensory development of cranial placodes remains unclear. To address this, we used Foxg1-Cre to conditionally delete Sox2 during eye, ear, and olfactory placode development. Foxg1-Cre mediated early deletion of Sox2 eradicates all olfactory placode development, and disrupts retinal development and invagination of the lens placode. In contrast to the lens and olfactory placodes, the ear placode invaginates and delaminates NEUROD1 positive neurons. Furthermore, we show that SOX2 is not necessary for early ear neurogenesis, since the early inner ear ganglion is formed with near normal central projections to the hindbrain and peripheral projections to the undifferentiated sensory epithelia of E11.5-12.5 ears. However, later stages of ear neurosensory development, in particular, the late forming auditory system, critically depend on the presence of SOX2. Our data establish distinct differences for SOX2 requirements among placodal sensory organs with similarities between olfactory and lens but not ear placode development, consistent with the unique neurosensory development and molecular properties of the ear.
Collapse
Affiliation(s)
| | - Iva Macova
- Institute of Biotechnology CAS, Vestec, Czechia
| | | | | | - Bernd Fritzsch
- Department of Biology, University of Iowa, Iowa City, IA, USA.
| | | |
Collapse
|
45
|
Bademci G, Abad C, Incesulu A, Elian F, Reyahi A, Diaz-Horta O, Cengiz FB, Sineni CJ, Seyhan S, Atli EI, Basmak H, Demir S, Nik AM, Footz T, Guo S, Duman D, Fitoz S, Gurkan H, Blanton SH, Walter MA, Carlsson P, Walz K, Tekin M. FOXF2 is required for cochlear development in humans and mice. Hum Mol Genet 2019; 28:1286-1297. [PMID: 30561639 DOI: 10.1093/hmg/ddy431] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Revised: 12/10/2018] [Accepted: 12/12/2018] [Indexed: 11/14/2022] Open
Abstract
Molecular mechanisms governing the development of the human cochlea remain largely unknown. Through genome sequencing, we identified a homozygous FOXF2 variant c.325A>T (p.I109F) in a child with profound sensorineural hearing loss (SNHL) associated with incomplete partition type I anomaly of the cochlea. This variant is not found in public databases or in over 1000 ethnicity-matched control individuals. I109 is a highly conserved residue in the forkhead box (Fox) domain of FOXF2, a member of the Fox protein family of transcription factors that regulate the expression of genes involved in embryogenic development as well as adult life. Our in vitro studies show that the half-life of mutant FOXF2 is reduced compared to that of wild type. Foxf2 is expressed in the cochlea of developing and adult mice. The mouse knockout of Foxf2 shows shortened and malformed cochleae, in addition to altered shape of hair cells with innervation and planar cell polarity defects. Expressions of Eya1 and Pax3, genes essential for cochlear development, are reduced in the cochleae of Foxf2 knockout mice. We conclude that FOXF2 plays a major role in cochlear development and its dysfunction leads to SNHL and developmental anomalies of the cochlea in humans and mice.
Collapse
Affiliation(s)
- Guney Bademci
- John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Clemer Abad
- John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Armagan Incesulu
- Department of Otolaryngology-Head and Neck Surgery, Eskisehir Osmangazi University, Eskisehir, Turkey
| | - Fahed Elian
- Department of Medical Genetics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Azadeh Reyahi
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
| | - Oscar Diaz-Horta
- John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Filiz B Cengiz
- John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Claire J Sineni
- John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Serhat Seyhan
- John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL, USA.,Department of Medical Genetics, Bakirkoy Dr Sadi Konuk Research and Training Hospital, Istanbul, Turkey
| | - Emine Ikbal Atli
- Department of Medical Genetics, Faculty of Medicine, Trakya University, Edirne, Turkey
| | - Hikmet Basmak
- Department of Ophthalmology, Eskisehir Osmangazi University, Eskisehir, Turkey
| | - Selma Demir
- Department of Medical Genetics, Faculty of Medicine, Trakya University, Edirne, Turkey
| | - Ali Moussavi Nik
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
| | - Tim Footz
- Department of Medical Genetics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Shengru Guo
- John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Duygu Duman
- Division of Pediatric Genetics, Ankara University School of Medicine, Ankara, Turkey
| | - Suat Fitoz
- Department of Radiology, Ankara University School of Medicine, Ankara, Turkey
| | - Hakan Gurkan
- Department of Medical Genetics, Faculty of Medicine, Trakya University, Edirne, Turkey
| | - Susan H Blanton
- John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL, USA.,Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, FL, USA.,Dr John T. Macdonald Foundation Department of Human Genetics, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Michael A Walter
- Department of Medical Genetics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Peter Carlsson
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
| | - Katherina Walz
- John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL, USA.,Dr John T. Macdonald Foundation Department of Human Genetics, University of Miami Miller School of Medicine, Miami, FL, USA.,Department of Medicine, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Mustafa Tekin
- John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL, USA.,Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, FL, USA.,Dr John T. Macdonald Foundation Department of Human Genetics, University of Miami Miller School of Medicine, Miami, FL, USA
| |
Collapse
|
46
|
Steevens AR, Glatzer JC, Kellogg CC, Low WC, Santi PA, Kiernan AE. SOX2 is required for inner ear growth and cochlear nonsensory formation before sensory development. Development 2019; 146:dev.170522. [PMID: 31152002 DOI: 10.1242/dev.170522] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Accepted: 05/13/2019] [Indexed: 12/16/2022]
Abstract
The transcription factor sex determining region Y-box 2 (SOX2) is required for the formation of hair cells and supporting cells in the inner ear and is a widely used sensory marker. Paradoxically, we demonstrate via fate mapping that, initially, SOX2 primarily marks nonsensory progenitors in the mouse cochlea, and is not specific to all sensory regions until late otic vesicle stages. SOX2 fate mapping reveals an apical-to-basal gradient of SOX2 expression in the sensory region of the cochlea, reflecting the pattern of cell cycle exit. To understand SOX2 function, we undertook a timed-deletion approach, revealing that early loss of SOX2 severely impaired morphological development of the ear, whereas later deletions resulted in sensory disruptions. During otocyst stages, SOX2 shifted dramatically from a lateral to medial domain over 24-48 h, reflecting the nonsensory-to-sensory switch observed by fate mapping. Early loss or gain of SOX2 function led to changes in otic epithelial volume and progenitor proliferation, impacting growth and morphological development of the ear. Our study demonstrates a novel role for SOX2 in early otic morphological development, and provides insights into the temporal and spatial patterns of sensory specification in the inner ear.
Collapse
Affiliation(s)
- Aleta R Steevens
- Department of Ophthalmology, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Jenna C Glatzer
- Department of Ophthalmology, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Courtney C Kellogg
- Department of Ophthalmology, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Walter C Low
- Department of Neurosurgery, University of Minnesota, Minneapolis, MN 55455, USA
| | - Peter A Santi
- Department of Otolaryngology, University of Minnesota, Minneapolis, MN 55455, USA
| | - Amy E Kiernan
- Department of Ophthalmology, University of Rochester Medical Center, Rochester, NY 14642, USA .,Department of Biomedical Genetics, University of Rochester Medical Center, Rochester, NY 14642, USA
| |
Collapse
|
47
|
Shang Z, Chen D, Wang Q, Wang S, Deng Q, Wu L, Liu C, Ding X, Wang S, Zhong J, Zhang D, Cai X, Zhu S, Yang H, Liu L, Fink JL, Chen F, Liu X, Gao Z, Xu X. Single-cell RNA-seq reveals dynamic transcriptome profiling in human early neural differentiation. Gigascience 2018; 7:5099469. [PMID: 30239706 PMCID: PMC6420650 DOI: 10.1093/gigascience/giy117] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2018] [Accepted: 09/06/2018] [Indexed: 12/18/2022] Open
Abstract
Background Investigating cell fate decision and subpopulation specification in the context of the neural lineage is fundamental to understanding neurogenesis and neurodegenerative diseases. The differentiation process of neural-tube-like rosettes in vitro is representative of neural tube structures, which are composed of radially organized, columnar epithelial cells and give rise to functional neural cells. However, the underlying regulatory network of cell fate commitment during early neural differentiation remains elusive. Results In this study, we investigated the genome-wide transcriptome profile of single cells from six consecutive reprogramming and neural differentiation time points and identified cellular subpopulations present at each differentiation stage. Based on the inferred reconstructed trajectory and the characteristics of subpopulations contributing the most toward commitment to the central nervous system lineage at each stage during differentiation, we identified putative novel transcription factors in regulating neural differentiation. In addition, we dissected the dynamics of chromatin accessibility at the neural differentiation stages and revealed active cis-regulatory elements for transcription factors known to have a key role in neural differentiation as well as for those that we suggest are also involved. Further, communication network analysis demonstrated that cellular interactions most frequently occurred in the embryoid body stage and that each cell subpopulation possessed a distinctive spectrum of ligands and receptors associated with neural differentiation that could reflect the identity of each subpopulation. Conclusions Our study provides a comprehensive and integrative study of the transcriptomics and epigenetics of human early neural differentiation, which paves the way for a deeper understanding of the regulatory mechanisms driving the differentiation of the neural lineage.
Collapse
Affiliation(s)
- Zhouchun Shang
- Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China.,BGI-Shenzhen, Shenzhen 518083, China.,China National GeneBank, BGI-Shenzhen, Shenzhen 518120, China.,Shenzhen Engineering Laboratory for Innovative Molecular Diagnostics, BGI-Shenzhen, Shenzhen 518083, China
| | - Dongsheng Chen
- BGI-Shenzhen, Shenzhen 518083, China.,China National GeneBank, BGI-Shenzhen, Shenzhen 518120, China
| | - Quanlei Wang
- BGI-Shenzhen, Shenzhen 518083, China.,China National GeneBank, BGI-Shenzhen, Shenzhen 518120, China.,Shenzhen Engineering Laboratory for Innovative Molecular Diagnostics, BGI-Shenzhen, Shenzhen 518083, China.,BGI Education Center, University of Chinese Academy of Sciences, Shenzhen 518083, China
| | - Shengpeng Wang
- BGI-Shenzhen, Shenzhen 518083, China.,China National GeneBank, BGI-Shenzhen, Shenzhen 518120, China
| | - Qiuting Deng
- BGI-Shenzhen, Shenzhen 518083, China.,China National GeneBank, BGI-Shenzhen, Shenzhen 518120, China
| | - Liang Wu
- BGI-Shenzhen, Shenzhen 518083, China.,China National GeneBank, BGI-Shenzhen, Shenzhen 518120, China.,BGI Education Center, University of Chinese Academy of Sciences, Shenzhen 518083, China.,Shenzhen Key Laboratory of Neurogenomics, BGI-Shenzhen, Shenzhen 518083, China
| | - Chuanyu Liu
- BGI-Shenzhen, Shenzhen 518083, China.,China National GeneBank, BGI-Shenzhen, Shenzhen 518120, China.,BGI Education Center, University of Chinese Academy of Sciences, Shenzhen 518083, China
| | - Xiangning Ding
- BGI-Shenzhen, Shenzhen 518083, China.,China National GeneBank, BGI-Shenzhen, Shenzhen 518120, China
| | - Shiyou Wang
- BGI-Shenzhen, Shenzhen 518083, China.,China National GeneBank, BGI-Shenzhen, Shenzhen 518120, China
| | - Jixing Zhong
- BGI-Shenzhen, Shenzhen 518083, China.,China National GeneBank, BGI-Shenzhen, Shenzhen 518120, China
| | - Doudou Zhang
- Department of Neurosurgery, Shenzhen Second People's Hospital, Shenzhen University 1st Affiliated Hospital, Shenzhen 518035, China
| | - Xiaodong Cai
- Department of Neurosurgery, Shenzhen Second People's Hospital, Shenzhen University 1st Affiliated Hospital, Shenzhen 518035, China
| | - Shida Zhu
- BGI-Shenzhen, Shenzhen 518083, China.,China National GeneBank, BGI-Shenzhen, Shenzhen 518120, China.,Shenzhen Engineering Laboratory for Innovative Molecular Diagnostics, BGI-Shenzhen, Shenzhen 518083, China
| | - Huanming Yang
- BGI-Shenzhen, Shenzhen 518083, China.,James D. Watson Institute of Genome Sciences, Hangzhou 310058, China
| | - Longqi Liu
- BGI-Shenzhen, Shenzhen 518083, China.,China National GeneBank, BGI-Shenzhen, Shenzhen 518120, China
| | - J Lynn Fink
- BGI-Shenzhen, Shenzhen 518083, China.,BGI Australia, L6, CBCRC, 300 Herston Rd, Herston, QLD 4006, Australia.,The University of Queensland, Diamantina Institute (UQDI), Brisbane, QLD 4102, Australia
| | - Fang Chen
- BGI-Shenzhen, Shenzhen 518083, China.,China National GeneBank, BGI-Shenzhen, Shenzhen 518120, China.,Laboratory of Genomics and Molecular Biomedicine, Department of Biology, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Xiaoqing Liu
- Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Zhengliang Gao
- Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Xun Xu
- BGI-Shenzhen, Shenzhen 518083, China.,China National GeneBank, BGI-Shenzhen, Shenzhen 518120, China
| |
Collapse
|
48
|
SIX2 gene haploinsufficiency leads to a recognizable phenotype with ptosis, frontonasal dysplasia, and conductive hearing loss. Clin Dysmorphol 2018; 27:27-30. [PMID: 29315086 DOI: 10.1097/mcd.0000000000000213] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Heterozygous microdeletions of chromosome 2p21 encompassing only the SIX2 gene have been described in two families to date. The clinical phenotype comprised autosomal-dominant inherited frontonasal dysplasia with ptosis in one family. In the second family, conductive hearing loss was the major clinical feature described; however, the affected persons also had ptosis. Here, we present a large family combining all three predescribed features of SIX2 gene deletion. The phenotype in four affected family members in three generations consisted of bilateral congenital ptosis, epicanthus inversus, frontonasal dysplasia with broad nasal bridge and hypertelorism, frontal bossing and large anterior fontanel in childhood, narrow ear canals, and mild conductive hearing loss with onset in childhood. Thus, the phenotypic spectrum of SIX2 haploinsufficiency is widened. Moreover, 2p21 microdeletions with SIX2 haploinsufficiency appear to lead to a recognizable phenotype with facial features resembling blepharophimosis-ptosis-epicanthus inversus syndrome.
Collapse
|
49
|
Harley RJ, Murdy JP, Wang Z, Kelly MC, Ropp TJF, Park SH, Maness PF, Manis PB, Coate TM. Neuronal cell adhesion molecule (NrCAM) is expressed by sensory cells in the cochlea and is necessary for proper cochlear innervation and sensory domain patterning during development. Dev Dyn 2018; 247:934-950. [PMID: 29536590 PMCID: PMC6105381 DOI: 10.1002/dvdy.24629] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Accepted: 03/06/2018] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND In the cochlea, auditory development depends on precise patterns of innervation by afferent and efferent nerve fibers, as well as a stereotyped arrangement of hair and supporting cells. Neuronal cell adhesion molecule (NrCAM) is a homophilic cell adhesion molecule that controls diverse aspects of nervous system development, but the function of NrCAM in cochlear development is not well understood. RESULTS Throughout cochlear innervation, NrCAM is detectable on spiral ganglion neuron (SGN) afferent and olivocochlear efferent fibers, and on the membranes of developing hair and supporting cells. Neonatal Nrcam-null cochleae show errors in type II SGN fasciculation, reduced efferent innervation, and defects in the stereotyped packing of hair and supporting cells. Nrcam loss also leads to dramatic changes in the profiles of presynaptic afferent and efferent synaptic markers at the time of hearing onset. Despite these numerous developmental defects, Nrcam-null adults do not show defects in auditory acuity, and by postnatal day 21, the developmental deficits in ribbon synapse distribution and sensory domain structure appear to have been corrected. CONCLUSIONS NrCAM is expressed by several neural and sensory epithelial subtypes within the developing cochlea, and the loss of Nrcam confers numerous, but nonpermanent, developmental defects in innervation and sensory domain patterning. Developmental Dynamics 247:934-950, 2018. © 2018 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Randall J. Harley
- Department of Biology, Georgetown University, 37 and O St. NW, Regents Hall 410, Washington, DC 20007, USA
| | - Joseph P. Murdy
- Department of Biology, Georgetown University, 37 and O St. NW, Regents Hall 410, Washington, DC 20007, USA
| | - Zhirong Wang
- Department of Biology, Georgetown University, 37 and O St. NW, Regents Hall 410, Washington, DC 20007, USA
| | - Michael C. Kelly
- Laboratory of Cochlear Development, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, 35 Convent Dr., Bethesda, MD 20892, USA
| | - Tessa-Jonne F. Ropp
- Department of Otolaryngology/Head and Neck Surgery, The University of North Carolina at Chapel Hill, B251 Marsico Hall, CB#7070, 125 Mason Farm Rd., Chapel Hill, NC 27599, USA
| | - SeHoon H. Park
- Department of Biology, Georgetown University, 37 and O St. NW, Regents Hall 410, Washington, DC 20007, USA
| | - Patricia F. Maness
- Department of Biochemistry and Biophysics, The University of North Carolina School of Medicine, 120 Mason Farm Rd., suite 3020, CB#7260, Chapel Hill, NC 27599, USA
| | - Paul B. Manis
- Department of Otolaryngology/Head and Neck Surgery and Department of Cell Biology and Physiology, The University of North Carolina at Chapel Hill, B027 Marsico Hall, CB#7070. 125 Mason Farm Rd., Chapel Hill, NC 27599
| | - Thomas M. Coate
- Department of Biology, Georgetown University, 37 and O St. NW, Regents Hall 410, Washington, DC 20007, USA
| |
Collapse
|
50
|
Atkinson PJ, Dong Y, Gu S, Liu W, Najarro EH, Udagawa T, Cheng AG. Sox2 haploinsufficiency primes regeneration and Wnt responsiveness in the mouse cochlea. J Clin Invest 2018; 128:1641-1656. [PMID: 29553487 DOI: 10.1172/jci97248] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Accepted: 02/01/2018] [Indexed: 12/31/2022] Open
Abstract
During development, Sox2 is indispensable for cell division and differentiation, yet its roles in regenerating tissues are less clear. Here, we used combinations of transgenic mouse models to reveal that Sox2 haploinsufficiency (Sox2haplo) increases rather than impairs cochlear regeneration in vivo. Sox2haplo cochleae had delayed terminal mitosis and ectopic sensory cells, yet normal auditory function. Sox2haplo amplified and expanded domains of damage-induced Atoh1+ transitional cell formation in neonatal cochlea. Wnt activation via β-catenin stabilization (β-cateninGOF) alone failed to induce proliferation or transitional cell formation. By contrast, β-cateninGOF caused proliferation when either Sox2haplo or damage was present, and transitional cell formation when both were present in neonatal, but not mature, cochlea. Mechanistically, Sox2haplo or damaged neonatal cochleae showed lower levels of Sox2 and Hes5, but not of Wnt target genes. Together, our study unveils an interplay between Sox2 and damage in directing tissue regeneration and Wnt responsiveness and thus provides a foundation for potential combinatorial therapies aimed at stimulating mammalian cochlear regeneration to reverse hearing loss in humans.
Collapse
Affiliation(s)
- Patrick J Atkinson
- Department of Otolaryngology - Head and Neck Surgery, Stanford University School of Medicine, Stanford, California, USA
| | - Yaodong Dong
- Department of Otolaryngology - Head and Neck Surgery, Stanford University School of Medicine, Stanford, California, USA.,Department of Otology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Shuping Gu
- Department of Otolaryngology - Head and Neck Surgery, Stanford University School of Medicine, Stanford, California, USA
| | - Wenwen Liu
- Department of Otolaryngology - Head and Neck Surgery, Stanford University School of Medicine, Stanford, California, USA
| | - Elvis Huarcaya Najarro
- Department of Otolaryngology - Head and Neck Surgery, Stanford University School of Medicine, Stanford, California, USA
| | - Tomokatsu Udagawa
- Department of Otolaryngology - Head and Neck Surgery, Stanford University School of Medicine, Stanford, California, USA
| | - Alan G Cheng
- Department of Otolaryngology - Head and Neck Surgery, Stanford University School of Medicine, Stanford, California, USA
| |
Collapse
|