1
|
Natalia V, Luis GJ, Sara CB, Alejandro RH, Alejandro RB, Fanny N. Acidification affects the early development of Colombian endemic fish Prochilodus magdalenae. Comp Biochem Physiol A Mol Integr Physiol 2025; 306:111875. [PMID: 40339979 DOI: 10.1016/j.cbpa.2025.111875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Revised: 04/29/2025] [Accepted: 05/05/2025] [Indexed: 05/10/2025]
Abstract
There is a significant knowledge gap regarding the acidification of freshwater ecosystems and its effects on biological systems. The bocachico (Prochilodus magdalenae), an endemic and migratory species vital to Colombia's inland fisheries, is currently classified as vulnerable. This study evaluated the impact of different pH levels (6.2, 7.2, and 7.6), previously recorded in the species' natural habitat, on its early development. Using an automated IKS Aquastar system, embryo incubation and larval maintenance were monitored from 0 to 5 days post-fertilization, assessing development, hatching, and survival at both organismal and transcriptional levels. Embryos exposed to pH 6.2 showed delayed development within 4 h post-fertilization, the lowest hatching rate (68.33 ± 3.13 %), and survival (23.88 ± 4.53 %), along with the highest incidence of malformations (37.80 ± 4.4 %). The pH 7.6 group also showed adverse effects, but to a lesser extent. Transcriptome analysis revealed a distinct molecular response in the pH 6.2 group, identifying 1214 differentially expressed genes related to early development, ossification, organ formation, sensory systems, and cellular processes. The findings indicate that pH fluctuations previously observed in the species' natural environment significantly affect P. magdalenae during early life stages, which raises serious concerns about the long-term viability of this endemic species and the sustainability of the artisanal fisheries that depend on it.
Collapse
Affiliation(s)
| | | | | | - Rodríguez Hector Alejandro
- Universidad Nacional de Colombia, Sede Medellín, Grupo Biotecnología Vegetal, Carrera 65 No 59A-110, Bloque 11, 1226, Colombia.
| | | | - Noisette Fanny
- Institut des sciences de la mer de Rimouski, Université du Québec à Rimouski, Rimouski G5L 3A1, Québec, 310, Allée des Ursulines, C.P. 3300, Canada.
| |
Collapse
|
2
|
Maksiutenko EM, Barbitoff YA, Nasykhova YA, Pachuliia OV, Lazareva TE, Bespalova ON, Glotov AS. The Landscape of Point Mutations in Human Protein Coding Genes Leading to Pregnancy Loss. Int J Mol Sci 2023; 24:17572. [PMID: 38139401 PMCID: PMC10743817 DOI: 10.3390/ijms242417572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 12/01/2023] [Accepted: 12/06/2023] [Indexed: 12/24/2023] Open
Abstract
Pregnancy loss is the most frequent complication of a pregnancy which is devastating for affected families and poses a significant challenge for the health care system. Genetic factors are known to play an important role in the etiology of pregnancy loss; however, despite advances in diagnostics, the causes remain unexplained in more than 30% of cases. In this review, we aggregated the results of the decade-long studies into the genetic risk factors of pregnancy loss (including miscarriage, termination for fetal abnormality, and recurrent pregnancy loss) in euploid pregnancies, focusing on the spectrum of point mutations associated with these conditions. We reviewed the evolution of molecular genetics methods used for the genetic research into causes of pregnancy loss, and collected information about 270 individual genetic variants in 196 unique genes reported as genetic cause of pregnancy loss. Among these, variants in 18 genes have been reported by multiple studies, and two or more variants were reported as causing pregnancy loss for 57 genes. Further analysis of the properties of all known pregnancy loss genes showed that they correspond to broadly expressed, highly evolutionary conserved genes involved in crucial cell differentiation and developmental processes and related signaling pathways. Given the features of known genes, we made an effort to construct a list of candidate genes, variants in which may be expected to contribute to pregnancy loss. We believe that our results may be useful for prediction of pregnancy loss risk in couples, as well as for further investigation and revealing genetic etiology of pregnancy loss.
Collapse
Affiliation(s)
| | - Yury A. Barbitoff
- Department of Genomic Medicine, D.O. Ott Research Institute of Obstetrics, Gynaecology and Reproductology, Mendeleevskaya Line 3, 199034 St. Petersburg, Russia; (E.M.M.); (Y.A.N.); (O.V.P.); (T.E.L.); (O.N.B.)
| | | | | | | | | | - Andrey S. Glotov
- Department of Genomic Medicine, D.O. Ott Research Institute of Obstetrics, Gynaecology and Reproductology, Mendeleevskaya Line 3, 199034 St. Petersburg, Russia; (E.M.M.); (Y.A.N.); (O.V.P.); (T.E.L.); (O.N.B.)
| |
Collapse
|
3
|
Robbins AE, Horst SG, Lewis VM, Stewart S, Stankunas K. The Fraser complex interconnects tissue layers to support basal epidermis and osteoblast integrated morphogenesis underlying fin skeletal patterning. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.08.548238. [PMID: 37461516 PMCID: PMC10350090 DOI: 10.1101/2023.07.08.548238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Fraser Syndrome is a rare, multisystemic autosomal recessive disorder characterized by disrupted epithelial-mesenchymal associations upon loss of Fraser Complex genes. Disease manifestation and affected organs are highly variable. Digit malformations such as syndactyly are common but of unclear developmental origins. We explored if zebrafish fraser extracellular matrix complex subunit 1 (fras1) mutants model Fraser Syndrome-associated appendicular skeleton patterning defects. Approximately 10% of fras1 mutants survive to adulthood, displaying striking and varied fin abnormalities, including endochondral bone fusions, ectopic cartilage, and disrupted caudal fin symmetry. The fins of surviving fras1 mutants frequently have fewer and unbranched bony rays. fras1 mutant fins regenerate to their original size but with exacerbated ray branching and fin symmetry defects. Single cell RNA-Seq analysis, in situ hybridizations, and antibody staining show specific Fraser complex expression in the basal epidermis during regenerative outgrowth. Fras1 and Fraser Complex component Frem2 accumulate along the basal side of distal-most basal epidermal cells. Greatly reduced and mislocalized Frem2 accompanies loss of Fras1 in fras1 mutants. The Sonic hedgehog signaling between distal basal epidermis and adjacent mesenchymal pre-osteoblasts that promotes ray branching persists upon Fraser Complex loss. However, fras1 mutant regenerating fins exhibit extensive sub-epidermal blistering associated with a disorganized basal epidermis and adjacent pre-osteoblasts. We propose Fraser Complex-supported tissue layer adhesion enables robust integrated tissue morphogenesis involving the basal epidermis and osteoblasts. Further, we establish zebrafish fin development and regeneration as an accessible model to explore mechanisms of Fraser Syndrome-associated digit defects and Fraser Complex function at epithelial-mesenchymal interfaces.
Collapse
|
4
|
Esho T, Kobbe B, Tufa S, Keene D, Paulsson M, Wagener R. The Fraser Complex Proteins (Frem1, Frem2, and Fras1) Can Form Anchoring Cords in the Absence of AMACO at the Dermal–Epidermal Junction of Mouse Skin. Int J Mol Sci 2023; 24:ijms24076782. [PMID: 37047755 PMCID: PMC10095167 DOI: 10.3390/ijms24076782] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 03/29/2023] [Accepted: 04/01/2023] [Indexed: 04/09/2023] Open
Abstract
AMACO (VWA2 protein), secreted by epithelial cells, is strongly expressed at basement membranes when budding or invagination occurs in embryos. In skin, AMACO associates with proteins of the Fraser complex, which form anchoring cords. These, during development, temporally stabilize the dermal–epidermal junction, pending the formation of collagen VII-containing anchoring fibrils. Fraser syndrome in humans results if any of the core members of the Fraser complex (Fras1, Frem1, Frem2) are mutated. Fraser syndrome is characterized by subepidermal blistering, cryptophthalmos, and syndactyly. In an attempt to determine AMACO function, we generated and characterized AMACO-deficient mice. In contrast to Fraser complex mutant mice, AMACO-deficient animals lack an obvious phenotype. The mutually interdependent basement membrane deposition of the Fraser complex proteins, and the formation of anchoring cords, are not affected. Furthermore, hair follicle development in newborn AMACO-deficient mice showed no gross aberration. Surprisingly, it appears that, while AMACO is a component of the anchoring cords, it is not essential for their formation or function.
Collapse
Affiliation(s)
- Temitope Esho
- Center for Biochemistry, Medical Faculty, University of Cologne, 50931 Cologne, Germany
| | - Birgit Kobbe
- Center for Biochemistry, Medical Faculty, University of Cologne, 50931 Cologne, Germany
| | - Sara Tufa
- Micro-Imaging Center, Shriners Children’s, Portland, OR 97239, USA
| | - Douglas Keene
- Micro-Imaging Center, Shriners Children’s, Portland, OR 97239, USA
| | - Mats Paulsson
- Center for Biochemistry, Medical Faculty, University of Cologne, 50931 Cologne, Germany
- Center for Molecular Medicine Cologne, 50931 Cologne, Germany
- Cologne Center for Musculoskeletal Biomechanics, 50931 Cologne, Germany
| | - Raimund Wagener
- Center for Biochemistry, Medical Faculty, University of Cologne, 50931 Cologne, Germany
| |
Collapse
|
5
|
Paudel S, Gjorcheska S, Bump P, Barske L. Patterning of cartilaginous condensations in the developing facial skeleton. Dev Biol 2022; 486:44-55. [DOI: 10.1016/j.ydbio.2022.03.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 03/14/2022] [Accepted: 03/23/2022] [Indexed: 11/30/2022]
|
6
|
Choe CP, Choi SY, Kee Y, Kim MJ, Kim SH, Lee Y, Park HC, Ro H. Transgenic fluorescent zebrafish lines that have revolutionized biomedical research. Lab Anim Res 2021; 37:26. [PMID: 34496973 PMCID: PMC8424172 DOI: 10.1186/s42826-021-00103-2] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 08/26/2021] [Indexed: 12/22/2022] Open
Abstract
Since its debut in the biomedical research fields in 1981, zebrafish have been used as a vertebrate model organism in more than 40,000 biomedical research studies. Especially useful are zebrafish lines expressing fluorescent proteins in a molecule, intracellular organelle, cell or tissue specific manner because they allow the visualization and tracking of molecules, intracellular organelles, cells or tissues of interest in real time and in vivo. In this review, we summarize representative transgenic fluorescent zebrafish lines that have revolutionized biomedical research on signal transduction, the craniofacial skeletal system, the hematopoietic system, the nervous system, the urogenital system, the digestive system and intracellular organelles.
Collapse
Affiliation(s)
- Chong Pyo Choe
- Division of Life Science, Gyeongsang National University, Jinju, 52828, Republic of Korea.,Division of Applied Life Science, Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, 52828, Republic of Korea
| | - Seok-Yong Choi
- Department of Biomedical Sciences, Chonnam National University Medical School, Hwasun, 58128, Republic of Korea
| | - Yun Kee
- Division of Biomedical Convergence, College of Biomedical Science, Kangwon National University, Chuncheon, 24341, Republic of Korea.
| | - Min Jung Kim
- Department of Biological Sciences, Sookmyung Women's University, Seoul, 04310, Republic of Korea
| | - Seok-Hyung Kim
- Department of Marine Life Sciences and Fish Vaccine Research Center, Jeju National University, Jeju, 63243, Republic of Korea
| | - Yoonsung Lee
- Center for Genomic Integrity, Institute for Basic Science (IBS), Ulsan, 44919, Republic of Korea
| | - Hae-Chul Park
- Department of Biomedical Sciences, College of Medicine, Korea University, Ansan, 15355, Republic of Korea
| | - Hyunju Ro
- Department of Biological Sciences, College of Bioscience and Biotechnology, Chungnam National University, Daejeon, 34134, Republic of Korea
| |
Collapse
|
7
|
Kimmel CB, Wind AL, Oliva W, Ahlquist SD, Walker C, Dowd J, Blanco-Sánchez B, Titus TA, Batzel P, Talbot JC, Postlethwait JH, Nichols JT. Transgene-mediated skeletal phenotypic variation in zebrafish. JOURNAL OF FISH BIOLOGY 2021; 98:956-970. [PMID: 32112658 PMCID: PMC7483860 DOI: 10.1111/jfb.14300] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 01/13/2020] [Accepted: 02/25/2020] [Indexed: 05/03/2023]
Abstract
When considering relationships between genotype and phenotype we frequently ignore the fact that the genome of a typical animal, notably including that of a fish and a human, harbours a huge amount of foreign DNA. Such DNA, in the form of transposable elements, can affect genome function in a major way, and transgene biology needs to be included in our understanding of the genome. Here we examine an unexpected phenotypic effect of the chromosomally integrated transgene fli1a-F-hsp70l:Gal4VP16 that serves as a model for transgene function generally. We examine larval fras1 mutant zebrafish (Danio rerio). Gal4VP16 is a potent transcriptional activator that is already well known for toxicity and mediating unusual transcriptional effects. In the presence of the transgene, phenotypes in the neural crest-derived craniofacial skeleton, notably fusions and shape changes associated with loss of function fras1 mutations, are made more severe, as we quantify by scoring phenotypic penetrance, the fraction of mutants expressing the trait. A very interesting feature is that the enhancements are highly specific for fras1 mutant phenotypes, occurring in the apparent absence of more widespread changes. Except for the features due to the fras1 mutation, the transgene-bearing larvae appear generally healthy and to be developing normally. The transgene behaves as a genetic partial dominant: a single copy is sufficient for the enhancements, yet, for some traits, two copies may exert a stronger effect. We made new strains bearing independent insertions of the fli1a-F-hsp70l:Gal4VP16 transgene in new locations in the genome, and observed increased severities of the same phenotypes as observed for the original insertion. This finding suggests that sequences within the transgene, for example Gal4VP16, are responsible for the enhancements, rather than the effect on neighbouring host sequences (such as an insertional mutation). The specificity and biological action underlying the traits are subjects of considerable interest for further investigation, as we discuss. Our findings show that work with transgenes needs to be undertaken with caution and attention to detail.
Collapse
Affiliation(s)
| | | | - Whitney Oliva
- Institute of Neuroscience, University of Oregon, Eugene, OR, USA
| | | | - Charline Walker
- Institute of Neuroscience, University of Oregon, Eugene, OR, USA
| | - John Dowd
- Institute of Neuroscience, University of Oregon, Eugene, OR, USA
| | - Bernardo Blanco-Sánchez
- Institute of Neuroscience, University of Oregon, Eugene, OR, USA
- Current address: Laboratory of Embryology and Genetics of Congenital Malformations, INSERM UMR 1163, Institut Imagine, 75015 Paris, France
| | - Tom A. Titus
- Institute of Neuroscience, University of Oregon, Eugene, OR, USA
| | - Peter Batzel
- Institute of Neuroscience, University of Oregon, Eugene, OR, USA
| | - Jared C. Talbot
- School of Biology and Ecology, University of Maine, Orono, ME 04469, USA
| | | | - James T. Nichols
- Department of Craniofacial Biology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| |
Collapse
|
8
|
Okada K, Takada S. The second pharyngeal pouch is generated by dynamic remodeling of endodermal epithelium in zebrafish. Development 2020; 147:dev194738. [PMID: 33158927 DOI: 10.1242/dev.194738] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 10/28/2020] [Indexed: 11/20/2022]
Abstract
Pharyngeal arches (PAs) are segmented by endodermal outpocketings called pharyngeal pouches (PPs). Anterior and posterior PAs appear to be generated by different mechanisms, but it is unclear how the anterior and posterior PAs combine. Here, we addressed this issue with precise live imaging of PP development and cell tracing of pharyngeal endoderm in zebrafish embryos. We found that two endodermal bulges are initially generated in the future second PP (PP2) region, which separates anterior and posterior PAs. Subsequently, epithelial remodeling causes contact between these two bulges, resulting in the formation of mature PP2 with a bilayered morphology. The rostral and caudal bulges develop into the operculum and gill, respectively. Development of the caudal PP2 and more posterior PPs is affected by impaired retinoic acid signaling or pax1a/b dysfunction, suggesting that the rostral front of posterior PA development corresponds to the caudal PP2. Our study clarifies an aspect of PA development that is essential for generation of a seamless array of PAs in zebrafish.
Collapse
Affiliation(s)
- Kazunori Okada
- Exploratory Research Center on Life and Living Systems, National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaijicho, Okazaki 444-8787, Japan
- National Institute for Basic Biology, National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji-cho, Okazaki 444-8787, Japan
| | - Shinji Takada
- Exploratory Research Center on Life and Living Systems, National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaijicho, Okazaki 444-8787, Japan
- National Institute for Basic Biology, National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji-cho, Okazaki 444-8787, Japan
- Department for Basic Biology, SOKENDAI (The Graduate University for Advanced Studies), 5-1 Higashiyama, Myodaiji-cho, Okazaki 444-8787, Japan
| |
Collapse
|
9
|
Bouaoud J, Olivetto M, Testelin S, Dakpe S, Bettoni J, Devauchelle B. Fraser syndrome: review of the literature illustrated by a historical adult case. Int J Oral Maxillofac Surg 2020; 49:1245-1253. [PMID: 31982235 DOI: 10.1016/j.ijom.2020.01.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 11/11/2019] [Accepted: 01/09/2020] [Indexed: 11/26/2022]
Abstract
Fraser syndrome (cryptophthalmos-syndactyly syndrome) is a rare autosomal recessive malformation disorder. The first description of the syndrome was reported by George Fraser in 1962. Diagnosis is based on the major and minor criteria established by van Haelst et al. in 2007. Unilateral or bilateral cryptophthalmos, syndactyly, unilateral renal agenesis, and genital anomalies are the most frequent anomalies. Several maxillofacial, oro-dental, ear-nose-throat, hormonal, and anorectal disorders are reported. Cardiac malformations and musculoskeletal anomalies are uncommon. The syndrome is related to mutations in three different genes (FRAS1, FREM2, and GRIP1) resulting in failure of the apoptosis program and disruption of the epithelial-mesenchymal interactions during embryonic development. Prenatal diagnosis is based on the detection of renal agenesis and laryngeal atresia, together with a family history. Most foetuses with severe anomalies are terminated or are stillborn. All patients or pregnancies with a diagnosis of Fraser syndrome should be referred to expert centres. A collaborative approach including anaesthetists, ENT specialists, maxillofacial surgeons, and geneticists is necessary for the management of this syndrome. In vivo and in vitro research models are available to better understand the underlying aetiology.
Collapse
Affiliation(s)
- J Bouaoud
- Department of Maxillofacial Surgery, University Hospital of Amiens, Amiens, France; Department of Maxillofacial Surgery and Stomatology, Pitié-Salpétrière Hospital, Pierre et Marie Curie University Paris 6, Sorbonne Paris Cite University, AP-HP, Paris, France.
| | - M Olivetto
- Department of Maxillofacial Surgery, University Hospital of Amiens, Amiens, France
| | - S Testelin
- Department of Maxillofacial Surgery, University Hospital of Amiens, Amiens, France
| | - S Dakpe
- Department of Maxillofacial Surgery, University Hospital of Amiens, Amiens, France
| | - J Bettoni
- Department of Maxillofacial Surgery, University Hospital of Amiens, Amiens, France
| | - B Devauchelle
- Department of Maxillofacial Surgery, University Hospital of Amiens, Amiens, France
| |
Collapse
|
10
|
ECM alterations in Fndc3a (Fibronectin Domain Containing Protein 3A) deficient zebrafish cause temporal fin development and regeneration defects. Sci Rep 2019; 9:13383. [PMID: 31527654 PMCID: PMC6746793 DOI: 10.1038/s41598-019-50055-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Accepted: 09/05/2019] [Indexed: 11/08/2022] Open
Abstract
Fin development and regeneration are complex biological processes that are highly relevant in teleost fish. They share genetic factors, signaling pathways and cellular properties to coordinate formation of regularly shaped extremities. Especially correct tissue structure defined by extracellular matrix (ECM) formation is essential. Gene expression and protein localization studies demonstrated expression of fndc3a (fibronectin domain containing protein 3a) in both developing and regenerating caudal fins of zebrafish (Danio rerio). We established a hypomorphic fndc3a mutant line (fndc3awue1/wue1) via CRISPR/Cas9, exhibiting phenotypic malformations and changed gene expression patterns during early stages of median fin fold development. These developmental effects are mostly temporary, but result in a fraction of adults with permanent tail fin deformations. In addition, caudal fin regeneration in adult fndc3awue1/wue1 mutants is hampered by interference with actinotrichia formation and epidermal cell organization. Investigation of the ECM implies that loss of epidermal tissue structure is a common cause for both of the observed defects. Our results thereby provide a molecular link between these developmental processes and foreshadow Fndc3a as a novel temporal regulator of epidermal cell properties during extremity development and regeneration in zebrafish.
Collapse
|
11
|
DeLaurier A. Evolution and development of the fish jaw skeleton. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2018; 8:e337. [PMID: 30378758 DOI: 10.1002/wdev.337] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Revised: 09/25/2018] [Accepted: 09/27/2018] [Indexed: 12/18/2022]
Abstract
The evolution of the jaw represents a key innovation in driving the diversification of vertebrate body plans and behavior. The pharyngeal apparatus originated as gill bars separated by slits in chordate ancestors to vertebrates. Later, with the acquisition of neural crest, pharyngeal arches gave rise to branchial basket cartilages in jawless vertebrates (agnathans), and later bone and cartilage of the jaw, jaw support, and gills of jawed vertebrates (gnathostomes). Major events in the evolution of jaw structure from agnathans to gnathostomes include axial regionalization of pharyngeal elements and formation of a jaw joint. Hox genes specify the anterior-posterior identity of arches, and edn1, dlx, hand2, Jag1b-Notch2 signaling, and Nr2f factors specify dorsal-ventral identity. The formation of a jaw joint, an important step in the transition from an un-jointed pharynx in agnathans to a hinged jaw in gnathostomes involves interaction between nkx3.2, hand2, and barx1 factors. Major events in jaw patterning between fishes and reptiles include changes to elements of the second pharyngeal arch, including a loss of opercular and branchiostegal ray bones and transformation of the hyomandibula into the stapes. Further changes occurred between reptiles and mammals, including the transformation of the articular and quadrate elements of the jaw joint into the malleus and incus of the middle ear. Fossils of transitional jaw phenotypes can be analyzed from a developmental perspective, and there exists potential to use genetic manipulation techniques in extant taxa to test hypotheses about the evolution of jaw patterning in ancient vertebrates. This article is categorized under: Comparative Development and Evolution > Evolutionary Novelties Early Embryonic Development > Development to the Basic Body Plan Comparative Development and Evolution > Body Plan Evolution.
Collapse
Affiliation(s)
- April DeLaurier
- Department of Biology and Geology, University of South Carolina Aiken, Aiken, South Carolina
| |
Collapse
|
12
|
Dworkin S, Boglev Y, Owens H, Goldie SJ. The Role of Sonic Hedgehog in Craniofacial Patterning, Morphogenesis and Cranial Neural Crest Survival. J Dev Biol 2016; 4:jdb4030024. [PMID: 29615588 PMCID: PMC5831778 DOI: 10.3390/jdb4030024] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Revised: 07/20/2016] [Accepted: 07/26/2016] [Indexed: 01/01/2023] Open
Abstract
Craniofacial defects (CFD) are a significant healthcare problem worldwide. Understanding both the morphogenetic movements which underpin normal facial development, as well as the molecular factors which regulate these processes, forms the cornerstone of future diagnostic, and ultimately, preventative therapies. The soluble morphogen Sonic hedgehog (Shh), a vertebrate orthologue of Drosophila hedgehog, is a key signalling factor in the regulation of craniofacial skeleton development in vertebrates, operating within numerous tissue types in the craniofacial primordia to spatiotemporally regulate the formation of the face and jaws. This review will provide an overview of normal craniofacial skeleton development, and focus specifically on the known roles of Shh in regulating the development and progression of the first pharyngeal arch, which in turn gives rise to both the upper jaw (maxilla) and lower jaw (mandible).
Collapse
Affiliation(s)
- Sebastian Dworkin
- Department of Medicine, Monash University Central Clinical School, Prahran, Victoria 3004, Australia.
- Department of Physiology, Anatomy and Microbiology, La Trobe University, Melbourne, Victoria 3086, Australia.
| | - Yeliz Boglev
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria 3086, Australia.
| | - Harley Owens
- Department of Medicine, Monash University Central Clinical School, Prahran, Victoria 3004, Australia.
| | - Stephen J Goldie
- Department of Medicine, Monash University Central Clinical School, Prahran, Victoria 3004, Australia.
- Department of Surgery, Monash University Central Clinical School, Prahran, Victoria 3004, Australia.
| |
Collapse
|
13
|
Talbot JC, Nichols JT, Yan YL, Leonard IF, BreMiller RA, Amacher SL, Postlethwait JH, Kimmel CB. Pharyngeal morphogenesis requires fras1-itga8-dependent epithelial-mesenchymal interaction. Dev Biol 2016; 416:136-148. [PMID: 27265864 PMCID: PMC4967372 DOI: 10.1016/j.ydbio.2016.05.035] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Accepted: 05/31/2016] [Indexed: 01/08/2023]
Abstract
Both Fras1 and Itga8 connect mesenchymal cells to epithelia by way of an extracellular 'Fraser protein complex' that functions in signaling and adhesion; these proteins are vital to the development of several vertebrate organs. We previously found that zebrafish fras1 mutants have craniofacial defects, specifically, shortened symplectic cartilages and cartilage fusions that spare joint elements. During a forward mutagenesis screen, we identified a new zebrafish mutation, b1161, that we show here disrupts itga8, as confirmed using CRISPR-generated itga8 alleles. fras1 and itga8 single mutants and double mutants have similar craniofacial phenotypes, a result expected if loss of either gene disrupts function of the Fraser protein complex. Unlike fras1 mutants or other Fraser-related mutants, itga8 mutants do not show blistered tail fins. Thus, the function of the Fraser complex differs in the craniofacial skeleton and the tail fin. Focusing on the face, we find that itga8 mutants consistently show defective outpocketing of a late-forming portion of the first pharyngeal pouch, and variably express skeletal defects, matching previously characterized fras1 mutant phenotypes. In itga8 and fras1 mutants, skeletal severity varies markedly between sides, indicating that both mutants have increased developmental instability. Whereas fras1 is expressed in epithelia, we show that itga8 is expressed complementarily in facial mesenchyme. Paired with the observed phenotypic similarity, this expression indicates that the genes function in epithelial-mesenchymal interactions. Similar interactions between Fras1 and Itga8 have previously been found in mouse kidney, where these genes both regulate Nephronectin (Npnt) protein abundance. We find that zebrafish facial tissues express both npnt and the Fraser gene fibrillin2b (fbn2b), but their transcript levels do not depend on fras1 or itga8 function. Using a revertible fras1 allele, we find that the critical window for fras1 function in the craniofacial skeleton is between 1.5 and 3 days post fertilization, which coincides with the onset of fras1-dependent and itga8-dependent morphogenesis. We propose a model wherein Fras1 and Itga8 interact during late pharyngeal pouch morphogenesis to sculpt pharyngeal arches through epithelial-mesenchymal interactions, thereby stabilizing the developing craniofacial skeleton.
Collapse
Affiliation(s)
- Jared Coffin Talbot
- Institute of Neuroscience, 1254 University of Oregon, Eugene, OR 97403, USA; Departments of Molecular Genetics and Biological Chemistry and Pharmacology, The Ohio State University, Columbus, OH 43210, USA.
| | - James T Nichols
- Institute of Neuroscience, 1254 University of Oregon, Eugene, OR 97403, USA
| | - Yi-Lin Yan
- Institute of Neuroscience, 1254 University of Oregon, Eugene, OR 97403, USA
| | - Isaac F Leonard
- Institute of Neuroscience, 1254 University of Oregon, Eugene, OR 97403, USA
| | - Ruth A BreMiller
- Institute of Neuroscience, 1254 University of Oregon, Eugene, OR 97403, USA
| | - Sharon L Amacher
- Departments of Molecular Genetics and Biological Chemistry and Pharmacology, The Ohio State University, Columbus, OH 43210, USA
| | | | - Charles B Kimmel
- Institute of Neuroscience, 1254 University of Oregon, Eugene, OR 97403, USA.
| |
Collapse
|
14
|
Miyashita T, Diogo R. Evolution of Serial Patterns in the Vertebrate Pharyngeal Apparatus and Paired Appendages via Assimilation of Dissimilar Units. Front Ecol Evol 2016. [DOI: 10.3389/fevo.2016.00071] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
|
15
|
Westcot SE, Hatzold J, Urban MD, Richetti SK, Skuster KJ, Harm RM, Lopez Cervera R, Umemoto N, McNulty MS, Clark KJ, Hammerschmidt M, Ekker SC. Protein-Trap Insertional Mutagenesis Uncovers New Genes Involved in Zebrafish Skin Development, Including a Neuregulin 2a-Based ErbB Signaling Pathway Required during Median Fin Fold Morphogenesis. PLoS One 2015; 10:e0130688. [PMID: 26110643 PMCID: PMC4482254 DOI: 10.1371/journal.pone.0130688] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2014] [Accepted: 05/24/2015] [Indexed: 01/13/2023] Open
Abstract
Skin disorders are widespread, but available treatments are limited. A more comprehensive understanding of skin development mechanisms will drive identification of new treatment targets and modalities. Here we report the Zebrafish Integument Project (ZIP), an expression-driven platform for identifying new skin genes and phenotypes in the vertebrate model Danio rerio (zebrafish). In vivo selection for skin-specific expression of gene-break transposon (GBT) mutant lines identified eleven new, revertible GBT alleles of genes involved in skin development. Eight genes—fras1, grip1, hmcn1, msxc, col4a4, ahnak, capn12, and nrg2a—had been described in an integumentary context to varying degrees, while arhgef25b, fkbp10b, and megf6a emerged as novel skin genes. Embryos homozygous for a GBT insertion within neuregulin 2a (nrg2a) revealed a novel requirement for a Neuregulin 2a (Nrg2a) – ErbB2/3 – AKT signaling pathway governing the apicobasal organization of a subset of epidermal cells during median fin fold (MFF) morphogenesis. In nrg2a mutant larvae, the basal keratinocytes within the apical MFF, known as ridge cells, displayed reduced pAKT levels as well as reduced apical domains and exaggerated basolateral domains. Those defects compromised proper ridge cell elongation into a flattened epithelial morphology, resulting in thickened MFF edges. Pharmacological inhibition verified that Nrg2a signals through the ErbB receptor tyrosine kinase network. Moreover, knockdown of the epithelial polarity regulator and tumor suppressor lgl2 ameliorated the nrg2a mutant phenotype. Identifying Lgl2 as an antagonist of Nrg2a – ErbB signaling revealed a significantly earlier role for Lgl2 during epidermal morphogenesis than has been described to date. Furthermore, our findings demonstrated that successive, coordinated ridge cell shape changes drive apical MFF development, making MFF ridge cells a valuable model for investigating how the coordinated regulation of cell polarity and cell shape changes serves as a crucial mechanism of epithelial morphogenesis.
Collapse
Affiliation(s)
- Stephanie E. Westcot
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, Minnesota, United States of America
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Julia Hatzold
- Institute for Developmental Biology, University of Cologne, Biocenter, Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | - Mark D. Urban
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Stefânia K. Richetti
- Institute for Developmental Biology, University of Cologne, Biocenter, Cologne, Germany
| | - Kimberly J. Skuster
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Rhianna M. Harm
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Roberto Lopez Cervera
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Noriko Umemoto
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Melissa S. McNulty
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Karl J. Clark
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Matthias Hammerschmidt
- Institute for Developmental Biology, University of Cologne, Biocenter, Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
- Cologne Cluster of Excellence in Cellular Stress Responses in Aging-associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Stephen C. Ekker
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, Minnesota, United States of America
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota, United States of America
- * E-mail:
| |
Collapse
|
16
|
Analyzing Fluctuating Asymmetry with Geometric Morphometrics: Concepts, Methods, and Applications. Symmetry (Basel) 2015. [DOI: 10.3390/sym7020843] [Citation(s) in RCA: 226] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
17
|
Miyashita T. Fishing for jaws in early vertebrate evolution: a new hypothesis of mandibular confinement. Biol Rev Camb Philos Soc 2015; 91:611-57. [DOI: 10.1111/brv.12187] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2014] [Revised: 03/18/2015] [Accepted: 03/19/2015] [Indexed: 12/21/2022]
Affiliation(s)
- Tetsuto Miyashita
- Department of Biological Sciences; University of Alberta; Edmonton Alberta T6G 2E9 Canada
| |
Collapse
|
18
|
Choe CP, Crump JG. Dynamic epithelia of the developing vertebrate face. Curr Opin Genet Dev 2015; 32:66-72. [PMID: 25748249 DOI: 10.1016/j.gde.2015.02.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Revised: 01/29/2015] [Accepted: 02/01/2015] [Indexed: 10/23/2022]
Abstract
A segmental series of endoderm-derived pouch and ectoderm-derived cleft epithelia act as signaling centers in the developing face. Their precise morphogenesis is therefore essential for proper patterning of the vertebrate head. Intercellular adhesion and polarity are highly dynamic within developing facial epithelial cells, with signaling from the adjacent mesenchyme controlling both epithelial character and directional migration. Endodermal and ectodermal epithelia fuse to form the primary mouth and gill slits, which involves basement membrane dissolution, cell intercalations, and apoptosis, as well as undergo further morphogenesis to generate the middle ear cavity and glands of the neck. Recent studies of facial epithelia are revealing both core programs of epithelial morphogenesis and insights into the coordinated assembly of the vertebrate head.
Collapse
Affiliation(s)
- Chong Pyo Choe
- Broad California Institute of Regenerative Medicine Center, Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - J Gage Crump
- Broad California Institute of Regenerative Medicine Center, Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA.
| |
Collapse
|
19
|
Dworkin S, Simkin J, Darido C, Partridge DD, Georgy SR, Caddy J, Wilanowski T, Lieschke GJ, Doggett K, Heath JK, Jane SM. Grainyhead-like 3 regulation of endothelin-1 in the pharyngeal endoderm is critical for growth and development of the craniofacial skeleton. Mech Dev 2014; 133:77-90. [PMID: 24915580 DOI: 10.1016/j.mod.2014.05.005] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2014] [Accepted: 05/25/2014] [Indexed: 10/25/2022]
Abstract
Craniofacial development is a highly conserved process that requires complex interactions between neural crest cells (NCCs) and pharyngeal tissues derived from all three germ layers. Signals emanating from the pharyngeal endoderm drive differentiation of NCCs into craniofacial cartilage, and disruption of this process underpins several human craniofacial defects (CFD). Here, we demonstrate that morpholino (MO)-mediated knockdown in zebrafish of the highly conserved transcription factor grainyhead-like 3 (grhl3), which is selectively expressed in the pharyngeal endoderm, leads to severe hypoplasia of the lower jaw cartilages. Phylogenetic analysis of conserved grhl-binding sites in gene regulatory regions identified endothelin-1 (edn1) as a putative direct grhl3 target gene, and this was confirmed by chromatin precipitation (ChIP) assays in zebrafish embryos. Injection of sub-phenotypic concentrations of MOs targeting both grhl3 and edn1 induced jaw abnormalities, and injection of edn1 mRNA into grhl3-morphants rescued both pharyngeal expression of the downstream effectors of edn1, and jaw cartilage formation. This study sheds new light on the role of endodermal endothelin-1 in vertebrate jaw development, and highlights potential new genetic defects that could underpin human CFD.
Collapse
Affiliation(s)
- Sebastian Dworkin
- Department of Medicine, Monash University Central Clinical School, Prahran, VIC 3181, Australia.
| | - Johanna Simkin
- Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC 3050, Australia
| | - Charbel Darido
- Department of Medicine, Monash University Central Clinical School, Prahran, VIC 3181, Australia
| | - Darren D Partridge
- Department of Medicine, Monash University Central Clinical School, Prahran, VIC 3181, Australia
| | - Smitha R Georgy
- Department of Medicine, Monash University Central Clinical School, Prahran, VIC 3181, Australia
| | - Jacinta Caddy
- Bone Marrow Research Laboratories, Royal Melbourne Hospital, Parkville, VIC 3050, Australia
| | - Tomasz Wilanowski
- Bone Marrow Research Laboratories, Royal Melbourne Hospital, Parkville, VIC 3050, Australia; Laboratory of Signal Transduction, Nencki Institute of Experimental Biology, 02-093 Warsaw, Poland
| | - Graham J Lieschke
- Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC 3050, Australia; Australian Regenerative Medicine Institute, Monash University, Clayton, VIC 3800, Australia
| | - Karen Doggett
- Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC 3050, Australia
| | - Joan K Heath
- Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC 3050, Australia; Colon Molecular and Cell Biology Laboratory, Ludwig Institute for Cancer Research, Melbourne-Parkville Branch, Parkville, VIC 3050, Australia
| | - Stephen M Jane
- Department of Medicine, Monash University Central Clinical School, Prahran, VIC 3181, Australia; Alfred Hospital, Prahran, VIC 3181, Australia
| |
Collapse
|
20
|
Carss KJ, Hillman SC, Parthiban V, McMullan DJ, Maher ER, Kilby MD, Hurles ME. Exome sequencing improves genetic diagnosis of structural fetal abnormalities revealed by ultrasound. Hum Mol Genet 2014; 23:3269-77. [PMID: 24476948 PMCID: PMC4030780 DOI: 10.1093/hmg/ddu038] [Citation(s) in RCA: 134] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The genetic etiology of non-aneuploid fetal structural abnormalities is typically investigated by karyotyping and array-based detection of microscopically detectable rearrangements, and submicroscopic copy-number variants (CNVs), which collectively yield a pathogenic finding in up to 10% of cases. We propose that exome sequencing may substantially increase the identification of underlying etiologies. We performed exome sequencing on a cohort of 30 non-aneuploid fetuses and neonates (along with their parents) with diverse structural abnormalities first identified by prenatal ultrasound. We identified candidate pathogenic variants with a range of inheritance models, and evaluated these in the context of detailed phenotypic information. We identified 35 de novo single-nucleotide variants (SNVs), small indels, deletions or duplications, of which three (accounting for 10% of the cohort) are highly likely to be causative. These are de novo missense variants in FGFR3 and COL2A1, and a de novo 16.8 kb deletion that includes most of OFD1. In five further cases (17%) we identified de novo or inherited recessive or X-linked variants in plausible candidate genes, which require additional validation to determine pathogenicity. Our diagnostic yield of 10% is comparable to, and supplementary to, the diagnostic yield of existing microarray testing for large chromosomal rearrangements and targeted CNV detection. The de novo nature of these events could enable couples to be counseled as to their low recurrence risk. This study outlines the way for a substantial improvement in the diagnostic yield of prenatal genetic abnormalities through the application of next-generation sequencing.
Collapse
Affiliation(s)
- Keren J Carss
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridgeshire CB10 1SA, UK
| | - Sarah C Hillman
- School of Clinical and Experimental Medicine (Birmingham Centre for Women's and Children's Health), College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Vijaya Parthiban
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridgeshire CB10 1SA, UK
| | - Dominic J McMullan
- West Midlands Regional Genetics Laboratory, Birmingham Women's NHS Trust, Edgbaston, Birmingham B15 2TG, UK
| | - Eamonn R Maher
- School of Clinical and Experimental Medicine (Birmingham Centre for Women's and Children's Health), College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Mark D Kilby
- School of Clinical and Experimental Medicine (Birmingham Centre for Women's and Children's Health), College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK Fetal Medicine Centre, Birmingham Women's Foundation Trust, Edgbaston, Birmingham B15 2TG, UK
| | - Matthew E Hurles
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridgeshire CB10 1SA, UK
| |
Collapse
|
21
|
DeLaurier A, Huycke TR, Nichols JT, Swartz ME, Larsen A, Walker C, Dowd J, Pan L, Moens CB, Kimmel CB. Role of mef2ca in developmental buffering of the zebrafish larval hyoid dermal skeleton. Dev Biol 2014; 385:189-99. [PMID: 24269905 PMCID: PMC3892954 DOI: 10.1016/j.ydbio.2013.11.016] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2013] [Revised: 11/10/2013] [Accepted: 11/12/2013] [Indexed: 11/28/2022]
Abstract
Phenotypic robustness requires a process of developmental buffering that is largely not understood, but which can be disrupted by mutations. Here we show that in mef2ca(b1086) loss of function mutant embryos and early larvae, development of craniofacial hyoid bones, the opercle (Op) and branchiostegal ray (BR), becomes remarkably unstable; the large magnitude of the instability serves as a positive attribute to learn about features of this developmental buffering. The OpBR mutant phenotype variably includes bone expansion and fusion, Op duplication, and BR homeosis. Formation of a novel bone strut, or a bone bridge connecting the Op and BR together occurs frequently. We find no evidence that the phenotypic stability in the wild type is provided by redundancy between mef2ca and its co-ortholog mef2cb, or that it is related to the selector (homeotic) gene function of mef2ca. Changes in dorsal-ventral patterning of the hyoid arch also might not contribute to phenotypic instability in mutants. However, subsequent development of the bone lineage itself, including osteoblast differentiation and morphogenetic outgrowth, shows marked variation. Hence, steps along the developmental trajectory appear differentially sensitive to the loss of buffering, providing focus for the future study.
Collapse
Affiliation(s)
- April DeLaurier
- Institute of Neuroscience, 1254 University of Oregon, Eugene, OR 97403-1254, USA
| | - Tyler R Huycke
- Institute of Neuroscience, 1254 University of Oregon, Eugene, OR 97403-1254, USA
| | - James T Nichols
- Institute of Neuroscience, 1254 University of Oregon, Eugene, OR 97403-1254, USA
| | - Mary E Swartz
- Institute of Neuroscience, 1254 University of Oregon, Eugene, OR 97403-1254, USA
| | - Ashlin Larsen
- Institute of Neuroscience, 1254 University of Oregon, Eugene, OR 97403-1254, USA
| | - Charline Walker
- Institute of Neuroscience, 1254 University of Oregon, Eugene, OR 97403-1254, USA
| | - John Dowd
- Institute of Neuroscience, 1254 University of Oregon, Eugene, OR 97403-1254, USA
| | - Luyuan Pan
- Division of Basic Science, Fred Hutchinson Cancer Center, 1100 Fairview Ave. N., PO Box 19024, Seattle, WA 98109, USA
| | - Cecilia B Moens
- Division of Basic Science, Fred Hutchinson Cancer Center, 1100 Fairview Ave. N., PO Box 19024, Seattle, WA 98109, USA
| | - Charles B Kimmel
- Institute of Neuroscience, 1254 University of Oregon, Eugene, OR 97403-1254, USA.
| |
Collapse
|
22
|
Richardson RJ, Gebauer JM, Zhang JL, Kobbe B, Keene DR, Karlsen KR, Richetti S, Wohl AP, Sengle G, Neiss WF, Paulsson M, Hammerschmidt M, Wagener R. AMACO is a component of the basement membrane-associated Fraser complex. J Invest Dermatol 2013; 134:1313-1322. [PMID: 24232570 DOI: 10.1038/jid.2013.492] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2013] [Revised: 09/26/2013] [Accepted: 10/13/2013] [Indexed: 12/17/2022]
Abstract
Fraser syndrome (FS) is a phenotypically variable, autosomal recessive disorder characterized by cryptophthalmus, cutaneous syndactyly, and other malformations resulting from mutations in FRAS1, FREM2, and GRIP1. Transient embryonic epidermal blistering causes the characteristic defects of the disorder. Fras1, Frem1, and Frem2 form the extracellular Fraser complex, which is believed to stabilize the basement membrane. However, several cases of FS could not be attributed to mutations in FRAS1, FREM2, or GRIP1, and FS displays high clinical variability, suggesting that there is an additional genetic, possibly modifying contribution to this disorder. An extracellular matrix protein containing VWA-like domains related to those in matrilins and collagens (AMACO), encoded by the VWA2 gene, has a very similar tissue distribution to the Fraser complex proteins in both mouse and zebrafish. Here, we show that AMACO deposition is lost in Fras1-deficient zebrafish and mice and that Fras1 and AMACO interact directly via their chondroitin sulfate proteoglycan (CSPG) and P2 domains. Knockdown of vwa2, which alone causes no phenotype, enhances the phenotype of hypomorphic Fras1 mutant zebrafish. Together, our data suggest that AMACO represents a member of the Fraser complex.
Collapse
Affiliation(s)
- Rebecca J Richardson
- Institute of Developmental Biology, University of Cologne, Cologne, Germany; Center for Molecular Medicine Cologne, Medical Faculty, University of Cologne, Cologne, Germany
| | - Jan M Gebauer
- Center for Biochemistry, University of Cologne, Cologne, Germany
| | - Jin-Li Zhang
- Institute of Developmental Biology, University of Cologne, Cologne, Germany; Center for Molecular Medicine Cologne, Medical Faculty, University of Cologne, Cologne, Germany
| | - Birgit Kobbe
- Center for Biochemistry, University of Cologne, Cologne, Germany
| | - Douglas R Keene
- Microimaging Center, Shriners Hospital for Children, Portland, Oregon, USA
| | | | - Stefânia Richetti
- Institute of Developmental Biology, University of Cologne, Cologne, Germany
| | - Alexander P Wohl
- Center for Biochemistry, University of Cologne, Cologne, Germany
| | - Gerhard Sengle
- Center for Biochemistry, University of Cologne, Cologne, Germany
| | - Wolfram F Neiss
- Department of Anatomy I, Medical Faculty, University of Cologne, Cologne, Germany
| | - Mats Paulsson
- Center for Molecular Medicine Cologne, Medical Faculty, University of Cologne, Cologne, Germany; Center for Biochemistry, University of Cologne, Cologne, Germany; Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases, University of Cologne, Cologne, Germany
| | - Matthias Hammerschmidt
- Institute of Developmental Biology, University of Cologne, Cologne, Germany; Center for Molecular Medicine Cologne, Medical Faculty, University of Cologne, Cologne, Germany; Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases, University of Cologne, Cologne, Germany.
| | - Raimund Wagener
- Center for Molecular Medicine Cologne, Medical Faculty, University of Cologne, Cologne, Germany; Center for Biochemistry, University of Cologne, Cologne, Germany.
| |
Collapse
|
23
|
Nichols JT, Pan L, Moens CB, Kimmel CB. barx1 represses joints and promotes cartilage in the craniofacial skeleton. Development 2013; 140:2765-75. [PMID: 23698351 DOI: 10.1242/dev.090639] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The evolution of joints, which afford skeletal mobility, was instrumental in vertebrate success. Here, we explore the molecular genetics and cell biology that govern jaw joint development. Genetic manipulation experiments in zebrafish demonstrate that functional loss, or gain, of the homeobox-containing gene barx1 produces gain, or loss, of joints, respectively. Ectopic joints in barx1 mutant animals are present in every pharyngeal segment, and are associated with disrupted attachment of bone, muscles and teeth. We find that ectopic joints develop at the expense of cartilage. Time-lapse experiments suggest that barx1 controls the skeletal precursor cell choice between differentiating into cartilage versus joint cells. We discovered that barx1 functions in this choice, in part, by regulating the transcription factor hand2. We further show that hand2 feeds back to negatively regulate barx1 expression. We consider the possibility that changes in barx1 function in early vertebrates were among the key innovations fostering the evolution of skeletal joints.
Collapse
Affiliation(s)
- James T Nichols
- Institute of Neuroscience, University of Oregon, Eugene, OR 97403-1254, USA.
| | | | | | | |
Collapse
|