1
|
Simsek MF, Saparov D, Keseroglu K, Zinani O, Chandel AS, Dulal B, Sharma BK, Zimik S, Özbudak EM. The vertebrate segmentation clock drives segmentation by stabilizing Dusp phosphatases in zebrafish. Dev Cell 2025; 60:669-678.e6. [PMID: 39610242 PMCID: PMC11903174 DOI: 10.1016/j.devcel.2024.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 07/19/2024] [Accepted: 11/05/2024] [Indexed: 11/30/2024]
Abstract
Pulsatile activity of the extracellular signal-regulated kinase (ERK) controls several cellular, developmental, and regenerative programs. Sequential segmentation of somites along the vertebrate body axis, a key developmental program, is also controlled by ERK activity oscillation. The oscillatory expression of Her/Hes family transcription factors constitutes the segmentation clock, setting the period of segmentation. Although oscillation of ERK activity depends on Her/Hes proteins, the underlying molecular mechanism remained mysterious. Here, we show that Her/Hes proteins physically interact with and stabilize dual-specificity phosphatases (Dusp) of ERK, resulting in oscillations of Dusp4 and Dusp6 proteins. Pharmaceutical and genetic inhibition of Dusp activity disrupt ERK activity oscillation and somite segmentation in zebrafish. Our results demonstrate that post-translational interactions of Her/Hes transcription factors with Dusp phosphatases establish the fundamental vertebrate body plan. We anticipate that future studies will identify currently unnoticed post-translational control of ERK pulses in other systems.
Collapse
Affiliation(s)
- M Fethullah Simsek
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA.
| | - Didar Saparov
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA; Molecular and Developmental Biology Graduate Program, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA; Department of Cell and Developmental Biology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Kemal Keseroglu
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA; Department of Cell and Developmental Biology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Oriana Zinani
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA; Molecular and Developmental Biology Graduate Program, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
| | - Angad Singh Chandel
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA; Systems Biology and Physiology Graduate Program, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA; Department of Cell and Developmental Biology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Bibek Dulal
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA; Department of Physics, University of Cincinnati College of Arts and Sciences, Cincinnati, OH 45221, USA
| | - Bal Krishan Sharma
- Cancer and Blood Diseases Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Soling Zimik
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Ertuğrul M Özbudak
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA; Department of Cell and Developmental Biology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA.
| |
Collapse
|
2
|
Chen YC, Hsieh FY, Chang CW, Sun MQ, Cheng YC. Temporal and Spatial Variations in Zebrafish Hairy/E(spl) Gene Expression in Response to Mib1-Mediated Notch Signaling During Neurodevelopment. Int J Mol Sci 2024; 25:9174. [PMID: 39273123 PMCID: PMC11394890 DOI: 10.3390/ijms25179174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 08/17/2024] [Accepted: 08/22/2024] [Indexed: 09/15/2024] Open
Abstract
Notch signaling is a conserved pathway crucial for nervous system development. Disruptions in this pathway are linked to neurodevelopmental disorders, neurodegenerative diseases, and brain tumors. Hairy/E(spl) (HES) genes, major downstream targets of Notch, are commonly used as markers for Notch activation. However, these genes can be activated, inhibited, or function independently of Notch signaling, and their response to Notch disruption varies across tissues and developmental stages. MIB1/Mib1 is an E3 ubiquitin ligase that enables Notch receptor activation by processing ligands like Delta and Serrate. We investigated Notch signaling disruption using the zebrafish Mib1 mutant line, mib1ta52b, focusing on changes in the expression of Hairy/E(spl) (her) genes. Our findings reveal significant variability in her gene expression across different neural cell types, regions, and developmental stages following Notch disruption. This variability questions the reliability of Hairy/E(spl) genes as universal markers for Notch activation, as their response is highly context-dependent. This study highlights the complex and context-specific nature of Notch signaling regulation. It underscores the need for a nuanced approach when using Hairy/E(spl) genes as markers for Notch activity. Additionally, it provides new insights into Mib1's role in Notch signaling, contributing to a better understanding of its involvement in Notch signaling-related disorders.
Collapse
Affiliation(s)
- Yi-Chieh Chen
- Neuroscience Research Center, Chang Gung Memorial Hospital, Linkou, Taoyuan 333423, Taiwan;
- Department of Neurology, Chang Gung Memorial Hospital at Linkou Medical Center, Taoyuan 333423, Taiwan
- Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
| | - Fu-Yu Hsieh
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
| | - Chia-Wei Chang
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
| | - Mu-Qun Sun
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
| | - Yi-Chuan Cheng
- Neuroscience Research Center, Chang Gung Memorial Hospital, Linkou, Taoyuan 333423, Taiwan;
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
| |
Collapse
|
3
|
Ramesh PS, Chu LF. Species-specific roles of the Notch ligands, receptors, and targets orchestrating the signaling landscape of the segmentation clock. Front Cell Dev Biol 2024; 11:1327227. [PMID: 38348091 PMCID: PMC10859470 DOI: 10.3389/fcell.2023.1327227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 12/20/2023] [Indexed: 02/15/2024] Open
Abstract
Somitogenesis is a hallmark feature of all vertebrates and some invertebrate species that involves the periodic formation of block-like structures called somites. Somites are transient embryonic segments that eventually establish the entire vertebral column. A highly conserved molecular oscillator called the segmentation clock underlies this periodic event and the pace of this clock regulates the pace of somite formation. Although conserved signaling pathways govern the clock in most vertebrates, the mechanisms underlying the species-specific divergence in various clock characteristics remain elusive. For example, the segmentation clock in classical model species such as zebrafish, chick, and mouse embryos tick with a periodicity of ∼30, ∼90, and ∼120 min respectively. This enables them to form the species-specific number of vertebrae during their overall timespan of somitogenesis. Here, we perform a systematic review of the species-specific features of the segmentation clock with a keen focus on mouse embryos. We perform this review using three different perspectives: Notch-responsive clock genes, ligand-receptor dynamics, and synchronization between neighboring oscillators. We further review reports that use non-classical model organisms and in vitro model systems that complement our current understanding of the segmentation clock. Our review highlights the importance of comparative developmental biology to further our understanding of this essential developmental process.
Collapse
Affiliation(s)
- Pranav S. Ramesh
- Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
- Reproductive Biology and Regenerative Medicine Research Group, University of Calgary, Calgary, AB, Canada
- Alberta Children’s Hospital Research Institute, Calgary, AB, Canada
| | - Li-Fang Chu
- Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
- Reproductive Biology and Regenerative Medicine Research Group, University of Calgary, Calgary, AB, Canada
- Alberta Children’s Hospital Research Institute, Calgary, AB, Canada
| |
Collapse
|
4
|
McDaniel C, Simsek MF, Chandel AS, Özbudak EM. Spatiotemporal control of pattern formation during somitogenesis. SCIENCE ADVANCES 2024; 10:eadk8937. [PMID: 38277458 PMCID: PMC10816718 DOI: 10.1126/sciadv.adk8937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Accepted: 12/27/2023] [Indexed: 01/28/2024]
Abstract
Spatiotemporal patterns widely occur in biological, chemical, and physical systems. Particularly, embryonic development displays a diverse gamut of repetitive patterns established in many tissues and organs. Branching treelike structures in lungs, kidneys, livers, pancreases, and mammary glands as well as digits and bones in appendages, teeth, and palates are just a few examples. A fascinating instance of repetitive patterning is the sequential segmentation of the primary body axis, which is conserved in all vertebrates and many arthropods and annelids. In these species, the body axis elongates at the posterior end of the embryo containing an unsegmented tissue. Meanwhile, segments sequentially bud off from the anterior end of the unsegmented tissue, laying down an exquisite repetitive pattern and creating a segmented body plan. In vertebrates, the paraxial mesoderm is sequentially divided into somites. In this review, we will discuss the most prominent models, the most puzzling experimental data, and outstanding questions in vertebrate somite segmentation.
Collapse
Affiliation(s)
- Cassandra McDaniel
- Division of Developmental Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
- Systems Biology and Physiology Graduate Program, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
| | - M. Fethullah Simsek
- Division of Developmental Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Angad Singh Chandel
- Division of Developmental Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
- Systems Biology and Physiology Graduate Program, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
| | - Ertuğrul M. Özbudak
- Division of Developmental Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
| |
Collapse
|
5
|
Loureiro C, Venzin OF, Oates AC. Generation of patterns in the paraxial mesoderm. Curr Top Dev Biol 2023; 159:372-405. [PMID: 38729682 DOI: 10.1016/bs.ctdb.2023.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/12/2024]
Abstract
The Segmentation Clock is a tissue-level patterning system that enables the segmentation of the vertebral column precursors into transient multicellular blocks called somites. This patterning system comprises a set of elements that are essential for correct segmentation. Under the so-called "Clock and Wavefront" model, the system consists of two elements, a genetic oscillator that manifests itself as traveling waves of gene expression, and a regressing wavefront that transforms the temporally periodic signal encoded in the oscillations into a permanent spatially periodic pattern of somite boundaries. Over the last twenty years, every new discovery about the Segmentation Clock has been tightly linked to the nomenclature of the "Clock and Wavefront" model. This constrained allocation of discoveries into these two elements has generated long-standing debates in the field as what defines molecularly the wavefront and how and where the interaction between the two elements establishes the future somite boundaries. In this review, we propose an expansion of the "Clock and Wavefront" model into three elements, "Clock", "Wavefront" and signaling gradients. We first provide a detailed description of the components and regulatory mechanisms of each element, and we then examine how the spatiotemporal integration of the three elements leads to the establishment of the presumptive somite boundaries. To be as exhaustive as possible, we focus on the Segmentation Clock in zebrafish. Furthermore, we show how this three-element expansion of the model provides a better understanding of the somite formation process and we emphasize where our current understanding of this patterning system remains obscure.
Collapse
Affiliation(s)
- Cristina Loureiro
- Institute of Bioengineering, School of Life Sciences, Swiss Federal Institute of Technology Lausanne EPFL, Switzerland
| | - Olivier F Venzin
- Institute of Bioengineering, School of Life Sciences, Swiss Federal Institute of Technology Lausanne EPFL, Switzerland
| | - Andrew C Oates
- Institute of Bioengineering, School of Life Sciences, Swiss Federal Institute of Technology Lausanne EPFL, Switzerland.
| |
Collapse
|
6
|
Keseroglu K, Zinani OQH, Keskin S, Seawall H, Alpay EE, Özbudak EM. Stochastic gene expression and environmental stressors trigger variable somite segmentation phenotypes. Nat Commun 2023; 14:6497. [PMID: 37838784 PMCID: PMC10576776 DOI: 10.1038/s41467-023-42220-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 10/04/2023] [Indexed: 10/16/2023] Open
Abstract
Mutations of several genes cause incomplete penetrance and variable expressivity of phenotypes, which are usually attributed to modifier genes or gene-environment interactions. Here, we show stochastic gene expression underlies the variability of somite segmentation defects in embryos mutant for segmentation clock genes her1 or her7. Phenotypic strength is further augmented by low temperature and hypoxia. By performing live imaging of the segmentation clock reporters, we further show that groups of cells with higher oscillation amplitudes successfully form somites while those with lower amplitudes fail to do so. In unfavorable environments, the number of cycles with high amplitude oscillations and the number of successful segmentations proportionally decrease. These results suggest that individual oscillation cycles stochastically fail to pass a threshold amplitude, resulting in segmentation defects in mutants. Our quantitative methodology is adaptable to investigate variable phenotypes of mutant genes in different tissues.
Collapse
Affiliation(s)
- Kemal Keseroglu
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Oriana Q H Zinani
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
- Molecular and Developmental Biology Graduate Program, University of Cincinnati, College of Medicine, Cincinnati, OH, 45229, USA
| | - Sevdenur Keskin
- Allergy and Immunology, University of Arkansas for Medical Science and Arkansas Children's Hospital, Little Rock, AR, 72202, USA
| | - Hannah Seawall
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Eslim E Alpay
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Ertuğrul M Özbudak
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA.
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, 45229, USA.
| |
Collapse
|
7
|
Carraco G, Martins-Jesus AP, Andrade RP. The vertebrate Embryo Clock: Common players dancing to a different beat. Front Cell Dev Biol 2022; 10:944016. [PMID: 36036002 PMCID: PMC9403190 DOI: 10.3389/fcell.2022.944016] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Accepted: 07/11/2022] [Indexed: 11/25/2022] Open
Abstract
Vertebrate embryo somitogenesis is the earliest morphological manifestation of the characteristic patterned structure of the adult axial skeleton. Pairs of somites flanking the neural tube are formed periodically during early development, and the molecular mechanisms in temporal control of this early patterning event have been thoroughly studied. The discovery of a molecular Embryo Clock (EC) underlying the periodicity of somite formation shed light on the importance of gene expression dynamics for pattern formation. The EC is now known to be present in all vertebrate organisms studied and this mechanism was also described in limb development and stem cell differentiation. An outstanding question, however, remains unanswered: what sets the different EC paces observed in different organisms and tissues? This review aims to summarize the available knowledge regarding the pace of the EC, its regulation and experimental manipulation and to expose new questions that might help shed light on what is still to unveil.
Collapse
Affiliation(s)
- Gil Carraco
- ABC-RI, Algarve Biomedical Center Research Institute, Faro, Portugal
- Faculdade de Medicina e Ciências Biomédicas (FMCB), Universidade do Algarve, Campus de Gambelas, Faro, Portugal
| | | | - Raquel P. Andrade
- ABC-RI, Algarve Biomedical Center Research Institute, Faro, Portugal
- Faculdade de Medicina e Ciências Biomédicas (FMCB), Universidade do Algarve, Campus de Gambelas, Faro, Portugal
- Champalimaud Research Program, Champalimaud Center for the Unknown, Lisbon, Portugal
- *Correspondence: Raquel P. Andrade,
| |
Collapse
|
8
|
Zinani OQ, Keseroğlu K, Dey S, Ay A, Singh A, Özbudak EM. Gene copy number and negative feedback differentially regulate transcriptional variability of segmentation clock genes. iScience 2022; 25:104579. [PMID: 35789861 PMCID: PMC9250017 DOI: 10.1016/j.isci.2022.104579] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 03/11/2022] [Accepted: 06/07/2022] [Indexed: 10/26/2022] Open
|
9
|
Sun G, Guillon E, Holley SA. Integrin intra-heterodimer affinity inversely correlates with integrin activatability. Cell Rep 2021; 35:109230. [PMID: 34107244 PMCID: PMC8227800 DOI: 10.1016/j.celrep.2021.109230] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 03/13/2021] [Accepted: 05/17/2021] [Indexed: 11/21/2022] Open
Abstract
Integrins are heterodimeric cell surface receptors composed of an α and β subunit that mediate cell adhesion to extracellular matrix proteins such as fibronectin. We previously studied integrin α5β1 activation during zebrafish somitogenesis, and in the present study, we characterize the integrin αV fibronectin receptors. Integrins are activated via a conformational change, and we perform single-molecule biophysical measurements of both integrin activation via fluorescence resonance energy transfer (FRET)-fluorescence lifetime imaging microscopy (FLIM) and integrin intra-heterodimer stability via fluorescence cross-correlation spectroscopy (FCCS) in living embryos. We find that integrin heterodimers that exhibit robust cell surface expression, including αVβ3, αVβ5, and αVβ6, are never activated in this in vivo context, even in the presence of fibronectin matrix. In contrast, activatable integrins, such as integrin αVβ1, and alleles of αVβ3, αVβ5, αVβ6 that are biased to the active conformation exhibit poor cell surface expression and have a higher intra-heterodimer dissociation constant (KD). These observations suggest that a weak integrin intra-heterodimer affinity decreases integrin cell surface stability and increases integrin activatability.
Collapse
Affiliation(s)
- Guangyu Sun
- Department of Molecular, Cellular and Developmental Biology, Yale University, 260 Whitney Avenue, New Haven, CT 06520, USA
| | - Emilie Guillon
- Department of Molecular, Cellular and Developmental Biology, Yale University, 260 Whitney Avenue, New Haven, CT 06520, USA
| | - Scott A Holley
- Department of Molecular, Cellular and Developmental Biology, Yale University, 260 Whitney Avenue, New Haven, CT 06520, USA.
| |
Collapse
|
10
|
Abstract
Arthropod segmentation and vertebrate somitogenesis are leading fields in the experimental and theoretical interrogation of developmental patterning. However, despite the sophistication of current research, basic conceptual issues remain unresolved. These include: (i) the mechanistic origins of spatial organization within the segment addition zone (SAZ); (ii) the mechanistic origins of segment polarization; (iii) the mechanistic origins of axial variation; and (iv) the evolutionary origins of simultaneous patterning. Here, I explore these problems using coarse-grained models of cross-regulating dynamical processes. In the morphogenetic framework of a row of cells undergoing axial elongation, I simulate interactions between an 'oscillator', a 'switch' and up to three 'timers', successfully reproducing essential patterning behaviours of segmenting systems. By comparing the output of these largely cell-autonomous models to variants that incorporate positional information, I find that scaling relationships, wave patterns and patterning dynamics all depend on whether the SAZ is regulated by temporal or spatial information. I also identify three mechanisms for polarizing oscillator output, all of which functionally implicate the oscillator frequency profile. Finally, I demonstrate significant dynamical and regulatory continuity between sequential and simultaneous modes of segmentation. I discuss these results in the context of the experimental literature.
Collapse
Affiliation(s)
- Erik Clark
- Department of Systems Biology, Harvard Medical School, 210 Longwood Ave, Boston, MA 02115, USA
- Trinity College Cambridge, University of Cambridge, Trinity Street, Cambridge CB2 1TQ, UK
| |
Collapse
|
11
|
Uriu K, Liao BK, Oates AC, Morelli LG. From local resynchronization to global pattern recovery in the zebrafish segmentation clock. eLife 2021; 10:61358. [PMID: 33587039 PMCID: PMC7984840 DOI: 10.7554/elife.61358] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 01/27/2021] [Indexed: 01/26/2023] Open
Abstract
Integrity of rhythmic spatial gene expression patterns in the vertebrate segmentation clock requires local synchronization between neighboring cells by Delta-Notch signaling and its inhibition causes defective segment boundaries. Whether deformation of the oscillating tissue complements local synchronization during patterning and segment formation is not understood. We combine theory and experiment to investigate this question in the zebrafish segmentation clock. We remove a Notch inhibitor, allowing resynchronization, and analyze embryonic segment recovery. We observe unexpected intermingling of normal and defective segments, and capture this with a new model combining coupled oscillators and tissue mechanics. Intermingled segments are explained in the theory by advection of persistent phase vortices of oscillators. Experimentally observed changes in recovery patterns are predicted in the theory by temporal changes in tissue length and cell advection pattern. Thus, segmental pattern recovery occurs at two length and time scales: rapid local synchronization between neighboring cells, and the slower transport of the resulting patterns across the tissue through morphogenesis.
Collapse
Affiliation(s)
- Koichiro Uriu
- Graduate School of Natural Science and Technology, Kanazawa University, Kakuma-machi, Kanazawa, Japan
| | - Bo-Kai Liao
- Department of Aquaculture, National Taiwan Ocean University, Keelung, Taiwan.,Department of Cell and Developmental Biology, University College London, Gower Street, London, United Kingdom.,The Francis Crick Institute, London, United Kingdom.,Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Andrew C Oates
- Department of Cell and Developmental Biology, University College London, Gower Street, London, United Kingdom.,The Francis Crick Institute, London, United Kingdom.,Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany.,Institute of Bioengineering, École polytechnique fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Luis G Morelli
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA) - CONICET - Partner Institute of the Max Planck Society, Polo Científico Tecnológico, Buenos Aires, Argentina.,Departamento de Física, FCEyN UBA, Ciudad Universitaria, Buenos Aires, Argentina.,Max Planck Institute for Molecular Physiology, Department of Systemic Cell Biology, Dortmund, Germany
| |
Collapse
|
12
|
Zinani OQH, Keseroğlu K, Ay A, Özbudak EM. Pairing of segmentation clock genes drives robust pattern formation. Nature 2020; 589:431-436. [PMID: 33361814 PMCID: PMC7932681 DOI: 10.1038/s41586-020-03055-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Accepted: 11/03/2020] [Indexed: 12/12/2022]
Abstract
Gene expression is an inherently stochastic process 1,2; however, organismal development and homeostasis require that cells spatiotemporally coordinate the expression of large sets of genes. Coexpressed gene pairs in metazoans often reside in the same chromosomal neighborhood, with gene pairs representing 10% - 50% of all genes depending on species 3–6. As shared upstream regulators can ensure correlated gene expression, the selective advantage of maintaining adjacent gene pairs remains unknown 6. Here, using two linked zebrafish segmentation clock genes, her1 and her7, and combining single-cell transcript counting, genetic engineering, real-time imaging and computational modeling, we reveal that gene pairing boosts correlated transcription and provides phenotypic robustness for developmental pattern formation. Our results demonstrate that disrupting gene pairing disrupts oscillations and segmentation, identifying the selective pressure retaining correlated transcription to sustain a robust and rapid developmental clock. We anticipate that these findings will inspire investigating advantages of gene pairing in other systems and engineering precise synthetic clocks in embryos and organoids.
Collapse
Affiliation(s)
- Oriana Q H Zinani
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA.,Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Kemal Keseroğlu
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Ahmet Ay
- Department of Biology, Colgate University, Hamilton, NY, USA.,Department of Mathematics, Colgate University, Hamilton, NY, USA
| | - Ertuğrul M Özbudak
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA. .,Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.
| |
Collapse
|
13
|
Naganathan S, Oates A. Patterning and mechanics of somite boundaries in zebrafish embryos. Semin Cell Dev Biol 2020; 107:170-178. [DOI: 10.1016/j.semcdb.2020.04.014] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Revised: 03/12/2020] [Accepted: 04/19/2020] [Indexed: 12/12/2022]
|
14
|
Oates AC. Waiting on the Fringe: cell autonomy and signaling delays in segmentation clocks. Curr Opin Genet Dev 2020; 63:61-70. [PMID: 32505051 DOI: 10.1016/j.gde.2020.04.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 04/19/2020] [Accepted: 04/23/2020] [Indexed: 12/16/2022]
Abstract
The rhythmic and sequential segmentation of the vertebrate body axis into somites during embryogenesis is governed by a multicellular, oscillatory patterning system called the segmentation clock. Despite many overt similarities between vertebrates, differences in genetic and dynamic regulation have been reported, raising intriguing questions about the evolution and conservation of this fundamental patterning process. Recent studies have brought insights into two important and related issues: (1) whether individual cells of segmentation clocks are autonomous oscillators or require cell-cell communication for their rhythm; and (2) the role of delays in the cell-cell communication that synchronizes the population of genetic oscillators. Although molecular details differ between species, conservation may exist at the level of the dynamics, hinting at rules for evolutionary trajectories in the system.
Collapse
Affiliation(s)
- Andrew C Oates
- Institute of Bioengineering, School of Life Sciences and School of Engineering, Ecole Polytechnique Fédéral de Lausanne (EPFL), CH-1015, Switzerland.
| |
Collapse
|
15
|
Henrique D, Schweisguth F. Mechanisms of Notch signaling: a simple logic deployed in time and space. Development 2019; 146:146/3/dev172148. [PMID: 30709911 DOI: 10.1242/dev.172148] [Citation(s) in RCA: 119] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Most cells in our body communicate during development and throughout life via Notch receptors and their ligands. Notch receptors relay information from the cell surface to the genome via a very simple mechanism, yet Notch plays multiple roles in development and disease. Recent studies suggest that this versatility in Notch function may not necessarily arise from complex and context-dependent integration of Notch signaling with other developmental signals, but instead arises, in part, from signaling dynamics. Here, we review recent findings on the core Notch signaling mechanism and discuss how spatial-temporal dynamics contribute to Notch signaling output.
Collapse
Affiliation(s)
- Domingos Henrique
- Instituto de Histologia e Biologia do Desenvolvimento and Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Av. Prof. Egaz Moniz, 1649-028 Lisboa, Portugal
| | - François Schweisguth
- Institut Pasteur, Department of Developmental and Stem Cell Biology, F-75015 Paris, France .,CNRS, UMR3738, F-75015 Paris, France
| |
Collapse
|
16
|
Fujino Y, Yamada K, Sugaya C, Ooka Y, Ovara H, Ban H, Akama K, Otosaka S, Kinoshita H, Yamasu K, Mishima Y, Kawamura A. Deadenylation by the CCR4-NOT complex contributes to the turnover of hairy-related mRNAs in the zebrafish segmentation clock. FEBS Lett 2018; 592:3388-3398. [PMID: 30281784 DOI: 10.1002/1873-3468.13261] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 09/10/2018] [Accepted: 09/23/2018] [Indexed: 01/09/2023]
Abstract
In the zebrafish segmentation clock, hairy/enhancer of split-related genes her1, her7, and hes6 encodes components of core oscillators. Since the expression of cyclic genes proceeds rapidly in the presomitic mesoderm (PSM), these hairy-related mRNAs are subject to strict post-transcriptional regulation. In this study, we demonstrate that inhibition of the CCR4-NOT deadenylase complex lengthens poly(A) tails of hairy-related mRNAs and increases the amount of these mRNAs, which is accompanied by defective somite segmentation. In transgenic embryos, we show that EGFP mRNAs with 3'UTRs of hairy-related genes exhibit turnover similar to endogenous mRNAs. Our results suggest that turnover rates of her1, her7, and hes6 mRNAs are differently regulated by the CCR4-NOT deadenylase complex possibly through their 3'UTRs in the zebrafish PSM.
Collapse
Affiliation(s)
- Yuuri Fujino
- Division of Life Science, Graduate School of Science and Engineering, Saitama University, Japan
| | - Kazuya Yamada
- Division of Life Science, Graduate School of Science and Engineering, Saitama University, Japan
| | - Chihiro Sugaya
- Division of Life Science, Graduate School of Science and Engineering, Saitama University, Japan
| | - Yuko Ooka
- Division of Life Science, Graduate School of Science and Engineering, Saitama University, Japan
| | - Hiroki Ovara
- Division of Life Science, Graduate School of Science and Engineering, Saitama University, Japan
| | - Hiroyuki Ban
- Division of Life Science, Graduate School of Science and Engineering, Saitama University, Japan
| | - Kagari Akama
- Division of Life Science, Graduate School of Science and Engineering, Saitama University, Japan
| | - Shiori Otosaka
- Division of Life Science, Graduate School of Science and Engineering, Saitama University, Japan
| | - Hirofumi Kinoshita
- Division of Life Science, Graduate School of Science and Engineering, Saitama University, Japan
| | - Kyo Yamasu
- Division of Life Science, Graduate School of Science and Engineering, Saitama University, Japan
| | - Yuichiro Mishima
- Department of Molecular Biosciences, Faculty of Life Sciences, Kyoto Sangyo University, Japan
| | - Akinori Kawamura
- Division of Life Science, Graduate School of Science and Engineering, Saitama University, Japan
| |
Collapse
|
17
|
Information flow in the presence of cell mixing and signaling delays during embryonic development. Semin Cell Dev Biol 2018; 93:26-35. [PMID: 30261318 DOI: 10.1016/j.semcdb.2018.09.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 09/10/2018] [Accepted: 09/20/2018] [Indexed: 11/23/2022]
Abstract
Embryonic morphogenesis is organized by an interplay between intercellular signaling and cell movements. Both intercellular signaling and cell movement involve multiple timescales. A key timescale for signaling is the time delay caused by preparation of signaling molecules and integration of received signals into cells' internal state. Movement of cells relative to their neighbors may introduce exchange of positions between cells during signaling. When cells change their relative positions in a tissue, the impact of signaling delays on intercellular signaling increases because the delayed information that cells receive may significantly differ from the present state of the tissue. The time it takes to perform a neighbor exchange sets a timescale of cell mixing that may be important for the outcome of signaling. Here we review recent theoretical work on the interplay of timescales between cell mixing and signaling delays adopting the zebrafish segmentation clock as a model system. We discuss how this interplay can lead to spatial patterns of gene expression that could disrupt the normal formation of segment boundaries in the embryo. The effect of cell mixing and signaling delays highlights the importance of theoretical and experimental frameworks to understand collective cellular behaviors arising from the interplay of multiple timescales in embryonic developmental processes.
Collapse
|
18
|
Small molecule screen in embryonic zebrafish using modular variations to target segmentation. Nat Commun 2017; 8:1901. [PMID: 29196645 PMCID: PMC5711842 DOI: 10.1038/s41467-017-01469-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Accepted: 09/19/2017] [Indexed: 01/19/2023] Open
Abstract
Small molecule in vivo phenotypic screening is used to identify drugs or biological activities by directly assessing effects in intact organisms. However, current screening designs may not exploit the full potential of chemical libraries due to false negatives. Here, we demonstrate a modular small molecule screen in embryonic zebrafish that varies concentration, genotype and timing to target segmentation disorders, birth defects that affect the spinal column. By testing each small molecule in multiple interrelated ways, this screen recovers compounds that a standard screening design would have missed, increasing the hit frequency from the chemical library three-fold. We identify molecular pathways and segmentation phenotypes, which we share in an open-access annotated database. These hits provide insight into human vertebral segmentation disorders and myopathies. This modular screening strategy is applicable to other developmental questions and disease models, highlighting the power of relatively small chemical libraries to accelerate gene discovery and disease study.
Collapse
|
19
|
Liao BK, Oates AC. Delta-Notch signalling in segmentation. ARTHROPOD STRUCTURE & DEVELOPMENT 2017; 46:429-447. [PMID: 27888167 PMCID: PMC5446262 DOI: 10.1016/j.asd.2016.11.007] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Revised: 11/20/2016] [Accepted: 11/21/2016] [Indexed: 06/06/2023]
Abstract
Modular body organization is found widely across multicellular organisms, and some of them form repetitive modular structures via the process of segmentation. It's vastly interesting to understand how these regularly repeated structures are robustly generated from the underlying noise in biomolecular interactions. Recent studies from arthropods reveal similarities in segmentation mechanisms with vertebrates, and raise the possibility that the three phylogenetic clades, annelids, arthropods and chordates, might share homology in this process from a bilaterian ancestor. Here, we discuss vertebrate segmentation with particular emphasis on the role of the Notch intercellular signalling pathway. We introduce vertebrate segmentation and Notch signalling, pointing out historical milestones, then describe existing models for the Notch pathway in the synchronization of noisy neighbouring oscillators, and a new role in the modulation of gene expression wave patterns. We ask what functions Notch signalling may have in arthropod segmentation and explore the relationship between Notch-mediated lateral inhibition and synchronization. Finally, we propose open questions and technical challenges to guide future investigations into Notch signalling in segmentation.
Collapse
Affiliation(s)
- Bo-Kai Liao
- Francis Crick Institute, Mill Hill Laboratory, The Ridgeway, London NW7 1AA, UK
| | - Andrew C Oates
- Francis Crick Institute, Mill Hill Laboratory, The Ridgeway, London NW7 1AA, UK; Department of Cell and Developmental Biology, University College London, Gower Street, London WC1E 6BT, UK.
| |
Collapse
|
20
|
Yabe T, Hoshijima K, Yamamoto T, Takada S. Quadruple zebrafish mutant reveals different roles of Mesp genes in somite segmentation between mouse and zebrafish. Development 2016; 143:2842-52. [PMID: 27385009 DOI: 10.1242/dev.133173] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Accepted: 06/17/2016] [Indexed: 01/02/2023]
Abstract
The segmental pattern of somites is generated by sequential conversion of the temporal periodicity provided by the molecular clock. Whereas the basic structure of this clock is conserved among different species, diversity also exists, especially in terms of the molecular network. The temporal periodicity is subsequently converted into the spatial pattern of somites, and Mesp2 plays crucial roles in this conversion in the mouse. However, it remains unclear whether Mesp genes play similar roles in other vertebrates. In this study, we generated zebrafish mutants lacking all four zebrafish Mesp genes by using TALEN-mediated genome editing. Contrary to the situation in the mouse Mesp2 mutant, in the zebrafish Mesp quadruple mutant embryos the positions of somite boundaries were clearly determined and morphological boundaries were formed, although their formation was not completely normal. However, each somite was caudalized in a similar manner to the mouse Mesp2 mutant, and the superficial horizontal myoseptum and lateral line primordia were not properly formed in the quadruple mutants. These results clarify the conserved and species-specific roles of Mesp in the link between the molecular clock and somite morphogenesis.
Collapse
Affiliation(s)
- Taijiro Yabe
- Division of Molecular and Developmental Biology, Okazaki Institute for Integrative Bioscience and National Institute for Basic Biology, National Institutes of Natural Sciences, Okazaki, Aichi 444-8787, Japan Department for Basic Biology, SOKENDAI (The Graduate University for Advanced Studies), Okazaki, Aichi 444-8787, Japan
| | - Kazuyuki Hoshijima
- Department of Human Genetics, University of Utah, Salt Lake City, UT 84112, USA
| | - Takashi Yamamoto
- Department of Mathematical and Life Sciences, Graduate School of Science, Hiroshima University, Hiroshima 739-8526, Japan
| | - Shinji Takada
- Division of Molecular and Developmental Biology, Okazaki Institute for Integrative Bioscience and National Institute for Basic Biology, National Institutes of Natural Sciences, Okazaki, Aichi 444-8787, Japan Department for Basic Biology, SOKENDAI (The Graduate University for Advanced Studies), Okazaki, Aichi 444-8787, Japan
| |
Collapse
|
21
|
Webb AB, Lengyel IM, Jörg DJ, Valentin G, Jülicher F, Morelli LG, Oates AC. Persistence, period and precision of autonomous cellular oscillators from the zebrafish segmentation clock. eLife 2016; 5. [PMID: 26880542 PMCID: PMC4803185 DOI: 10.7554/elife.08438] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Accepted: 02/11/2016] [Indexed: 12/11/2022] Open
Abstract
In vertebrate development, the sequential and rhythmic segmentation of the body axis
is regulated by a “segmentation clock”. This clock is comprised of a population of
coordinated oscillating cells that together produce rhythmic gene expression patterns
in the embryo. Whether individual cells autonomously maintain oscillations, or
whether oscillations depend on signals from neighboring cells is unknown. Using a
transgenic zebrafish reporter line for the cyclic transcription factor Her1, we
recorded single tailbud cells in vitro. We demonstrate that individual cells can
behave as autonomous cellular oscillators. We described the observed variability in
cell behavior using a theory of generic oscillators with correlated noise. Single
cells have longer periods and lower precision than the tissue, highlighting the role
of collective processes in the segmentation clock. Our work reveals a population of
cells from the zebrafish segmentation clock that behave as self-sustained, autonomous
oscillators with distinctive noisy dynamics. DOI:http://dx.doi.org/10.7554/eLife.08438.001 The timing and pattern of gene activity in cells can be very important. For example,
precise gene activity patterns in 24-hour circadian clocks help to set daily cycles
of rest and activity in organisms. In such scenarios, cells often communicate with
each other to coordinate the activity of their genes. To fully understand how the
behavior of the population emerges, scientists must first understand the gene
activity patterns in individual cells. Rhythmic gene activity is essential for the spinal column to form in fish and other
vertebrate embryos. A group of cells that switch genes on/off in a coordinated
pattern act like a clock to regulate the timing of the various steps in the process
of backbone formation. However, it is not clear if each cell is able to maintain a
rhythm of gene expression on their own, or whether they rely on messages from
neighboring cells to achieve it. Now, Webb et al. use time-lapse videos of individual cells isolated from the tail of
zebrafish embryos to show that each cell can maintain a pattern of rhythmic activity
in a gene called Her1. In the experiments, individual cells were
removed from zebrafish and placed under a microscope to record and track the activity
of Her1 over time using fluorescent proteins. These experiments show
that each cell is able to maintain a rhythmic pattern of Her1
expression on its own. Webb et al. then compared the Her1 activity patterns in individual
cells with the Her1 patterns present in a larger piece of zebrafish
tissue. The experiments showed that the rhythms in the individual cells are slower
and less precise in their timing than in the tissue. This suggests that groups of
cells must work together to create the synchronized rhythms of gene expression with
the right precision and timing needed for the spinal column to be patterned
correctly. In the future, further experiment with these cells will allow researchers to
investigate the genetic basis of the rhythms in single cells, and find out how
individual cells work together with their neighbors to allow tissues to work
properly. DOI:http://dx.doi.org/10.7554/eLife.08438.002
Collapse
Affiliation(s)
- Alexis B Webb
- MRC-National Institute for Medical Research, London, United Kingdom.,Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Iván M Lengyel
- Departamento de Física, FCEyN UBA and IFIBA, CONICET, Buenos Aires, Argentina
| | - David J Jörg
- Max Planck Institute for the Physics of Complex Systems, Dresden, Germany
| | - Guillaume Valentin
- MRC-National Institute for Medical Research, London, United Kingdom.,Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Frank Jülicher
- Max Planck Institute for the Physics of Complex Systems, Dresden, Germany
| | - Luis G Morelli
- Departamento de Física, FCEyN UBA and IFIBA, CONICET, Buenos Aires, Argentina
| | - Andrew C Oates
- MRC-National Institute for Medical Research, London, United Kingdom.,Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany.,Department of Cell and Developmental Biology, University College London, London, United Kingdom
| |
Collapse
|
22
|
Webb AB, Oates AC. Timing by rhythms: Daily clocks and developmental rulers. Dev Growth Differ 2016; 58:43-58. [PMID: 26542934 PMCID: PMC4832293 DOI: 10.1111/dgd.12242] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Revised: 09/18/2015] [Accepted: 09/19/2015] [Indexed: 01/10/2023]
Abstract
Biological rhythms are widespread, allowing organisms to temporally organize their behavior and metabolism in advantageous ways. Such proper timing of molecular and cellular events is critical to their development and health. This is best understood in the case of the circadian clock that orchestrates the daily sleep/wake cycle of organisms. Temporal rhythms can also be used for spatial organization, if information from an oscillating system can be recorded within the tissue in a manner that leaves a permanent periodic pattern. One example of this is the "segmentation clock" used by the vertebrate embryo to rhythmically and sequentially subdivide its elongating body axis. The segmentation clock moves with the elongation of the embryo, such that its period sets the segment length as the tissue grows outward. Although the study of this system is still relatively young compared to the circadian clock, outlines of molecular, cellular, and tissue-level regulatory mechanisms of timing have emerged. The question remains, however, is it truly a clock? Here we seek to introduce the segmentation clock to a wider audience of chronobiologists, focusing on the role and control of timing in the system. We compare and contrast the segmentation clock with the circadian clock, and propose that the segmentation clock is actually an oscillatory ruler, with a primary function to measure embryonic space.
Collapse
Affiliation(s)
- Alexis B Webb
- The Francis Crick Institute, Mill Hill Laboratory, London, UK
| | - Andrew C Oates
- The Francis Crick Institute, Mill Hill Laboratory, London, UK
- University College London, Gower Street, London, UK
| |
Collapse
|
23
|
Posterior–anterior gradient of zebrafish hes6 expression in the presomitic mesoderm is established by the combinatorial functions of the downstream enhancer and 3′UTR. Dev Biol 2016; 409:543-54. [DOI: 10.1016/j.ydbio.2015.11.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Revised: 11/13/2015] [Accepted: 11/15/2015] [Indexed: 01/09/2023]
|
24
|
Yabe T, Takada S. Molecular mechanism for cyclic generation of somites: Lessons from mice and zebrafish. Dev Growth Differ 2015; 58:31-42. [PMID: 26676827 DOI: 10.1111/dgd.12249] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Revised: 10/15/2015] [Accepted: 10/16/2015] [Indexed: 12/23/2022]
Abstract
The somite is the most prominent metameric structure observed during vertebrate embryogenesis, and its metamerism preserves the characteristic structures of the vertebrae and muscles in the adult body. During vertebrate somitogenesis, sequential formation of epithelialized cell boundaries generates the somites. According to the "clock and wavefront model," the periodical and sequential generation of somites is achieved by the integration of spatiotemporal information provided by the segmentation clock and wavefront. In the anterior region of the presomitic mesoderm, which is the somite precursor, the orchestration between the segmentation clock and the wavefront achieves morphogenesis of somites through multiple processes such as determination of somite boundary position, generation of morophological boundary, and establishment of the rostrocaudal polarity within a somite. Recently, numerous studies using various model animals including mouse, zebrafish, and chick have gradually revealed the molecular aspect of the "clock and wavefront" model and the molecular mechanism connecting the segmentation clock and the wavefront to the multiple processes of somite morphogenesis. In this review, we first summarize the current knowledge about the molecular mechanisms underlying the clock and the wavefront and then describe those of the three processes of somite morphogenesis. Especially, we will discuss the conservation and diversification in the molecular network of the somitigenesis among vertebrates, focusing on two typical model animals used for genetic analyses, i.e., the mouse and zebrafish. In this review, we described molecular mechanism for the generation of somites based on the spatiotemporal information provided by "segmentation clock" and "wavefront" focusing on the evidences obtained from mouse and zebrafish.
Collapse
Affiliation(s)
- Taijiro Yabe
- Okazaki Institute for Integrative Bioscience and National Institute for Basic Biology, National Institutes of Natural Sciences, Okazaki, Aichi, 444-8787, Japan.,The Graduate University for Advanced Studies (SOKENDAI), Okazaki, Aichi, 444-8787, Japan
| | - Shinji Takada
- Okazaki Institute for Integrative Bioscience and National Institute for Basic Biology, National Institutes of Natural Sciences, Okazaki, Aichi, 444-8787, Japan.,The Graduate University for Advanced Studies (SOKENDAI), Okazaki, Aichi, 444-8787, Japan
| |
Collapse
|
25
|
Jenkins RP, Hanisch A, Soza-Ried C, Sahai E, Lewis J. Stochastic Regulation of her1/7 Gene Expression Is the Source of Noise in the Zebrafish Somite Clock Counteracted by Notch Signalling. PLoS Comput Biol 2015; 11:e1004459. [PMID: 26588097 PMCID: PMC4654481 DOI: 10.1371/journal.pcbi.1004459] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Accepted: 07/09/2015] [Indexed: 12/30/2022] Open
Abstract
The somite segmentation clock is a robust oscillator used to generate regularly-sized segments during early vertebrate embryogenesis. It has been proposed that the clocks of neighbouring cells are synchronised via inter-cellular Notch signalling, in order to overcome the effects of noisy gene expression. When Notch-dependent communication between cells fails, the clocks of individual cells operate erratically and lose synchrony over a period of about 5 to 8 segmentation clock cycles (2-3 hours in the zebrafish). Here, we quantitatively investigate the effects of stochasticity on cell synchrony, using mathematical modelling, to investigate the likely source of such noise. We find that variations in the transcription, translation and degradation rate of key Notch signalling regulators do not explain the in vivo kinetics of desynchronisation. Rather, the analysis predicts that clock desynchronisation, in the absence of Notch signalling, is due to the stochastic dissociation of Her1/7 repressor proteins from the oscillating her1/7 autorepressed target genes. Using in situ hybridisation to visualise sites of active her1 transcription, we measure an average delay of approximately three minutes between the times of activation of the two her1 alleles in a cell. Our model shows that such a delay is sufficient to explain the in vivo rate of clock desynchronisation in Notch pathway mutant embryos and also that Notch-mediated synchronisation is sufficient to overcome this stochastic variation. This suggests that the stochastic nature of repressor/DNA dissociation is the major source of noise in the segmentation clock.
Collapse
Affiliation(s)
- Robert P. Jenkins
- Tumour Cell Biology Laboratory, The Francis Crick Institute Lincoln’s Inn Fields Laboratory, London, United Kingdom
- Vertebrate Development Laboratory, The Francis Crick Institute Lincoln’s Inn Fields Laboratory, London, United Kingdom
| | - Anja Hanisch
- Vertebrate Development Laboratory, The Francis Crick Institute Lincoln’s Inn Fields Laboratory, London, United Kingdom
| | - Cristian Soza-Ried
- Vertebrate Development Laboratory, The Francis Crick Institute Lincoln’s Inn Fields Laboratory, London, United Kingdom
| | - Erik Sahai
- Tumour Cell Biology Laboratory, The Francis Crick Institute Lincoln’s Inn Fields Laboratory, London, United Kingdom
| | - Julian Lewis
- Vertebrate Development Laboratory, The Francis Crick Institute Lincoln’s Inn Fields Laboratory, London, United Kingdom
| |
Collapse
|
26
|
Ay A, Holland J, Sperlea A, Devakanmalai GS, Knierer S, Sangervasi S, Stevenson A, Ozbudak EM. Spatial gradients of protein-level time delays set the pace of the traveling segmentation clock waves. Development 2014; 141:4158-67. [PMID: 25336742 DOI: 10.1242/dev.111930] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The vertebrate segmentation clock is a gene expression oscillator controlling rhythmic segmentation of the vertebral column during embryonic development. The period of oscillations becomes longer as cells are displaced along the posterior to anterior axis, which results in traveling waves of clock gene expression sweeping in the unsegmented tissue. Although various hypotheses necessitating the inclusion of additional regulatory genes into the core clock network at different spatial locations have been proposed, the mechanism underlying traveling waves has remained elusive. Here, we combined molecular-level computational modeling and quantitative experimentation to solve this puzzle. Our model predicts the existence of an increasing gradient of gene expression time delays along the posterior to anterior direction to recapitulate spatiotemporal profiles of the traveling segmentation clock waves in different genetic backgrounds in zebrafish. We validated this prediction by measuring an increased time delay of oscillatory Her1 protein production along the unsegmented tissue. Our results refuted the need for spatial expansion of the core feedback loop to explain the occurrence of traveling waves. Spatial regulation of gene expression time delays is a novel way of creating dynamic patterns; this is the first report demonstrating such a control mechanism in any tissue and future investigations will explore the presence of analogous examples in other biological systems.
Collapse
Affiliation(s)
- Ahmet Ay
- Department of Mathematics, Colgate University, Hamilton, NY 13346, USA Department of Biology, Colgate University, Hamilton, NY 13346, USA
| | - Jack Holland
- Department of Computer Science, Colgate University, Hamilton, NY 13346, USA
| | - Adriana Sperlea
- Department of Computer Science, Colgate University, Hamilton, NY 13346, USA
| | | | - Stephan Knierer
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | | | - Angel Stevenson
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Ertuğrul M Ozbudak
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| |
Collapse
|
27
|
Lengyel IM, Soroldoni D, Oates AC, Morelli LG. Nonlinearity arising from noncooperative transcription factor binding enhances negative feedback and promotes genetic oscillations. PAPERS IN PHYSICS 2014; 6:060012. [PMID: 34267827 PMCID: PMC7611245 DOI: 10.4279/pip.060012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
We study the effects of multiple binding sites in the promoter of a genetic oscillator. We evaluate the regulatory function of a promoter with multiple binding sites in the absence of cooperative binding, and consider different hypotheses for how the number of bound repressors affects transcription rate. Effective Hill exponents of the resulting regulatory functions reveal an increase in the nonlinearity of the feedback with the number of binding sites. We identify optimal configurations that maximize the nonlinearity of the feedback. We use a generic model of a biochemical oscillator to show that this increased nonlinearity is reflected in enhanced oscillations, with larger amplitudes over wider oscillatory ranges. Although the study is motivated by genetic oscillations in the zebrafish segmentation clock, our findings may reveal a general principle for gene regulation.
Collapse
Affiliation(s)
- Ivan M. Lengyel
- Departamento de F’sica, FCEyN UBA and IFIBA, CONICET; Pabellon 1, Ciudad Universitaria, 1428 Buenos Aires, Argentina
| | - Daniele Soroldoni
- MRC-National Institute for Medical Research, The Ridgeway, Mill Hill, London, NW7 1AA, UK
- Department of Cell and Developmental Biology, University College London, Gower Street, London, WC1E 6BT, UK
| | - Andrew C. Oates
- MRC-National Institute for Medical Research, The Ridgeway, Mill Hill, London, NW7 1AA, UK
- Department of Cell and Developmental Biology, University College London, Gower Street, London, WC1E 6BT, UK
| | - Luis G. Morelli
- Departamento de F’sica, FCEyN UBA and IFIBA, CONICET; Pabellon 1, Ciudad Universitaria, 1428 Buenos Aires, Argentina
| |
Collapse
|
28
|
|
29
|
Maragh S, Miller RA, Bessling SL, Wang G, Hook PW, McCallion AS. Rbm24a and Rbm24b are required for normal somitogenesis. PLoS One 2014; 9:e105460. [PMID: 25170925 PMCID: PMC4149414 DOI: 10.1371/journal.pone.0105460] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2013] [Accepted: 07/24/2014] [Indexed: 12/13/2022] Open
Abstract
We recently demonstrated that the gene encoding the RNA binding motif protein 24 (RBM24) is expressed during mouse cardiogenesis, and determined the developmental requirement for its zebrafish homologs Rbm24a and Rbm24b during cardiac development. We demonstrate here that both Rbm24a and Rbm24b are also required for normal somite and craniofacial development. Diminution of rbm24a or rbm24b gene products by morpholino knockdown resulted in significant disruption of somite formation. Detailed in situ hybridization-based analyses of a spectrum of somitogenesis-associated transcripts revealed reduced expression of the cyclic muscle pattering genes dlc and dld encoding Notch ligands, as well as their respective target genes her7, her1. By contrast expression of the Notch receptors notch1a and notch3 appears unchanged. Some RBM-family members have been implicated in pre-mRNA processing. Analysis of affected Notch-pathway mRNAs in rbm24a and rbm24b morpholino-injected embryos revealed aberrant transcript fragments of dlc and dld, but not her1 or her7, suggesting the reduction in transcription levels of Notch pathway components may result from aberrant processing of its ligands. These data imply a previously unknown requirement for Rbm24a and Rbm24b in somite and craniofacial development. Although we anticipate the influence of disrupting RBM24 homologs likely extends beyond the Notch pathway, our results suggest their perturbation may directly, or indirectly, compromise post-transcriptional processing, exemplified by imprecise processing of dlc and dld.
Collapse
Affiliation(s)
- Samantha Maragh
- Biochemical Science Division, National Institute of Standards and Technology, Gaithersburg, Maryland, United States of America
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Ronald A. Miller
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Seneca L. Bessling
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Guangliang Wang
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Paul W. Hook
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Andrew S. McCallion
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- * E-mail:
| |
Collapse
|
30
|
Soza-Ried C, Öztürk E, Ish-Horowicz D, Lewis J. Pulses of Notch activation synchronise oscillating somite cells and entrain the zebrafish segmentation clock. Development 2014; 141:1780-8. [PMID: 24715465 DOI: 10.1242/dev.102111] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Formation of somites, the rudiments of vertebrate body segments, is an oscillatory process governed by a gene-expression oscillator, the segmentation clock. This operates in each cell of the presomitic mesoderm (PSM), but the individual cells drift out of synchrony when Delta/Notch signalling fails, causing gross anatomical defects. We and others have suggested that this is because synchrony is maintained by pulses of Notch activation, delivered cyclically by each cell to its neighbours, that serve to adjust or reset the phase of the intracellular oscillator. This, however, has never been proved. Here, we provide direct experimental evidence, using zebrafish containing a heat-shock-driven transgene that lets us deliver artificial pulses of expression of the Notch ligand DeltaC. In DeltaC-defective embryos, in which endogenous Notch signalling fails, the artificial pulses restore synchrony, thereby rescuing somite formation. The spacing of segment boundaries produced by repetitive heat-shocking varies according to the time interval between one heat-shock and the next. The induced synchrony is manifest both morphologically and at the level of the oscillations of her1, a core component of the intracellular oscillator. Thus, entrainment of intracellular clocks by periodic activation of the Notch pathway is indeed the mechanism maintaining cell synchrony during somitogenesis.
Collapse
Affiliation(s)
- Cristian Soza-Ried
- Vertebrate Development and Developmental Genetics Laboratories, Cancer Research UK London Research Institute, 44 Lincoln's Inn Fields, London WC2A 3LY, UK
| | | | | | | |
Collapse
|
31
|
Modeling the zebrafish segmentation clock's gene regulatory network constrained by expression data suggests evolutionary transitions between oscillating and nonoscillating transcription. Genetics 2014; 197:725-38. [PMID: 24663100 DOI: 10.1534/genetics.114.163642] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
During segmentation of vertebrate embryos, somites form in accordance with a periodic pattern established by the segmentation clock. In the zebrafish (Danio rerio), the segmentation clock includes six hairy/enhancer of split-related (her/hes) genes, five of which oscillate due to negative autofeedback. The nonoscillating gene hes6 forms the hub of a network of 10 Her/Hes protein dimers, which includes 7 DNA-binding dimers and 4 weak or non-DNA-binding dimers. The balance of dimer species is critical for segmentation clock function, and loss-of-function studies suggest that the her genes have both unique and redundant functions within the clock. However, the precise regulatory interactions underlying the negative feedback loop are unknown. Here, we combine quantitative experimental data, in silico modeling, and a global optimization algorithm to identify a gene regulatory network (GRN) designed to fit measured transcriptional responses to gene knockdown. Surprisingly, we find that hes6, the clock gene that does not oscillate, responds to negative feedback. Consistent with prior in silico analyses, we find that variation in transcription, translation, and degradation rates can mediate the gain and loss of oscillatory behavior for genes regulated by negative feedback. Extending our study, we found that transcription of the nonoscillating Fgf pathway gene sef responds to her/hes perturbation similarly to oscillating her genes. These observations suggest a more extensive underlying regulatory similarity between the zebrafish segmentation clock and the mouse and chick segmentation clocks, which exhibit oscillations of her/hes genes as well as numerous other Notch, Fgf, and Wnt pathway genes.
Collapse
|
32
|
Akiyama R, Masuda M, Tsuge S, Bessho Y, Matsui T. An anterior limit of FGF/Erk signal activity marks the earliest future somite boundary in zebrafish. Development 2014; 141:1104-9. [PMID: 24504340 DOI: 10.1242/dev.098905] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Vertebrate segments called somites are generated by periodic segmentation of the anterior extremity of the presomitic mesoderm (PSM). During somite segmentation in zebrafish, mesp-b determines a future somite boundary at position B-2 within the PSM. Heat-shock experiments, however, suggest that an earlier future somite boundary exists at B-5, but the molecular signature of this boundary remains unidentified. Here, we characterized fibroblast growth factor (FGF) signal activity within the PSM, and demonstrated that an anterior limit of downstream Erk activity corresponds to the future B-5 somite boundary. Moreover, the segmentation clock is required for a stepwise posterior shift of the Erk activity boundary during each segmentation. Our results provide the first molecular evidence of the future somite boundary at B-5, and we propose that clock-dependent cyclic inhibition of the FGF/Erk signal is a key mechanism in the generation of perfect repetitive structures in zebrafish development.
Collapse
Affiliation(s)
- Ryutaro Akiyama
- Gene Regulation Research, Nara Institute Science and Technology, 8916-5 Takayama, Nara 630-0101, Japan
| | | | | | | | | |
Collapse
|
33
|
Ay A, Knierer S, Sperlea A, Holland J, Özbudak EM. Short-lived Her proteins drive robust synchronized oscillations in the zebrafish segmentation clock. Development 2013; 140:3244-53. [DOI: 10.1242/dev.093278] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Oscillations are prevalent in natural systems. A gene expression oscillator, called the segmentation clock, controls segmentation of precursors of the vertebral column. Genes belonging to the Hes/her family encode the only conserved oscillating genes in all analyzed vertebrate species. Hes/Her proteins form dimers and negatively autoregulate their own transcription. Here, we developed a stochastic two-dimensional multicellular computational model to elucidate how the dynamics, i.e. period, amplitude and synchronization, of the segmentation clock are regulated. We performed parameter searches to demonstrate that autoregulatory negative-feedback loops of the redundant repressor Her dimers can generate synchronized gene expression oscillations in wild-type embryos and reproduce the dynamics of the segmentation oscillator in different mutant conditions. Our model also predicts that synchronized oscillations can be robustly generated as long as the half-lives of the repressor dimers are shorter than 6 minutes. We validated this prediction by measuring, for the first time, the half-life of Her7 protein as 3.5 minutes. These results demonstrate the importance of building biologically realistic stochastic models to test biological models more stringently and make predictions for future experimental studies.
Collapse
Affiliation(s)
- Ahmet Ay
- Department of Mathematics, Colgate University, Hamilton, NY 13346, USA
- Department of Biology, Colgate University, Hamilton, NY 13346, USA
| | - Stephan Knierer
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Adriana Sperlea
- Department of Computer Science, Colgate University, Hamilton, NY 13346, USA
| | - Jack Holland
- Department of Computer Science, Colgate University, Hamilton, NY 13346, USA
| | - Ertuğrul M. Özbudak
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| |
Collapse
|
34
|
Hanisch A, Holder MV, Choorapoikayil S, Gajewski M, Özbudak EM, Lewis J. The elongation rate of RNA polymerase II in zebrafish and its significance in the somite segmentation clock. Development 2013; 140:444-53. [PMID: 23250218 DOI: 10.1242/dev.077230] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
A gene expression oscillator called the segmentation clock controls somite segmentation in the vertebrate embryo. In zebrafish, the oscillatory transcriptional repressor genes her1 and her7 are crucial for genesis of the oscillations, which are thought to arise from negative autoregulation of these genes. The period of oscillation is predicted to depend on delays in the negative-feedback loop, including, most importantly, the transcriptional delay - the time taken to make each molecule of her1 or her7 mRNA. her1 and her7 operate in parallel. Loss of both gene functions, or mutation of her1 combined with knockdown of Hes6, which we show to be a binding partner of Her7, disrupts segmentation drastically. However, mutants in which only her1 or her7 is functional show only mild segmentation defects and their oscillations have almost identical periods. This is unexpected because the her1 and her7 genes differ greatly in length. We use transgenic zebrafish to measure the RNA polymerase II elongation rate, for the first time, in the intact embryo. This rate is unexpectedly rapid, at 4.8 kb/minute at 28.5°C, implying that, for both genes, the time taken for transcript elongation is insignificant compared with other sources of delay, explaining why the mutants have similar clock periods. Our computational model shows how loss of her1 or her7 can allow oscillations to continue with unchanged period but with reduced amplitude and impaired synchrony, as manifested in the in situ hybridisation patterns of the single mutants.
Collapse
Affiliation(s)
- Anja Hanisch
- Vertebrate Development Laboratory, Cancer Research UK London Research Institute, 44 Lincoln's Inn Fields, London WC2A 3LY, UK
| | | | | | | | | | | |
Collapse
|
35
|
Delaune EA, François P, Shih NP, Amacher SL. Single-cell-resolution imaging of the impact of Notch signaling and mitosis on segmentation clock dynamics. Dev Cell 2013; 23:995-1005. [PMID: 23153496 DOI: 10.1016/j.devcel.2012.09.009] [Citation(s) in RCA: 121] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2012] [Revised: 08/30/2012] [Accepted: 09/13/2012] [Indexed: 01/11/2023]
Abstract
Vertebrate body segmentation is controlled by the segmentation clock, a molecular oscillator involving transcriptional oscillations of cyclic genes in presomitic mesoderm cells. The rapid and highly dynamic nature of this oscillating system has proved challenging for study at the single-cell level. We achieved visualization of clock activity with a cellular level of resolution in living embryos, allowing direct comparison of oscillations in neighbor cells. We provide direct evidence that presomitic mesoderm cells oscillate asynchronously in zebrafish Notch pathway mutants. By tracking oscillations in mitotic cells, we reveal that a robust cell-autonomous, Notch-independent mechanism resumes oscillations after mitosis. Finally, we find that cells preferentially divide at a certain oscillation phase, likely reducing the noise generated by cell division in cell synchrony and suggesting an intriguing relationship between the mitotic cycle and clock oscillation.
Collapse
Affiliation(s)
- Emilie A Delaune
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA
| | | | | | | |
Collapse
|
36
|
Topology and dynamics of the zebrafish segmentation clock core circuit. PLoS Biol 2012; 10:e1001364. [PMID: 22911291 PMCID: PMC3404119 DOI: 10.1371/journal.pbio.1001364] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2011] [Accepted: 06/07/2012] [Indexed: 12/12/2022] Open
Abstract
By combining biochemical, embryological, and mathematical approaches, this work uncovers an important role for protein-protein interactions in determining the dynamics of the somite-forming segmentation clock in vertebrates. During vertebrate embryogenesis, the rhythmic and sequential segmentation of the body axis is regulated by an oscillating genetic network termed the segmentation clock. We describe a new dynamic model for the core pace-making circuit of the zebrafish segmentation clock based on a systematic biochemical investigation of the network's topology and precise measurements of somitogenesis dynamics in novel genetic mutants. We show that the core pace-making circuit consists of two distinct negative feedback loops, one with Her1 homodimers and the other with Her7:Hes6 heterodimers, operating in parallel. To explain the observed single and double mutant phenotypes of her1, her7, and hes6 mutant embryos in our dynamic model, we postulate that the availability and effective stability of the dimers with DNA binding activity is controlled in a “dimer cloud” that contains all possible dimeric combinations between the three factors. This feature of our model predicts that Hes6 protein levels should oscillate despite constant hes6 mRNA production, which we confirm experimentally using novel Hes6 antibodies. The control of the circuit's dynamics by a population of dimers with and without DNA binding activity is a new principle for the segmentation clock and may be relevant to other biological clocks and transcriptional regulatory networks. The segmented pattern of the vertebral column, one of the defining features of the vertebrate body, is established during embryogenesis. The embryo's segments, called somites, form sequentially and rhythmically from head to tail. The periodicity of somite formation is regulated by the segmentation clock, a genetic oscillator that ticks in the posterior-most embryonic tissue: for each tick of the clock, one new bilateral pair of segments is made. The period of the clock appears to determine the number and the length of segments, but what controls this periodicity? In this article, we have investigated the interactions of three transcription factors that form the core of the clock's regulatory circuit, and have measured how the period of segmentation changes when these factors are mutated alone or in combination. We find that these three factors contribute to a “dimer cloud” that contains all possible dimeric combinations; however, only two dimers in this cloud can bind DNA, which allows them to directly regulate the oscillatory gene expression that underpins the periodicity of segment formation. Nevertheless, a mathematical model of the clock's dynamics based on our experimental findings indicates that the non-DNA-binding dimers also influence the stability, and hence the function, of the two DNA-binding dimers controlling the segmentation clock's period. Such involvement of non-DNA-binding dimers is a novel regulatory principle for the segmentation clock, which might also be a general mechanism that operates in other biological clocks.
Collapse
|