1
|
Hino H, Kondo S, Kuroda J. In vivo imaging of bone collagen dynamics in zebrafish. Bone Rep 2024; 20:101748. [PMID: 38525199 PMCID: PMC10959726 DOI: 10.1016/j.bonr.2024.101748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 02/21/2024] [Accepted: 03/03/2024] [Indexed: 03/26/2024] Open
Abstract
Type I collagen plays a pivotal role in shaping bone morphology and determining its physical properties by serving as a template for ossification. Nevertheless, the mechanisms underlying bone collagen formation, particularly the principles governing its orientation, remain unknown owing to the lack of a method that enables continuous in vivo observations. To address this challenge, we constructed a method to visualize bone collagen by tagging with green fluorescent protein (GFP) in zebrafish and observed the interactions between osteoblasts and collagen fibers during bone formation in vivo. When collagen type I alpha 2 chain (Col1a2)-GFP was expressed under the control of the osteoblast-specific promoters osx or osc in zebrafish, bone collagen was observed clearly enough to identify its localization, whereas collagen from other organs was not. Therefore, we determined that this method was of sufficient quality for the detailed in vivo observation of bone collagen. Next, bone collagen in the scales, fin rays, and opercular bones of zebrafish was observed in detail, when bone formation is more active. High-magnification imaging showed that Col1a2-GFP can visualize collagen sufficiently to analyze the collagen fiber orientation and microstructure of bones. Furthermore, by simultaneously observation of bone collagen and osteoblasts, we successfully observed dynamic changes in the morphology and position of osteoblasts from the early stages of bone formation. It was also found that the localization pattern and orientation of bone collagen significantly differed depending on the choice of the expression promoter. Both promoters (osx and osc) used in this study are osteoblast-specific, but their Col1a2-GFP localizing regions within the bone were exclusive, with osx region localizing mainly to the outer edge of the bone and osc region localizing to the central area of the bone. This suggests the existence of distinct osteoblast subpopulations with different gene expression profiles, each of which may play a unique role in osteogenesis. These findings would contribute to a better understanding of the mechanisms governing bone collagen formation by osteoblasts.
Collapse
Affiliation(s)
- Hiromu Hino
- Graduate School of Frontier Biosciences, Osaka University, Suita, Japan
| | - Shigeru Kondo
- Graduate School of Frontier Biosciences, Osaka University, Suita, Japan
| | - Junpei Kuroda
- Graduate School of Frontier Biosciences, Osaka University, Suita, Japan
| |
Collapse
|
2
|
Chen Y, Wei Z, Shi H, Wen X, Wang Y, Wei R. BushenHuoxue formula promotes osteogenic differentiation via affecting Hedgehog signaling pathway in bone marrow stem cells to improve osteoporosis symptoms. PLoS One 2023; 18:e0289912. [PMID: 38019761 PMCID: PMC10686470 DOI: 10.1371/journal.pone.0289912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 07/28/2023] [Indexed: 12/01/2023] Open
Abstract
BACKGROUND The BushenHuoxue formula (BSHX) has been previously demonstrated to ameliorate osteoporosis, but the mechanisms underlying this phenomenon are currently unclear. The present study aims at investigating the mechanisms that BSHX induces osteogenesis. METHODS We established an osteoporosis model in rats by bilateral ovariectomy and then treated the rats with an osteogenic inducer (dexamethasone, β-sodium glycerophosphate and Vitamin C) and BSHX. After that, bone marrow density and histopathological bone examination were evaluated by using HE staining and immunohistochemistry, respectively. We also assessed the differentiation of bone marrow mesenchymal stem cells (BMSCs) into osteoblasts by using immunofluorescence staining. ALP, BMP, and COL1A1 levels were determined by ELISA. We identified genes involved in pathogenesis of osteoporosis through Gene Expression Omnibus (GEO) database and subsequently selected Hedgehog signaling-related genes Shh, Ihh, Gli2, and Runx2 for assessment via qRT-PCR and ELISA, Western blotting. Network pharmacology analysis was performed to identify bioactive metabolites of BSHX. RESULTS BSHX treatment in osteoporosis model rats promoted tightening of the morphological structure of the trabecular bone and increased the bone mineral density (BMD). BSHX also increased levels of osteoblast makers ALP, BMP, and COL1A1. Additionally, bioinformatics analysis of the GEO dataset showed that Hedgehog signaling pathway was involved in pathogenesis of osteoporosis, especially related genes Shh, Ihh, Gli2, and Runx2. Remarkably, BHSX upregulated these genes indispensably involved in the osteogenesis-related Hedgehog signaling pathway in both bone tissue and BMSCs. Importantly, we identified that quercetin was the active compounds that involved in the mechanism of BSHX-improved OP via affecting Hedgehog-related genes. CONCLUSION Our results indicate that BSHX promotes osteogenesis by improving BMSC differentiation into osteoblasts via increased expression of Hedgehog signaling-related genes Shh, Ihh, Gli2, and Runx2, and quercetin was the bioactive compound of BSHX.
Collapse
Affiliation(s)
- Yuqi Chen
- Department of the People’s Hospital of Suzhou New District, Suzhou, China
| | - ZhiYong Wei
- Kuitun Hospital of Xinjiang Production and Construction Corps, Xinjiang Uygur Autonomous Region, China
| | - HongXia Shi
- The Fourth Affiliated Hospital, Xinjiang Medical University, Urumqi, China
| | - Xin Wen
- Urumqi Friendship Hospital, Urumqi, PR China
| | - YiRan Wang
- Department of the People’s Hospital of Suzhou New District, Suzhou, China
| | - Rong Wei
- Department of the People’s Hospital of Suzhou New District, Suzhou, China
- The Fourth Affiliated Hospital, Xinjiang Medical University, Urumqi, China
| |
Collapse
|
3
|
Ferrante C, Cavin L. Early Mesozoic burst of morphological disparity in the slow-evolving coelacanth fish lineage. Sci Rep 2023; 13:11356. [PMID: 37443368 PMCID: PMC10345187 DOI: 10.1038/s41598-023-37849-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Accepted: 06/28/2023] [Indexed: 07/15/2023] Open
Abstract
Since the split of the coelacanth lineage from other osteichthyans 420 million years ago, the morphological disparity of this clade has remained remarkably stable. Only few outliers with peculiar body shape stood out over the evolutionary history, but they were phylogenetically and stratigraphically independent of each other. Here, we report the discovery of a new clade of ancient latimeriid coelacanths representing a small flock of species present in the Western Tethys between 242 and 241 million years ago. Among the four species, two show highly derived anatomy. A new genus shows reversal to plesiomorphic conditions in its skull and caudal fin organisation. The new genus and its sister Foreyia have anatomical modules that moved from the general coelacanth Bauplau either in the same direction or in opposite direction that affect proportions of the body, opercle and fins. Comparisons with extant genetic models shows that changes of the regulatory network of the Hedgehog signal gene family may account for most of the altered anatomy. This unexpected, short and confined new clade represents the only known example of a burst of morphological disparity over the long history of coelacanths at a recovery period after the Permian-Triassic Mass Extinction.
Collapse
Affiliation(s)
- Christophe Ferrante
- Department of Geology and Palaeontology, Natural History Museum of Geneva, CP 6434, 1211, Geneva 6, Switzerland.
- Department of Earth Sciences, University of Geneva, Rue des Maraîchers 13, 1205, Geneva, Switzerland.
| | - Lionel Cavin
- Department of Geology and Palaeontology, Natural History Museum of Geneva, CP 6434, 1211, Geneva 6, Switzerland
| |
Collapse
|
4
|
Conith MR, Ringo D, Conith AJ, Deleon A, Wagner M, McMenamin S, Cason C, Cooper WJ. The Evolution of Feeding Mechanics in the Danioninae, or Why Giant Danios Don't Suck Like Zebrafish. Integr Org Biol 2022; 4:obac049. [PMID: 36518182 PMCID: PMC9730500 DOI: 10.1093/iob/obac049] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 09/11/2022] [Accepted: 11/11/2022] [Indexed: 08/24/2023] Open
Abstract
By linking anatomical structure to mechanical performance we can improve our understanding of how selection shapes morphology. Here we examined the functional morphology of feeding in fishes of the subfamily Danioninae (order Cypriniformes) to determine aspects of cranial evolution connected with their trophic diversification. The Danioninae comprise three major lineages and each employs a different feeding strategy. We gathered data on skull form and function from species in each clade, then assessed their evolutionary dynamics using phylogenetic-comparative methods. Differences between clades are strongly associated with differences in jaw protrusion. The paedomorphic Danionella clade does not use jaw protrusion at all, members of the Danio clade use jaw protrusion for suction production and prey capture, and members of the sister clade to Danio (e.g., Devario and Microdevario) use jaw protrusion to retain prey after capture. The shape of the premaxillary bone is a major determinant of protrusion ability, and premaxilla morphology in each of these lineages is consistent with their protrusion strategies. Premaxilla shapes have evolved rapidly, which indicates that they have been subjected to strong selection. We compared premaxilla development in giant danio (Devario aequipinnatus) and zebrafish (Danio rerio) and discuss a developmental mechanism that could shift danionine fishes between the feeding strategies employed by these species and their respective clades. We also identified a highly integrated evolutionary module that has been an important factor in the evolution of trophic mechanics within the Danioninae.
Collapse
Affiliation(s)
- M R Conith
- Department of Biology, Western Washington University, Bellingham, WA 98225, USA
| | - D Ringo
- Department of Biology, Western Washington University, Bellingham, WA 98225, USA
| | - A J Conith
- Department of Biology, University of Massachusetts Amherst, Amherst, MA 01003, USA
| | - A Deleon
- School of Biological Sciences, Washington State University, Pullman, WA 99164, USA
| | - M Wagner
- School of Biological Sciences, Washington State University, Pullman, WA 99164, USA
| | - S McMenamin
- Biology Department, Boston College, Chestnut Hill, MA 02467, USA
| | - C Cason
- Marine and Coastal Science, Western Washington University, Bellingham, WA 98225, USA
| | - W J Cooper
- Department of Biology, Western Washington University, Bellingham, WA 98225, USA
- Marine and Coastal Science, Western Washington University, Bellingham, WA 98225, USA
| |
Collapse
|
5
|
Iwasaki M, Kawakami K, Wada H. Remodeling of the hyomandibular skeleton and facial nerve positioning during embryonic and postembryonic development of teleost fish. Dev Biol 2022; 489:134-145. [PMID: 35750208 DOI: 10.1016/j.ydbio.2022.06.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 06/03/2022] [Accepted: 06/16/2022] [Indexed: 11/30/2022]
Abstract
The vertebrate skeleton changes its shape during development through the activities of chondrocytes, osteoblasts and osteoclasts. Although much is known about the mechanisms for differentiation in these cells, it is less understood how they behave in a region-specific manner to acquire unique bone shapes. To address this question, we investigated the development of the hyomandibular (Hm) system in zebrafish. The Hm originates as cartilage carrying a single foramen (the Hm foramen), through which the facial (VII) nerve passes. We reveal that Schwann cells, which myelinate the VII nerve, regulate rearrangement of the chondrocytes to enlarge the Hm foramen. The Hm cartilage then becomes ossified in the perichondrium, where the marrow chondrocytes are replaced by adipocytes. Then, the bone matrix along the VII nerve is resorbed by osteoclasts, generating a gateway to the bone marrow. Subsequent movement of the VII nerve into the marrow, followed by deposition of new bone matrix, isolates the nerve from the jaw muscle insertion. Genetic ablation of osteoblasts and osteoclasts reveals specific roles of these cells during remodeling processes. Interestingly, the VII nerve relocation does not occur in medaka; instead, bone deposition distinct from those in zebrafish separates the VII nerve from the muscle insertion. Our results define novel mechanisms for skeletal remodeling, by which the bone shapes in a region- and species-specific manner.
Collapse
Affiliation(s)
- Miki Iwasaki
- College of Liberal Arts and Sciences, Kitasato University, 1-15-1 Kitasato, Minami-ku, Sagamihara, Kanagawa, 252-0373, Japan
| | - Koichi Kawakami
- National Institute of Genetics; Graduate University for Advanced Studies (SOKENDAI), 1111 Yata, Mishima, Shizuoka 411-8540, Japan
| | - Hironori Wada
- College of Liberal Arts and Sciences, Kitasato University, 1-15-1 Kitasato, Minami-ku, Sagamihara, Kanagawa, 252-0373, Japan.
| |
Collapse
|
6
|
Ravenscroft TA, Phillips JB, Fieg E, Bajikar SS, Peirce J, Wegner J, Luna AA, Fox EJ, Yan YL, Rosenfeld JA, Zirin J, Kanca O, Benke PJ, Cameron ES, Strehlow V, Platzer K, Jamra RA, Klöckner C, Osmond M, Licata T, Rojas S, Dyment D, Chong JSC, Lincoln S, Stoler JM, Postlethwait JH, Wangler MF, Yamamoto S, Krier J, Westerfield M, Bellen HJ. Heterozygous loss-of-function variants significantly expand the phenotypes associated with loss of GDF11. Genet Med 2021; 23:1889-1900. [PMID: 34113007 PMCID: PMC8487929 DOI: 10.1038/s41436-021-01216-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 05/04/2021] [Accepted: 05/05/2021] [Indexed: 11/09/2022] Open
Abstract
PURPOSE Growth differentiation factor 11 (GDF11) is a key signaling protein required for proper development of many organ systems. Only one prior study has associated an inherited GDF11 variant with a dominant human disease in a family with variable craniofacial and vertebral abnormalities. Here, we expand the phenotypic spectrum associated with GDF11 variants and document the nature of the variants. METHODS We present a cohort of six probands with de novo and inherited nonsense/frameshift (4/6 patients) and missense (2/6) variants in GDF11. We generated gdf11 mutant zebrafish to model loss of gdf11 phenotypes and used an overexpression screen in Drosophila to test variant functionality. RESULTS Patients with variants in GDF11 presented with craniofacial (5/6), vertebral (5/6), neurological (6/6), visual (4/6), cardiac (3/6), auditory (3/6), and connective tissue abnormalities (3/6). gdf11 mutant zebrafish show craniofacial abnormalities and body segmentation defects that match some patient phenotypes. Expression of the patients' variants in the fly showed that one nonsense variant in GDF11 is a severe loss-of-function (LOF) allele whereas the missense variants in our cohort are partial LOF variants. CONCLUSION GDF11 is needed for human development, particularly neuronal development, and LOF GDF11 alleles can affect the development of numerous organs and tissues.
Collapse
Affiliation(s)
- Thomas A Ravenscroft
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children Hospital, Houston, TX, USA
| | | | | | - Sameer S Bajikar
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children Hospital, Houston, TX, USA
| | - Judy Peirce
- Institute of Neuroscience, University of Oregon, Eugene, OR, USA
| | - Jeremy Wegner
- Institute of Neuroscience, University of Oregon, Eugene, OR, USA
| | - Alia A Luna
- Institute of Neuroscience, University of Oregon, Eugene, OR, USA
| | - Eric J Fox
- Institute of Neuroscience, University of Oregon, Eugene, OR, USA
| | - Yi-Lin Yan
- Institute of Neuroscience, University of Oregon, Eugene, OR, USA
| | - Jill A Rosenfeld
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Baylor Genetics Laboratories, Houston, TX, USA
| | - Jonathan Zirin
- Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Oguz Kanca
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children Hospital, Houston, TX, USA
| | - Paul J Benke
- Joe DiMaggio Children's Hospital, Hollywood, FL, USA
| | | | - Vincent Strehlow
- Institute of Human Genetics, University of Leipzig Medical Center, Leipzig, Germany
| | - Konrad Platzer
- Institute of Human Genetics, University of Leipzig Medical Center, Leipzig, Germany
| | - Rami Abou Jamra
- Institute of Human Genetics, University of Leipzig Medical Center, Leipzig, Germany
| | - Chiara Klöckner
- Institute of Human Genetics, University of Leipzig Medical Center, Leipzig, Germany
| | - Matthew Osmond
- Children's Hospital of Eastern Ontario, Ottawa, Ontario, Canada
| | - Thomas Licata
- Children's Hospital of Eastern Ontario, Ottawa, Ontario, Canada
| | - Samantha Rojas
- Children's Hospital of Eastern Ontario, Ottawa, Ontario, Canada
| | - David Dyment
- Children's Hospital of Eastern Ontario, Ottawa, Ontario, Canada
| | - Josephine S C Chong
- The Chinese University of Hong Kong-Baylor College of Medicine Joint Center of Medical Genetics, Hong Kong Special Administrative Region, The People's Republic of China
| | | | | | | | - Michael F Wangler
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children Hospital, Houston, TX, USA
| | - Shinya Yamamoto
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children Hospital, Houston, TX, USA
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
| | - Joel Krier
- Brigham and Women's Hospital, Boston, MA, USA
| | | | - Hugo J Bellen
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA.
- Jan and Dan Duncan Neurological Research Institute, Texas Children Hospital, Houston, TX, USA.
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA.
- Howard Hughes Medical Institute, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
7
|
Braunstein JA, Robbins AE, Stewart S, Stankunas K. Basal epidermis collective migration and local Sonic hedgehog signaling promote skeletal branching morphogenesis in zebrafish fins. Dev Biol 2021; 477:177-190. [PMID: 34038742 PMCID: PMC10802891 DOI: 10.1016/j.ydbio.2021.04.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 04/29/2021] [Accepted: 04/30/2021] [Indexed: 12/23/2022]
Abstract
Teleost fish fins, like all vertebrate limbs, comprise a series of bones laid out in characteristic pattern. Each fin's distal bony rays typically branch to elaborate skeletal networks providing form and function. Zebrafish caudal fin regeneration studies suggest basal epidermal-expressed Sonic hedgehog (Shh) promotes ray branching by partitioning pools of adjacent pre-osteoblasts. This Shh role is distinct from its well-studied Zone of Polarizing Activity role establishing paired limb positional information. Therefore, we investigated if and how Shh signaling similarly functions during developmental ray branching of both paired and unpaired fins while resolving cellular dynamics of branching by live imaging. We found shha is expressed uniquely by basal epidermal cells overlying pre-osteoblast pools at the distal aspect of outgrowing juvenile fins. Lateral splitting of each shha-expressing epidermal domain followed by the pre-osteoblast pools precedes overt ray branching. We use ptch2:Kaede fish and Kaede photoconversion to identify short stretches of shha+basal epidermis and juxtaposed pre-osteoblasts as the Shh/Smoothened (Smo) active zone. Basal epidermal distal collective movements continuously replenish each shha+domain with individual cells transiently expressing and responding to Shh. In contrast, pre-osteoblasts maintain Shh/Smo activity until differentiating. The Smo inhibitor BMS-833923 prevents branching in all fins, paired and unpaired, with surprisingly minimal effects on caudal fin initial skeletal patterning, ray outgrowth or bone differentiation. Staggered BMS-833923 addition indicates Shh/Smo signaling acts throughout the branching process. We use live cell tracking to find Shh/Smo restrains the distal movement of basal epidermal cells by apparent 'tethering' to pre-osteoblasts. We propose short-range Shh/Smo signaling promotes these heterotypic associations to couple instructive basal epidermal collective movements to pre-osteoblast repositioning as a unique mode of branching morphogenesis.
Collapse
Affiliation(s)
- Joshua A Braunstein
- Institute of Molecular Biology, University of Oregon, 273 Onyx Bridge, 1318 Franklin Blvd, Eugene, OR, 97403-1229, USA; Department of Biology, University of Oregon, 77 Klamath Hall, 1370 Franklin Blvd, Eugene, OR, 97403-1210, USA
| | - Amy E Robbins
- Institute of Molecular Biology, University of Oregon, 273 Onyx Bridge, 1318 Franklin Blvd, Eugene, OR, 97403-1229, USA; Department of Biology, University of Oregon, 77 Klamath Hall, 1370 Franklin Blvd, Eugene, OR, 97403-1210, USA
| | - Scott Stewart
- Institute of Molecular Biology, University of Oregon, 273 Onyx Bridge, 1318 Franklin Blvd, Eugene, OR, 97403-1229, USA
| | - Kryn Stankunas
- Institute of Molecular Biology, University of Oregon, 273 Onyx Bridge, 1318 Franklin Blvd, Eugene, OR, 97403-1229, USA; Department of Biology, University of Oregon, 77 Klamath Hall, 1370 Franklin Blvd, Eugene, OR, 97403-1210, USA.
| |
Collapse
|
8
|
Fabik J, Psutkova V, Machon O. The Mandibular and Hyoid Arches-From Molecular Patterning to Shaping Bone and Cartilage. Int J Mol Sci 2021; 22:7529. [PMID: 34299147 PMCID: PMC8303155 DOI: 10.3390/ijms22147529] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 07/02/2021] [Accepted: 07/05/2021] [Indexed: 12/16/2022] Open
Abstract
The mandibular and hyoid arches collectively make up the facial skeleton, also known as the viscerocranium. Although all three germ layers come together to assemble the pharyngeal arches, the majority of tissue within viscerocranial skeletal components differentiates from the neural crest. Since nearly one third of all birth defects in humans affect the craniofacial region, it is important to understand how signalling pathways and transcription factors govern the embryogenesis and skeletogenesis of the viscerocranium. This review focuses on mouse and zebrafish models of craniofacial development. We highlight gene regulatory networks directing the patterning and osteochondrogenesis of the mandibular and hyoid arches that are actually conserved among all gnathostomes. The first part of this review describes the anatomy and development of mandibular and hyoid arches in both species. The second part analyses cell signalling and transcription factors that ensure the specificity of individual structures along the anatomical axes. The third part discusses the genes and molecules that control the formation of bone and cartilage within mandibular and hyoid arches and how dysregulation of molecular signalling influences the development of skeletal components of the viscerocranium. In conclusion, we notice that mandibular malformations in humans and mice often co-occur with hyoid malformations and pinpoint the similar molecular machinery controlling the development of mandibular and hyoid arches.
Collapse
Affiliation(s)
- Jaroslav Fabik
- Department of Developmental Biology, Institute of Experimental Medicine of the Czech Academy of Sciences, 14220 Prague, Czech Republic; (J.F.); (V.P.)
- Department of Cell Biology, Faculty of Science, Charles University, 12800 Prague, Czech Republic
| | - Viktorie Psutkova
- Department of Developmental Biology, Institute of Experimental Medicine of the Czech Academy of Sciences, 14220 Prague, Czech Republic; (J.F.); (V.P.)
- Department of Cell Biology, Faculty of Science, Charles University, 12800 Prague, Czech Republic
| | - Ondrej Machon
- Department of Developmental Biology, Institute of Experimental Medicine of the Czech Academy of Sciences, 14220 Prague, Czech Republic; (J.F.); (V.P.)
| |
Collapse
|
9
|
Kimmel CB, Wind AL, Oliva W, Ahlquist SD, Walker C, Dowd J, Blanco-Sánchez B, Titus TA, Batzel P, Talbot JC, Postlethwait JH, Nichols JT. Transgene-mediated skeletal phenotypic variation in zebrafish. JOURNAL OF FISH BIOLOGY 2021; 98:956-970. [PMID: 32112658 PMCID: PMC7483860 DOI: 10.1111/jfb.14300] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 01/13/2020] [Accepted: 02/25/2020] [Indexed: 05/03/2023]
Abstract
When considering relationships between genotype and phenotype we frequently ignore the fact that the genome of a typical animal, notably including that of a fish and a human, harbours a huge amount of foreign DNA. Such DNA, in the form of transposable elements, can affect genome function in a major way, and transgene biology needs to be included in our understanding of the genome. Here we examine an unexpected phenotypic effect of the chromosomally integrated transgene fli1a-F-hsp70l:Gal4VP16 that serves as a model for transgene function generally. We examine larval fras1 mutant zebrafish (Danio rerio). Gal4VP16 is a potent transcriptional activator that is already well known for toxicity and mediating unusual transcriptional effects. In the presence of the transgene, phenotypes in the neural crest-derived craniofacial skeleton, notably fusions and shape changes associated with loss of function fras1 mutations, are made more severe, as we quantify by scoring phenotypic penetrance, the fraction of mutants expressing the trait. A very interesting feature is that the enhancements are highly specific for fras1 mutant phenotypes, occurring in the apparent absence of more widespread changes. Except for the features due to the fras1 mutation, the transgene-bearing larvae appear generally healthy and to be developing normally. The transgene behaves as a genetic partial dominant: a single copy is sufficient for the enhancements, yet, for some traits, two copies may exert a stronger effect. We made new strains bearing independent insertions of the fli1a-F-hsp70l:Gal4VP16 transgene in new locations in the genome, and observed increased severities of the same phenotypes as observed for the original insertion. This finding suggests that sequences within the transgene, for example Gal4VP16, are responsible for the enhancements, rather than the effect on neighbouring host sequences (such as an insertional mutation). The specificity and biological action underlying the traits are subjects of considerable interest for further investigation, as we discuss. Our findings show that work with transgenes needs to be undertaken with caution and attention to detail.
Collapse
Affiliation(s)
| | | | - Whitney Oliva
- Institute of Neuroscience, University of Oregon, Eugene, OR, USA
| | | | - Charline Walker
- Institute of Neuroscience, University of Oregon, Eugene, OR, USA
| | - John Dowd
- Institute of Neuroscience, University of Oregon, Eugene, OR, USA
| | - Bernardo Blanco-Sánchez
- Institute of Neuroscience, University of Oregon, Eugene, OR, USA
- Current address: Laboratory of Embryology and Genetics of Congenital Malformations, INSERM UMR 1163, Institut Imagine, 75015 Paris, France
| | - Tom A. Titus
- Institute of Neuroscience, University of Oregon, Eugene, OR, USA
| | - Peter Batzel
- Institute of Neuroscience, University of Oregon, Eugene, OR, USA
| | - Jared C. Talbot
- School of Biology and Ecology, University of Maine, Orono, ME 04469, USA
| | | | - James T. Nichols
- Department of Craniofacial Biology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| |
Collapse
|
10
|
Du W, Bhojwani A, Hu JK. FACEts of mechanical regulation in the morphogenesis of craniofacial structures. Int J Oral Sci 2021; 13:4. [PMID: 33547271 PMCID: PMC7865003 DOI: 10.1038/s41368-020-00110-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Revised: 12/03/2020] [Accepted: 12/07/2020] [Indexed: 02/07/2023] Open
Abstract
During embryonic development, organs undergo distinct and programmed morphological changes as they develop into their functional forms. While genetics and biochemical signals are well recognized regulators of morphogenesis, mechanical forces and the physical properties of tissues are now emerging as integral parts of this process as well. These physical factors drive coordinated cell movements and reorganizations, shape and size changes, proliferation and differentiation, as well as gene expression changes, and ultimately sculpt any developing structure by guiding correct cellular architectures and compositions. In this review we focus on several craniofacial structures, including the tooth, the mandible, the palate, and the cranium. We discuss the spatiotemporal regulation of different mechanical cues at both the cellular and tissue scales during craniofacial development and examine how tissue mechanics control various aspects of cell biology and signaling to shape a developing craniofacial organ.
Collapse
Affiliation(s)
- Wei Du
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
- School of Dentistry, University of California Los Angeles, Los Angeles, CA, USA
| | - Arshia Bhojwani
- School of Dentistry, University of California Los Angeles, Los Angeles, CA, USA
| | - Jimmy K Hu
- School of Dentistry, University of California Los Angeles, Los Angeles, CA, USA.
- Molecular Biology Institute, University of California Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
11
|
Galea GL, Zein MR, Allen S, Francis-West P. Making and shaping endochondral and intramembranous bones. Dev Dyn 2020; 250:414-449. [PMID: 33314394 PMCID: PMC7986209 DOI: 10.1002/dvdy.278] [Citation(s) in RCA: 86] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 11/13/2020] [Accepted: 11/20/2020] [Indexed: 12/13/2022] Open
Abstract
Skeletal elements have a diverse range of shapes and sizes specialized to their various roles including protecting internal organs, locomotion, feeding, hearing, and vocalization. The precise positioning, size, and shape of skeletal elements is therefore critical for their function. During embryonic development, bone forms by endochondral or intramembranous ossification and can arise from the paraxial and lateral plate mesoderm or neural crest. This review describes inductive mechanisms to position and pattern bones within the developing embryo, compares and contrasts the intrinsic vs extrinsic mechanisms of endochondral and intramembranous skeletal development, and details known cellular processes that precisely determine skeletal shape and size. Key cellular mechanisms are employed at distinct stages of ossification, many of which occur in response to mechanical cues (eg, joint formation) or preempting future load‐bearing requirements. Rapid shape changes occur during cellular condensation and template establishment. Specialized cellular behaviors, such as chondrocyte hypertrophy in endochondral bone and secondary cartilage on intramembranous bones, also dramatically change template shape. Once ossification is complete, bone shape undergoes functional adaptation through (re)modeling. We also highlight how alterations in these cellular processes contribute to evolutionary change and how differences in the embryonic origin of bones can influence postnatal bone repair. Compares and contrasts Endochondral and intramembranous bone development Reviews embryonic origins of different bones Describes the cellular and molecular mechanisms of positioning skeletal elements. Describes mechanisms of skeletal growth with a focus on the generation of skeletal shape
Collapse
Affiliation(s)
- Gabriel L Galea
- Developmental Biology and Cancer, UCL GOS Institute of Child Health, London, UK.,Comparative Bioveterinary Sciences, Royal Veterinary College, London, UK
| | - Mohamed R Zein
- Centre for Craniofacial and Regenerative Biology, Faculty of Dentistry, Oral and Craniofacial Sciences, King's College London, London, UK
| | - Steven Allen
- Comparative Bioveterinary Sciences, Royal Veterinary College, London, UK
| | - Philippa Francis-West
- Centre for Craniofacial and Regenerative Biology, Faculty of Dentistry, Oral and Craniofacial Sciences, King's College London, London, UK
| |
Collapse
|
12
|
Qin X, Jiang Q, Miyazaki T, Komori T. Runx2 regulates cranial suture closure by inducing hedgehog, Fgf, Wnt and Pthlh signaling pathway gene expressions in suture mesenchymal cells. Hum Mol Genet 2020; 28:896-911. [PMID: 30445456 DOI: 10.1093/hmg/ddy386] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Revised: 10/25/2018] [Accepted: 11/02/2018] [Indexed: 12/23/2022] Open
Abstract
Cleidocranial dysplasia (CCD, #119600), which is characterized by hypoplastic clavicles, open fontanelles, supernumerary teeth and a short stature, is caused by heterozygous mutations in RUNX2. However, it currently remains unclear why suture closure is severely impaired in CCD patients. The closure of posterior frontal (PF) and sagittal (SAG) sutures was completely interrupted in Runx2+/- mice, and the proliferation of suture mesenchymal cells and their condensation were less than those in wild-type mice. To elucidate the underlying molecular mechanisms, differentially expressed genes between wild-type and Runx2+/- PF and SAG sutures were identified by microarray and real-time reverse transcription polymerase chain reaction analyses. The expression of hedgehog, Fgf, Wnt and Pthlh signaling pathway genes, including Gli1, Ptch1, Ihh, Fgfr2, Fgfr3, Tcf7, Wnt10b and Pth1r, which were directly regulated by Runx2, was reduced in the sutures, but not the calvarial bone tissues of Runx2+/- mice. Bone formation and suture closure were enhanced in an organ culture of Runx2+/- calvariae with ligands or agonists of hedgehog, Fgf, Wnt and Pthlh signaling, while they were suppressed and suture mesenchymal cell proliferation was decreased in an organ culture of wild-type calvariae with their antagonists. These results indicate that more than a half dosage of Runx2 is required for the proliferation of suture mesenchymal cells, their condensation and commitment to osteoblast-lineage cells, and the induction of hedgehog, Fgf, Wnt and Pthlh signaling pathway gene expressions in sutures, but not in calvarial bone tissues, and also that the activation of hedgehog, Fgf, Wnt and Pthlh signaling pathways is necessary for suture closure.
Collapse
Affiliation(s)
- Xin Qin
- Department of Cell Biology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Qing Jiang
- Department of Cell Biology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan.,Basic and Translational Research Center for Hard Tissue Disease, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Toshihiro Miyazaki
- Department of Cell Biology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Toshihisa Komori
- Department of Cell Biology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan.,Basic and Translational Research Center for Hard Tissue Disease, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| |
Collapse
|
13
|
Cytrynbaum EG, Small CM, Kwon RY, Hung B, Kent D, Yan YL, Knope ML, Bremiller RA, Desvignes T, Kimmel CB. Developmental tuning of mineralization drives morphological diversity of gill cover bones in sculpins and their relatives. Evol Lett 2019; 3:374-391. [PMID: 31388447 PMCID: PMC6675512 DOI: 10.1002/evl3.128] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 06/17/2019] [Accepted: 06/22/2019] [Indexed: 12/21/2022] Open
Abstract
The role of osteoblast placement in skeletal morphological variation is relatively well understood, but alternative developmental mechanisms affecting bone shape remain largely unknown. Specifically, very little attention has been paid to variation in later mineralization stages of intramembranous ossification as a driver of morphological diversity. We discover the occurrence of specific, sometimes large, regions of nonmineralized osteoid within bones that also contain mineralized tissue. We show through a variety of histological, molecular, and tomographic tests that this “extended” osteoid material is most likely nonmineralized bone matrix. This tissue type is a significant determinant of gill cover bone shape in the teleostean suborder Cottoidei. We demonstrate repeated evolution of extended osteoid in Cottoidei through ancestral state reconstruction and test for an association between extended osteoid variation and habitat differences among species. Through measurement of extended osteoid at various stages of gill cover development in species across the phylogeny, we gain insight into possible evolutionary developmental origins of the trait. We conclude that this fine‐tuned developmental regulation of bone matrix mineralization reflects heterochrony at multiple biological levels and is a novel mechanism for the evolution of diversity in skeletal morphology. This research lays the groundwork for a new model in which to study bone mineralization and evolutionary developmental processes, particularly as they may relate to adaptation during a prominent evolutionary radiation of fishes.
Collapse
Affiliation(s)
- Eli G Cytrynbaum
- Institute of Neuroscience University of Oregon Eugene Oregon 97403
| | - Clayton M Small
- Institute of Ecology and Evolution University of Oregon Eugene Oregon 97403
| | - Ronald Y Kwon
- Department of Orthopedics and Sports Medicine University of Washington Seattle Washington 98104.,Institute for Stem Cell and Regenerative Medicine University of Washington Seattle Washington 98104.,Department of Mechanical Engineering University of Washington Seattle Washington 98104
| | - Boaz Hung
- Vancouver Aquarium Ocean Wise Vancouver BC V6G 3E2 Canada
| | - Danny Kent
- Vancouver Aquarium Ocean Wise Vancouver BC V6G 3E2 Canada
| | - Yi-Lin Yan
- Institute of Neuroscience University of Oregon Eugene Oregon 97403
| | - Matthew L Knope
- Department of Biology University of Hawai'i at Hilo Hilo Hawaii 96720
| | - Ruth A Bremiller
- Institute of Neuroscience University of Oregon Eugene Oregon 97403
| | - Thomas Desvignes
- Institute of Neuroscience University of Oregon Eugene Oregon 97403
| | - Charles B Kimmel
- Institute of Neuroscience University of Oregon Eugene Oregon 97403
| |
Collapse
|
14
|
Hu Z, Chen B, Zhao Q. Hedgehog signaling regulates osteoblast differentiation in zebrafish larvae through modulation of autophagy. Biol Open 2019; 8:bio.040840. [PMID: 30992325 PMCID: PMC6550075 DOI: 10.1242/bio.040840] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Impaired osteoblast differentiation may result in bone metabolic diseases such as osteoporosis. It was reported recently that hedgehog (Hh) signaling and autophagy are two important regulators of bone differentiation. In order to further dissect their relationship in bone development, we used a zebrafish larvae model to investigate how disruption of one of these signals affects the function of the other and impacts osteoblast differentiation. Our results showed that activation of Hh signaling negatively regulated autophagy. However, suppression of autophagy by knocking down atg5 expression did not alter Hh signaling, but dramatically upregulated the expression of osteoblast-related genes and increased bone mineralization, especially in the den region. On the contrary, inhibition of the Hh signaling pathway by cyclopamine treatment suppressed the expression of osteoblast-related genes and decreased bone mineralization. In agreement with these findings, blocking Hh signaling through knockdown SHH and Gli2 genes led to defective osteoblast differentiation, while promoting Hh signaling by knockdown Ptch1 was beneficial to osteoblast differentiation. Our results thus support that activation of the Hh signaling pathway negatively regulates autophagy and consequentially promotes osteoblast differentiation. On the contrary, induction of autophagy inhibits osteoblast differentiation. Our work reveals the mechanism underlying Hh signaling pathway regulation of bone development. Summary: Our report of an essential regulation role of hedgehog signaling and autophagy on osteoblast differentiation may contribute to research on bone development biology, hedgehog signaling and the autophagy pathway.
Collapse
Affiliation(s)
- Zhanying Hu
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Bo Chen
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Qiong Zhao
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| |
Collapse
|
15
|
Cook B, Rafiq R, Lee H, Banks KM, El-Debs M, Chiaravalli J, Glickman JF, Das BC, Chen S, Evans T. Discovery of a Small Molecule Promoting Mouse and Human Osteoblast Differentiation via Activation of p38 MAPK-β. Cell Chem Biol 2019; 26:926-935.e6. [PMID: 31031140 DOI: 10.1016/j.chembiol.2019.03.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 01/07/2019] [Accepted: 03/15/2019] [Indexed: 12/12/2022]
Abstract
Disorders of bone healing and remodeling are indications with an unmet need for effective pharmacological modulators. We used a high-throughput screen to identify activators of the bone marker alkaline phosphatase (ALP), and discovered 6,8-dimethyl-3-(4-phenyl-1H-imidazol-5-yl)quinolin-2(1H)-one (DIPQUO). DIPQUO markedly promotes osteoblast differentiation, including expression of Runx2, Osterix, and Osteocalcin. Treatment of human mesenchymal stem cells with DIPQUO results in osteogenic differentiation including a significant increase in calcium matrix deposition. DIPQUO stimulates ossification of emerging vertebral primordia in developing zebrafish larvae, and increases caudal fin osteogenic differentiation during adult zebrafish fin regeneration. The stimulatory effect of DIPQUO on osteoblast differentiation and maturation was shown to be dependent on the p38 MAPK pathway. Inhibition of p38 MAPK signaling or specific knockdown of the p38-β isoform attenuates DIPQUO induction of ALP, suggesting that DIPQUO mediates osteogenesis through activation of p38-β, and is a promising lead candidate for development of bone therapeutics.
Collapse
Affiliation(s)
- Brandoch Cook
- Department of Surgery, 1300 York Avenue, New York, NY 10065, USA.
| | - Ruhina Rafiq
- Department of Surgery, 1300 York Avenue, New York, NY 10065, USA; Graduate School of Medical Sciences, Weill Cornell Medicine, New York, NY 10065, USA
| | - Heejin Lee
- Department of Surgery, 1300 York Avenue, New York, NY 10065, USA; Graduate School of Medical Sciences, Weill Cornell Medicine, New York, NY 10065, USA
| | - Kelly M Banks
- Department of Surgery, 1300 York Avenue, New York, NY 10065, USA; Graduate School of Medical Sciences, Weill Cornell Medicine, New York, NY 10065, USA
| | | | - Jeanne Chiaravalli
- Rockefeller University High Throughput and Spectroscopy Resource Center, New York, NY 10065, USA
| | - J Fraser Glickman
- Rockefeller University High Throughput and Spectroscopy Resource Center, New York, NY 10065, USA
| | - Bhaskar C Das
- Departments of Medicine and Nephrology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Shuibing Chen
- Department of Surgery, 1300 York Avenue, New York, NY 10065, USA.
| | - Todd Evans
- Department of Surgery, 1300 York Avenue, New York, NY 10065, USA.
| |
Collapse
|
16
|
Bergen DJM, Kague E, Hammond CL. Zebrafish as an Emerging Model for Osteoporosis: A Primary Testing Platform for Screening New Osteo-Active Compounds. Front Endocrinol (Lausanne) 2019; 10:6. [PMID: 30761080 PMCID: PMC6361756 DOI: 10.3389/fendo.2019.00006] [Citation(s) in RCA: 106] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Accepted: 01/09/2019] [Indexed: 12/16/2022] Open
Abstract
Osteoporosis is metabolic bone disease caused by an altered balance between bone anabolism and catabolism. This dysregulated balance is responsible for fragile bones that fracture easily after minor falls. With an aging population, the incidence is rising and as yet pharmaceutical options to restore this imbalance is limited, especially stimulating osteoblast bone-building activity. Excitingly, output from large genetic studies on people with high bone mass (HBM) cases and genome wide association studies (GWAS) on the population, yielded new insights into pathways containing osteo-anabolic players that have potential for drug target development. However, a bottleneck in development of new treatments targeting these putative osteo-anabolic genes is the lack of animal models for rapid and affordable testing to generate functional data and that simultaneously can be used as a compound testing platform. Zebrafish, a small teleost fish, are increasingly used in functional genomics and drug screening assays which resulted in new treatments in the clinic for other diseases. In this review we outline the zebrafish as a powerful model for osteoporosis research to validate potential therapeutic candidates, describe the tools and assays that can be used to study bone homeostasis, and affordable (semi-)high-throughput compound testing.
Collapse
Affiliation(s)
- Dylan J. M. Bergen
- School of Physiology, Pharmacology and Neuroscience, Biomedical Sciences Building, University of Bristol, Bristol, United Kingdom
- Musculoskeletal Research Unit, Translational Health Sciences, Bristol Medical School, Southmead Hospital, University of Bristol, Bristol, United Kingdom
| | - Erika Kague
- School of Physiology, Pharmacology and Neuroscience, Biomedical Sciences Building, University of Bristol, Bristol, United Kingdom
| | - Chrissy L. Hammond
- School of Physiology, Pharmacology and Neuroscience, Biomedical Sciences Building, University of Bristol, Bristol, United Kingdom
| |
Collapse
|
17
|
DeLaurier A, Alvarez CL, Wiggins KJ. hdac4 mediates perichondral ossification and pharyngeal skeleton development in the zebrafish. PeerJ 2019; 7:e6167. [PMID: 30643696 PMCID: PMC6329341 DOI: 10.7717/peerj.6167] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Accepted: 11/27/2018] [Indexed: 01/18/2023] Open
Abstract
Background Histone deacetylases (HDACs) are epigenetic factors that function to repress gene transcription by removing acetyl groups from the N-terminal of histone lysines. Histone deacetylase 4 (HDAC4), a class IIa HDAC, has previously been shown to regulate the process of endochondral ossification in mice via repression of Myocyte enhancer factor 2c (MEF2C), a transcriptional activator of Runx2, which in turn promotes chondrocyte maturation and production of bone by osteoblasts. Methods & Materials In this study, we generated two zebrafish lines with mutations in hdac4 using CRISPR/Cas9 and analyzed mutants for skeletal phenotypes and expression of genes known to be affected by Hdac4 expression. Results Lines have insertions causing a frameshift in a proximal exon of hdac4 and a premature stop codon. Mutations are predicted to result in aberrant protein sequence and a truncated protein, eliminating the Mef2c binding domain and Hdac domain. Zygotic mutants from two separate lines show a significant increase in ossification of pharyngeal ceratohyal cartilages at 7 days post fertilization (dpf) (p < 0.01, p < 0.001). At 4 dpf, mutant larvae have a significant increase of expression of runx2a and runx2b in the ceratohyal cartilage (p < 0.05 and p < 0.01, respectively). A subset of maternal-zygotic (mz) mutant and heterozygote larvae (40%) have dramatically increased ossification at 7 dpf compared to zygotic mutants, including formation of a premature anguloarticular bone and mineralization of the first and second ceratobranchial cartilages and symplectic cartilages, which normally does not occur until fish are approximately 10 or 12 dpf. Some maternal-zygotic mutants and heterozygotes show loss of pharyngeal first arch elements (25.9% and 10.2%, respectively) and neurocranium defects (30.8% and 15.2%, respectively). Analysis of RNA-seq mRNA transcript levels and in situ hybridizations from zygotic stages to 75–90% epiboly indicates that hdac4 is highly expressed in early embryos, but diminishes by late epiboly, becoming expressed again in larval stages. Discussion Loss of function of hdac4 in zebrafish is associated with increased expression of runx2a and runx2b targets indicating that a role for hdac4 in zebrafish is to repress activation of ossification of cartilage. These findings are consistent with observations of precocious cartilage ossification in Hdac4 mutant mice, demonstrating that the function of Hdac4 in skeletal development is conserved among vertebrates. Expression of hdac4 mRNA in embryos younger than 256–512 cells indicates that there is a maternal contribution of hdac4 to the early embryo. The increase in ossification and profound loss of first pharyngeal arch elements and anterior neurocranium in a subset of maternal-zygotic mutant and heterozygote larvae suggests that maternal hdac4 functions in cartilage ossification and development of cranial neural crest-derived structures.
Collapse
Affiliation(s)
- April DeLaurier
- Department of Biology and Geology, University of South Carolina-Aiken, Aiken, SC, United States of America
| | - Cynthia Lizzet Alvarez
- Department of Biology and Geology, University of South Carolina-Aiken, Aiken, SC, United States of America
| | - Kali J Wiggins
- Department of Biology and Geology, University of South Carolina-Aiken, Aiken, SC, United States of America
| |
Collapse
|
18
|
Evaluation of Proliferation and Osteogenic Differentiation of Human Umbilical Cord-Derived Mesenchymal Stem Cells in Porous Scaffolds. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1084:207-220. [PMID: 31214911 DOI: 10.1007/5584_2019_343] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
INTRODUCTION Human umbilical cord-derived mesenchymal stem cells (UCMSCs) are multiple potential stem cells that can differentiate into various kinds of functional cells, including adipocytes, osteoblasts, and chondroblasts. Thus, UCMSCs have recently been used in both stem cell therapy and tissue engineering applications to produce various functional tissues. This study aimed to evaluate the proliferation and differentiation of UCMSCs on porous scaffolds. METHODS UCMSCs were established in a previous study and kept in liquid nitrogen. They were thawed and expanded in vitro to yield enough cells for further experiments. The cells were characterized as having MSC phenotype. They were seeded onto culture medium-treated porous scaffolds or on non-treated porous scaffolds at different densities of UCMSCs (105, 2.1 × 105, and 5 × 105 cells/0.005 g scaffold). The existence of UCMSCs on the scaffold was evaluated by nucleic staining using Hoechst 33342 dye, while cell proliferation on the scaffold was determined by MTT assay. Osteogenic differentiation was evaluated by changes in cellular morphology, accumulation of extracellular calcium, and expression of osteoblast-specific genes (including runx2, osteopontin (OPN), and osteocalcin (OCN)). RESULTS The data showed that UCMSCs could attach, proliferate, and differentiate on both treated and non-treated scaffolds but were better on the treated scaffold. At a cell density of 105 cells/0.005 g scaffold, the adherent and proliferative abilities of UCMSCs were higher than that of the other densities after 14 days of culture (p < 0.05). Adherent UCMSCs on the scaffold could be induced into osteoblasts in the osteogenic medium after 21 days of induction. These cells accumulated calcium in the extracellular matrix that was positive with Alizarin Red staining. They also expressed some genes related to osteoblasts, including runx2, OPN, and OCN. CONCLUSION UCMSCs could adhere, proliferate, and differentiate into osteoblasts on porous scaffolds. Therefore, porous scaffolds (such as Variotis) may be suitable scaffolds for producing bone tissue in combination with UCMSCs.
Collapse
|
19
|
DeLaurier A. Evolution and development of the fish jaw skeleton. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2018; 8:e337. [PMID: 30378758 DOI: 10.1002/wdev.337] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Revised: 09/25/2018] [Accepted: 09/27/2018] [Indexed: 12/18/2022]
Abstract
The evolution of the jaw represents a key innovation in driving the diversification of vertebrate body plans and behavior. The pharyngeal apparatus originated as gill bars separated by slits in chordate ancestors to vertebrates. Later, with the acquisition of neural crest, pharyngeal arches gave rise to branchial basket cartilages in jawless vertebrates (agnathans), and later bone and cartilage of the jaw, jaw support, and gills of jawed vertebrates (gnathostomes). Major events in the evolution of jaw structure from agnathans to gnathostomes include axial regionalization of pharyngeal elements and formation of a jaw joint. Hox genes specify the anterior-posterior identity of arches, and edn1, dlx, hand2, Jag1b-Notch2 signaling, and Nr2f factors specify dorsal-ventral identity. The formation of a jaw joint, an important step in the transition from an un-jointed pharynx in agnathans to a hinged jaw in gnathostomes involves interaction between nkx3.2, hand2, and barx1 factors. Major events in jaw patterning between fishes and reptiles include changes to elements of the second pharyngeal arch, including a loss of opercular and branchiostegal ray bones and transformation of the hyomandibula into the stapes. Further changes occurred between reptiles and mammals, including the transformation of the articular and quadrate elements of the jaw joint into the malleus and incus of the middle ear. Fossils of transitional jaw phenotypes can be analyzed from a developmental perspective, and there exists potential to use genetic manipulation techniques in extant taxa to test hypotheses about the evolution of jaw patterning in ancient vertebrates. This article is categorized under: Comparative Development and Evolution > Evolutionary Novelties Early Embryonic Development > Development to the Basic Body Plan Comparative Development and Evolution > Body Plan Evolution.
Collapse
Affiliation(s)
- April DeLaurier
- Department of Biology and Geology, University of South Carolina Aiken, Aiken, South Carolina
| |
Collapse
|
20
|
Wood TWP, Nakamura T. Problems in Fish-to-Tetrapod Transition: Genetic Expeditions Into Old Specimens. Front Cell Dev Biol 2018; 6:70. [PMID: 30062096 PMCID: PMC6054942 DOI: 10.3389/fcell.2018.00070] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Accepted: 06/15/2018] [Indexed: 12/30/2022] Open
Abstract
The fish-to-tetrapod transition is one of the fundamental problems in evolutionary biology. A significant amount of paleontological data has revealed the morphological trajectories of skeletons, such as those of the skull, vertebrae, and appendages in vertebrate history. Shifts in bone differentiation, from dermal to endochondral bones, are key to explaining skeletal transformations during the transition from water to land. However, the genetic underpinnings underlying the evolution of dermal and endochondral bones are largely missing. Recent genetic approaches utilizing model organisms—zebrafish, frogs, chickens, and mice—reveal the molecular mechanisms underlying vertebrate skeletal development and provide new insights for how the skeletal system has evolved. Currently, our experimental horizons to test evolutionary hypotheses are being expanded to non-model organisms with state-of-the-art techniques in molecular biology and imaging. An integration of functional genomics, developmental genetics, and high-resolution CT scanning into evolutionary inquiries allows us to reevaluate our understanding of old specimens. Here, we summarize the current perspectives in genetic programs underlying the development and evolution of the dermal skull roof, shoulder girdle, and appendages. The ratio shifts of dermal and endochondral bones, and its underlying mechanisms, during the fish-to-tetrapod transition are particularly emphasized. Recent studies have suggested the novel cell origins of dermal bones, and the interchangeability between dermal and endochondral bones, obscuring the ontogenetic distinction of these two types of bones. Assimilation of ontogenetic knowledge of dermal and endochondral bones from different structures demands revisions of the prevalent consensus in the evolutionary mechanisms of vertebrate skeletal shifts.
Collapse
Affiliation(s)
- Thomas W P Wood
- Department of Genetics, Rutgers, The State University of New Jersey, Piscataway, NJ, United States
| | - Tetsuya Nakamura
- Department of Genetics, Rutgers, The State University of New Jersey, Piscataway, NJ, United States
| |
Collapse
|
21
|
McMillan SC, Zhang J, Phan HE, Jeradi S, Probst L, Hammerschmidt M, Akimenko MA. A regulatory pathway involving retinoic acid and calcineurin demarcates and maintains joint cells and osteoblasts in regenerating fin. Development 2018; 145:dev.161158. [PMID: 29752384 DOI: 10.1242/dev.161158] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Accepted: 05/01/2018] [Indexed: 12/21/2022]
Abstract
During zebrafish fin regeneration, blastema cells lining the epidermis differentiate into osteoblasts and joint cells to reconstruct the segmented bony rays. We show that osteoblasts and joint cells originate from a common cell lineage, but are committed to different cell fates. Pre-osteoblasts expressing runx2a/b commit to the osteoblast lineage upon expressing sp7, whereas the strong upregulation of hoxa13a correlates with a commitment to a joint cell type. In the distal regenerate, hoxa13a, evx1 and pthlha are sequentially upregulated at regular intervals to define the newly identified presumptive joint cells. Presumptive joint cells mature into joint-forming cells, a distinct cell cluster that maintains the expression of these factors. Analysis of evx1 null mutants reveals that evx1 is acting upstream of pthlha and downstream of or in parallel with hoxa13a Calcineurin activity, potentially through the inhibition of retinoic acid signaling, regulates evx1, pthlha and hoxa13a expression during joint formation. Furthermore, retinoic acid treatment induces osteoblast differentiation in mature joint cells, leading to ectopic bone deposition in joint regions. Overall, our data reveal a novel regulatory pathway essential for joint formation in the regenerating fin.
Collapse
Affiliation(s)
- Stephanie C McMillan
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada K1N 6N5.,CAREG, 30 Marie Curie, University of Ottawa, Ottawa, ON, Canada K1N 6N5
| | - Jing Zhang
- CAREG, 30 Marie Curie, University of Ottawa, Ottawa, ON, Canada K1N 6N5.,Department of Biology, 30 Marie Curie, University of Ottawa, Ottawa, ON, Canada K1N 6N5
| | - Hue-Eileen Phan
- CAREG, 30 Marie Curie, University of Ottawa, Ottawa, ON, Canada K1N 6N5.,Department of Biology, 30 Marie Curie, University of Ottawa, Ottawa, ON, Canada K1N 6N5
| | - Shirine Jeradi
- Institute for Developmental Biology, Cologne University, Cologne 50674, Germany.,Institut Polytechnique Privé, Université Libre de Tunis, Tunis 1003, Tunisia
| | - Leona Probst
- CAREG, 30 Marie Curie, University of Ottawa, Ottawa, ON, Canada K1N 6N5.,Department of Biology, 30 Marie Curie, University of Ottawa, Ottawa, ON, Canada K1N 6N5
| | | | - Marie-Andrée Akimenko
- CAREG, 30 Marie Curie, University of Ottawa, Ottawa, ON, Canada K1N 6N5 .,Department of Biology, 30 Marie Curie, University of Ottawa, Ottawa, ON, Canada K1N 6N5
| |
Collapse
|
22
|
Epidermal regulation of bone morphogenesis through the development and regeneration of osteoblasts in the zebrafish scale. Dev Biol 2018. [DOI: 10.1016/j.ydbio.2018.03.005] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
23
|
Kimmel CB, Small CM, Knope ML. A rich diversity of opercle bone shape among teleost fishes. PLoS One 2017; 12:e0188888. [PMID: 29281662 PMCID: PMC5744915 DOI: 10.1371/journal.pone.0188888] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Accepted: 11/14/2017] [Indexed: 11/18/2022] Open
Abstract
The opercle is a prominent craniofacial bone supporting the gill cover in all bony fish and has been the subject of morphological, developmental, and genetic investigation. We surveyed the shapes of this bone among 110 families spanning the teleost tree and examined its pattern of occupancy in a principal component-based morphospace. Contrasting with expectations from the literature that suggest the local morphospace would be only sparsely occupied, we find primarily dense, broad filling of the morphological landscape, indicating rich diversity. Phylomorphospace plots suggest that dynamic evolution underlies the observed spatial patterning. Evolutionary transits through the morphospaces are sometimes long, and occur in a variety of directions. The trajectories seem to represent both evolutionary divergences and convergences, the latter supported by convevol analysis. We suggest that that this pattern of occupancy reflects the various adaptations of different groups of fishes, seemingly paralleling their diverse marine and freshwater ecologies and life histories. Opercle shape evolution within the acanthomorphs, spiny ray-finned fishes, appears to have been especially dynamic.
Collapse
Affiliation(s)
- Charles B. Kimmel
- Institute of Neuroscience, University of Oregon, Eugene, Oregon, United States of America
| | - Clayton M. Small
- Institute of Ecology and Evolution, University of Oregon, Eugene, Oregon, United States of America
| | - Matthew L. Knope
- Department of Biology, University of Hawaii at Hilo, Hilo, Hawaii, United States of America
| |
Collapse
|
24
|
Veistinen LK, Mustonen T, Hasan MR, Takatalo M, Kobayashi Y, Kesper DA, Vortkamp A, Rice DP. Regulation of Calvarial Osteogenesis by Concomitant De-repression of GLI3 and Activation of IHH Targets. Front Physiol 2017; 8:1036. [PMID: 29311969 PMCID: PMC5742257 DOI: 10.3389/fphys.2017.01036] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Accepted: 11/29/2017] [Indexed: 12/24/2022] Open
Abstract
Loss-of-function mutations in GLI3 and IHH cause craniosynostosis and reduced osteogenesis, respectively. In this study, we show that Ihh ligand, the receptor Ptch1 and Gli transcription factors are differentially expressed in embryonic mouse calvaria osteogenic condensations. We show that in both Ihh-/- and Gli3Xt-J/Xt-J embryonic mice, the normal gene expression architecture is lost and this results in disorganized calvarial bone development. RUNX2 is a master regulatory transcription factor controlling osteogenesis. In the absence of Gli3, RUNX2 isoform II and IHH are upregulated, and RUNX2 isoform I downregulated. This is consistent with the expanded and aberrant osteogenesis observed in Gli3Xt-J/Xt-J mice, and consistent with Runx2-I expression by relatively immature osteoprogenitors. Ihh-/- mice exhibited small calvarial bones and HH target genes, Ptch1 and Gli1, were absent. This indicates that IHH is the functional HH ligand, and that it is not compensated by another HH ligand. To decipher the roles and potential interaction of Gli3 and Ihh, we generated Ihh-/-;Gli3Xt-J/Xt-J compound mutant mice. Even in the absence of Ihh, Gli3 deletion was sufficient to induce aberrant precocious ossification across the developing suture, indicating that the craniosynostosis phenotype of Gli3Xt-J/Xt-J mice is not dependent on IHH ligand. Also, we found that Ihh was not required for Runx2 expression as the expression of RUNX2 target genes was unaffected by deletion of Ihh. To test whether RUNX2 has a role upstream of IHH, we performed RUNX2 siRNA knock down experiments in WT calvarial osteoblasts and explants and found that Ihh expression is suppressed. Our results show that IHH is the functional HH ligand in the embryonic mouse calvaria osteogenic condensations, where it regulates the progression of osteoblastic differentiation. As GLI3 represses the expression of Runx2-II and Ihh, and also elevates the Runx2-I expression, and as IHH may be regulated by RUNX2 these results raise the possibility of a regulatory feedback circuit to control calvarial osteogenesis and suture patency. Taken together, RUNX2-controlled osteoblastic cell fate is regulated by IHH through concomitant inhibition of GLI3-repressor formation and activation of downstream targets.
Collapse
Affiliation(s)
- Lotta K Veistinen
- Orthodontics, Oral and Maxillofacial Diseases, University of Helsinki, Helsinki, Finland
| | - Tuija Mustonen
- Orthodontics, Oral and Maxillofacial Diseases, University of Helsinki, Helsinki, Finland.,Minerva Research Institute, Helsinki, Finland
| | - Md Rakibul Hasan
- Orthodontics, Oral and Maxillofacial Diseases, University of Helsinki, Helsinki, Finland
| | - Maarit Takatalo
- Orthodontics, Oral and Maxillofacial Diseases, University of Helsinki, Helsinki, Finland
| | - Yukiho Kobayashi
- Orthodontics, Oral and Maxillofacial Diseases, University of Helsinki, Helsinki, Finland.,Orthodontics, Tokyo Medical and Dental University, Tokyo, Japan
| | - Dörthe A Kesper
- Center of Medical Biotechnology, University of Duisburg-Essen, Essen, Germany
| | - Andrea Vortkamp
- Center of Medical Biotechnology, University of Duisburg-Essen, Essen, Germany
| | - David P Rice
- Orthodontics, Oral and Maxillofacial Diseases, University of Helsinki, Helsinki, Finland.,Orthodontics, Oral and Maxillofacial Diseases, Helsinki University Hospital, Helsinki, Finland
| |
Collapse
|
25
|
Armstrong BE, Henner A, Stewart S, Stankunas K. Shh promotes direct interactions between epidermal cells and osteoblast progenitors to shape regenerated zebrafish bone. Development 2017; 144:1165-1176. [PMID: 28351866 DOI: 10.1242/dev.143792] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Accepted: 01/28/2017] [Indexed: 01/08/2023]
Abstract
Zebrafish innately regenerate amputated fins by mechanisms that expand and precisely position injury-induced progenitor cells to re-form tissue of the original size and pattern. For example, cell signaling networks direct osteoblast progenitors (pObs) to rebuild thin cylindrical bony rays with a stereotypical branched morphology. Hedgehog/Smoothened (Hh/Smo) signaling has been variably proposed to stimulate overall fin regenerative outgrowth or promote ray branching. Using a photoconvertible patched2 reporter, we resolve active Hh/Smo output to a narrow distal regenerate zone comprising pObs and adjacent motile basal epidermal cells. This Hh/Smo activity is driven by epidermal Sonic hedgehog a (Shha) rather than Ob-derived Indian hedgehog a (Ihha), which nevertheless functions atypically to support bone maturation. Using BMS-833923, a uniquely effective Smo inhibitor, and high-resolution imaging, we show that Shha/Smo is functionally dedicated to ray branching during fin regeneration. Hh/Smo activation enables transiently divided clusters of Shha-expressing epidermis to escort pObs into similarly split groups. This co-movement likely depends on epidermal cellular protrusions that directly contact pObs only where an otherwise occluding basement membrane remains incompletely assembled. Progressively separated pObs pools then continue regenerating independently to collectively re-form a now branched skeletal structure.
Collapse
Affiliation(s)
- Benjamin E Armstrong
- Institute of Molecular Biology, University of Oregon, 297A Klamath Hall, 1370 Franklin Blvd, Eugene, OR 97403, USA.,Department of Chemistry and Biochemistry, University of Oregon, 297A Klamath Hall, 1370 Franklin Blvd, Eugene, OR 97403, USA
| | - Astra Henner
- Institute of Molecular Biology, University of Oregon, 297A Klamath Hall, 1370 Franklin Blvd, Eugene, OR 97403, USA
| | - Scott Stewart
- Institute of Molecular Biology, University of Oregon, 297A Klamath Hall, 1370 Franklin Blvd, Eugene, OR 97403, USA
| | - Kryn Stankunas
- Institute of Molecular Biology, University of Oregon, 297A Klamath Hall, 1370 Franklin Blvd, Eugene, OR 97403, USA .,Department of Biology, University of Oregon, 297A Klamath Hall, 1370 Franklin Blvd, Eugene, OR 97403, USA
| |
Collapse
|
26
|
Hu Y, Albertson RC. Baby fish working out: an epigenetic source of adaptive variation in the cichlid jaw. Proc Biol Sci 2017; 284:20171018. [PMID: 28768892 PMCID: PMC5563811 DOI: 10.1098/rspb.2017.1018] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Accepted: 06/27/2017] [Indexed: 12/23/2022] Open
Abstract
Understanding the developmental processes that underlie the production of adaptive variation (i.e. the 'arrival of the fittest') is a major goal of evolutionary biology. While most evo-devo studies focus on the genetic underpinnings of adaptive phenotypic variation, factors beyond changes in nucleotide sequence can also play a major role in shaping developmental outcomes. Here, we document a vigorous but enigmatic gaping behaviour during the early development of Lake Malawi cichlid larvae. The onset of the behaviour precedes the formation of bone, and we predicted that it might influence craniofacial shape by affecting the mechanical environment in which bone develops. Consistent with this, we found that both natural variation and experimental manipulation of this behaviour induced differential skeletal development that foreshadows adaptive variation in adult trophic morphology. In fact, the magnitude of difference in skeletal morphology induced by these simple shifts in behaviour was similar to those predicted to be caused by genetic factors. Finally, we demonstrate that this mechanical-load-induced shift in skeletal development is associated with differences in ptch1 expression, a gene previously implicated in mediating between-species differences in skeletal shape. Our results underscore the complexity of development, and the importance of epigenetic (sensu Waddington) mechanisms in determining adaptive phenotypic variation.
Collapse
Affiliation(s)
- Yinan Hu
- Biology Department, Boston College, Chestnut Hill, MA 02467, USA
| | - R Craig Albertson
- Department of Biology, University of Massachusetts, Amherst, MA 01003, USA
| |
Collapse
|
27
|
Li J, Cui Y, Xu J, Wang Q, Yang X, Li Y, Zhang X, Qiu M, Zhang Z, Zhang Z. Suppressor of Fused restraint of Hedgehog activity level is critical for osteogenic proliferation and differentiation during calvarial bone development. J Biol Chem 2017; 292:15814-15825. [PMID: 28794157 DOI: 10.1074/jbc.m117.777532] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2017] [Revised: 07/04/2017] [Indexed: 12/31/2022] Open
Abstract
Hedgehog signaling plays crucial roles in the development of calvarial bone, relying on the activation of Gli transcription factors. However, the molecular mechanism of the role of regulated Gli protein level in osteogenic specification of mesenchyme still remains elusive. Here, we show by conditionally inactivating Suppressor of Fused (Sufu), a critical repressor of Hedgehog signaling, in Wnt1-Cre-mediated cranial neural crest (CNC) or Dermo1-Cre-mediated mesodermal lineages that Sufu restraint of Hedgehog activity level is critical for differentiation of preosteogenic mesenchyme. Ablation of Sufu results in failure of calvarial bone formation, including CNC-derived bones and mesoderm-derived bones, depending on the Cre line being used. Although mesenchymal cells populate to frontonasal destinations, where they are then condensed, Sufu deletion significantly inhibits the proliferation of osteoprogenitor cells, and these cells no longer differentiate into osteoblasts. We show that there is suppression of Runx2 and Osterix, the osteogenic regulators, in calvarial mesenchyme in the Sufu mutant. We show that down-regulation of several genes upstream to Runx2 and Osterix is manifested within the calvarial primordia, including Bmp2 and its downstream genes Msx1/2 and Dlx5 By contrast, we find that Gli1, the Hedgehog activity readout gene, is excessively activated in mesenchyme. Deletion of Sufu in CNC leads to a discernible decrease in the repressive Gli3 form and an increase in the full-length Gli2. Finally, we demonstrate that simultaneous deletion of Gli2 and Sufu in CNC completely restores calvarial bone formation, suggesting that a sustained level of Hedgehog activity is critical in specification of the osteogenic mesenchymal cells.
Collapse
Affiliation(s)
- Jianying Li
- From the Zhejiang Key Laboratory for Organogenesis and Regenerative Technology, Institute of Life Sciences, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 310036, China and
| | - Ying Cui
- From the Zhejiang Key Laboratory for Organogenesis and Regenerative Technology, Institute of Life Sciences, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 310036, China and
| | - Jie Xu
- From the Zhejiang Key Laboratory for Organogenesis and Regenerative Technology, Institute of Life Sciences, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 310036, China and
| | - Qihui Wang
- From the Zhejiang Key Laboratory for Organogenesis and Regenerative Technology, Institute of Life Sciences, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 310036, China and
| | - Xueqin Yang
- From the Zhejiang Key Laboratory for Organogenesis and Regenerative Technology, Institute of Life Sciences, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 310036, China and
| | - Yan Li
- From the Zhejiang Key Laboratory for Organogenesis and Regenerative Technology, Institute of Life Sciences, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 310036, China and
| | - Xiaoyun Zhang
- From the Zhejiang Key Laboratory for Organogenesis and Regenerative Technology, Institute of Life Sciences, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 310036, China and
| | - Mengsheng Qiu
- From the Zhejiang Key Laboratory for Organogenesis and Regenerative Technology, Institute of Life Sciences, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 310036, China and
| | - Ze Zhang
- the Department of Ophthamology, Tulane Medical Center, Tulane University, New Orleans, Louisiana 70112
| | - Zunyi Zhang
- From the Zhejiang Key Laboratory for Organogenesis and Regenerative Technology, Institute of Life Sciences, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 310036, China and
| |
Collapse
|
28
|
Tarasco M, Laizé V, Cardeira J, Cancela ML, Gavaia PJ. The zebrafish operculum: A powerful system to assess osteogenic bioactivities of molecules with pharmacological and toxicological relevance. Comp Biochem Physiol C Toxicol Pharmacol 2017; 197:45-52. [PMID: 28457946 DOI: 10.1016/j.cbpc.2017.04.006] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Revised: 04/20/2017] [Accepted: 04/25/2017] [Indexed: 01/26/2023]
Abstract
Bone disorders affect millions of people worldwide and available therapeutics have a limited efficacy, often presenting undesirable side effects. As such, there is a need for novel molecules with bone anabolic properties. The aim of this work was to establish a rapid, reliable and reproducible method to screen for molecules with osteogenic activities, using the zebrafish operculum to assess bone formation. Exposure parameters were optimized through morphological analysis of the developing operculum of larvae exposed to calcitriol, a molecule with known pro-osteogenic properties. An exposure of 3days initiated at 3days post-fertilization was sufficient to stimulate operculum formation, while not affecting survival or development of the larvae. Dose-dependent pro- and anti-osteogenic effects of calcitriol and cobalt chloride, respectively, demonstrated the sensitivity of the method and the suitability of the operculum system. A double transgenic reporter line expressing fluorescent markers for early and mature osteoblasts was used to gain insights into the effects of calcitriol and cobalt at the cellular level, with osteoblast maturation shown to be stimulated and inhibited, respectively, in the operculum of exposed fish. The zebrafish operculum represents a consistent, robust and rapid screening system for the discovery of novel molecules with osteogenic, anti-osteoporotic or osteotoxic activity.
Collapse
Affiliation(s)
- Marco Tarasco
- Centre of Marine Sciences (CCMAR), University of Algarve, Campus de Gambelas, Faro, Portugal
| | - Vincent Laizé
- Centre of Marine Sciences (CCMAR), University of Algarve, Campus de Gambelas, Faro, Portugal
| | - João Cardeira
- Centre of Marine Sciences (CCMAR), University of Algarve, Campus de Gambelas, Faro, Portugal; ProRegeM PhD Programme, Department of Biomedical Sciences and Medicine, University of Algarve, Campus de Gambelas, Faro, Portugal
| | - M Leonor Cancela
- Centre of Marine Sciences (CCMAR), University of Algarve, Campus de Gambelas, Faro, Portugal; Department of Biomedical Sciences and Medicine, University of Algarve, Campus de Gambelas, Faro, Portugal
| | - Paulo J Gavaia
- Centre of Marine Sciences (CCMAR), University of Algarve, Campus de Gambelas, Faro, Portugal; Department of Biomedical Sciences and Medicine, University of Algarve, Campus de Gambelas, Faro, Portugal.
| |
Collapse
|
29
|
Lin Y, Huang Y, He J, Chen F, He Y, Zhang W. Role of Hedgehog-Gli1 signaling in the enhanced proliferation and differentiation of MG63 cells enabled by hierarchical micro-/nanotextured topography. Int J Nanomedicine 2017; 12:3267-3280. [PMID: 28458545 PMCID: PMC5404496 DOI: 10.2147/ijn.s135045] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Hedgehog–Gli1 signaling is evolutionarily conserved and plays an essential role in osteoblast proliferation and differentiation as well as bone formation. To evaluate the role of the Hedgehog–Gli1 pathway in the response of osteoblasts to hierarchical biomaterial topographies, human MG63 osteoblasts were seeded onto smooth, microstructured, and micro-/nanotextured topography (MNT) titanium to assess osteoblast proliferation and differentiation in terms of proliferative activity, alkaline phosphatase (ALP) production, and osteogenesis-related gene expression. Quantitative real-time polymerase chain reaction (qRT-PCR) was used to detect the mRNA expression of Sonic hedgehog (Shh), Smoothened (Smo), and Gli1, and the protein levels were assayed by Western blotting. MG63 cells treated with the Smo inhibitor cyclopamine were seeded onto the titanium specimens, and the cell proliferation and differentiation were studied in the presence or absence of cyclopamine. Our results showed that compared to the smooth and microstructured surfaces, the MNTs induced a higher gene expression and protein production of Shh, Smo, and Gli1 as well as the activation of Hedgehog signaling. The enhanced proliferative activity, ALP production, and expression of the osteogenesis-related genes (bone morphogenetic protein-2, ALP, and runt-related transcription factor 2) enabled by the MNTs were significantly downregulated by the presence of cyclopamine to a similar level as those on the smooth and acid-etched microstructured surfaces in the absence of cyclopamine. This evidence explicitly demonstrates pivotal roles of Hedgehog–Gli1 signaling pathway in mediating the enhanced effect of MNTs on MG63 proliferation and differentiation, which greatly advances our understanding of the mechanism involved in the biological responsiveness of biomaterial topographies. These findings may aid in the optimization of hierarchical biomaterial topographies targeting Hedgehog–Gli1 signaling.
Collapse
Affiliation(s)
- Yao Lin
- Department of Stomatology, Taishan People's Hospital, Affiliated to Guangdong Medical University, Taishan
| | - Yinghe Huang
- Department of Stomatology, Taishan People's Hospital, Affiliated to Guangdong Medical University, Taishan
| | - Junbing He
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Institute of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, People's Republic of China
| | - Feng Chen
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Institute of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, People's Republic of China
| | - Yanfang He
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Institute of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, People's Republic of China
| | - Wenying Zhang
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Institute of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, People's Republic of China
| |
Collapse
|
30
|
Weigele J, Franz-Odendaal TA. Functional bone histology of zebrafish reveals two types of endochondral ossification, different types of osteoblast clusters and a new bone type. J Anat 2017; 229:92-103. [PMID: 27278890 DOI: 10.1111/joa.12480] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/08/2016] [Indexed: 02/01/2023] Open
Abstract
The zebrafish is as an important vertebrate animal model system for studying developmental processes, gene functions and signalling pathways. It is also used as a model system for the understanding of human developmental diseases including those related to the skeleton. However, surprisingly little is known about normal zebrafish skeletogenesis and osteogenesis. As in most vertebrates, it is commonly known that the bones of adult zebrafish are cellular unlike that of some other teleosts. After careful histological analyses of each zebrafish adult bone, we identified several acellular bones, with no entrapped osteocytes in addition to several cellular bones. We show that both cellular and acellular bones can even occur within the same skeletal element and transitions between these two cell types can be found. Furthermore, we describe two types of osteoblast clusters during skeletogenesis and two different types of endochondral ossification. The epiphyseal plate, for example, lacks a zone of calcification and a degradation zone with osteoblasts. A new bone type that we term tubular bone was also identified. This bone is completely filled with adipose tissue, unlike spongy bones. This study provides important insight on how osteogenesis takes place in zebrafish, and especially on the transition from cellular to acellular bones. Overall, this study leads to a deeper understanding of the functional histological composition of adult zebrafish bones.
Collapse
Affiliation(s)
- Jochen Weigele
- Department of Biology, Mount Saint Vincent University, Halifax, Nova Scotia, Canada
| | | |
Collapse
|
31
|
Nichols JT, Blanco-Sánchez B, Brooks EP, Parthasarathy R, Dowd J, Subramanian A, Nachtrab G, Poss KD, Schilling TF, Kimmel CB. Ligament versus bone cell identity in the zebrafish hyoid skeleton is regulated by mef2ca. Development 2016; 143:4430-4440. [PMID: 27789622 PMCID: PMC5201047 DOI: 10.1242/dev.141036] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Accepted: 10/18/2016] [Indexed: 12/11/2022]
Abstract
Heightened phenotypic variation among mutant animals is a well-known, but poorly understood phenomenon. One hypothetical mechanism accounting for mutant phenotypic variation is progenitor cells variably choosing between two alternative fates during development. Zebrafish mef2cab1086 mutants develop tremendously variable ectopic bone in their hyoid craniofacial skeleton. Here, we report evidence that a key component of this phenotype is variable fate switching from ligament to bone. We discover that a 'track' of tissue prone to become bone cells is a previously undescribed ligament. Fate-switch variability is heritable, and comparing mutant strains selectively bred to high and low penetrance revealed differential mef2ca mutant transcript expression between high and low penetrance strains. Consistent with this, experimental manipulation of mef2ca mutant transcripts modifies the penetrance of the fate switch. Furthermore, we discovered a transposable element that resides immediately upstream of the mef2ca locus and is differentially DNA methylated in the two strains, correlating with differential mef2ca expression. We propose that variable transposon epigenetic silencing underlies the variable mef2ca mutant bone phenotype, and could be a widespread mechanism of phenotypic variability in animals.
Collapse
Affiliation(s)
- James T Nichols
- Department of Biology, University of Oregon, Eugene, OR 97403, USA
| | | | - Elliott P Brooks
- Department of Biology, University of Oregon, Eugene, OR 97403, USA
| | | | - John Dowd
- Department of Biology, University of Oregon, Eugene, OR 97403, USA
| | - Arul Subramanian
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA 92697, USA
| | - Gregory Nachtrab
- Department of Cell Biology, Duke University Medical Center, Durham, NC 27710, USA
| | - Kenneth D Poss
- Department of Cell Biology, Duke University Medical Center, Durham, NC 27710, USA
| | - Thomas F Schilling
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA 92697, USA
| | - Charles B Kimmel
- Department of Biology, University of Oregon, Eugene, OR 97403, USA
| |
Collapse
|
32
|
Paul S, Schindler S, Giovannone D, de Millo Terrazzani A, Mariani FV, Crump JG. Ihha induces hybrid cartilage-bone cells during zebrafish jawbone regeneration. Development 2016; 143:2066-76. [PMID: 27122168 DOI: 10.1242/dev.131292] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Accepted: 04/12/2016] [Indexed: 12/29/2022]
Abstract
The healing of bone often involves a cartilage intermediate, yet how such cartilage is induced and utilized during repair is not fully understood. By studying a model of large-scale bone regeneration in the lower jaw of adult zebrafish, we show that chondrocytes are crucial for generating thick bone during repair. During jawbone regeneration, we find that chondrocytes co-express genes associated with osteoblast differentiation and produce extensive mineralization, which is in marked contrast to the behavior of chondrocytes during facial skeletal development. We also identify the likely source of repair chondrocytes as a population of Runx2(+)/Sp7(-) cells that emanate from the periosteum, a tissue that normally contributes only osteoblasts during homeostasis. Analysis of Indian hedgehog homolog a (ihha) mutants shows that the ability of periosteal cells to generate cartilage in response to injury depends on a repair-specific role of Ihha in the induction as opposed to the proliferation of chondrocytes. The large-scale regeneration of the zebrafish jawbone thus employs a cartilage differentiation program distinct from that seen during development, with the bone-forming potential of repair chondrocytes potentially due to their derivation from osteogenic cells in the periosteum.
Collapse
Affiliation(s)
- Sandeep Paul
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Simone Schindler
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Dion Giovannone
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Alexandra de Millo Terrazzani
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Francesca V Mariani
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - J Gage Crump
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| |
Collapse
|
33
|
Misu A, Yamanaka H, Aramaki T, Kondo S, Skerrett IM, Iovine MK, Watanabe M. Two Different Functions of Connexin43 Confer Two Different Bone Phenotypes in Zebrafish. J Biol Chem 2016; 291:12601-12611. [PMID: 27129238 DOI: 10.1074/jbc.m116.720110] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Indexed: 01/30/2023] Open
Abstract
Fish remain nearly the same shape as they grow, but there are two different modes of bone growth. Bones in the tail fin (fin ray segments) are added distally at the tips of the fins and do not elongate once produced. On the other hand, vertebrae enlarge in proportion to body growth. To elucidate how bone growth is controlled, we investigated a zebrafish mutant, steopsel (stp(tl28d)). Vertebrae of stp(tl28d) (/+) fish look normal in larvae (∼30 days) but are distinctly shorter (59-81%) than vertebrae of wild type fish in adults. In contrast, the lengths of fin rays are only slightly shorter (∼95%) than those of the wild type in both larvae and adults. Positional cloning revealed that stp encodes Connexin43 (Cx43), a connexin that functions as a gap junction and hemichannel. Interestingly, cx43 was also identified as the gene causing the short-of-fin (sof) phenotype, in which the fin ray segments are shorter but the vertebrae are normal. To identify the cause of this difference between the alleles, we expressed Cx43 exogenously in Xenopus oocytes and performed electrophysiological analysis of the mutant proteins. Gap junction coupling induced by Cx43(stp) or Cx43(sof) was reduced compared with Cx43-WT. On the other hand, only Cx43(stp) induced abnormally high (50× wild type) transmembrane currents through hemichannels. Our results suggest that Cx43 plays critical and diverse roles in zebrafish bone growth.
Collapse
Affiliation(s)
- Akihiro Misu
- Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Hiroaki Yamanaka
- Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Toshihiro Aramaki
- Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Shigeru Kondo
- Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadaoka, Suita, Osaka 565-0871, Japan; CREST, Japan Science and Technology Agency, 1-3 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | | | - M Kathryn Iovine
- Department of Biological Sciences, Lehigh University, Bethlehem, Pennsylvania 18015
| | - Masakatsu Watanabe
- Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadaoka, Suita, Osaka 565-0871, Japan.
| |
Collapse
|
34
|
Felber K, Elks PM, Lecca M, Roehl HH. Expression of osterix Is Regulated by FGF and Wnt/β-Catenin Signalling during Osteoblast Differentiation. PLoS One 2015; 10:e0144982. [PMID: 26689368 PMCID: PMC4686927 DOI: 10.1371/journal.pone.0144982] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Accepted: 11/26/2015] [Indexed: 01/24/2023] Open
Abstract
Osteoblast differentiation from mesenchymal cells is regulated by multiple signalling pathways. Here we have analysed the roles of Fibroblast Growth Factor (FGF) and canonical Wingless-type MMTV integration site (Wnt/β-Catenin) signalling pathways on zebrafish osteogenesis. We have used transgenic and chemical interference approaches to manipulate these pathways and have found that both pathways are required for osteoblast differentiation in vivo. Our analysis of bone markers suggests that these pathways act at the same stage of differentiation to initiate expression of the osteoblast master regulatory gene osterix (osx). We use two independent approaches that suggest that osx is a direct target of these pathways. Firstly, we manipulate signalling and show that osx gene expression responds with similar kinetics to that of known transcriptional targets of the FGF and Wnt pathways. Secondly, we have performed ChIP with transcription factors for both pathways and our data suggest that a genomic region in the first intron of osx mediates transcriptional activation. Based upon these data, we propose that FGF and Wnt/β-Catenin pathways act in part by directing transcription of osx to promote osteoblast differentiation at sites of bone formation.
Collapse
Affiliation(s)
- Katharina Felber
- Bateson Centre and Department of Biomedical Science, University of Sheffield, Sheffield S10 2TN, United Kingdom
| | - Philip M. Elks
- Bateson Centre and Department of Biomedical Science, University of Sheffield, Sheffield S10 2TN, United Kingdom
| | - Maria Lecca
- Bateson Centre and Department of Biomedical Science, University of Sheffield, Sheffield S10 2TN, United Kingdom
| | - Henry H. Roehl
- Bateson Centre and Department of Biomedical Science, University of Sheffield, Sheffield S10 2TN, United Kingdom
- * E-mail:
| |
Collapse
|
35
|
Abstract
The formation of the face and skull involves a complex series of developmental events mediated by cells derived from the neural crest, endoderm, mesoderm, and ectoderm. Although vertebrates boast an enormous diversity of adult facial morphologies, the fundamental signaling pathways and cellular events that sculpt the nascent craniofacial skeleton in the embryo have proven to be highly conserved from fish to man. The zebrafish Danio rerio, a small freshwater cyprinid fish from eastern India, has served as a popular model of craniofacial development since the 1990s. Unique strengths of the zebrafish model include a simplified skeleton during larval stages, access to rapidly developing embryos for live imaging, and amenability to transgenesis and complex genetics. In this chapter, we describe the anatomy of the zebrafish craniofacial skeleton; its applications as models for the mammalian jaw, middle ear, palate, and cranial sutures; the superior imaging technology available in fish that has provided unprecedented insights into the dynamics of facial morphogenesis; the use of the zebrafish to decipher the genetic underpinnings of craniofacial biology; and finally a glimpse into the most promising future applications of zebrafish craniofacial research.
Collapse
|
36
|
Gómez-Picos P, Eames BF. On the evolutionary relationship between chondrocytes and osteoblasts. Front Genet 2015; 6:297. [PMID: 26442113 PMCID: PMC4585068 DOI: 10.3389/fgene.2015.00297] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Accepted: 09/07/2015] [Indexed: 11/17/2022] Open
Abstract
Vertebrates are the only animals that produce bone, but the molecular genetic basis for this evolutionary novelty remains obscure. Here, we synthesize information from traditional evolutionary and modern molecular genetic studies in order to generate a working hypothesis on the evolution of the gene regulatory network (GRN) underlying bone formation. Since transcription factors are often core components of GRNs (i.e., kernels), we focus our analyses on Sox9 and Runx2. Our argument centers on three skeletal tissues that comprise the majority of the vertebrate skeleton: immature cartilage, mature cartilage, and bone. Immature cartilage is produced during early stages of cartilage differentiation and can persist into adulthood, whereas mature cartilage undergoes additional stages of differentiation, including hypertrophy and mineralization. Functionally, histologically, and embryologically, these three skeletal tissues are very similar, yet unique, suggesting that one might have evolved from another. Traditional studies of the fossil record, comparative anatomy and embryology demonstrate clearly that immature cartilage evolved before mature cartilage or bone. Modern molecular approaches show that the GRNs regulating differentiation of these three skeletal cell fates are similar, yet unique, just like the functional and histological features of the tissues themselves. Intriguingly, the Sox9 GRN driving cartilage formation appears to be dominant to the Runx2 GRN of bone. Emphasizing an embryological and evolutionary transcriptomic view, we hypothesize that the Runx2 GRN underlying bone formation was co-opted from mature cartilage. We discuss how modern molecular genetic experiments, such as comparative transcriptomics, can test this hypothesis directly, meanwhile permitting levels of constraint and adaptation to be evaluated quantitatively. Therefore, comparative transcriptomics may revolutionize understanding of not only the clade-specific evolution of skeletal cells, but also the generation of evolutionary novelties, providing a modern paradigm for the evolutionary process.
Collapse
Affiliation(s)
- Patsy Gómez-Picos
- Department of Anatomy and Cell Biology, University of Saskatchewan, Saskatoon, SK Canada
| | - B Frank Eames
- Department of Anatomy and Cell Biology, University of Saskatchewan, Saskatoon, SK Canada
| |
Collapse
|
37
|
Abstract
The Hedgehog (Hh) signalling pathway plays many important roles in development, homeostasis and tumorigenesis. The critical function of Hh signalling in bone formation has been identified in the past two decades. Here, we review the evolutionarily conserved Hh signalling mechanisms with an emphasis on the functions of the Hh signalling pathway in bone development, homeostasis and diseases. In the early stages of embryonic limb development, Sonic Hedgehog (Shh) acts as a major morphogen in patterning the limb buds. Indian Hedgehog (Ihh) has an essential function in endochondral ossification and induces osteoblast differentiation in the perichondrium. Hh signalling is also involved intramembrane ossification. Interactions between Hh and Wnt signalling regulate cartilage development, endochondral bone formation and synovial joint formation. Hh also plays an important role in bone homeostasis, and reducing Hh signalling protects against age-related bone loss. Disruption of Hh signalling regulation leads to multiple bone diseases, such as progressive osseous heteroplasia. Therefore, understanding the signalling mechanisms and functions of Hh signalling in bone development, homeostasis and diseases will provide important insights into bone disease prevention, diagnoses and therapeutics.
Collapse
|
38
|
Bertin A, Hanna P, Otarola G, Fritz A, Henriquez JP, Marcellini S. Cellular and molecular characterization of a novel primary osteoblast culture from the vertebrate model organism Xenopus tropicalis. Histochem Cell Biol 2014; 143:431-42. [DOI: 10.1007/s00418-014-1289-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/15/2014] [Indexed: 01/30/2023]
|
39
|
Kimmel CB. Skull developmental modularity: a view from a single bone - or two. ZEITSCHRIFT FUR ANGEWANDTE ICHTHYOLOGIE = JOURNAL OF APPLIED ICHTHYOLOGY 2014; 30:600-607. [PMID: 25294950 PMCID: PMC4185205 DOI: 10.1111/jai.12508] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
I review recent studies that connect development and evolution of skull bones in teleosts. Development uses genetic information to build a structured, modular phenotype, and since selection acts on the phenotype, developmental modularity may influence evolvability. Just how is a complex developing morphology spatially partitioned into modules? Here I briefly examine cellular, molecular genetic, and multivariate statistical approaches to the identification of developmental modules. Furthermore I review our evidence that developmental modularity provides evolutionarily labile regions within the skull and hence potentially biases evolutionary change in a positive manner. This view is rather different from early ones in the field of evolutionary developmental biology, in which developmental constraint due to patterns such as heterochronies were supposed to negatively impact evolution.
Collapse
|
40
|
DeLaurier A, Huycke TR, Nichols JT, Swartz ME, Larsen A, Walker C, Dowd J, Pan L, Moens CB, Kimmel CB. Role of mef2ca in developmental buffering of the zebrafish larval hyoid dermal skeleton. Dev Biol 2014; 385:189-99. [PMID: 24269905 PMCID: PMC3892954 DOI: 10.1016/j.ydbio.2013.11.016] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2013] [Revised: 11/10/2013] [Accepted: 11/12/2013] [Indexed: 11/28/2022]
Abstract
Phenotypic robustness requires a process of developmental buffering that is largely not understood, but which can be disrupted by mutations. Here we show that in mef2ca(b1086) loss of function mutant embryos and early larvae, development of craniofacial hyoid bones, the opercle (Op) and branchiostegal ray (BR), becomes remarkably unstable; the large magnitude of the instability serves as a positive attribute to learn about features of this developmental buffering. The OpBR mutant phenotype variably includes bone expansion and fusion, Op duplication, and BR homeosis. Formation of a novel bone strut, or a bone bridge connecting the Op and BR together occurs frequently. We find no evidence that the phenotypic stability in the wild type is provided by redundancy between mef2ca and its co-ortholog mef2cb, or that it is related to the selector (homeotic) gene function of mef2ca. Changes in dorsal-ventral patterning of the hyoid arch also might not contribute to phenotypic instability in mutants. However, subsequent development of the bone lineage itself, including osteoblast differentiation and morphogenetic outgrowth, shows marked variation. Hence, steps along the developmental trajectory appear differentially sensitive to the loss of buffering, providing focus for the future study.
Collapse
Affiliation(s)
- April DeLaurier
- Institute of Neuroscience, 1254 University of Oregon, Eugene, OR 97403-1254, USA
| | - Tyler R Huycke
- Institute of Neuroscience, 1254 University of Oregon, Eugene, OR 97403-1254, USA
| | - James T Nichols
- Institute of Neuroscience, 1254 University of Oregon, Eugene, OR 97403-1254, USA
| | - Mary E Swartz
- Institute of Neuroscience, 1254 University of Oregon, Eugene, OR 97403-1254, USA
| | - Ashlin Larsen
- Institute of Neuroscience, 1254 University of Oregon, Eugene, OR 97403-1254, USA
| | - Charline Walker
- Institute of Neuroscience, 1254 University of Oregon, Eugene, OR 97403-1254, USA
| | - John Dowd
- Institute of Neuroscience, 1254 University of Oregon, Eugene, OR 97403-1254, USA
| | - Luyuan Pan
- Division of Basic Science, Fred Hutchinson Cancer Center, 1100 Fairview Ave. N., PO Box 19024, Seattle, WA 98109, USA
| | - Cecilia B Moens
- Division of Basic Science, Fred Hutchinson Cancer Center, 1100 Fairview Ave. N., PO Box 19024, Seattle, WA 98109, USA
| | - Charles B Kimmel
- Institute of Neuroscience, 1254 University of Oregon, Eugene, OR 97403-1254, USA.
| |
Collapse
|
41
|
Jamniczky HA, Harper EE, Garner R, Cresko WA, Wainwright PC, Hallgrímsson B, Kimmel CB. Association between integration structure and functional evolution in the opercular four-bar apparatus of the threespine stickleback,Gasterosteus aculeatus(Pisces: Gasterosteidae). Biol J Linn Soc Lond 2013. [DOI: 10.1111/bij.12203] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Heather A. Jamniczky
- Department of Cell Biology & Anatomy and McCaig Institute for Bone and Joint Health; Faculty of Medicine; University of Calgary; 3280 Hospital Drive NW Calgary AB T2N 3Z6 Canada
| | - Emily E. Harper
- Institute of Neuroscience; University of Oregon; 222 Huestis Hall Eugene OR 97403 USA
| | - Rebecca Garner
- Institute of Neuroscience; University of Oregon; 222 Huestis Hall Eugene OR 97403 USA
| | - William A. Cresko
- Institute of Ecology and Evolution; University of Oregon; 312 Pacific Hall Eugene OR 97403 USA
| | - Peter C. Wainwright
- Department of Evolution & Ecology; University of California Davis; 1 Shields Avenue Davis CA 95616 USA
| | - Benedikt Hallgrímsson
- Department of Cell Biology & Anatomy; McCaig Institute for Bone and Joint Health, and Alberta Children's Hospital Research Institute; Faculty of Medicine; University of Calgary; 3280 Hospital Drive NW Calgary AB T2N 3Z6 Canada
| | - Charles B. Kimmel
- Institute of Neuroscience; University of Oregon; 222 Huestis Hall Eugene OR 97403 USA
| |
Collapse
|
42
|
Unifying and generalizing the two strands of evo-devo. Trends Ecol Evol 2013; 28:584-91. [DOI: 10.1016/j.tree.2013.06.009] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2013] [Revised: 06/17/2013] [Accepted: 06/20/2013] [Indexed: 12/14/2022]
|
43
|
Li X, Young NM, Tropp S, Hu D, Xu Y, Hallgrímsson B, Marcucio RS. Quantification of shape and cell polarity reveals a novel mechanism underlying malformations resulting from related FGF mutations during facial morphogenesis. Hum Mol Genet 2013; 22:5160-72. [PMID: 23906837 DOI: 10.1093/hmg/ddt369] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Fibroblast growth factor (FGF) signaling mutations are a frequent contributor to craniofacial malformations including midfacial anomalies and craniosynostosis. FGF signaling has been shown to control cellular mechanisms that contribute to facial morphogenesis and growth such as proliferation, survival, migration and differentiation. We hypothesized that FGF signaling not only controls the magnitude of growth during facial morphogenesis but also regulates the direction of growth via cell polarity. To test this idea, we infected migrating neural crest cells of chicken embryos with replication-competent avian sarcoma virus expressing either FgfR2(C278F), a receptor mutation found in Crouzon syndrome or the ligand Fgf8. Treated embryos exhibited craniofacial malformations resembling facial dysmorphologies in craniosynostosis syndrome. Consistent with our hypothesis, ectopic activation of FGF signaling resulted in decreased cell proliferation, increased expression of the Sprouty class of FGF signaling inhibitors, and repressed phosphorylation of ERK/MAPK. Furthermore, quantification of cell polarity in facial mesenchymal cells showed that while orientation of the Golgi body matches the direction of facial prominence outgrowth in normal cells, in FGF-treated embryos this direction is randomized, consistent with aberrant growth that we observed. Together, these data demonstrate that FGF signaling regulates cell proliferation and cell polarity and that these cell processes contribute to facial morphogenesis.
Collapse
Affiliation(s)
- Xin Li
- Department of Orthopedic Surgery, Orthopedic Trauma Institute, San Francisco General Hospital, University of California, San Francisco, CA, USA
| | | | | | | | | | | | | |
Collapse
|
44
|
edn1 and hand2 Interact in early regulation of pharyngeal arch outgrowth during zebrafish development. PLoS One 2013; 8:e67522. [PMID: 23826316 PMCID: PMC3691169 DOI: 10.1371/journal.pone.0067522] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2013] [Accepted: 05/20/2013] [Indexed: 12/02/2022] Open
Abstract
Endothelin-1 (Edn1) signaling provides a critical input to development of the embryonic pharygneal arches and their skeletal derivatives, particularly the articulating joints and the ventral skeleton including the lower jaw. Previous work in zebrafish has mostly focused on the role of Edn1 in dorsal-ventral (DV) patterning, but Edn1 signaling must also regulate tissue size, for with severe loss of the pathway the ventral skeleton is not only mispatterned, but is also prominently hypoplastic – reduced in size. Here we use mutational analyses to show that in the early pharyngeal arches, ventral-specific edn1-mediated proliferation of neural crest derived cells is required for DV expansion and outgrowth, and that this positive regulation is counterbalanced by a negative one exerted through a pivotal, ventrally expressed Edn1-target gene, hand2. We also describe a new morphogenetic cell movement in the ventral first arch, sweeping cells anterior in the arch to the region where the lower jaw forms. This movement is negatively regulated by hand2 in an apparently edn1-independent fashion. These findings point to complexity of regulation by edn1 and hand2 at the earliest stages of pharyngeal arch development, in which control of growth and morphogenesis can be genetically separated.
Collapse
|
45
|
Eames BF, DeLaurier A, Ullmann B, Huycke TR, Nichols JT, Dowd J, McFadden M, Sasaki MM, Kimmel CB. FishFace: interactive atlas of zebrafish craniofacial development at cellular resolution. BMC DEVELOPMENTAL BIOLOGY 2013; 13:23. [PMID: 23714426 PMCID: PMC3698193 DOI: 10.1186/1471-213x-13-23] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2012] [Accepted: 05/21/2013] [Indexed: 01/04/2023]
Abstract
BACKGROUND The vertebrate craniofacial skeleton may exhibit anatomical complexity and diversity, but its genesis and evolution can be understood through careful dissection of developmental programs at cellular resolution. Resources are lacking that include introductory overviews of skeletal anatomy coupled with descriptions of craniofacial development at cellular resolution. In addition to providing analytical guidelines for other studies, such an atlas would suggest cellular mechanisms underlying development. DESCRIPTION We present the Fish Face Atlas, an online, 3D-interactive atlas of craniofacial development in the zebrafish Danio rerio. Alizarin red-stained skulls scanned by fluorescent optical projection tomography and segmented into individual elements provide a resource for understanding the 3D structure of the zebrafish craniofacial skeleton. These data provide the user an anatomical entry point to confocal images of Alizarin red-stained zebrafish with transgenically-labelled pharyngeal arch ectomesenchyme, chondrocytes, and osteoblasts, which illustrate the appearance, morphogenesis, and growth of the mandibular and hyoid cartilages and bones, as viewed in live, anesthetized zebrafish during embryonic and larval development. Confocal image stacks at high magnification during the same stages provide cellular detail and suggest developmental and evolutionary hypotheses. CONCLUSION The FishFace Atlas is a novel learning tool for understanding craniofacial skeletal development, and can serve as a reference for a variety of studies, including comparative and mutational analyses.
Collapse
Affiliation(s)
- B Frank Eames
- Institute of Neuroscience, University of Oregon, Eugene, OR, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Nichols JT, Pan L, Moens CB, Kimmel CB. barx1 represses joints and promotes cartilage in the craniofacial skeleton. Development 2013; 140:2765-75. [PMID: 23698351 DOI: 10.1242/dev.090639] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The evolution of joints, which afford skeletal mobility, was instrumental in vertebrate success. Here, we explore the molecular genetics and cell biology that govern jaw joint development. Genetic manipulation experiments in zebrafish demonstrate that functional loss, or gain, of the homeobox-containing gene barx1 produces gain, or loss, of joints, respectively. Ectopic joints in barx1 mutant animals are present in every pharyngeal segment, and are associated with disrupted attachment of bone, muscles and teeth. We find that ectopic joints develop at the expense of cartilage. Time-lapse experiments suggest that barx1 controls the skeletal precursor cell choice between differentiating into cartilage versus joint cells. We discovered that barx1 functions in this choice, in part, by regulating the transcription factor hand2. We further show that hand2 feeds back to negatively regulate barx1 expression. We consider the possibility that changes in barx1 function in early vertebrates were among the key innovations fostering the evolution of skeletal joints.
Collapse
Affiliation(s)
- James T Nichols
- Institute of Neuroscience, University of Oregon, Eugene, OR 97403-1254, USA.
| | | | | | | |
Collapse
|
47
|
Kimmel CB, Hohenlohe PA, Ullmann B, Currey M, Cresko WA. Developmental dissociation in morphological evolution of the stickleback opercle. Evol Dev 2012; 14:326-37. [PMID: 22765204 DOI: 10.1111/j.1525-142x.2012.00551.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Oceanic threespine sticklebacks have repeatedly and independently evolved new morphologies upon invasions of freshwater habitats. A consistent derived feature of the freshwater form across populations and geography is a shape change of the opercle, a large early developing facial bone. We show that the principal multivariate axis describing opercle shape development from the young larva to the full adult stage of oceanic fish matches the principal axis of evolutionary change associated with relocation from the oceanic to freshwater habitat. The opercle phenotype of freshwater adults closely resembles the phenotype of the bone in juveniles. Thus, evolution to the freshwater condition is in large part by truncation of development; the freshwater fish do not achieve the full ancestral adult bone shape. Additionally, the derived state includes dissociated ontogenetic changes. Dissociability may reflect an underlying modular pattern of opercle development, and facilitate flexibility of morphological evolution.
Collapse
Affiliation(s)
- Charles B Kimmel
- Institute of Neuroscience, University of Oregon, Eugene, 97403, USA.
| | | | | | | | | |
Collapse
|