1
|
Girón JC, Tarasov S, González Montaña LA, Matentzoglu N, Smith AD, Koch M, Boudinot BE, Bouchard P, Burks R, Vogt L, Yoder M, Osumi-Sutherland D, Friedrich F, Beutel RG, Mikó I. Formalizing Invertebrate Morphological Data: A Descriptive Model for Cuticle-Based Skeleto-Muscular Systems, an Ontology for Insect Anatomy, and their Potential Applications in Biodiversity Research and Informatics. Syst Biol 2023; 72:1084-1100. [PMID: 37094905 DOI: 10.1093/sysbio/syad025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 04/17/2023] [Accepted: 04/21/2023] [Indexed: 04/26/2023] Open
Abstract
The spectacular radiation of insects has produced a stunning diversity of phenotypes. During the past 250 years, research on insect systematics has generated hundreds of terms for naming and comparing them. In its current form, this terminological diversity is presented in natural language and lacks formalization, which prohibits computer-assisted comparison using semantic web technologies. Here we propose a Model for Describing Cuticular Anatomical Structures (MoDCAS) which incorporates structural properties and positional relationships for standardized, consistent, and reproducible descriptions of arthropod phenotypes. We applied the MoDCAS framework in creating the ontology for the Anatomy of the Insect Skeleto-Muscular system (AISM). The AISM is the first general insect ontology that aims to cover all taxa by providing generalized, fully logical, and queryable, definitions for each term. It was built using the Ontology Development Kit (ODK), which maximizes interoperability with Uberon (Uberon multispecies anatomy ontology) and other basic ontologies, enhancing the integration of insect anatomy into the broader biological sciences. A template system for adding new terms, extending, and linking the AISM to additional anatomical, phenotypic, genetic, and chemical ontologies is also introduced. The AISM is proposed as the backbone for taxon-specific insect ontologies and has potential applications spanning systematic biology and biodiversity informatics, allowing users to: 1) use controlled vocabularies and create semiautomated computer-parsable insect morphological descriptions; 2) integrate insect morphology into broader fields of research, including ontology-informed phylogenetic methods, logical homology hypothesis testing, evo-devo studies, and genotype to phenotype mapping; and 3) automate the extraction of morphological data from the literature, enabling the generation of large-scale phenomic data, by facilitating the production and testing of informatic tools able to extract, link, annotate, and process morphological data. This descriptive model and its ontological applications will allow for clear and semantically interoperable integration of arthropod phenotypes in biodiversity studies.
Collapse
Affiliation(s)
- Jennifer C Girón
- Department of Entomology, Purdue University, West Lafayette, IN, USA
- Natural Science Research Laboratory, Museum of Texas Tech University, Lubbock, TX, USA
| | - Sergei Tarasov
- Finnish Museum of Natural History, University of Helsinki, Pohjoinen Rautatiekatu 13, FI-00014 Helsinki, Finland
| | | | | | - Aaron D Smith
- Department of Entomology, Purdue University, West Lafayette, IN, USA
| | - Markus Koch
- Institute of Evolutionary Biology and Ecology, University of Bonn, An der Immenburg 1, 53121 Bonn, Germany
| | - Brendon E Boudinot
- Department of Entomology & Nematology, University of California, Davis, One Shields Ave, CA, USA
- Institut für Zoologie und Evolutionsforschung, Friedrich-Schiller-Universität Jena, Erbertstraße 1, 07743 Jena, Germany
- Department of Entomology, National Museum of Natural History, Smithsonian Institution, Washington DC, USA
| | - Patrice Bouchard
- Biodiversity and Bioresources, Canadian National Collection of Insects, Arachnids and Nematodes, Agriculture and Agri-Food Canada, 960 Carling Avenue, Ottawa, Ontario, K1A 0C6, Canada
| | - Roger Burks
- Entomology Department, University of California, Riverside, 900 University Ave. Riverside, CA, USA
| | - Lars Vogt
- TIB Leibniz Information Centre for Science and Technology, Welfengarten 1B, 30167 Hannover, Germany
| | - Matthew Yoder
- Illinois Natural History Survey, University of Illinois, Champaign, IL, USA
| | | | - Frank Friedrich
- Institut für Zell- und Systembiologie der Tiere, Universität Hamburg, Martin-Luther-King-Platz 3, 20146, Hamburg, Germany
| | - Rolf G Beutel
- Institut für Zoologie und Evolutionsforschung, Friedrich-Schiller-Universität Jena, Erbertstraße 1, 07743 Jena, Germany
| | - István Mikó
- Department of Biological Sciences, University of New Hampshire, Durham, NH, USA
| |
Collapse
|
2
|
Djokic S, Bakhrat A, Li M, Akbari OS, Abdu U. Scale-type-specific requirement for the mosquito Aedes aegypti Spindle-F homologue by regulating microtubule organization. INSECT MOLECULAR BIOLOGY 2022; 31:216-224. [PMID: 34919304 PMCID: PMC10537241 DOI: 10.1111/imb.12752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 11/11/2021] [Accepted: 12/12/2021] [Indexed: 06/14/2023]
Abstract
Insect epithelial cells contain unique cellular extensions such as bristles, hairs, and scales. In contrast to bristle and hair, which are not divergent in their shape, scale morphology shows high diversity. In our attempt to characterize the role of the insect-specific gene, Spindle-F (spn-F), in mosquito development, we revealed a scale-type specific requirement for the mosquito Aedes aegypti spn-F homologue. Using CRISPR-Cas9, we generated Ae-spn-F mutants and found that Ae-spn-F is an essential gene, but we were able to recover a few adult escapers. These escapers could not fly nor move, and died after 3 to 4 days. We found that in Ae-spn-F mutants, only the tip part of the bristle was affected with bulbous with misoriented ribs. We also show that in Ae-spn-F mutants, only in falcate scales, which are curved with a sharp or narrowly rounded apex, and not in other scale types, the tip region is strongly affected. Our analysis also revealed that in contrast to Drosophila spn-F, which show strong defects in both the actin and microtubule (MT) network in the bristle, the Ae-spn-F gene is required only for MT organization in scales and bristles. In summary, our results reveal that Ae-spn-F is required for shaping tapered epithelial cellular extension structures, namely, the bristle and falcate scales by affecting MT organization.
Collapse
Affiliation(s)
- Sanja Djokic
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel
| | - Anna Bakhrat
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel
| | - Ming Li
- Division of Biological Sciences, Section of Cell and Developmental Biology, University of California San Diego, San Diego, CA, USA
| | - Omar S. Akbari
- Division of Biological Sciences, Section of Cell and Developmental Biology, University of California San Diego, San Diego, CA, USA
| | - Uri Abdu
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel
| |
Collapse
|
3
|
Krishnan RK, Halachmi N, Baskar R, Bakhrat A, Zarivach R, Salzberg A, Abdu U. Revisiting the Role of ß-Tubulin in Drosophila Development: β-tubulin60D is not an Essential Gene, and its Novel Pin1 Allele has a Tissue-Specific Dominant-Negative Impact. Front Cell Dev Biol 2022; 9:787976. [PMID: 35111755 PMCID: PMC8802551 DOI: 10.3389/fcell.2021.787976] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 12/09/2021] [Indexed: 11/19/2022] Open
Abstract
Diversity in cytoskeleton organization and function may be achieved through alternative tubulin isotypes and by a variety of post-translational modifications. The Drosophila genome contains five different β-tubulin paralogs, which may play an isotype tissue-specific function in vivo. One of these genes, the β-tubulin60D gene, which is expressed in a tissue-specific manner, was found to be essential for fly viability and fertility. To further understand the role of the β-tubulin60D gene, we generated new β-tubulin60D null alleles (β-tubulin60DM) using the CRISPR/Cas9 system and found that the homozygous flies were viable and fertile. Moreover, using a combination of genetic complementation tests, rescue experiments, and cell biology analyses, we identified Pin1, an unknown dominant mutant with bristle developmental defects, as a dominant-negative allele of β-tubulin60D. We also found a missense mutation in the Pin1 mutant that results in an amino acid replacement from the highly conserved glutamate at position 75 to lysine (E75K). Analyzing the ß-tubulin structure suggests that this E75K alteration destabilizes the alpha-helix structure and may also alter the GTP-Mg2+ complex binding capabilities. Our results revisited the credence that β-tubulin60D is required for fly viability and revealed for the first time in Drosophila, a novel dominant-negative function of missense β-tubulin60D mutation in bristle morphogenesis.
Collapse
Affiliation(s)
| | - Naomi Halachmi
- Department of Genetics and Developmental Biology, Rappaport Faculty of Medicine, Technion, Haifa, Israel
| | - Raju Baskar
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer’Sheva, Israel
| | - Anna Bakhrat
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer’Sheva, Israel
| | - Raz Zarivach
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer’Sheva, Israel
- National Institute for Biotechnology in the Negev and the Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Adi Salzberg
- Department of Genetics and Developmental Biology, Rappaport Faculty of Medicine, Technion, Haifa, Israel
| | - Uri Abdu
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer’Sheva, Israel
- *Correspondence: Uri Abdu,
| |
Collapse
|
4
|
Rodriguez-Caro F, Fenner J, Bhardwaj S, Cole J, Benson C, Colombara AM, Papa R, Brown MW, Martin A, Range RC, Counterman BA. Novel doublesex duplication associated with sexually dimorphic development of dogface butterfly wings. Mol Biol Evol 2021; 38:5021-5033. [PMID: 34323995 PMCID: PMC8557438 DOI: 10.1093/molbev/msab228] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Sexually dimorphic development is responsible for some of the most remarkable phenotypic variation found in nature. Alternative splicing of the transcription factor gene doublesex (dsx) is a highly conserved developmental switch controlling the expression of sex-specific pathways. Here, we leverage sex-specific differences in butterfly wing color pattern to characterize the genetic basis of sexually dimorphic development. We use RNA-seq, immunolocalization, and motif binding site analysis to test specific predictions about the role of dsx in the development of structurally based ultraviolet (UV) wing patterns in Zerene cesonia (Southern Dogface). Unexpectedly, we discover a novel duplication of dsx that shows a sex-specific burst of expression associated with the sexually dimorphic UV coloration. The derived copy consists of a single exon that encodes a DNA binding but no protein-binding domain and has experienced rapid amino-acid divergence. We propose the novel dsx paralog may suppress UV scale differentiation in females, which is supported by an excess of Dsx-binding sites at cytoskeletal and chitin-related genes with sex-biased expression. These findings illustrate the molecular flexibility of the dsx gene in mediating the differentiation of secondary sexual characteristics.
Collapse
Affiliation(s)
| | | | | | - Jared Cole
- Department of Integrative Biology, University of Texas, Austin, USA
| | - Caleb Benson
- Department of Biological Sciences, Auburn University, USA
| | | | - Riccardo Papa
- Department of Biological Sciences, University of Puerto Rico-Rio Piedras, USA
| | - Matthew W Brown
- Department of Biological Sciences, Mississippi State University, USA
| | - Arnaud Martin
- Department of Biological Sciences, The George Washington University, USA
| | - Ryan C Range
- Department of Biological Sciences, Auburn University, USA
| | | |
Collapse
|
5
|
Mani N, Jiang S, Neary AE, Wijeratne SS, Subramanian R. Differential regulation of single microtubules and bundles by a three-protein module. Nat Chem Biol 2021; 17:964-974. [PMID: 34083810 PMCID: PMC8387365 DOI: 10.1038/s41589-021-00800-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 04/19/2021] [Indexed: 12/15/2022]
Abstract
A remarkable feature of the microtubule cytoskeleton is co-existence of sub-populations having different dynamic properties. A prominent example is the anaphase spindle, where stable antiparallel bundles exist alongside dynamic microtubules and provide spatial cues for cytokinesis. How are dynamics of spatially proximal arrays differentially regulated? We reconstitute a minimal system of three midzone proteins: microtubule-crosslinker PRC1, and its interactors CLASP1 and Kif4A, proteins that promote and suppress microtubule elongation, respectively. We find their collective activity promotes elongation of single microtubules, while simultaneously stalling polymerization of crosslinked bundles. This differentiation arises from (i) Strong rescue activity of CLASP1, which overcomes weaker effects of Kif4A on single microtubules, (ii) Lower microtubule and PRC1-binding affinity of CLASP1, which permit dominance of Kif4A at overlaps. In addition to canonical mechanisms where antagonistic regulators set microtubule lengths, our findings illuminate design principles by which collective regulator activity creates microenvironments of arrays with distinct dynamic properties.
Collapse
Affiliation(s)
- Nandini Mani
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA, USA.,Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Shuo Jiang
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA, USA.,Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Alex E Neary
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA, USA
| | - Sithara S Wijeratne
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA, USA.,Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Radhika Subramanian
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA, USA. .,Department of Genetics, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
6
|
Pomerantz AF, Siddique RH, Cash EI, Kishi Y, Pinna C, Hammar K, Gomez D, Elias M, Patel NH. Developmental, cellular and biochemical basis of transparency in clearwing butterflies. J Exp Biol 2021; 224:268372. [PMID: 34047337 PMCID: PMC8340268 DOI: 10.1242/jeb.237917] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 04/16/2021] [Indexed: 12/16/2022]
Abstract
The wings of butterflies and moths (Lepidoptera) are typically covered with thousands of flat, overlapping scales that endow the wings with colorful patterns. Yet, numerous species of Lepidoptera have evolved highly transparent wings, which often possess scales of altered morphology and reduced size, and the presence of membrane surface nanostructures that dramatically reduce reflection. Optical properties and anti-reflective nanostructures have been characterized for several ‘clearwing’ Lepidoptera, but the developmental processes underlying wing transparency are unknown. Here, we applied confocal and electron microscopy to create a developmental time series in the glasswing butterfly, Greta oto, comparing transparent and non-transparent wing regions. We found that during early wing development, scale precursor cell density was reduced in transparent regions, and cytoskeletal organization during scale growth differed between thin, bristle-like scale morphologies within transparent regions and flat, round scale morphologies within opaque regions. We also show that nanostructures on the wing membrane surface are composed of two layers: a lower layer of regularly arranged nipple-like nanostructures, and an upper layer of irregularly arranged wax-based nanopillars composed predominantly of long-chain n-alkanes. By chemically removing wax-based nanopillars, along with optical spectroscopy and analytical simulations, we demonstrate their role in generating anti-reflective properties. These findings provide insight into morphogenesis and composition of naturally organized microstructures and nanostructures, and may provide bioinspiration for new anti-reflective materials. Summary: Transparency is a fascinating, yet poorly studied, optical property in living organisms. We elucidated the developmental processes underlying scale and nanostructure formation in glasswing butterflies, and their roles in generating anti-reflective properties.
Collapse
Affiliation(s)
- Aaron F Pomerantz
- Department of Integrative Biology, University of California, Berkeley, Berkeley, CA 94720, USA.,Marine Biological Laboratory, Woods Hole, MA 02543, USA
| | - Radwanul H Siddique
- Image Sensor Lab, Samsung Semiconductor, Inc., 2 N Lake Ave. Ste. 240, Pasadena, CA 91101, USA.,Department of Medical Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Elizabeth I Cash
- Department of Environmental Science, Policy, & Management, University of California Berkeley, Berkeley, CA 94720, USA
| | - Yuriko Kishi
- Department of Molecular & Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA.,Department of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Charline Pinna
- ISYEB, 45 rue Buffon, CP50, 75005, Paris, CNRS, MNHN, Sorbonne Université, EPHE, Université des Antilles, France
| | - Kasia Hammar
- Marine Biological Laboratory, Woods Hole, MA 02543, USA
| | - Doris Gomez
- CEFE, 1919 route de Mende, 34090, Montpellier, CNRS, Université Montpellier, Université Paul Valéry Montpellier 3, EPHE, IRD, France
| | - Marianne Elias
- ISYEB, 45 rue Buffon, CP50, 75005, Paris, CNRS, MNHN, Sorbonne Université, EPHE, Université des Antilles, France
| | - Nipam H Patel
- Department of Integrative Biology, University of California, Berkeley, Berkeley, CA 94720, USA.,Marine Biological Laboratory, Woods Hole, MA 02543, USA.,Department of Molecular & Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| |
Collapse
|
7
|
Gershman BW, Pritchard CE, Chaney KP, Ware VC. Tissue-specific expression of ribosomal protein paralogue eRpL22-like in Drosophila melanogaster eye development. Dev Dyn 2020; 249:1147-1165. [PMID: 32353187 PMCID: PMC8109839 DOI: 10.1002/dvdy.185] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 03/24/2020] [Accepted: 04/23/2020] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Differences in core or tissue-specific ribosomal protein (Rp) composition within ribosomes contribute to ribosome heterogeneity and functional variability. Yet, the degree to which ribosome heterogeneity modulates development is unknown. The Drosophila melanogaster eRpL22 family contains structurally diverse paralogues, eRpL22 and eRpL22-like. Unlike ubiquitously expressed eRpL22, eRpL22-like expression is tissue-specific, notably within the male germline and the eye. We investigated expression within the developing eye to uncover tissue/cell types where specific paralogue roles might be defined. RESULTS Immunohistochemistry analysis confirms ubiquitous eRpL22 expression throughout eye development. In larvae, eRpL22-like is ubiquitously expressed, but highly enriched in the peripodial epithelium (PE). In early pupae, eRpL22-like is broadly distributed in multiple cell types, but later, is primarily enriched in interommatidial hair cells (IoHC). Adult patterns include the ring of accessory cells around ommatidia. Adult retinae IoHC patterning phenotypes (shown by scanning electron microscopy) may be linked to RNAi-mediated eRpL22-like depletion within larval PE. Immunoblots and polysome profile analyses show multiple variants of eRpL22-like across development, with the variant at the expected molecular mass co-sedimenting with active ribosomes. CONCLUSION Our data reveal differential patterns of eRpL22-like expression relative to eRpL22 and suggest a specific role for eRpL22-like in developmental patterning of the eye.
Collapse
Affiliation(s)
- Brett W. Gershman
- Department of Biological Sciences, Lehigh University, Bethlehem, Pennsylvania
| | | | - Kenneth P. Chaney
- Department of Computer and Information Science, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Vassie C. Ware
- Department of Biological Sciences, Lehigh University, Bethlehem, Pennsylvania
| |
Collapse
|
8
|
The organization of Golgi in Drosophila bristles requires microtubule motor protein function and a properly organized microtubule array. PLoS One 2019; 14:e0223174. [PMID: 31577833 PMCID: PMC6774520 DOI: 10.1371/journal.pone.0223174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2019] [Accepted: 09/16/2019] [Indexed: 11/20/2022] Open
Abstract
In the present report, we used highly elongated Drosophila bristle cells to dissect the role of dynein heavy chain (Dhc64C) in Golgi organization. We demonstrated that whereas in the bristle "somal" region Golgi units are composed of cis-, medial, and trans-Golgi compartments ("complete Golgi"), the bristle shaft contains Golgi satellites that lack the trans-Golgi compartment (hereafter referred to as "incomplete Golgi") and which are static and localized at the base area. However, in Dhc64C mutants, the entire bristle shaft was filled with complete Golgi units containing ectopic trans-Golgi components. To further understand Golgi bristle organization, we tested the roles of microtubule (MT) polarity and the Dhc-opposing motor, kinesin heavy chain (Khc). For our surprise, we found that in Khc and Ik2Dominant-negative (DN) flies in which the polarized organization of MTs is affected, the bristle shaft was filled with complete Golgi, similarly to what is seen in Dhc64C flies. Thus, we demonstrated that MTs and the motor proteins Dhc and Khc are required for bristle Golgi organization. However, the fact that both Dhc64C and Khc flies showed similar Golgi defects calls for an additional work to elucidate the molecular mechanism describing why these factors are required for bristle Golgi organization.
Collapse
|
9
|
Day CR, Hanly JJ, Ren A, Martin A. Sub-micrometer insights into the cytoskeletal dynamics and ultrastructural diversity of butterfly wing scales. Dev Dyn 2019; 248:657-670. [PMID: 31107575 DOI: 10.1002/dvdy.63] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 05/13/2019] [Accepted: 05/16/2019] [Indexed: 02/03/2023] Open
Abstract
BACKGROUND The color patterns that adorn lepidopteran wings are ideal for studying cell type diversity using a phenomics approach. Color patterns are made of chitinous scales that are each the product of a single precursor cell, offering a 2D system where phenotypic diversity can be studied cell by cell, both within and between species. Those scales reveal complex ultrastructures in the sub-micrometer range that are often connected to a photonic function, including iridescent blues and greens, highly reflective whites, or light-trapping blacks. RESULTS We found that during scale development, Fascin immunostainings reveal punctate distributions consistent with a role in the control of actin patterning. We quantified the cytoskeleton regularity as well as its relationship to chitin deposition sites, and confirmed a role in the patterning of the ultrastructures of the adults scales. Then, in an attempt to characterize the range and variation in lepidopteran scale ultrastructures, we devised a high-throughput method to quickly derive multiple morphological measurements from fluorescence images and scanning electron micrographs. We imaged a multicolor eyespot element from the butterfly Vanessa cardui (V. cardui), taking approximately 200 000 individual measurements from 1161 scales. Principal component analyses revealed that scale structural features cluster by color type, and detected the divergence of non-reflective scales characterized by tighter cross-rib distances and increased orderedness. CONCLUSION We developed descriptive methods that advance the potential of butterfly wing scales as a model system for studying how a single cell type can differentiate into a multifaceted spectrum of complex morphologies. Our data suggest that specific color scales undergo a tight regulation of their ultrastructures, and that this involves cytoskeletal dynamics during scale growth.
Collapse
Affiliation(s)
- Christopher R Day
- Department of Biological Sciences, The George Washington University, Washington, District of Columbia.,Epigenetics and Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Durham, North Carolina
| | - Joseph J Hanly
- Department of Biological Sciences, The George Washington University, Washington, District of Columbia
| | - Anna Ren
- Department of Biological Sciences, The George Washington University, Washington, District of Columbia
| | - Arnaud Martin
- Department of Biological Sciences, The George Washington University, Washington, District of Columbia
| |
Collapse
|
10
|
Baskar R, Bahkrat A, Otani T, Wada H, Davidov G, Pandey H, Gheber L, Zarivach R, Hayashi S, Abdu U. The plus-tip tracking and microtubule stabilizing activities of Javelin-like regulate microtubule organization and cell polarity. FEBS J 2019; 286:3811-3830. [PMID: 31152621 DOI: 10.1111/febs.14944] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 05/03/2019] [Accepted: 05/30/2019] [Indexed: 11/29/2022]
Abstract
Cell polarity is essential for building cell asymmetry in all eukaryotic cells. Drosophila oocyte and bristle development require the newly characterized Spn-F protein complex, which includes Spn-F, IKKε, and Javelin-like (Jvl), to establish polarity. Jvl is a novel microtubule (MT)-associated protein; however, the mechanism by which it regulates MT organization is still unknown. We found that overexpression of Jvl stabilizes MTs and that jvl is needed for stable MT arrangement at the bristle tip and organization of the dynamic MT throughout the bristle shaft. At low levels of expression in cultured cells, Jvl behaved as a microtubule plus-end tracking protein. We demonstrated that Jvl physically interacts with the highly conserved MT end-binding protein 1 (EB1) using yeast two-hybrid and GST pull-down assays. This interaction is, however, dispensable for Jvl function in oocyte and bristle development. In addition, using a MT-binding assay, we saw that Jvl-C terminus directly binds to MTs. We also revealed that oocyte developmental arrest caused by Jvl overexpression in the germline can be rescued by mutations in its partners, spn-F and ikkε, suggesting that complex formation with Spn-F and IKKε is required for Jvl function in vivo. In summary, our results show that the microtubule plus-end tracking and stabilizing activities of Jvl are central for controlling cell polarity of oocytes and bristles.
Collapse
Affiliation(s)
- Raju Baskar
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Anna Bahkrat
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Tetsuhisa Otani
- Laboratory for Morphogenetic Signaling, RIKEN Center for Biosystems Dynamics, Kobe, Japan
| | - Housei Wada
- Laboratory for Morphogenetic Signaling, RIKEN Center for Biosystems Dynamics, Kobe, Japan
| | - Geula Davidov
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel.,National Institute for Biotechnology in the Negev and the Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Himanshu Pandey
- Department of Chemistry and the Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Larisa Gheber
- Department of Chemistry and the Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Raz Zarivach
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel.,National Institute for Biotechnology in the Negev and the Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Shigeo Hayashi
- Laboratory for Morphogenetic Signaling, RIKEN Center for Biosystems Dynamics, Kobe, Japan
| | - Uri Abdu
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
| |
Collapse
|
11
|
A cytoskeletal activator and inhibitor are downstream targets of the frizzled/starry night planar cell polarity pathway in the Drosophila epidermis. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2018; 137:69-75. [PMID: 29649492 DOI: 10.1016/j.pbiomolbio.2018.04.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Revised: 03/28/2018] [Accepted: 04/05/2018] [Indexed: 12/23/2022]
Abstract
The frizzled pathway regulates the planar polarity of epithelial cells. In insects this is manifested by the polarity of cuticular structures such as hairs (trichomes) and sensory bristles. A variety of evidence has established that this is achieved by regulating the subcellular location for activating the cytoskeleton in the epithelial cells. How this is accomplished is still poorly understood. In the best-studied tissue, the Drosophila pupal wing two important cytoskeletal regulators have been identified. One, shavenoid (sha), appears to be an activator while the second multiple wing hairs (mwh), appears to be an inhibitor. In vitro biochemistry has confirmed that the Multiple Wing Hairs protein inhibits the elongation of F-actin chains and surprisingly that it also bundles F-actin. These two activities can explain the multifaceted mwh mutant phenotype.
Collapse
|
12
|
Melkov A, Abdu U. Regulation of long-distance transport of mitochondria along microtubules. Cell Mol Life Sci 2018; 75:163-176. [PMID: 28702760 PMCID: PMC11105322 DOI: 10.1007/s00018-017-2590-1] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Revised: 07/05/2017] [Accepted: 07/06/2017] [Indexed: 11/29/2022]
Abstract
Mitochondria are cellular organelles of crucial importance, playing roles in cellular life and death. In certain cell types, such as neurons, mitochondria must travel long distances so as to meet metabolic demands of the cell. Mitochondrial movement is essentially microtubule (MT) based and is executed by two main motor proteins, Dynein and Kinesin. The organization of the cellular MT network and the identity of motors dictate mitochondrial transport. Tight coupling between MTs, motors, and the mitochondria is needed for the organelle precise localization. Two adaptor proteins are involved directly in mitochondria-motor coupling, namely Milton known also as TRAK, which is the motor adaptor, and Miro, which is the mitochondrial protein. Here, we discuss the active mitochondria transport process, as well as motor-mitochondria coupling in the context of MT organization in different cell types. We focus on mitochondrial trafficking in different cell types, specifically neurons, migrating cells, and polarized epithelial cells.
Collapse
Affiliation(s)
- Anna Melkov
- Department of Life Sciences, Ben-Gurion University, 8410500, Beersheba, Israel
| | - Uri Abdu
- Department of Life Sciences, Ben-Gurion University, 8410500, Beersheba, Israel.
| |
Collapse
|
13
|
Melkov A, Baskar R, Alcalay Y, Abdu U. A new mode of mitochondrial transport and polarized sorting regulated by Dynein, Milton and Miro. Development 2016; 143:4203-4213. [PMID: 27707795 DOI: 10.1242/dev.138289] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Accepted: 09/23/2016] [Indexed: 11/20/2022]
Abstract
Intrinsic cell microtubule (MT) polarity, together with molecular motors and adaptor proteins, determines mitochondrial polarized targeting and MT-dependent transport. In polarized cells, such as neurons, mitochondrial mobility and transport require the regulation of kinesin and dynein by two adaptor proteins, Milton and Miro. Recently, we found that dynein heavy chain 64C (Dhc64C) is the primary motor protein for both anterograde and retrograde transport of mitochondria in the Drosophila bristle. In this study, we show that a molecular lesion in the Dhc64C allele that reduced bristle mitochondrial velocity generated a variant that acts as a 'slow' dynein in an MT-gliding assay, indicating that dynein directly regulates mitochondrial transport. We also showed that in milton-RNAi flies, mitochondrial flux into the bristle shaft, but not velocity, was significantly reduced. Surprisingly, mitochondria retrograde flux, but not net velocity, was significantly decreased in miro-RNAi flies. We thus reveal a new mode of mitochondrial sorting in polarized cell growth, whereby bi-directional mitochondrial transport undertaken exclusively by dynein is regulated by Milton in the anterograde direction and by a Miro-dependent switch to the retrograde direction.
Collapse
Affiliation(s)
- Anna Melkov
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer-Sheva 8410500, Israel
| | - Raju Baskar
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer-Sheva 8410500, Israel
| | - Yehonatan Alcalay
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer-Sheva 8410500, Israel
| | - Uri Abdu
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer-Sheva 8410500, Israel
| |
Collapse
|
14
|
Derivery E, Seum C, Daeden A, Loubéry S, Holtzer L, Jülicher F, Gonzalez-Gaitan M. Polarized endosome dynamics by spindle asymmetry during asymmetric cell division. Nature 2016; 528:280-5. [PMID: 26659188 DOI: 10.1038/nature16443] [Citation(s) in RCA: 96] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Accepted: 11/11/2015] [Indexed: 11/09/2022]
Abstract
During asymmetric division, fate determinants at the cell cortex segregate unequally into the two daughter cells. It has recently been shown that Sara (Smad anchor for receptor activation) signalling endosomes in the cytoplasm also segregate asymmetrically during asymmetric division. Biased dispatch of Sara endosomes mediates asymmetric Notch/Delta signalling during the asymmetric division of sensory organ precursors in Drosophila. In flies, this has been generalized to stem cells in the gut and the central nervous system, and, in zebrafish, to neural precursors of the spinal cord. However, the mechanism of asymmetric endosome segregation is not understood. Here we show that the plus-end kinesin motor Klp98A targets Sara endosomes to the central spindle, where they move bidirectionally on an antiparallel array of microtubules. The microtubule depolymerizing kinesin Klp10A and its antagonist Patronin generate central spindle asymmetry. This asymmetric spindle, in turn, polarizes endosome motility, ultimately causing asymmetric endosome dispatch into one daughter cell. We demonstrate this mechanism by inverting the polarity of the central spindle by polar targeting of Patronin using nanobodies (single-domain antibodies). This spindle inversion targets the endosomes to the wrong cell. Our data uncover the molecular and physical mechanism by which organelles localized away from the cellular cortex can be dispatched asymmetrically during asymmetric division.
Collapse
Affiliation(s)
- Emmanuel Derivery
- Department of Biochemistry, Faculty of Sciences, University of Geneva, 30 Quai Ernest Ansermet, Geneva 1211, Switzerland
| | - Carole Seum
- Department of Biochemistry, Faculty of Sciences, University of Geneva, 30 Quai Ernest Ansermet, Geneva 1211, Switzerland
| | - Alicia Daeden
- Department of Biochemistry, Faculty of Sciences, University of Geneva, 30 Quai Ernest Ansermet, Geneva 1211, Switzerland
| | - Sylvain Loubéry
- Department of Biochemistry, Faculty of Sciences, University of Geneva, 30 Quai Ernest Ansermet, Geneva 1211, Switzerland
| | - Laurent Holtzer
- Department of Biochemistry, Faculty of Sciences, University of Geneva, 30 Quai Ernest Ansermet, Geneva 1211, Switzerland
| | - Frank Jülicher
- Max Planck Institute for the Physics of Complex Systems, Nöthnitzer Strasse 38, 01187 Dresden, Germany
| | - Marcos Gonzalez-Gaitan
- Department of Biochemistry, Faculty of Sciences, University of Geneva, 30 Quai Ernest Ansermet, Geneva 1211, Switzerland
| |
Collapse
|
15
|
Melkov A, Simchoni Y, Alcalay Y, Abdu U. Dynamic microtubule organization and mitochondrial transport are regulated by distinct Kinesin-1 pathways. Biol Open 2015; 4:1696-706. [PMID: 26581590 PMCID: PMC4736040 DOI: 10.1242/bio.015206] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The microtubule (MT) plus-end motor kinesin heavy chain (Khc) is well known for its role in long distance cargo transport. Recent evidence showed that Khc is also required for the organization of the cellular MT network by mediating MT sliding. We found that mutations in Khc and the gene of its adaptor protein, kinesin light chain (Klc) resulted in identical bristle morphology defects, with the upper part of the bristle being thinner and flatter than normal and failing to taper towards the bristle tip. We demonstrate that bristle mitochondria transport requires Khc but not Klc as a competing force to dynein heavy chain (Dhc). Surprisingly, we demonstrate for the first time that Dhc is the primary motor for both anterograde and retrograde fast mitochondria transport. We found that the upper part of Khc and Klc mutant bristles lacked stable MTs. When following dynamic MT polymerization via the use of GFP-tagged end-binding protein 1 (EB1), it was noted that at Khc and Klc mutant bristle tips, dynamic MTs significantly deviated from the bristle parallel growth axis, relative to wild-type bristles. We also observed that GFP-EB1 failed to concentrate as a focus at the tip of Khc and Klc mutant bristles. We propose that the failure of bristle tapering is due to defects in directing dynamic MTs at the growing tip. Thus, we reveal a new function for Khc and Klc in directing dynamic MTs during polarized cell growth. Moreover, we also demonstrate a novel mode of coordination in mitochondrial transport between Khc and Dhc. Summary: Highly polarized Drosophila bristle cells reveal that dynamic microtubule organization and mitochondrial transport are regulated by distinct Kinesin-1 pathways, and a novel mode of coordination between Khc and Dhc in mitochondrial transport.
Collapse
Affiliation(s)
- Anna Melkov
- Department of Life Sciences, Ben-Gurion University, Beer-Sheva 8410500, Israel
| | - Yasmin Simchoni
- Department of Life Sciences, Ben-Gurion University, Beer-Sheva 8410500, Israel
| | - Yehonatan Alcalay
- Department of Life Sciences, Ben-Gurion University, Beer-Sheva 8410500, Israel
| | - Uri Abdu
- Department of Life Sciences, Ben-Gurion University, Beer-Sheva 8410500, Israel
| |
Collapse
|
16
|
Otani T, Oshima K, Kimpara A, Takeda M, Abdu U, Hayashi S. A transport and retention mechanism for the sustained distal localization of Spn-F-IKKε during Drosophila bristle elongation. Development 2015; 142:2338-51. [PMID: 26092846 PMCID: PMC4510591 DOI: 10.1242/dev.121863] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2015] [Accepted: 05/12/2015] [Indexed: 12/17/2022]
Abstract
Stable localization of the signaling complex is essential for the robust morphogenesis of polarized cells. Cell elongation involves molecular signaling centers that coordinately regulate intracellular transport and cytoskeletal structures. In Drosophila bristle elongation, the protein kinase IKKε is activated at the distal tip of the growing bristle and regulates the shuttling movement of recycling endosomes and cytoskeletal organization. However, how the distal tip localization of IKKε is established and maintained during bristle elongation is unknown. Here, we demonstrate that IKKε distal tip localization is regulated by Spindle-F (Spn-F), which is stably retained at the distal tip and functions as an adaptor linking IKKε to cytoplasmic dynein. We found that Javelin-like (Jvl) is a key regulator of Spn-F retention. In jvl mutant bristles, IKKε and Spn-F initially localize to the distal tip but fail to be retained there. In S2 cells, particles that stain positively for Jvl or Spn-F move in a microtubule-dependent manner, whereas Jvl and Spn-F double-positive particles are immobile, indicating that Jvl and Spn-F are transported separately and, upon forming a complex, immobilize each other. These results suggest that polarized transport and selective retention regulate the distal tip localization of the Spn-F–IKKε complex during bristle cell elongation. Summary: In the Drosophila bristle, the microtubule binding protein Jvl, the adaptor Spn-F and cytoplasmic dynein are required for localised transport and retention of polarised signalling factors.
Collapse
Affiliation(s)
- Tetsuhisa Otani
- Laboratory for Morphogenetic Signaling, RIKEN Center for Developmental Biology, Kobe, Hyogo 650-0047, Japan
| | - Kenzi Oshima
- Laboratory for Morphogenetic Signaling, RIKEN Center for Developmental Biology, Kobe, Hyogo 650-0047, Japan
| | - Akiyo Kimpara
- Laboratory for Morphogenetic Signaling, RIKEN Center for Developmental Biology, Kobe, Hyogo 650-0047, Japan
| | - Michiko Takeda
- Laboratory for Morphogenetic Signaling, RIKEN Center for Developmental Biology, Kobe, Hyogo 650-0047, Japan
| | - Uri Abdu
- Department of Life Sciences and the National Institute for Biotechnology in the Negev, Ben-Gurion University, Beer-Sheva 84105, Israel
| | - Shigeo Hayashi
- Laboratory for Morphogenetic Signaling, RIKEN Center for Developmental Biology, Kobe, Hyogo 650-0047, Japan Department of Biology, Kobe University Graduate School of Science, Kobe, Hyogo 657-8501, Japan
| |
Collapse
|
17
|
Lu Q, Adler PN. The diaphanous gene of Drosophila interacts antagonistically with multiple wing hairs and plays a key role in wing hair morphogenesis. PLoS One 2015; 10:e0115623. [PMID: 25730111 PMCID: PMC4346269 DOI: 10.1371/journal.pone.0115623] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2014] [Accepted: 11/25/2014] [Indexed: 11/18/2022] Open
Abstract
The Drosophila wing is covered by an array of distally pointing hairs that has served as a key model system for studying planar cell polarity (PCP). The adult cuticular hairs are formed in the pupae from cell extensions that contain extensive actin filaments and microtubules. The importance of the actin cytoskeleton for hair growth and morphogenesis is clear from the wide range of phenotypes seen in mutations in well-known actin regulators. Formin proteins promote the formation of long actin filaments of the sort thought to be important for hair growth. We report here that the formin encoding diaphanous (dia) gene plays a key role in hair morphogenesis. Both loss of function mutations and the expression of a constitutively active Dia led to cells forming both morphologically abnormal hairs and multiple hairs. The conserved frizzled (fz)/starry night (stan) PCP pathway functions to restrict hair initiation and activation of the cytoskeleton to the distal most part of wing cells. It also ensures the formation of a single hair per cell. Our data suggest that the localized inhibition of Dia activity may be part of this mechanism. We found the expression of constitutively active Dia greatly expands the region for activation of the cytoskeleton and that dia functions antagonistically with multiple wing hairs (mwh), the most downstream member of the fz/stan pathway. Further we established that purified fragments of Dia and Mwh could be co-immunoprecipitated suggesting the genetic interaction could reflect a direct physical interaction.
Collapse
Affiliation(s)
- Qiuheng Lu
- Biology Department, University of Virginia, Charlottesville, Virginia, United States of America
| | - Paul N. Adler
- Biology Department, University of Virginia, Charlottesville, Virginia, United States of America
- Cell Biology Department, University of Virginia, Charlottesville, Virginia, United States of America
- * E-mail:
| |
Collapse
|
18
|
Kronforst MR. Exploring the molecular basis of monarch butterfly color pattern variation: a response to A. Hume's 'Myosin--a monarch of pigment transport?'. Pigment Cell Melanoma Res 2015; 28:127-30. [PMID: 25645052 DOI: 10.1111/pcmr.12353] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Marcus R Kronforst
- Department of Ecology & Evolution, University of Chicago, Chicago, IL, USA
| |
Collapse
|
19
|
Dinwiddie A, Null R, Pizzano M, Chuong L, Leigh Krup A, Ee Tan H, Patel NH. Dynamics of F-actin prefigure the structure of butterfly wing scales. Dev Biol 2014; 392:404-18. [PMID: 24930704 DOI: 10.1016/j.ydbio.2014.06.005] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2014] [Revised: 06/02/2014] [Accepted: 06/04/2014] [Indexed: 11/24/2022]
Abstract
The wings of butterflies and moths consist of dorsal and ventral epidermal surfaces that give rise to overlapping layers of scales and hairs (Lepidoptera, "scale wing"). Wing scales (average length ~200 µm) are homologous to insect bristles (macrochaetes), and their colors create the patterns that characterize lepidopteran wings. The topology and surface sculpture of wing scales vary widely, and this architectural complexity arises from variations in the developmental program of the individual scale cells of the wing epithelium. One of the more striking features of lepidopteran wing scales are the longitudinal ridges that run the length of the mature (dead) cell, gathering the cuticularized scale cell surface into pleats on the sides of each scale. While also present around the periphery of other insect bristles and hairs, longitudinal ridges in lepidopteran wing scales gain new significance for their creation of iridescent color through microribs and lamellae. Here we show the dynamics of the highly organized F-actin filaments during scale cell development, and present experimental manipulations of actin polymerization that reveal the essential role of this cytoskeletal component in wing scale elongation and the positioning of longitudinal ribs.
Collapse
Affiliation(s)
- April Dinwiddie
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT 06511, USA.
| | - Ryan Null
- Department of Molecular and Cell Biology & Department of Integrative Biology, University of California Berkeley, Berkeley, CA 94720-3200, USA
| | - Maria Pizzano
- Department of Molecular and Cell Biology & Department of Integrative Biology, University of California Berkeley, Berkeley, CA 94720-3200, USA
| | - Lisa Chuong
- Department of Molecular and Cell Biology & Department of Integrative Biology, University of California Berkeley, Berkeley, CA 94720-3200, USA
| | - Alexis Leigh Krup
- Department of Molecular and Cell Biology & Department of Integrative Biology, University of California Berkeley, Berkeley, CA 94720-3200, USA
| | - Hwei Ee Tan
- Department of Molecular and Cell Biology & Department of Integrative Biology, University of California Berkeley, Berkeley, CA 94720-3200, USA
| | - Nipam H Patel
- Department of Molecular and Cell Biology & Department of Integrative Biology, University of California Berkeley, Berkeley, CA 94720-3200, USA.
| |
Collapse
|
20
|
Drosophila oocyte polarity and cytoskeleton organization require regulation of Ik2 activity by Spn-F and Javelin-like. Mol Cell Biol 2013; 33:4371-80. [PMID: 24019068 DOI: 10.1128/mcb.00713-13] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The Drosophila melanogaster Spn-F, Ik2, and Javelin-like (Jvl) proteins interact to regulate oocyte mRNA localization and cytoskeleton organization. However, the mechanism by which these proteins interact remains unclear. Using antibodies to activated Ik2, we showed that this protein is found at the region of oocyte and follicle cell where microtubule minus ends are enriched. We demonstrate that germ line Ik2 activation is diminished both in jvl and in spn-F mutant ovaries. Structure-function analysis of Spn-F revealed that the C-terminal end is critical for protein function, since it alone was able to rescue spn-F sterility. On the other hand, germ line expression of Spn-F lacking its conserved C-terminal region (Spn-FΔC) phenocopied ik2, leading to production of ventralized eggshell and bicaudal embryos. In Spn-FΔC-expressing oocytes, Gurken protein is mislocalized and oskar mRNA and protein localization is disrupted. Expression of Ik2 rescued Spn-FΔC ovarian phenotypes. We found that whereas Spn-F physically interacts with Ik2 and Jvl, Spn-FΔC physically interacts with Ik2 but not with Jvl. Thus, expression of Spn-FΔC, which lacks the Jvl-interacting domain, probably interferes with interaction of Ik2 and Jvl. In summary, our results demonstrate that Spn-F mediates the interaction between Ik2 and Jvl to control Ik2 activity.
Collapse
|
21
|
Murata T, Sano T, Sasabe M, Nonaka S, Higashiyama T, Hasezawa S, Machida Y, Hasebe M. Mechanism of microtubule array expansion in the cytokinetic phragmoplast. Nat Commun 2013; 4:1967. [PMID: 23770826 PMCID: PMC3709505 DOI: 10.1038/ncomms2967] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2012] [Accepted: 05/02/2013] [Indexed: 12/18/2022] Open
Abstract
In land plants, the cell plate partitions the daughter cells at cytokinesis. The cell plate initially forms between daughter nuclei and expands centrifugally until reaching the plasma membrane. The centrifugal development of the cell plate is driven by the centrifugal expansion of the phragmoplast microtubule array, but the molecular mechanism underlying this expansion is unknown. Here, we show that the phragmoplast array comprises stable microtubule bundles and dynamic microtubules. We find that the dynamic microtubules are nucleated by γ-tubulin on stable bundles. The dynamic microtubules elongate at the plus ends and form new bundles preferentially at the leading edge of the phragmoplast. At the same time, they are moved away from the cell plate, maintaining a restricted distribution of minus ends. We propose that cycles of attachment of γ-tubulin complexes onto the microtubule bundles, microtubule nucleation and bundling, accompanied by minus-end-directed motility, drive the centrifugal development of the phragmoplast.
Collapse
Affiliation(s)
- Takashi Murata
- Division of Evolutionary Biology, National Institute for Basic Biology, Okazaki 444-8585, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Sato Y, Akitsu M, Amano Y, Yamashita K, Ide M, Shimada K, Yamashita A, Hirano H, Arakawa N, Maki T, Hayashi I, Ohno S, Suzuki A. A novel PAR-1-binding protein, MTCL1, plays critical roles in organizing microtubules in polarizing epithelial cells. J Cell Sci 2013; 126:4671-83. [DOI: 10.1242/jcs.127845] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
The establishment of epithelial polarity is tightly linked to the dramatic reorganization of microtubules (MTs) from a radial array to a vertical alignment of non-centrosomal MT bundles along the lateral membrane and a meshwork under the apical and basal membranes. However, little is known about the underlying molecular mechanism of this polarity-dependent MT remodeling. The evolutionarily conserved cell polarity-regulating kinase PAR-1, whose activity is essential for maintaining the dynamic state of MTs, plays indispensable roles to promote this process. Here, we identify a novel PAR-1-binding protein, named MTCL1 (Microtubule crosslinking factor 1), which crosslinks MTs through its N-terminal MT-binding region and subsequent coiled-coil motifs. MTCL1 colocalized with the apicobasal MT bundles in epithelial cells, and its knockdown impaired the development of these MT bundles and the epithelial cell specific columnar shape. Rescue experiments revealed that the N-terminal MT-binding region was indispensable for restoring these defects of the knockdown cells. MT regrowth assays indicated that MTCL1 was not required for the initial radial growth of MTs from the apical centrosome, but was essential for the accumulation of non-centrosomal MTs to the sublateral regions. Interestingly, MTCL1 recruited a subpopulation of PAR-1b to the apicobasal MT bundles, and its interaction with PAR-1b was required for MTCL1-dependent development of the apicobasal MT bundles. These results suggest that MTCL1 mediates the epithelial cell-specific reorganization of non-centrosomal MTs through its MT-crosslinking activity, and cooperates with PAR-1b to maintain the correct temporal balance between dynamic and stable MTs within the apicobasal MT bundles.
Collapse
|
23
|
Stable and dynamic microtubules coordinately determine and maintain Drosophila bristle shape. J Cell Sci 2012. [DOI: 10.1242/jcs.113720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|