1
|
Mendelsohn AI, Nikoobakht L, Bikoff JB, Costa RM. Segregated basal ganglia output pathways correspond to genetically divergent neuronal subclasses. Cell Rep 2025; 44:115454. [PMID: 40146776 DOI: 10.1016/j.celrep.2025.115454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 02/28/2025] [Accepted: 02/28/2025] [Indexed: 03/29/2025] Open
Abstract
The basal ganglia control multiple sensorimotor behaviors through anatomically segregated and topographically organized subcircuits with outputs to specific downstream circuits. However, it is unclear how the anatomical organization of basal ganglia output circuits relates to the molecular diversity of cell types. Here, we demonstrate that the major output nucleus of the basal ganglia, the substantia nigra pars reticulata (SNr), is comprised of transcriptomically distinct subclasses that reflect its distinct progenitor lineages. We show that these subclasses are topographically organized within the SNr, project to distinct targets in the midbrain and hindbrain, and receive inputs from different striatal subregions. Finally, we show that these mouse subclasses are also identifiable in human SNr neurons, suggesting that the genetic organization of the SNr is evolutionarily conserved. These findings provide a unifying logic for how the developmental specification of diverse SNr neurons relates to the anatomical organization of basal ganglia circuits controlling specialized downstream brain regions.
Collapse
Affiliation(s)
- Alana I Mendelsohn
- Department of Neuroscience, Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, USA.
| | - Laudan Nikoobakht
- Department of Neuroscience, Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, USA
| | - Jay B Bikoff
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Rui M Costa
- Department of Neuroscience, Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, USA; Allen Institute for Brain Science, Allen Institute, Seattle, WA, USA; Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA.
| |
Collapse
|
2
|
Düdükcü Ö, Raj DDA, van de Haar LL, Grossouw LM, Linders LE, Garritsen O, Adolfs Y, van Kronenburg NCH, Broekhoven MH, Kapteijns THW, Meye FJ, Pasterkamp RJ. Molecular diversity and migration of GABAergic neurons in the developing ventral midbrain. iScience 2024; 27:111239. [PMID: 39569362 PMCID: PMC11576407 DOI: 10.1016/j.isci.2024.111239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 08/30/2024] [Accepted: 10/21/2024] [Indexed: 11/22/2024] Open
Abstract
Dopaminergic neurons in the ventral midbrain (mDA) are surrounded by GABAergic neurons. The full extent of GABAergic neuron subtypes occupying this region and the mechanisms that underlie their development and function are largely unknown. Therefore, we performed single-cell RNA sequencing (scRNA-seq) of fluorescence-activated cell sorting (FACS)-isolated GABAergic neurons in the developing mouse ventral midbrain. Several distinct GABAergic neuron subtypes were identified based on transcriptomic profiles and spatially assigned to the ventral midbrain using in situ hybridization and immunohistochemistry for specific markers. A subset of GABAergic clusters that co-expressed mDA markers was studied in more detail and showed distinctive molecular, functional, and wiring properties. Finally, migration of different GABAergic neuron subtypes required netrin-1 from different cellular sources acting via distinct receptor mechanisms. Overall, our work provides insight into the heterogeneity and spatial organization of GABAergic neurons in the developing ventral midbrain and begins to dissect the mechanisms that underlie their development.
Collapse
Affiliation(s)
- Özge Düdükcü
- Department of Translational Neuroscience, University Medical Center Utrecht Brain Center, Utrecht University, 3584 CG Utrecht, the Netherlands
| | - Divya D A Raj
- Department of Translational Neuroscience, University Medical Center Utrecht Brain Center, Utrecht University, 3584 CG Utrecht, the Netherlands
| | - Lieke L van de Haar
- Department of Translational Neuroscience, University Medical Center Utrecht Brain Center, Utrecht University, 3584 CG Utrecht, the Netherlands
| | - Laurens M Grossouw
- Department of Translational Neuroscience, University Medical Center Utrecht Brain Center, Utrecht University, 3584 CG Utrecht, the Netherlands
| | - Louisa E Linders
- Department of Translational Neuroscience, University Medical Center Utrecht Brain Center, Utrecht University, 3584 CG Utrecht, the Netherlands
| | - Oxana Garritsen
- Department of Translational Neuroscience, University Medical Center Utrecht Brain Center, Utrecht University, 3584 CG Utrecht, the Netherlands
| | - Youri Adolfs
- Department of Translational Neuroscience, University Medical Center Utrecht Brain Center, Utrecht University, 3584 CG Utrecht, the Netherlands
| | - Nicky C H van Kronenburg
- Department of Translational Neuroscience, University Medical Center Utrecht Brain Center, Utrecht University, 3584 CG Utrecht, the Netherlands
| | - Mark H Broekhoven
- Department of Translational Neuroscience, University Medical Center Utrecht Brain Center, Utrecht University, 3584 CG Utrecht, the Netherlands
| | - Troy H W Kapteijns
- Department of Translational Neuroscience, University Medical Center Utrecht Brain Center, Utrecht University, 3584 CG Utrecht, the Netherlands
| | - Frank J Meye
- Department of Translational Neuroscience, University Medical Center Utrecht Brain Center, Utrecht University, 3584 CG Utrecht, the Netherlands
| | - R Jeroen Pasterkamp
- Department of Translational Neuroscience, University Medical Center Utrecht Brain Center, Utrecht University, 3584 CG Utrecht, the Netherlands
| |
Collapse
|
3
|
Mendelsohn AI, Nikoobakht L, Bikoff JB, Costa RM. Segregated basal ganglia output pathways correspond to genetically divergent neuronal subclasses. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.28.610136. [PMID: 39257765 PMCID: PMC11383992 DOI: 10.1101/2024.08.28.610136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
The basal ganglia control multiple sensorimotor behaviors though anatomically segregated and topographically organized subcircuits with outputs to specific downstream circuits. However, it is unclear how the anatomical organization of basal ganglia output circuits relates to the molecular diversity of cell types. Here, we demonstrate that the major output nucleus of the basal ganglia, the substantia nigra pars reticulata (SNr) is comprised of transcriptomically distinct subclasses that reflect its distinct progenitor lineages. We show that these subclasses are topographically organized within SNr, project to distinct targets in the midbrain and hindbrain, and receive inputs from different striatal subregions. Finally, we show that these mouse subclasses are also identifiable in human SNr neurons, suggesting that the genetic organization of SNr is evolutionarily conserved. These findings provide a unifying logic for how the developmental specification of diverse SNr neurons relates to the anatomical organization of basal ganglia circuits controlling specialized downstream brain regions.
Collapse
Affiliation(s)
- Alana I. Mendelsohn
- Department of Neuroscience, Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, USA
| | - Laudan Nikoobakht
- Department of Neuroscience, Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, USA
| | - Jay B. Bikoff
- Department of Developmental Neurobiology, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Rui M. Costa
- Department of Neuroscience, Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, USA
- Allen Institute for Brain Science, Allen Institute, Seattle, WA, USA
- Lead contact
| |
Collapse
|
4
|
Cheung G, Pauler FM, Koppensteiner P, Krausgruber T, Streicher C, Schrammel M, Gutmann-Özgen N, Ivec AE, Bock C, Shigemoto R, Hippenmeyer S. Multipotent progenitors instruct ontogeny of the superior colliculus. Neuron 2024; 112:230-246.e11. [PMID: 38096816 DOI: 10.1016/j.neuron.2023.11.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 10/06/2023] [Accepted: 11/10/2023] [Indexed: 01/21/2024]
Abstract
The superior colliculus (SC) in the mammalian midbrain is essential for multisensory integration and is composed of a rich diversity of excitatory and inhibitory neurons and glia. However, the developmental principles directing the generation of SC cell-type diversity are not understood. Here, we pursued systematic cell lineage tracing in silico and in vivo, preserving full spatial information, using genetic mosaic analysis with double markers (MADM)-based clonal analysis with single-cell sequencing (MADM-CloneSeq). The analysis of clonally related cell lineages revealed that radial glial progenitors (RGPs) in SC are exceptionally multipotent. Individual resident RGPs have the capacity to produce all excitatory and inhibitory SC neuron types, even at the stage of terminal division. While individual clonal units show no pre-defined cellular composition, the establishment of appropriate relative proportions of distinct neuronal types occurs in a PTEN-dependent manner. Collectively, our findings provide an inaugural framework at the single-RGP/-cell level of the mammalian SC ontogeny.
Collapse
Affiliation(s)
- Giselle Cheung
- Institute of Science and Technology Austria (ISTA), Am Campus 1, 3400 Klosterneuburg, Austria
| | - Florian M Pauler
- Institute of Science and Technology Austria (ISTA), Am Campus 1, 3400 Klosterneuburg, Austria
| | - Peter Koppensteiner
- Institute of Science and Technology Austria (ISTA), Am Campus 1, 3400 Klosterneuburg, Austria
| | - Thomas Krausgruber
- CeMM Research Center for Molecular Medicine, Austrian Academy of Sciences; 1090 Vienna, Austria; Medical University of Vienna, Institute of Artificial Intelligence, Center for Medical Data Science, 1090 Vienna, Austria
| | - Carmen Streicher
- Institute of Science and Technology Austria (ISTA), Am Campus 1, 3400 Klosterneuburg, Austria
| | - Martin Schrammel
- Institute of Science and Technology Austria (ISTA), Am Campus 1, 3400 Klosterneuburg, Austria
| | - Natalie Gutmann-Özgen
- Institute of Science and Technology Austria (ISTA), Am Campus 1, 3400 Klosterneuburg, Austria
| | - Alexis E Ivec
- Institute of Science and Technology Austria (ISTA), Am Campus 1, 3400 Klosterneuburg, Austria
| | - Christoph Bock
- CeMM Research Center for Molecular Medicine, Austrian Academy of Sciences; 1090 Vienna, Austria; Medical University of Vienna, Institute of Artificial Intelligence, Center for Medical Data Science, 1090 Vienna, Austria
| | - Ryuichi Shigemoto
- Institute of Science and Technology Austria (ISTA), Am Campus 1, 3400 Klosterneuburg, Austria
| | - Simon Hippenmeyer
- Institute of Science and Technology Austria (ISTA), Am Campus 1, 3400 Klosterneuburg, Austria.
| |
Collapse
|
5
|
Partanen J, Achim K. Neurons gating behavior—developmental, molecular and functional features of neurons in the Substantia Nigra pars reticulata. Front Neurosci 2022; 16:976209. [PMID: 36148148 PMCID: PMC9485944 DOI: 10.3389/fnins.2022.976209] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 08/15/2022] [Indexed: 11/13/2022] Open
Abstract
The Substantia Nigra pars reticulata (SNpr) is the major information output site of the basal ganglia network and instrumental for the activation and adjustment of movement, regulation of the behavioral state and response to reward. Due to both overlapping and unique input and output connections, the SNpr might also have signal integration capacity and contribute to action selection. How the SNpr regulates these multiple functions remains incompletely understood. The SNpr is located in the ventral midbrain and is composed primarily of inhibitory GABAergic projection neurons that are heterogeneous in their properties. In addition, the SNpr contains smaller populations of other neurons, including glutamatergic neurons. Here, we discuss regionalization of the SNpr, in particular the division of the SNpr neurons to anterior (aSNpr) and posterior (pSNpr) subtypes, which display differences in many of their features. We hypothesize that unique developmental and molecular characteristics of the SNpr neuron subtypes correlate with both region-specific connections and notable functional specializations of the SNpr. Variation in both the genetic control of the SNpr neuron development as well as signals regulating cell migration and axon guidance may contribute to the functional diversity of the SNpr neurons. Therefore, insights into the various aspects of differentiation of the SNpr neurons can increase our understanding of fundamental brain functions and their defects in neurological and psychiatric disorders, including movement and mood disorders, as well as epilepsy.
Collapse
|
6
|
Guajardo HM, Hatini PG, Commons KG. The mouse dorsal raphe nucleus as understood by temporal Fgf8 lineage analysis. J Comp Neurol 2020; 529:2042-2054. [PMID: 33219573 DOI: 10.1002/cne.25071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 10/23/2020] [Accepted: 11/10/2020] [Indexed: 11/09/2022]
Abstract
Fgf8 is expressed transiently during embryogenesis at the midbrain-hindbrain border, an area that gives rise to a variety of neuronal populations including the dorsal raphe (DR) nucleus. Using an inducible Fgf8-cre allele, we identified the populations of neurons defined by Fgf8 lineage at different stages of development. When Fgf8-cre expression is induced at embryonic day 7.5 (T-E7.5), in the adult the entire DR and part of the median raphe (MnR) have Fgf8 lineage. When induced at later timepoints, Fgf8 lineage progressively ebbs from the caudal and ventral aspect of this domain, particularly on the midline. Successively excluded from Fgf8- lineage at T-E9.5 are serotonin neurons in the MnR and caudal-intrafascicular DR, followed at T-E11.5 by ventral-middle and caudal-dorsal DR. The last to show Fgf8 lineage are those serotonin neurons in the lateral wings and those at the rostral-dorsal pole of DR nucleus. Thus, the temporal succession of Fgf8 lineage correlates with organizational features of serotonin neurons in these nuclei.
Collapse
Affiliation(s)
- Herminio M Guajardo
- Department of Anesthesiology, Perioperative and Pain Medicine, Boston Children's Hospital and Department of Anaesthesia, Harvard Medical School, Boston, Massachusetts, USA
| | - Paul G Hatini
- Department of Anesthesiology, Perioperative and Pain Medicine, Boston Children's Hospital and Department of Anaesthesia, Harvard Medical School, Boston, Massachusetts, USA
| | - Kathryn G Commons
- Department of Anesthesiology, Perioperative and Pain Medicine, Boston Children's Hospital and Department of Anaesthesia, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
7
|
Awatramani R, Lévesque M. "The One Who Guides" Nigral Neuron Migration. Neuron 2020; 107:595-596. [PMID: 32818472 DOI: 10.1016/j.neuron.2020.07.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In this issue, Brignani, Raj, et al. show that Netrin-1 from distinct sources controls neuronal migrations into the substantia nigra. Remarkably, one source of Netrin -1 is forebrain axons traversing the midbrain, and this is required for proper GABAergic neuronal migration into the substantia nigra pars reticulata.
Collapse
Affiliation(s)
| | - Martin Lévesque
- Department of Psychiatry and Neurosciences, Faculty of Medicine, Université Laval, CERVO Brain Research Centre, 2601 Chemin de la Canardiere, Quebec, QC, Canada
| |
Collapse
|
8
|
Inactivation of the GATA Cofactor ZFPM1 Results in Abnormal Development of Dorsal Raphe Serotonergic Neuron Subtypes and Increased Anxiety-Like Behavior. J Neurosci 2020; 40:8669-8682. [PMID: 33046550 DOI: 10.1523/jneurosci.2252-19.2020] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 09/17/2020] [Accepted: 09/25/2020] [Indexed: 12/14/2022] Open
Abstract
Serotonergic neurons in the dorsal raphe (DR) nucleus are associated with several psychiatric disorders including depression and anxiety disorders, which often have a neurodevelopmental component. During embryonic development, GATA transcription factors GATA2 and GATA3 operate as serotonergic neuron fate selectors and regulate the differentiation of serotonergic neuron subtypes of DR. Here, we analyzed the requirement of GATA cofactor ZFPM1 in the development of serotonergic neurons using Zfpm1 conditional mouse mutants. Our results demonstrated that, unlike the GATA factors, ZFPM1 is not essential for the early differentiation of serotonergic precursors in the embryonic rhombomere 1. In contrast, in perinatal and adult male and female Zfpm1 mutants, a lateral subpopulation of DR neurons (ventrolateral part of the DR) was lost, whereas the number of serotonergic neurons in a medial subpopulation (dorsal region of the medial DR) had increased. Additionally, adult male and female Zfpm1 mutants had reduced serotonin concentration in rostral brain areas and displayed increased anxiety-like behavior. Interestingly, female Zfpm1 mutant mice showed elevated contextual fear memory that was abolished with chronic fluoxetine treatment. Altogether, these results demonstrate the importance of ZFPM1 for the development of DR serotonergic neuron subtypes involved in mood regulation. It also suggests that the neuronal fate selector function of GATAs is modulated by their cofactors to refine the differentiation of neuronal subtypes.SIGNIFICANCE STATEMENT Predisposition to anxiety disorders has both a neurodevelopmental and a genetic basis. One of the brainstem nuclei involved in the regulation of anxiety is the dorsal raphe, which contains different subtypes of serotonergic neurons. We show that inactivation of a transcriptional cofactor ZFPM1 in mice results in a developmental failure of laterally located dorsal raphe serotonergic neurons and changes in serotonergic innervation of rostral brain regions. This leads to elevated anxiety-like behavior and contextual fear memory, alleviated by chronic fluoxetine treatment. Our work contributes to understanding the neurodevelopmental mechanisms that may be disturbed in the anxiety disorder.
Collapse
|
9
|
Molecular Fingerprint and Developmental Regulation of the Tegmental GABAergic and Glutamatergic Neurons Derived from the Anterior Hindbrain. Cell Rep 2020; 33:108268. [PMID: 33053343 DOI: 10.1016/j.celrep.2020.108268] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Revised: 06/09/2020] [Accepted: 09/22/2020] [Indexed: 12/18/2022] Open
Abstract
Tegmental nuclei in the ventral midbrain and anterior hindbrain control motivated behavior, mood, memory, and movement. These nuclei contain inhibitory GABAergic and excitatory glutamatergic neurons, whose molecular diversity and development remain largely unraveled. Many tegmental neurons originate in the embryonic ventral rhombomere 1 (r1), where GABAergic fate is regulated by the transcription factor (TF) Tal1. We used single-cell mRNA sequencing of the mouse ventral r1 to characterize the Tal1-dependent and independent neuronal precursors. We describe gene expression dynamics during bifurcation of the GABAergic and glutamatergic lineages and show how active Notch signaling promotes GABAergic fate selection in post-mitotic precursors. We identify GABAergic precursor subtypes that give rise to distinct tegmental nuclei and demonstrate that Sox14 and Zfpm2, two TFs downstream of Tal1, are necessary for the differentiation of specific tegmental GABAergic neurons. Our results provide a framework for understanding the development of cellular diversity in the tegmental nuclei.
Collapse
|
10
|
Nagaeva E, Zubarev I, Bengtsson Gonzales C, Forss M, Nikouei K, de Miguel E, Elsilä L, Linden AM, Hjerling-Leffler J, Augustine GJ, Korpi ER. Heterogeneous somatostatin-expressing neuron population in mouse ventral tegmental area. eLife 2020; 9:59328. [PMID: 32749220 PMCID: PMC7440918 DOI: 10.7554/elife.59328] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 08/01/2020] [Indexed: 12/17/2022] Open
Abstract
The cellular architecture of the ventral tegmental area (VTA), the main hub of the brain reward system, remains only partially characterized. To extend the characterization to inhibitory neurons, we have identified three distinct subtypes of somatostatin (Sst)-expressing neurons in the mouse VTA. These neurons differ in their electrophysiological and morphological properties, anatomical localization, as well as mRNA expression profiles. Importantly, similar to cortical Sst-containing interneurons, most VTA Sst neurons express GABAergic inhibitory markers, but some of them also express glutamatergic excitatory markers and a subpopulation even express dopaminergic markers. Furthermore, only some of the proposed marker genes for cortical Sst neurons were expressed in the VTA Sst neurons. Physiologically, one of the VTA Sst neuron subtypes locally inhibited neighboring dopamine neurons. Overall, our results demonstrate the remarkable complexity and heterogeneity of VTA Sst neurons and suggest that these cells are multifunctional players in the midbrain reward circuitry.
Collapse
Affiliation(s)
- Elina Nagaeva
- Department of Pharmacology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Ivan Zubarev
- Department of Neuroscience and Biomedical Engineering, Aalto University, Espoo, Finland
| | | | - Mikko Forss
- Department of Pharmacology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Kasra Nikouei
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Elena de Miguel
- Department of Pharmacology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Lauri Elsilä
- Department of Pharmacology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Anni-Maija Linden
- Department of Pharmacology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Jens Hjerling-Leffler
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - George J Augustine
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - Esa R Korpi
- Department of Pharmacology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| |
Collapse
|
11
|
Nagaeva E, Zubarev I, Bengtsson Gonzales C, Forss M, Nikouei K, de Miguel E, Elsilä L, Linden AM, Hjerling-Leffler J, Augustine GJ, Korpi ER. Heterogeneous somatostatin-expressing neuron population in mouse ventral tegmental area. eLife 2020. [PMID: 32749220 DOI: 10.1038/gene] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The cellular architecture of the ventral tegmental area (VTA), the main hub of the brain reward system, remains only partially characterized. To extend the characterization to inhibitory neurons, we have identified three distinct subtypes of somatostatin (Sst)-expressing neurons in the mouse VTA. These neurons differ in their electrophysiological and morphological properties, anatomical localization, as well as mRNA expression profiles. Importantly, similar to cortical Sst-containing interneurons, most VTA Sst neurons express GABAergic inhibitory markers, but some of them also express glutamatergic excitatory markers and a subpopulation even express dopaminergic markers. Furthermore, only some of the proposed marker genes for cortical Sst neurons were expressed in the VTA Sst neurons. Physiologically, one of the VTA Sst neuron subtypes locally inhibited neighboring dopamine neurons. Overall, our results demonstrate the remarkable complexity and heterogeneity of VTA Sst neurons and suggest that these cells are multifunctional players in the midbrain reward circuitry.
Collapse
Affiliation(s)
- Elina Nagaeva
- Department of Pharmacology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Ivan Zubarev
- Department of Neuroscience and Biomedical Engineering, Aalto University, Espoo, Finland
| | | | - Mikko Forss
- Department of Pharmacology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Kasra Nikouei
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Elena de Miguel
- Department of Pharmacology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Lauri Elsilä
- Department of Pharmacology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Anni-Maija Linden
- Department of Pharmacology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Jens Hjerling-Leffler
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - George J Augustine
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - Esa R Korpi
- Department of Pharmacology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| |
Collapse
|
12
|
Raina A, Mahajani S, Bähr M, Kügler S. Neuronal Trans-differentiation by Transcription Factors Ascl1 and Nurr1: Induction of a Dopaminergic Neurotransmitter Phenotype in Cortical GABAergic Neurons. Mol Neurobiol 2019; 57:249-260. [PMID: 31317490 DOI: 10.1007/s12035-019-01701-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Accepted: 07/09/2019] [Indexed: 12/17/2022]
Abstract
Neurons with a desired neurotransmitter phenotype can be differentiated from induced pluripotent stem cells or from somatic cells only through tedious protocols with relatively low yield. Readily available cortical neurons isolated from embryonic rat brain, which have already undergone a complete neuronal differentiation process, might serve as alternative template source. These cultures consist of 85% glutamatergic and 15% GABAergic neurons, and we attempted to trans-differentiate them into dopaminergic neurons. Transcription factors Nurr1, Lmx1A and Pitx3, essential determinants of a dopaminergic cell fate during CNS development, were not sufficient to induce tyrosine hydroxylase expression in a significant number of cells. Combining Nurr1 with the generic neuronal differentiator and re-programming factor Ascl1, however, resulted in generation of neurons which express dopaminergic markers TH, AADC, VMAT2 and DAT. Only neurons of GABAergic phenotype could be trans-differentiated towards a dopaminergic neurotransmitter phenotype, while for glutamatergic neurons, this process proved to be neurotoxic. Intriguingly, GABAergic neurons isolated from embryonal midbrain could not be trans-differentiated into dopaminergic neurons by Ascl1 and Nurr1. Thus, in principle, post-mitotic embryonal neurons can serve as templates for neurons with a desired neurotransmitter phenotype. However, neurotransmitter phenotype plasticity critically depends on the differentiation history of the template neurons, which can result in relatively low yields of dopaminergic neurons.
Collapse
Affiliation(s)
- Anupam Raina
- Department of Neurology, University Medicine Göttingen, Waldweg 33, 37073, Göttingen, Germany.,Center Nanoscale Microscopy and Physiology of the Brain (CNMPB), Göttingen, Germany
| | - Sameehan Mahajani
- Department of Neurology, University Medicine Göttingen, Waldweg 33, 37073, Göttingen, Germany.,Center Nanoscale Microscopy and Physiology of the Brain (CNMPB), Göttingen, Germany
| | - Mathias Bähr
- Department of Neurology, University Medicine Göttingen, Waldweg 33, 37073, Göttingen, Germany.,Center Nanoscale Microscopy and Physiology of the Brain (CNMPB), Göttingen, Germany
| | - Sebastian Kügler
- Department of Neurology, University Medicine Göttingen, Waldweg 33, 37073, Göttingen, Germany. .,Center Nanoscale Microscopy and Physiology of the Brain (CNMPB), Göttingen, Germany.
| |
Collapse
|
13
|
Guo Q, Li JYH. Defining developmental diversification of diencephalon neurons through single cell gene expression profiling. Development 2019; 146:dev174284. [PMID: 30872278 PMCID: PMC6602344 DOI: 10.1242/dev.174284] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Accepted: 03/07/2019] [Indexed: 12/31/2022]
Abstract
The embryonic diencephalon forms integration centers and relay stations in the forebrain. Anecdotal expression studies suggest that the diencephalon contains multiple developmental compartments and subdivisions. Here, we utilized single cell RNA sequencing to profile transcriptomes of dissociated cells from the diencephalon of E12.5 mouse embryos. We identified the divergence of different progenitors, intermediate progenitors, and emerging neurons. By mapping the identified cell groups to their spatial origins, we characterized the molecular features of cell types and cell states arising from various diencephalic domains. Furthermore, we reconstructed the developmental trajectory of distinct cell lineages, and thereby identified the genetic cascades and gene regulatory networks underlying the progression of the cell cycle, neurogenesis and cellular diversification. The analysis provides new insights into the molecular mechanisms underlying the amplification of intermediate progenitor cells in the thalamus. The single cell-resolved trajectories not only confirm a close relationship between the rostral thalamus and prethalamus, but also uncover an unexpected close relationship between the caudal thalamus, epithalamus and rostral pretectum. Our data provide a useful resource for systematic studies of cell heterogeneity and differentiation kinetics within the diencephalon.
Collapse
Affiliation(s)
- Qiuxia Guo
- Department of Genetics and Genome Sciences, University of Connecticut School of Medicine, 263 Farmington Avenue, Farmington, CT 06030-6403, USA
| | - James Y H Li
- Department of Genetics and Genome Sciences, University of Connecticut School of Medicine, 263 Farmington Avenue, Farmington, CT 06030-6403, USA
- Institute for Systems Genomics, University of Connecticut, 400 Farmington Avenue, Farmington, CT 06030-6403, USA
| |
Collapse
|
14
|
Arimura N, Dewa KI, Okada M, Yanagawa Y, Taya SI, Hoshino M. Comprehensive and cell-type-based characterization of the dorsal midbrain during development. Genes Cells 2018; 24:41-59. [PMID: 30422377 DOI: 10.1111/gtc.12656] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Revised: 10/15/2018] [Accepted: 10/24/2018] [Indexed: 01/09/2023]
Abstract
The layer structure has been intensively characterized in the developing neocortex and cerebellum based on the various molecular markers. However, as to the developing dorsal midbrain, comprehensive analyses have not been intensely carried out, and thus, the name as well as the definition of each layer is not commonly shared. Here, we redefined the three layers, such as the ventricular zone, intermediate zone and marginal zone, based on various markers for proliferation and differentiation in embryonic dorsal midbrain. Biphasic Ki67 expression defines the classical VZ, in which there is clear separation of the mitotic and interphase zones. Next, we mapped the distribution of immature neurons to the defined layers, based on markers for glutamatergic and GABAergic lineage. Interestingly, Tbr2 and Neurog2 were expressed in the postmitotic neurons. We also report that active (phosphorylated) JNK is a useful marker to demarcate layers during the embryonic stage. Finally, we validated the final arrival layers of the migratory glutamatergic and GABAergic neurons. These results form a foundation for analyses of brain development, especially in the proliferation and migration of excitatory and inhibitory neurons in the dorsal midbrain.
Collapse
Affiliation(s)
- Nariko Arimura
- Department of Biochemistry and Cellular Biology, National Institute of Neuroscience, NCNP, Tokyo, Japan
| | - Ken-Ichi Dewa
- Department of Biochemistry and Cellular Biology, National Institute of Neuroscience, NCNP, Tokyo, Japan.,Department of Pharmacology, Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, Yamanashi, Japan
| | - Mako Okada
- Department of Biochemistry and Cellular Biology, National Institute of Neuroscience, NCNP, Tokyo, Japan.,Department of Pharmacology, Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, Yamanashi, Japan
| | - Yuchio Yanagawa
- Department of Genetic and Behavioral Neuroscience, Gunma University Graduate School of Medicine, Gunma, Japan
| | - Shin-Ichiro Taya
- Department of Biochemistry and Cellular Biology, National Institute of Neuroscience, NCNP, Tokyo, Japan
| | - Mikio Hoshino
- Department of Biochemistry and Cellular Biology, National Institute of Neuroscience, NCNP, Tokyo, Japan
| |
Collapse
|
15
|
Lee B, Lee M, Song S, Loi LD, Lam DT, Yoon J, Baek K, Curtis DJ, Jeong Y. Specification of neurotransmitter identity by Tal1 in thalamic nuclei. Dev Dyn 2017; 246:749-758. [PMID: 28685891 DOI: 10.1002/dvdy.24546] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Revised: 06/20/2017] [Accepted: 07/04/2017] [Indexed: 11/06/2022] Open
Abstract
BACKGROUND The neurons contributing to thalamic nuclei are derived from at least two distinct progenitor domains: the caudal (cTH) and rostral (rTH) populations of thalamic progenitors. These neural compartments exhibit unique neurogenic patterns, and the molecular mechanisms underlying the acquisition of neurotransmitter identity remain largely unclear. RESULTS T-cell acute lymphocytic leukemia protein 1 (Tal1) was expressed in the early postmitotic cells in the rTH domain, and its expression was maintained in mature thalamic neurons in the ventrolateral geniculate nucleus (vLG) and the intergeniculate leaflet (IGL). To investigate a role of Tal1 in thalamic development, we used a newly generated mouse line driving Cre-mediated recombination in the rTH domain. Conditional deletion of Tal1 did not alter regional patterning in the developing diencephalon. However, in the absence of Tal1, rTH-derived thalamic neurons failed to maintain their postmitotic neuronal features, including neurotransmitter profile. Tal1-deficient thalamic neurons lost their GABAergic markers such as Gad1, Npy, and Penk in IGL/vLG. These defects may be associated at least in part with down-regulation of Nkx2.2, which is known as a critical regulator of rTH-derived GABAergic neurons. CONCLUSIONS Our results demonstrate that Tal1 plays an essential role in regulating neurotransmitter phenotype in the developing thalamic nuclei. Developmental Dynamics 246:749-758, 2017. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Bumwhee Lee
- Department of Genetic Engineering, College of Life Sciences and Graduate School of Biotechnology, Kyung Hee University, Yongin-si, Republic of Korea
| | - Myungsin Lee
- Department of Genetic Engineering, College of Life Sciences and Graduate School of Biotechnology, Kyung Hee University, Yongin-si, Republic of Korea
| | - Somang Song
- Department of Genetic Engineering, College of Life Sciences and Graduate School of Biotechnology, Kyung Hee University, Yongin-si, Republic of Korea
| | - Linh Duc Loi
- Department of Genetic Engineering, College of Life Sciences and Graduate School of Biotechnology, Kyung Hee University, Yongin-si, Republic of Korea
| | - Duc Tri Lam
- Department of Genetic Engineering, College of Life Sciences and Graduate School of Biotechnology, Kyung Hee University, Yongin-si, Republic of Korea
| | - Jaeseung Yoon
- Department of Genetic Engineering, College of Life Sciences and Graduate School of Biotechnology, Kyung Hee University, Yongin-si, Republic of Korea
| | - Kwanghee Baek
- Department of Genetic Engineering, College of Life Sciences and Graduate School of Biotechnology, Kyung Hee University, Yongin-si, Republic of Korea
| | - David J Curtis
- Australian Centre for Blood Diseases, Central Clinical School, Monash University, Melbourne, Australia
| | - Yongsu Jeong
- Department of Genetic Engineering, College of Life Sciences and Graduate School of Biotechnology, Kyung Hee University, Yongin-si, Republic of Korea
| |
Collapse
|
16
|
Watson C, Shimogori T, Puelles L. Mouse Fgf8-Cre-LacZ lineage analysis defines the territory of the postnatal mammalian isthmus. J Comp Neurol 2017; 525:2782-2799. [PMID: 28510270 DOI: 10.1002/cne.24242] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Revised: 04/19/2017] [Accepted: 05/05/2017] [Indexed: 12/17/2022]
Abstract
The isthmus is recognized as the most rostral segment of the hindbrain in non-mammalian vertebrates. In mammalian embryos, transient Fgf8 expression defines the developing isthmic region, lying between the midbrain and the first rhombomere, but there has been uncertainty about the existence of a distinct isthmic segment in postnatal mammals. We attempted to find if the region of early embryonic Fgf8 expression (which is considered to involve the entire extent of the prospective isthmus initially) might help to identify the boundaries of the isthmus in postnatal animals. By creating an Fgf8-Cre-LacZ lineage in mice, we were able to show that Fgf8-Cre reporter expression in postnatal mice is present in the same nuclei that characterize the isthmic region in birds. The 'signature' isthmic structures in birds include the trochlear nucleus, the dorsal raphe nucleus, the microcellular tegmental nuclei, the pedunculotegmental nucleus, the vermis of the cerebellum, rostral parts of the parabrachial complex and locus coeruleus, and the caudal parts of the substantia nigra and VTA. We found that all of these structures were labeled with the Fgf8-Cre reporter in the mouse brain, and we conclude that the isthmus is a distinct segment of the mammalian brain lying caudal to the midbrain and rostral to rhombomere 1 of the hindbrain.
Collapse
Affiliation(s)
| | | | - Luis Puelles
- Faculty of Medicine and IMIB-Arrixaca, University of Murcia, Murcia, Spain
| |
Collapse
|
17
|
Haugas M, Tikker L, Achim K, Salminen M, Partanen J. Gata2 and Gata3 regulate the differentiation of serotonergic and glutamatergic neuron subtypes of the dorsal raphe. Development 2016; 143:4495-4508. [PMID: 27789623 DOI: 10.1242/dev.136614] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Accepted: 10/18/2016] [Indexed: 12/18/2022]
Abstract
Serotonergic and glutamatergic neurons of the dorsal raphe regulate many brain functions and are important for mental health. Their functional diversity is based on molecularly distinct subtypes; however, the development of this heterogeneity is poorly understood. We show that the ventral neuroepithelium of mouse anterior hindbrain is divided into specific subdomains giving rise to serotonergic neurons as well as other types of neurons and glia. The newly born serotonergic precursors are segregated into distinct subpopulations expressing vesicular glutamate transporter 3 (Vglut3) or serotonin transporter (Sert). These populations differ in their requirements for transcription factors Gata2 and Gata3, which are activated in the post-mitotic precursors. Gata2 operates upstream of Gata3 as a cell fate selector in both populations, whereas Gata3 is important for the differentiation of the Sert+ precursors and for the serotonergic identity of the Vglut3+ precursors. Similar to the serotonergic neurons, the Vglut3-expressing glutamatergic neurons, located in the central dorsal raphe, are derived from neural progenitors in the ventral hindbrain and express Pet1 Furthermore, both Gata2 and Gata3 are redundantly required for their differentiation. Our study demonstrates lineage relationships of the dorsal raphe neurons and suggests that functionally significant heterogeneity of these neurons is established early during their differentiation.
Collapse
Affiliation(s)
- Maarja Haugas
- Department of Biosciences, P.O. Box 56, Viikinkaari 9, FIN00014-University of Helsinki, Helsinki, Finland
| | - Laura Tikker
- Department of Biosciences, P.O. Box 56, Viikinkaari 9, FIN00014-University of Helsinki, Helsinki, Finland
| | - Kaia Achim
- EMBL Developmental Biology Unit, Meyerhofstrasse 1, Heidelberg 69117, Germany
| | - Marjo Salminen
- Department of Veterinary Biosciences, P.O. Box 66, Agnes Sjobergin katu 2, FIN00014-University of Helsinki, Helsinki, Finland
| | - Juha Partanen
- Department of Biosciences, P.O. Box 56, Viikinkaari 9, FIN00014-University of Helsinki, Helsinki, Finland
| |
Collapse
|
18
|
Bariselli S, Glangetas C, Tzanoulinou S, Bellone C. Ventral tegmental area subcircuits process rewarding and aversive experiences. J Neurochem 2016; 139:1071-1080. [DOI: 10.1111/jnc.13779] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Revised: 08/15/2016] [Accepted: 08/15/2016] [Indexed: 01/07/2023]
Affiliation(s)
- Sebastiano Bariselli
- Department of Fundamental Neuroscience; University of Lausanne; Lausanne Switzerland
| | - Christelle Glangetas
- Department of Fundamental Neuroscience; University of Lausanne; Lausanne Switzerland
| | - Stamatina Tzanoulinou
- Department of Fundamental Neuroscience; University of Lausanne; Lausanne Switzerland
| | - Camilla Bellone
- Department of Fundamental Neuroscience; University of Lausanne; Lausanne Switzerland
| |
Collapse
|
19
|
Madrigal MP, Moreno-Bravo JA, Martínez-López JE, Martínez S, Puelles E. Mesencephalic origin of the rostral Substantia nigra pars reticulata. Brain Struct Funct 2016; 221:1403-12. [PMID: 25579066 PMCID: PMC4819793 DOI: 10.1007/s00429-014-0980-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2014] [Accepted: 12/24/2014] [Indexed: 12/03/2022]
Abstract
In embryonic development, the neurons that will constitute a heterogeneous nucleus may have distinct origins. The different components of these populations reach their final location by radial and tangential migrations. The Substantia nigra pars reticulata (SNR) presents a high level of neuronal heterogeneity. It is composed by GABAergic neurons located in the mes-diencephalic basal plate. These inhibitory neurons usually display tangential migrations and it has been already described that the caudal SNR is colonized tangentially from rhombomere 1. Our aim is to unveil the origin of the rostral SNR. We have localized a Nkx6.2 positive ventricular domain located in the alar midbrain. Nkx6.2 derivatives' fate map analysis showed mainly a rostral colonization of this GABAergic neuronal population. We confirmed the mesencephalic origin by the expression of Six3. Both transcription factors are sequentially expressed along the differentiation of these neurons. We demonstrated the origin of the rostral SNR; our data allowed us to postulate that this nucleus is composed by two neuronal populations distributed in opposite gradients with different origins, one from rhombomere 1, caudal to rostral, and the other from the midbrain, rostral to caudal. We can conclude that the SNR has multiple origins and follows complex mechanisms of specification and migration. Our results support vital information for the study of genetic modifications in these extremely complex processes that result in devastating behavioral alterations and predisposition to psychiatric diseases. Understanding the development, molecular identity and functional characteristics of these diverse neuronal populations might lead to better diagnosis and treatment of several forms of neurological and psychiatric disease.
Collapse
Affiliation(s)
- M Pilar Madrigal
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernández-CSIC, 03550, Sant Joan d'Alacant, Alicante, Spain
| | - Juan A Moreno-Bravo
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernández-CSIC, 03550, Sant Joan d'Alacant, Alicante, Spain
| | - Jesús E Martínez-López
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernández-CSIC, 03550, Sant Joan d'Alacant, Alicante, Spain
| | - Salvador Martínez
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernández-CSIC, 03550, Sant Joan d'Alacant, Alicante, Spain
- Instituto Murciano de Investigación Biomédica IMIB-Arrixaca, E30120, Murcia, Spain
| | - Eduardo Puelles
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernández-CSIC, 03550, Sant Joan d'Alacant, Alicante, Spain.
| |
Collapse
|
20
|
Kawaguchi D, Sahara S, Zembrzycki A, O'Leary DDM. Generation and analysis of an improved Foxg1-IRES-Cre driver mouse line. Dev Biol 2016; 412:139-147. [PMID: 26896590 DOI: 10.1016/j.ydbio.2016.02.011] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Revised: 02/10/2016] [Accepted: 02/10/2016] [Indexed: 11/28/2022]
Abstract
Foxg1 expression is highly restricted to the telencephalon and other head structures in the early embryo. This expression pattern has been exploited to generate conditional knockout mice, based on a widely used Foxg1-Cre knock-in line (Foxg1(tm1(cre)Skm)), in which the Foxg1 coding region was replaced by the Cre gene. The utility of this line, however, is severely hampered for two reasons: (1) Foxg1-Cre mice display ectopic and unpredictable Cre activity, and (2) Foxg1 haploinsufficiency can produce neurodevelopmental phenotypes. To overcome these issues, we have generated a new Foxg1-IRES-Cre knock-in mouse line, in which an IRES-Cre cassette was inserted in the 3'UTR of Foxg1 locus, thus preserving the endogenous Foxg1 coding region and un-translated gene regulatory sequences in the 3'UTR, including recently discovered microRNA target sites. We further demonstrate that the new Foxg1-IRES-Cre line displays consistent Cre activity patterns that recapitulated the endogenous Foxg1 expression at embryonic and postnatal stages without causing defects in cortical development. We conclude that the new Foxg1-IRES-Cre mouse line is a unique and advanced tool for studying genes involved in the development of the telencephalon and other Foxg1-expressing regions starting from early embryonic stages.
Collapse
Affiliation(s)
- Daichi Kawaguchi
- Molecular Neurobiology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA 92037, USA.
| | - Setsuko Sahara
- Molecular Neurobiology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Andreas Zembrzycki
- Molecular Neurobiology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Dennis D M O'Leary
- Molecular Neurobiology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| |
Collapse
|
21
|
Morello F, Partanen J. Diversity and development of local inhibitory and excitatory neurons associated with dopaminergic nuclei. FEBS Lett 2015; 589:3693-701. [PMID: 26453835 DOI: 10.1016/j.febslet.2015.10.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Revised: 09/28/2015] [Accepted: 10/01/2015] [Indexed: 12/18/2022]
Abstract
For regulation of voluntary movement and motivation the midbrain dopaminergic system receives input from a variety of brain regions. Often this input is mediated by local non-dopaminergic neurons within or closely associated with the dopaminergic nuclei. In addition to the dopaminergic neurons, some of these non-dopaminergic neurons also send functionally important output from the ventral midbrain to forebrain targets. The aim of this review is to introduce subtypes of GABAergic and glutamatergic neurons, which are located in the dopaminergic nuclei or the adjacent brainstem and are important for the regulation of the dopaminergic pathways. In addition, we discuss recent studies beginning to reveal mechanisms for their development, which may hold the key to understanding the diversity of these neurons.
Collapse
Affiliation(s)
- Francesca Morello
- Department of Biosciences, Division of Genetics, P.O. Box 56, Viikinkaari 9, 00014 University of Helsinki, Helsinki, Finland
| | - Juha Partanen
- Department of Biosciences, Division of Genetics, P.O. Box 56, Viikinkaari 9, 00014 University of Helsinki, Helsinki, Finland.
| |
Collapse
|
22
|
Wende CZ, Zoubaa S, Blak A, Echevarria D, Martinez S, Guillemot F, Wurst W, Guimera J. Hairy/Enhancer-of-Split MEGANE and Proneural MASH1 Factors Cooperate Synergistically in Midbrain GABAergic Neurogenesis. PLoS One 2015; 10:e0127681. [PMID: 25993409 PMCID: PMC4439124 DOI: 10.1371/journal.pone.0127681] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Accepted: 04/17/2015] [Indexed: 11/19/2022] Open
Abstract
GABAergic neurons are the primary inhibitory cell type in the mature brain and their dysfunction is associated with important neurological conditions like schizophrenia and anxiety. We aimed to discover the underlying mechanisms for dorsal/ventral midbrain GABAergic neurogenesis. Previous work by us and others has provided crucial insights into the key function of Mgn and Mash1 genes in determining GABAergic neurotransmitter fate. Induction of dorsal midbrain GABAergic neurons does not take place at any time during development in either of the single mutant mice. However, GABAergic neurons in the ventral midbrain remained unchanged. Thus, the similarities in MB-GABAergic phenotype observed in the Mgn and Mash1 single mutants suggest the existence of other factors that take over the function of MGN and MASH1 in the ventral midbrain or the existence of different molecular mechanisms. We show that this process essentially depends on heterodimers and homodimers formed by MGN and MASH1 and deciphered the in vivo relevance of the interaction by phenotypic analysis of Mgn/Mash1 double knockout and compound mice. Furthermore, the combination of gain- and loss-of-function experiments in the developing midbrain showed co-operative roles for Mgn and Mash1 genes in determining GABAergic identity. Transcription factors belonging to the Enhancer-of-split-related and proneural families have long been believed to counterpart each other's function. This work uncovers a synergistic cooperation between these two families, and provides a novel paradigm for how these two families cooperate for the acquisition of MB-GABAergic neuronal identity. Understanding their molecular mechanisms is essential for cell therapy strategies to amend GABAergic deficits.
Collapse
Affiliation(s)
- Clara-Zoe Wende
- Institute of Developmental Genetics, Helmholtz Zentrum München, Deutsches Forschungszentrum für Gesundheit und Umwelt (GmbH), Neuherberg, Germany
| | - Saida Zoubaa
- Department of Neuropathology, Regensburg University Hospital, Regensburg, Germany
| | - Alexandra Blak
- Institute of Developmental Genetics, Helmholtz Zentrum München, Deutsches Forschungszentrum für Gesundheit und Umwelt (GmbH), Neuherberg, Germany
| | - Diego Echevarria
- Experimental Embryology Laboratory, Instituto de Neurociencias, Universidad Miguel Hernández, Alicante, Spain
| | - Salvador Martinez
- Experimental Embryology Laboratory, Instituto de Neurociencias, Universidad Miguel Hernández, Alicante, Spain
| | - François Guillemot
- Division of Molecular Neurobiology, MRC National Institute for Medical Research, London, United Kingdom
| | - Wolfgang Wurst
- Institute of Developmental Genetics, Helmholtz Zentrum München, Deutsches Forschungszentrum für Gesundheit und Umwelt (GmbH), Neuherberg, Germany
| | - Jordi Guimera
- Institute of Developmental Genetics, Helmholtz Zentrum München, Deutsches Forschungszentrum für Gesundheit und Umwelt (GmbH), Neuherberg, Germany
- * E-mail:
| |
Collapse
|
23
|
Early‐life stress increases the survival of midbrain neurons during postnatal development and enhances reward‐related and anxiolytic‐like behaviors in a sex‐dependent fashion. Int J Dev Neurosci 2015; 44:33-47. [DOI: 10.1016/j.ijdevneu.2015.05.002] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Revised: 05/07/2015] [Accepted: 05/08/2015] [Indexed: 01/30/2023] Open
|
24
|
Lahti L, Haugas M, Tikker L, Airavaara M, Voutilainen MH, Anttila J, Kumar S, Inkinen C, Salminen M, Partanen J. Differentiation and molecular heterogeneity of inhibitory and excitatory neurons associated with midbrain dopaminergic nuclei. Development 2015; 143:516-29. [DOI: 10.1242/dev.129957] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Accepted: 12/18/2015] [Indexed: 12/24/2022]
Abstract
Local inhibitory GABAergic and excitatory glutamatergic neurons are important for midbrain dopaminergic and hindbrain serotonergic pathways controlling motivation, mood, and voluntary movements. Such neurons reside both within the dopaminergic nuclei, and in adjacent brain structures, including the rostromedial and laterodorsal tegmental nuclei. Compared to the monoaminergic neurons, the development, heterogeneity, and molecular characteristics of these regulatory neurons are poorly understood. We show here that different GABAergic and glutamatergic subgroups associated with the monoaminergic nuclei express specific transcription factors. These neurons share common origins in the ventrolateral rhombomere 1, where postmitotic selector genes Tal1, Gata2, and Gata3 control the balance between the generation of inhibitory and excitatory neurons. In the absence of Tal1, or both Gata2 and Gata3, the GABAergic precursors adopt glutamatergic fates and populate the glutamatergic nuclei in excessive numbers. Together, our results uncover developmental regulatory mechanisms, molecular characteristics, and heterogeneity of central regulators of monoaminergic circuits.
Collapse
Affiliation(s)
- Laura Lahti
- Department of Biosciences, P.O. Box 56, Viikinkaari 9, FIN-00014 University of Helsinki, Helsinki, Finland
| | - Maarja Haugas
- Department of Biosciences, P.O. Box 56, Viikinkaari 9, FIN-00014 University of Helsinki, Helsinki, Finland
| | - Laura Tikker
- Department of Biosciences, P.O. Box 56, Viikinkaari 9, FIN-00014 University of Helsinki, Helsinki, Finland
| | - Mikko Airavaara
- Institute of Biotechnology, P.O. Box 56, Viikinkaari 9, FIN-00014 University of Helsinki, Helsinki, Finland
| | - Merja H. Voutilainen
- Institute of Biotechnology, P.O. Box 56, Viikinkaari 9, FIN-00014 University of Helsinki, Helsinki, Finland
| | - Jenni Anttila
- Institute of Biotechnology, P.O. Box 56, Viikinkaari 9, FIN-00014 University of Helsinki, Helsinki, Finland
| | - Suman Kumar
- Department of Biosciences, P.O. Box 56, Viikinkaari 9, FIN-00014 University of Helsinki, Helsinki, Finland
| | - Caisa Inkinen
- Department of Biosciences, P.O. Box 56, Viikinkaari 9, FIN-00014 University of Helsinki, Helsinki, Finland
| | - Marjo Salminen
- Department of Veterinary Biosciences, Agnes Sjöbergin katu 2, FIN-00014 University of Helsinki, Helsinki, Finland
| | - Juha Partanen
- Department of Biosciences, P.O. Box 56, Viikinkaari 9, FIN-00014 University of Helsinki, Helsinki, Finland
| |
Collapse
|
25
|
Achim K, Salminen M, Partanen J. Mechanisms regulating GABAergic neuron development. Cell Mol Life Sci 2014; 71:1395-415. [PMID: 24196748 PMCID: PMC11113277 DOI: 10.1007/s00018-013-1501-3] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2013] [Revised: 10/10/2013] [Accepted: 10/14/2013] [Indexed: 12/17/2022]
Abstract
Neurons using gamma-aminobutyric acid (GABA) as their neurotransmitter are the main inhibitory neurons in the mature central nervous system (CNS) and show great variation in their form and function. GABAergic neurons are produced in all of the main domains of the CNS, where they develop from discrete regions of the neuroepithelium. Here, we review the gene expression and regulatory mechanisms controlling the main steps of GABAergic neuron development: early patterning of the proliferative neuroepithelium, production of postmitotic neural precursors, establishment of their identity and migration. By comparing the molecular regulation of these events across CNS, we broadly identify three regions utilizing distinct molecular toolkits for GABAergic fate determination: telencephalon-anterior diencephalon (DLX2 type), posterior diencephalon-midbrain (GATA2 type) and hindbrain-spinal cord (PTF1A and TAL1 types). Similarities and differences in the molecular regulatory mechanisms reveal the core determinants of a GABAergic neuron as well as provide insights into generation of the vast diversity of these neurons.
Collapse
Affiliation(s)
- Kaia Achim
- EMBL Heidelberg, Meyerhofstr. 1, 69117 Heidelberg, Germany
| | - Marjo Salminen
- Department of Veterinary Biosciences, University of Helsinki, Agnes Sjobergin katu 2, PO Box 66, 00014 Helsinki, Finland
| | - Juha Partanen
- Department of Biosciences, University of Helsinki, Viikinkaari 5, PO Box 56, 00014 Helsinki, Finland
| |
Collapse
|
26
|
Achim K, Peltopuro P, Lahti L, Tsai HH, Zachariah A, Astrand M, Salminen M, Rowitch D, Partanen J. The role of Tal2 and Tal1 in the differentiation of midbrain GABAergic neuron precursors. Biol Open 2013; 2:990-7. [PMID: 24167708 PMCID: PMC3798194 DOI: 10.1242/bio.20135041] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2013] [Accepted: 06/26/2013] [Indexed: 12/22/2022] Open
Abstract
Midbrain- and hindbrain-derived GABAergic interneurons are critical for regulation of sleep, respiratory, sensory-motor and motivational processes, and they are implicated in human neurological disorders. However, the precise mechanisms that underlie generation of GABAergic neuron diversity in the midbrain–hindbrain region are poorly understood. Here, we show unique and overlapping requirements for the related bHLH proteins Tal1 and Tal2 in GABAergic neurogenesis in the midbrain. We show that Tal2 and Tal1 are specifically and sequentially activated during midbrain GABAergic neurogenesis. Similar to Gata2, a post-mitotic selector of the midbrain GABAergic neuron identity, Tal2 expression is activated very early during GABAergic neuron differentiation. Although the expression of Tal2 and Gata2 genes are independent of each other, Tal2 is important for normal midbrain GABAergic neurogenesis, possibly as a partner of Gata2. In the absence of Tal2, the majority of midbrain GABAergic neurons switch to a glutamatergic-like phenotype. In contrast, Tal1 expression is activated in a Gata2 and Tal2 dependent fashion in the more mature midbrain GABAergic neuron precursors, but Tal1 alone is not required for GABAergic neuron differentiation from the midbrain neuroepithelium. However, inactivation of both Tal2 and Tal1 in the developing midbrain suggests that the two factors co-operate to guide GABAergic neuron differentiation in a specific ventro-lateral midbrain domain. The observed similarities and differences between Tal1/Tal2 and Gata2 mutants suggest both co-operative and unique roles for these factors in determination of midbrain GABAergic neuron identities.
Collapse
Affiliation(s)
- Kaia Achim
- Department of Biosciences, P.O. Box 56, Viikinkaari 5, FIN00014-University of Helsinki , Helsinki , Finland
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Kochunov P, Charlesworth J, Winkler A, Hong LE, Nichols TE, Curran JE, Sprooten E, Jahanshad N, Thompson PM, Johnson MP, Kent JW, Landman BA, Mitchell B, Cole SA, Dyer TD, Moses EK, Goring HHH, Almasy L, Duggirala R, Olvera RL, Glahn DC, Blangero J. Transcriptomics of cortical gray matter thickness decline during normal aging. Neuroimage 2013; 82:273-83. [PMID: 23707588 DOI: 10.1016/j.neuroimage.2013.05.066] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2013] [Revised: 04/23/2013] [Accepted: 05/14/2013] [Indexed: 01/27/2023] Open
Abstract
INTRODUCTION We performed a whole-transcriptome correlation analysis, followed by the pathway enrichment and testing of innate immune response pathway analyses to evaluate the hypothesis that transcriptional activity can predict cortical gray matter thickness (GMT) variability during normal cerebral aging. METHODS Transcriptome and GMT data were available for 379 individuals (age range=28-85) community-dwelling members of large extended Mexican American families. Collection of transcriptome data preceded that of neuroimaging data by 17 years. Genome-wide gene transcriptome data consisted of 20,413 heritable lymphocytes-based transcripts. GMT measurements were performed from high-resolution (isotropic 800 μm) T1-weighted MRI. Transcriptome-wide and pathway enrichment analysis was used to classify genes correlated with GMT. Transcripts for sixty genes from seven innate immune pathways were tested as specific predictors of GMT variability. RESULTS Transcripts for eight genes (IGFBP3, LRRN3, CRIP2, SCD, IDS, TCF4, GATA3, and HN1) passed the transcriptome-wide significance threshold. Four orthogonal factors extracted from this set predicted 31.9% of the variability in the whole-brain and between 23.4 and 35% of regional GMT measurements. Pathway enrichment analysis identified six functional categories including cellular proliferation, aggregation, differentiation, viral infection, and metabolism. The integrin signaling pathway was significantly (p<10(-6)) enriched with GMT. Finally, three innate immune pathways (complement signaling, toll-receptors and scavenger and immunoglobulins) were significantly associated with GMT. CONCLUSION Expression activity for the genes that regulate cellular proliferation, adhesion, differentiation and inflammation can explain a significant proportion of individual variability in cortical GMT. Our findings suggest that normal cerebral aging is the product of a progressive decline in regenerative capacity and increased neuroinflammation.
Collapse
Affiliation(s)
- P Kochunov
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Lahti L, Achim K, Partanen J. Molecular regulation of GABAergic neuron differentiation and diversity in the developing midbrain. Acta Physiol (Oxf) 2013; 207:616-27. [PMID: 23297792 DOI: 10.1111/apha.12062] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2012] [Revised: 12/10/2012] [Accepted: 12/26/2012] [Indexed: 12/23/2022]
Abstract
The midbrain GABAergic neurones control several aspects of behaviour, play important roles in psychiatric disease and are targets of medical treatments as well as drugs of abuse. However, their molecular diversity and regulation of development are only beginning to be understood. In this review, we briefly introduce distinct subpopulations of the midbrain GABAergic neurones and discuss knowledge on their development, including the developmental origins of midbrain GABAergic neurones as well as transcriptional regulatory mechanisms guiding their differentiation and identity. Important GABAergic neuron subpopulations are found within the dopaminergic (DA) nuclei in the ventral midbrain. GABAergic substantia nigra pars reticulata is the main output pathway of the basal ganglia system regulating voluntary movements. Recent studies have also highlighted importance of the GABAergic neurones associated with the ventral tegmental area for the control of DA neuron activity and motivated behaviours. Interestingly, the development of the GABAergic neurones associated with the DA nuclei is very different from the rest of the midbrain. Knowledge on developmental regulation can lead to insights into the molecular, structural and functional diversity of the midbrain GABAergic neurones and their subpopulations, cell groups of great physiological and medical interest.
Collapse
Affiliation(s)
- L. Lahti
- Department of Biosciences; Viikki Biocenter; University of Helsinki; Helsinki; Finland
| | - K. Achim
- European Molecular Biology Laboratory; Heidelberg; Germany
| | - J. Partanen
- Department of Biosciences; Viikki Biocenter; University of Helsinki; Helsinki; Finland
| |
Collapse
|