1
|
Bonefas KM, Venkatachalam I, Iwase S. KDM5C is a sex-biased brake against germline gene expression programs in somatic lineages. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.08.622665. [PMID: 39574581 PMCID: PMC11581037 DOI: 10.1101/2024.11.08.622665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/24/2024]
Abstract
The division of labor among cellular lineages is a pivotal step in the evolution of multicellularity. In mammals, the soma-germline boundary is formed during early embryogenesis, when genes that drive germline identity are repressed in somatic lineages through DNA and histone modifications at promoter CpG islands (CGIs). Somatic misexpression of germline genes is a signature of cancer and observed in select neurodevelopmental disorders. However, it is currently unclear if all germline genes use the same repressive mechanisms and if factors like development and sex influence their dysregulation. Here, we examine how cellular context influences the formation of somatic tissue identity in mice lacking lysine demethylase 5c (KDM5C), an X chromosome eraser of histone 3 lysine 4 di and tri-methylation (H3K4me2/3). We found male Kdm5c knockout (-KO) mice aberrantly express many tissue-specific genes within the brain, the majority of which are unique to the germline. By developing a comprehensive list of mouse germline-enriched genes, we observed Kdm5c-KO cells aberrantly express key drivers of germline fate during early embryogenesis but late-stage spermatogenesis genes within the mature brain. KDM5C binds CGIs within germline gene promoters to facilitate DNA CpG methylation as embryonic stem cells differentiate into epiblast-like cells (EpiLCs). However, the majority of late-stage spermatogenesis genes expressed within the Kdm5c-KO brain did not harbor promoter CGIs. These CGI-free germline genes were not bound by KDM5C and instead expressed through ectopic activation by RFX transcription factors. Furthermore, germline gene repression is sexually dimorphic, as female EpiLCs require a higher dose of KDM5C to maintain germline silencing. Altogether, these data revealed distinct regulatory classes of germline genes and sex-biased silencing mechanisms in somatic cells.
Collapse
Affiliation(s)
- Katherine M Bonefas
- Neuroscience Graduate Program, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
- Department of Human Genetics, Michigan Medicine, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - Ilakkiya Venkatachalam
- Department of Human Genetics, Michigan Medicine, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
- Genetics and Genomics Graduate Program, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Shigeki Iwase
- Department of Human Genetics, Michigan Medicine, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| |
Collapse
|
2
|
Wang M, Wang L, Huang Y, Qiao Z, Yi S, Zhang W, Wang J, Yang G, Cui X, Kou X, Zhao Y, Wang H, Jiang C, Gao S, Chen J. Loss of Tet hydroxymethylase activity causes mouse embryonic stem cell differentiation bias and developmental defects. SCIENCE CHINA. LIFE SCIENCES 2024; 67:2132-2148. [PMID: 39037697 DOI: 10.1007/s11427-024-2631-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 05/23/2024] [Indexed: 07/23/2024]
Abstract
The TET family is well known for active DNA demethylation and plays important roles in regulating transcription, the epigenome and development. Nevertheless, previous studies using knockdown (KD) or knockout (KO) models to investigate the function of TET have faced challenges in distinguishing its enzymatic and nonenzymatic roles, as well as compensatory effects among TET family members, which has made the understanding of the enzymatic role of TET not accurate enough. To solve this problem, we successfully generated mice catalytically inactive for specific Tet members (Tetm/m). We observed that, compared with the reported KO mice, mutant mice exhibited distinct developmental defects, including growth retardation, sex imbalance, infertility, and perinatal lethality. Notably, Tetm/m mouse embryonic stem cells (mESCs) were successfully established but entered an impaired developmental program, demonstrating extended pluripotency and defects in ectodermal differentiation caused by abnormal DNA methylation. Intriguingly, Tet3, traditionally considered less critical for mESCs due to its lower expression level, had a significant impact on the global hydroxymethylation, gene expression, and differentiation potential of mESCs. Notably, there were common regulatory regions between Tet1 and Tet3 in pluripotency regulation. In summary, our study provides a more accurate reference for the functional mechanism of Tet hydroxymethylase activity in mouse development and ESC pluripotency regulation.
Collapse
Affiliation(s)
- Mengting Wang
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
- Frontier Science Center for Stem Cell Research, Tongji University, Shanghai, 200092, China
| | - Liping Wang
- Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, China
- Frontier Science Center for Stem Cell Research, Tongji University, Shanghai, 200092, China
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of the Ministry of Education, Orthopaedic Department of Tongji Hospital, Tongji University, Shanghai, 200065, China
| | - Yanxin Huang
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
- Frontier Science Center for Stem Cell Research, Tongji University, Shanghai, 200092, China
| | - Zhibin Qiao
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
- Frontier Science Center for Stem Cell Research, Tongji University, Shanghai, 200092, China
| | - Shanru Yi
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
- Frontier Science Center for Stem Cell Research, Tongji University, Shanghai, 200092, China
| | - Weina Zhang
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
- Frontier Science Center for Stem Cell Research, Tongji University, Shanghai, 200092, China
| | - Jing Wang
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
- Frontier Science Center for Stem Cell Research, Tongji University, Shanghai, 200092, China
| | - Guang Yang
- Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, China
- Frontier Science Center for Stem Cell Research, Tongji University, Shanghai, 200092, China
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of the Ministry of Education, Orthopaedic Department of Tongji Hospital, Tongji University, Shanghai, 200065, China
| | - Xinyu Cui
- Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, China
- Frontier Science Center for Stem Cell Research, Tongji University, Shanghai, 200092, China
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of the Ministry of Education, Orthopaedic Department of Tongji Hospital, Tongji University, Shanghai, 200065, China
| | - Xiaochen Kou
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
- Frontier Science Center for Stem Cell Research, Tongji University, Shanghai, 200092, China
| | - Yanhong Zhao
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
- Frontier Science Center for Stem Cell Research, Tongji University, Shanghai, 200092, China
| | - Hong Wang
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
- Frontier Science Center for Stem Cell Research, Tongji University, Shanghai, 200092, China
| | - Cizhong Jiang
- Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, China.
- Frontier Science Center for Stem Cell Research, Tongji University, Shanghai, 200092, China.
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of the Ministry of Education, Orthopaedic Department of Tongji Hospital, Tongji University, Shanghai, 200065, China.
| | - Shaorong Gao
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China.
- Frontier Science Center for Stem Cell Research, Tongji University, Shanghai, 200092, China.
- Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai, 200120, China.
| | - Jiayu Chen
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China.
- Frontier Science Center for Stem Cell Research, Tongji University, Shanghai, 200092, China.
| |
Collapse
|
3
|
Cheng K, Seita Y, Whelan EC, Yokomizo R, Hwang YS, Rotolo A, Krantz ID, Ginsberg JP, Kolon TF, Lal P, Luo X, Pierorazio PM, Linn RL, Ryeom S, Sasaki K. Defining the cellular origin of seminoma by transcriptional and epigenetic mapping to the normal human germline. Cell Rep 2024; 43:114323. [PMID: 38861385 DOI: 10.1016/j.celrep.2024.114323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 04/26/2024] [Accepted: 05/21/2024] [Indexed: 06/13/2024] Open
Abstract
Aberrant male germline development can lead to the formation of seminoma, a testicular germ cell tumor. Seminomas are biologically similar to primordial germ cells (PGCs) and many bear an isochromosome 12p [i(12p)] with two additional copies of the short arm of chromosome 12. By mapping seminoma transcriptomes and open chromatin landscape onto a normal human male germline trajectory, we find that seminoma resembles premigratory/migratory PGCs; however, it exhibits enhanced germline and pluripotency programs and upregulation of genes involved in apoptosis, angiogenesis, and MAPK/ERK pathways. Using pluripotent stem cell-derived PGCs from Pallister-Killian syndrome patients mosaic for i(12p), we model seminoma and identify gene dosage effects that may contribute to transformation. As murine seminoma models do not exist, our analyses provide critical insights into genetic, cellular, and signaling programs driving seminoma transformation, and the in vitro platform developed herein permits evaluation of additional signals required for seminoma tumorigenesis.
Collapse
Affiliation(s)
- Keren Cheng
- Department of Biomedical Sciences, University of Pennsylvania School of Veterinary Medicine, 3800 Spruce Street, Philadelphia, PA 19104, USA
| | - Yasunari Seita
- Department of Biomedical Sciences, University of Pennsylvania School of Veterinary Medicine, 3800 Spruce Street, Philadelphia, PA 19104, USA
| | - Eoin C Whelan
- Department of Biomedical Sciences, University of Pennsylvania School of Veterinary Medicine, 3800 Spruce Street, Philadelphia, PA 19104, USA
| | - Ryo Yokomizo
- Department of Biomedical Sciences, University of Pennsylvania School of Veterinary Medicine, 3800 Spruce Street, Philadelphia, PA 19104, USA
| | - Young Sun Hwang
- Department of Biomedical Sciences, University of Pennsylvania School of Veterinary Medicine, 3800 Spruce Street, Philadelphia, PA 19104, USA
| | - Antonia Rotolo
- Department of Pathobiology, University of Pennsylvania School of Veterinary Medicine, 3800 Spruce Street, Philadelphia, PA 19104, USA
| | - Ian D Krantz
- Division of Human Genetics, The Roberts Individualized Medical Genetics Center, The Children's Hospital of Philadelphia, 3500 Civic Center Boulevard, Philadelphia, PA 19104, USA
| | - Jill P Ginsberg
- Department of Pediatrics, The Children's Hospital of Philadelphia, 3500 Civic Center Boulevard, Philadelphia, PA 19104, USA
| | - Thomas F Kolon
- Division of Urology, The Children's Hospital of Philadelphia, 3500 Civic Center Boulevard, Philadelphia, PA 19104, USA
| | - Priti Lal
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, 3400 Spruce Street, Philadelphia, PA 19104, USA
| | - Xunda Luo
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Presbyterian Medical Center, 51 North 39th Street, Philadelphia, PA 19104, USA
| | - Phillip M Pierorazio
- Division of Urology, University of Pennsylvania Presbyterian Medical Center, 3737 Market St. 4th Floor, Philadelphia, PA 19104, USA
| | - Rebecca L Linn
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, 3400 Spruce Street, Philadelphia, PA 19104, USA; Department of Pathology, The Children's Hospital of Philadelphia, 3401 Civic Center Boulevard, Philadelphia, PA 19104, USA
| | - Sandra Ryeom
- Department of Surgery, Columbia University Irving Medical Center, 630 W. 168th Street, P&S 17-409, New York, NY 10032, USA
| | - Kotaro Sasaki
- Department of Biomedical Sciences, University of Pennsylvania School of Veterinary Medicine, 3800 Spruce Street, Philadelphia, PA 19104, USA; Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, 3400 Spruce Street, Philadelphia, PA 19104, USA; Institute for Regenerative Medicine, University of Pennsylvania, 3400 Civic Center Boulevard, Philadelphia, PA 19104, USA.
| |
Collapse
|
4
|
Shah P, Hill R, Dion C, Clark SJ, Abakir A, Willems J, Arends MJ, Garaycoechea JI, Leitch HG, Reik W, Crossan GP. Primordial germ cell DNA demethylation and development require DNA translesion synthesis. Nat Commun 2024; 15:3734. [PMID: 38702312 PMCID: PMC11068800 DOI: 10.1038/s41467-024-47219-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 03/25/2024] [Indexed: 05/06/2024] Open
Abstract
Mutations in DNA damage response (DDR) factors are associated with human infertility, which affects up to 15% of the population. The DDR is required during germ cell development and meiosis. One pathway implicated in human fertility is DNA translesion synthesis (TLS), which allows replication impediments to be bypassed. We find that TLS is essential for pre-meiotic germ cell development in the embryo. Loss of the central TLS component, REV1, significantly inhibits the induction of human PGC-like cells (hPGCLCs). This is recapitulated in mice, where deficiencies in TLS initiation (Rev1-/- or PcnaK164R/K164R) or extension (Rev7 -/-) result in a > 150-fold reduction in the number of primordial germ cells (PGCs) and complete sterility. In contrast, the absence of TLS does not impact the growth, function, or homeostasis of somatic tissues. Surprisingly, we find a complete failure in both activation of the germ cell transcriptional program and in DNA demethylation, a critical step in germline epigenetic reprogramming. Our findings show that for normal fertility, DNA repair is required not only for meiotic recombination but for progression through the earliest stages of germ cell development in mammals.
Collapse
Affiliation(s)
- Pranay Shah
- MRC Laboratory of Molecular Biology, Cambridge, CB2 0QH, UK.
| | - Ross Hill
- MRC Laboratory of Molecular Biology, Cambridge, CB2 0QH, UK
| | - Camille Dion
- MRC Laboratory of Medical Sciences, London, W12 0HS, UK
- Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, W12 0HS, UK
| | - Stephen J Clark
- Altos Labs, Cambridge, UK
- Epigenetics Programme, The Babraham Institute, Cambridge, CB22 3AT, UK
| | - Abdulkadir Abakir
- Altos Labs, Cambridge, UK
- Epigenetics Programme, The Babraham Institute, Cambridge, CB22 3AT, UK
| | - Jeroen Willems
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW), Utrecht, The Netherlands
| | | | - Juan I Garaycoechea
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW), Utrecht, The Netherlands
| | - Harry G Leitch
- MRC Laboratory of Medical Sciences, London, W12 0HS, UK
- Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, W12 0HS, UK
| | - Wolf Reik
- Altos Labs, Cambridge, UK
- Epigenetics Programme, The Babraham Institute, Cambridge, CB22 3AT, UK
| | - Gerry P Crossan
- MRC Laboratory of Molecular Biology, Cambridge, CB2 0QH, UK.
| |
Collapse
|
5
|
Deng X, Liang S, Tang Y, Li Y, Xu R, Luo L, Wang Q, Zhang X, Liu Y. Adverse effects of bisphenol A and its analogues on male fertility: An epigenetic perspective. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 345:123393. [PMID: 38266695 DOI: 10.1016/j.envpol.2024.123393] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 11/11/2023] [Accepted: 01/17/2024] [Indexed: 01/26/2024]
Abstract
In recent years, there has been growing concern about the adverse effects of endocrine disrupting chemicals (EDCs) on male fertility. Epigenetic modification is critical for male germline development, and has been suggested as a potential mechanism for impaired fertility induced by EDCs. Bisphenol A (BPA) has been recognized as a typical EDC. BPA and its analogues, which are still widely used in various consumer products, have garnered increasing attention due to their reproductive toxicity and the potential to induce epigenetic alteration. This literature review provides an overview of studies investigating the adverse effects of bisphenol exposures on epigenetic modifications and male fertility. Existing studies provide evidence that exposure to bisphenols can lead to adverse effects on male fertility, including declined semen quality, altered reproductive hormone levels, and adverse reproductive outcomes. Epigenetic patterns, including DNA methylation, histone modification, and non-coding RNA expression, can be altered by bisphenol exposures. Transgenerational effects, which influence the fertility and epigenetic patterns of unexposed generations, have also been identified. However, the magnitude and direction of certain outcomes varied across different studies. Investigations into the dynamics of histopathological and epigenetic alterations associated with bisphenol exposures during developmental stages can enhance the understanding of the epigenetic effects of bisphenols, the implication of epigenetic alteration on male fertility, and the health of successive generation.
Collapse
Affiliation(s)
- Xinyi Deng
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Sihan Liang
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Yuqian Tang
- NHC Key Laboratory of Male Reproduction and Genetics, Guangdong Provincial Reproductive Science Institute, Guangdong Provincial Fertility Hospital, Guangzhou, China
| | - Yingxin Li
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Ruijun Xu
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Lu Luo
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Qiling Wang
- NHC Key Laboratory of Male Reproduction and Genetics, Guangdong Provincial Reproductive Science Institute, Guangdong Provincial Fertility Hospital, Guangzhou, China
| | - Xinzong Zhang
- NHC Key Laboratory of Male Reproduction and Genetics, Guangdong Provincial Reproductive Science Institute, Guangdong Provincial Fertility Hospital, Guangzhou, China
| | - Yuewei Liu
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
6
|
Kretschmer M, Fischer V, Gapp K. When Dad's Stress Gets under Kid's Skin-Impacts of Stress on Germline Cargo and Embryonic Development. Biomolecules 2023; 13:1750. [PMID: 38136621 PMCID: PMC10742275 DOI: 10.3390/biom13121750] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 11/24/2023] [Accepted: 12/01/2023] [Indexed: 12/24/2023] Open
Abstract
Multiple lines of evidence suggest that paternal psychological stress contributes to an increased prevalence of neuropsychiatric and metabolic diseases in the progeny. While altered paternal care certainly plays a role in such transmitted disease risk, molecular factors in the germline might additionally be at play in humans. This is supported by findings on changes to the molecular make up of germ cells and suggests an epigenetic component in transmission. Several rodent studies demonstrate the correlation between paternal stress induced changes in epigenetic modifications and offspring phenotypic alterations, yet some intriguing cases also start to show mechanistic links in between sperm and the early embryo. In this review, we summarise efforts to understand the mechanism of intergenerational transmission from sperm to the early embryo. In particular, we highlight how stress alters epigenetic modifications in sperm and discuss the potential for these modifications to propagate modified molecular trajectories in the early embryo to give rise to aberrant phenotypes in adult offspring.
Collapse
Affiliation(s)
- Miriam Kretschmer
- Laboratory of Epigenetics and Neuroendocrinology, Department of Health Sciences and Technology, Institute for Neuroscience, ETH Zürich, 8057 Zürich, Switzerland; (M.K.); (V.F.)
- Neuroscience Center Zurich, ETH Zürich and University of Zürich, 8057 Zürich, Switzerland
| | - Vincent Fischer
- Laboratory of Epigenetics and Neuroendocrinology, Department of Health Sciences and Technology, Institute for Neuroscience, ETH Zürich, 8057 Zürich, Switzerland; (M.K.); (V.F.)
- Neuroscience Center Zurich, ETH Zürich and University of Zürich, 8057 Zürich, Switzerland
| | - Katharina Gapp
- Laboratory of Epigenetics and Neuroendocrinology, Department of Health Sciences and Technology, Institute for Neuroscience, ETH Zürich, 8057 Zürich, Switzerland; (M.K.); (V.F.)
- Neuroscience Center Zurich, ETH Zürich and University of Zürich, 8057 Zürich, Switzerland
| |
Collapse
|
7
|
Yakhou L, Azogui A, Gupta N, Richard Albert J, Miura F, Ferry L, Yamaguchi K, Battault S, Therizols P, Bonhomme F, Bethuel E, Sarkar A, Greenberg MC, Arimondo P, Cristofari G, Kirsh O, Ito T, Defossez PA. A genetic screen identifies BEND3 as a regulator of bivalent gene expression and global DNA methylation. Nucleic Acids Res 2023; 51:10292-10308. [PMID: 37650637 PMCID: PMC10602864 DOI: 10.1093/nar/gkad719] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 07/20/2023] [Accepted: 08/18/2023] [Indexed: 09/01/2023] Open
Abstract
Epigenetic mechanisms are essential to establish and safeguard cellular identities in mammals. They dynamically regulate the expression of genes, transposable elements and higher-order chromatin structures. Consequently, these chromatin marks are indispensable for mammalian development and alterations often lead to disease, such as cancer. Bivalent promoters are especially important during differentiation and development. Here we used a genetic screen to identify new regulators of a bivalent repressed gene. We identify BEND3 as a regulator of hundreds of bivalent promoters, some of which it represses, and some of which it activates. We show that BEND3 is recruited to a CpG-containg consensus site that is present in multiple copies in many bivalent promoters. Besides having direct effect on the promoters it binds, the loss of BEND3 leads to genome-wide gains of DNA methylation, which are especially marked at regions normally protected by the TET enzymes. DNA hydroxymethylation is reduced in Bend3 mutant cells, possibly as consequence of altered gene expression leading to diminished alpha-ketoglutarate production, thus lowering TET activity. Our results clarify the direct and indirect roles of an important chromatin regulator, BEND3, and, more broadly, they shed light on the regulation of bivalent promoters.
Collapse
Affiliation(s)
- Lounis Yakhou
- Université Paris Cité, CNRS, Epigenetics and Cell Fate, F-75013 Paris, France
| | - Anaelle Azogui
- Université Paris Cité, CNRS, Epigenetics and Cell Fate, F-75013 Paris, France
| | - Nikhil Gupta
- Université Paris Cité, CNRS, Epigenetics and Cell Fate, F-75013 Paris, France
| | | | - Fumihito Miura
- Department of Biochemistry, Kyushu University Graduate School of Medical Sciences, Fukuoka, Fukuoka 812-8582, Japan
| | - Laure Ferry
- Université Paris Cité, CNRS, Epigenetics and Cell Fate, F-75013 Paris, France
| | - Kosuke Yamaguchi
- Université Paris Cité, CNRS, Epigenetics and Cell Fate, F-75013 Paris, France
| | - Sarah Battault
- Université Paris Cité, CNRS, Epigenetics and Cell Fate, F-75013 Paris, France
| | - Pierre Therizols
- Université Paris Cité, CNRS, Epigenetics and Cell Fate, F-75013 Paris, France
| | - Frédéric Bonhomme
- Institut Pasteur, Université Paris Cité, CNRS, Epigenetic Chemical Biology, UMR 3523, F-75724 Paris, France
| | - Elouan Bethuel
- Université Paris Cité, CNRS, Epigenetics and Cell Fate, F-75013 Paris, France
| | - Arpita Sarkar
- Université Côte d’Azur, Inserm, CNRS, IRCAN, Nice, France
| | | | - Paola B Arimondo
- Institut Pasteur, Université Paris Cité, CNRS, Epigenetic Chemical Biology, UMR 3523, F-75724 Paris, France
| | | | - Olivier Kirsh
- Université Paris Cité, CNRS, Epigenetics and Cell Fate, F-75013 Paris, France
| | - Takashi Ito
- Department of Biochemistry, Kyushu University Graduate School of Medical Sciences, Fukuoka, Fukuoka 812-8582, Japan
| | | |
Collapse
|
8
|
Bond DM, Ortega-Recalde O, Laird MK, Hayakawa T, Richardson KS, Reese FCB, Kyle B, McIsaac-Williams BE, Robertson BC, van Heezik Y, Adams AL, Chang WS, Haase B, Mountcastle J, Driller M, Collins J, Howe K, Go Y, Thibaud-Nissen F, Lister NC, Waters PD, Fedrigo O, Jarvis ED, Gemmell NJ, Alexander A, Hore TA. The admixed brushtail possum genome reveals invasion history in New Zealand and novel imprinted genes. Nat Commun 2023; 14:6364. [PMID: 37848431 PMCID: PMC10582058 DOI: 10.1038/s41467-023-41784-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 09/13/2023] [Indexed: 10/19/2023] Open
Abstract
Combining genome assembly with population and functional genomics can provide valuable insights to development and evolution, as well as tools for species management. Here, we present a chromosome-level genome assembly of the common brushtail possum (Trichosurus vulpecula), a model marsupial threatened in parts of their native range in Australia, but also a major introduced pest in New Zealand. Functional genomics reveals post-natal activation of chemosensory and metabolic genes, reflecting unique adaptations to altricial birth and delayed weaning, a hallmark of marsupial development. Nuclear and mitochondrial analyses trace New Zealand possums to distinct Australian subspecies, which have subsequently hybridised. This admixture allowed phasing of parental alleles genome-wide, ultimately revealing at least four genes with imprinted, parent-specific expression not yet detected in other species (MLH1, EPM2AIP1, UBP1 and GPX7). We find that reprogramming of possum germline imprints, and the wider epigenome, is similar to eutherian mammals except onset occurs after birth. Together, this work is useful for genetic-based control and conservation of possums, and contributes to understanding of the evolution of novel mammalian epigenetic traits.
Collapse
Affiliation(s)
- Donna M Bond
- Department of Anatomy, University of Otago, Dunedin, New Zealand
| | | | - Melanie K Laird
- Department of Anatomy, University of Otago, Dunedin, New Zealand
| | - Takashi Hayakawa
- Faculty of Environmental Earth Science, Hokkaido University, Sapporo, Hokkaido, 060-0808, Japan
| | - Kyle S Richardson
- Department of Anatomy, University of Otago, Dunedin, New Zealand
- Biology Department, University of Montana Western, Dillon, MT, 59725, USA
| | - Finlay C B Reese
- Department of Anatomy, University of Otago, Dunedin, New Zealand
| | - Bruce Kyle
- Department of Anatomy, University of Otago, Dunedin, New Zealand
| | | | | | | | - Amy L Adams
- Department of Zoology, University of Otago, Dunedin, New Zealand
| | - Wei-Shan Chang
- School of Life and Environmental Science, Faculty of Science, The University of Sydney, Sydney, NSW, Australia
- Health and Biosecurity, CSIRO, Canberra, ACT, Australia
| | - Bettina Haase
- Vertebrate Genome Laboratory, The Rockefeller University, New York, NY, USA
| | | | | | - Joanna Collins
- Tree of Life, Wellcome Sanger Institute, Hinxton, Cambridge, UK
| | - Kerstin Howe
- Tree of Life, Wellcome Sanger Institute, Hinxton, Cambridge, UK
| | - Yasuhiro Go
- Graduate School of Information Science, Hyogo University, Hyogo, Japan
- Cognitive Genomics Research Group, Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, Aichi, Japan
- Department of System Neuroscience, National Institute for Physiological Sciences, Aichi, Japan
| | - Francoise Thibaud-Nissen
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, USA
| | - Nicholas C Lister
- School of Biotechnology and Biomolecular Science, Faculty of Science, UNSW Sydney, Sydney, NSW, 2052, Australia
| | - Paul D Waters
- School of Biotechnology and Biomolecular Science, Faculty of Science, UNSW Sydney, Sydney, NSW, 2052, Australia
| | - Olivier Fedrigo
- Vertebrate Genome Laboratory, The Rockefeller University, New York, NY, USA
| | - Erich D Jarvis
- Vertebrate Genome Laboratory, The Rockefeller University, New York, NY, USA
- Laboratory of Neurogenetics of Language, The Rockefeller University, New York, NY, 10065, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, 20815, USA
| | - Neil J Gemmell
- Department of Anatomy, University of Otago, Dunedin, New Zealand
| | - Alana Alexander
- Department of Anatomy, University of Otago, Dunedin, New Zealand
| | - Timothy A Hore
- Department of Anatomy, University of Otago, Dunedin, New Zealand.
| |
Collapse
|
9
|
Irie N, Lee SM, Lorenzi V, Xu H, Chen J, Inoue M, Kobayashi T, Sancho-Serra C, Drousioti E, Dietmann S, Vento-Tormo R, Song CX, Surani MA. DMRT1 regulates human germline commitment. Nat Cell Biol 2023; 25:1439-1452. [PMID: 37709822 PMCID: PMC10567552 DOI: 10.1038/s41556-023-01224-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 08/07/2023] [Indexed: 09/16/2023]
Abstract
Germline commitment following primordial germ cell (PGC) specification during early human development establishes an epigenetic programme and competence for gametogenesis. Here we follow the progression of nascent PGC-like cells derived from human embryonic stem cells in vitro. We show that switching from BMP signalling for PGC specification to Activin A and retinoic acid resulted in DMRT1 and CDH5 expression, the indicators of migratory PGCs in vivo. Moreover, the induction of DMRT1 and SOX17 in PGC-like cells promoted epigenetic resetting with striking global enrichment of 5-hydroxymethylcytosine and locus-specific loss of 5-methylcytosine at DMRT1 binding sites and the expression of DAZL representing DNA methylation-sensitive genes, a hallmark of the germline commitment programme. We provide insight into the unique role of DMRT1 in germline development for advances in human germ cell biology and in vitro gametogenesis.
Collapse
Affiliation(s)
- Naoko Irie
- Wellcome Trust/Cancer Research UK Gurdon Institute, Henry Wellcome Building of Cancer and Developmental Biology, Cambridge, UK.
- Metabolic Systems Laboratory, Live Imaging Center, Central Institute for Experimental Animals, Kanagawa, Japan.
| | - Sun-Min Lee
- Wellcome Trust/Cancer Research UK Gurdon Institute, Henry Wellcome Building of Cancer and Developmental Biology, Cambridge, UK
- Department of Physics, Konkuk University, Seoul, Republic of Korea
| | - Valentina Lorenzi
- Wellcome Sanger Institute, Cambridge, UK
- European Molecular Biology Laboratory, European Bioinformatics Institute, Cambridge, UK
| | - Haiqi Xu
- Ludwig Institute for Cancer Research and Target Discovery Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Jinfeng Chen
- Ludwig Institute for Cancer Research and Target Discovery Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Masato Inoue
- Ludwig Institute for Cancer Research and Target Discovery Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Toshihiro Kobayashi
- Division of Mammalian Embryology, Center for Stem Cell Biology and Regenerative Medicine, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
- Center for Genetic Analysis of Behavior, National Institute for Physiological Sciences, Aichi, Japan
| | | | - Elena Drousioti
- Wellcome Trust/Cancer Research UK Gurdon Institute, Henry Wellcome Building of Cancer and Developmental Biology, Cambridge, UK
| | - Sabine Dietmann
- Department of Developmental Biology and Institute for Informatics, Washington University School of Medicine, St. Louis, MO, USA
| | | | - Chun-Xiao Song
- Ludwig Institute for Cancer Research and Target Discovery Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - M Azim Surani
- Wellcome Trust/Cancer Research UK Gurdon Institute, Henry Wellcome Building of Cancer and Developmental Biology, Cambridge, UK.
- Physiology, Development and Neuroscience Department, University of Cambridge, Cambridge, UK.
| |
Collapse
|
10
|
Abstract
Male germ cells undergo a complex sequence of developmental events throughout fetal and postnatal life that culminate in the formation of haploid gametes: the spermatozoa. Errors in these processes result in infertility and congenital abnormalities in offspring. Male germ cell development starts when pluripotent cells undergo specification to sexually uncommitted primordial germ cells, which act as precursors of both oocytes and spermatozoa. Male-specific development subsequently occurs in the fetal testes, resulting in the formation of spermatogonial stem cells: the foundational stem cells responsible for lifelong generation of spermatozoa. Although deciphering such developmental processes is challenging in humans, recent studies using various models and single-cell sequencing approaches have shed new insight into human male germ cell development. Here, we provide an overview of cellular, signaling and epigenetic cascades of events accompanying male gametogenesis, highlighting conserved features and the differences between humans and other model organisms.
Collapse
Affiliation(s)
- John Hargy
- Department of Biomedical Sciences, University of Pennsylvania School of Veterinary Medicine, Philadelphia, PA 19104, USA
| | - Kotaro Sasaki
- Department of Biomedical Sciences, University of Pennsylvania School of Veterinary Medicine, Philadelphia, PA 19104, USA
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19104, USA
- Institute for Regenerative Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
11
|
Shah P, Hill R, Clark S, Dion C, Abakir A, Arends M, Leitch H, Reik W, Crossan G. Primordial germ cell DNA demethylation and development require DNA translesion synthesis.. [DOI: 10.1101/2023.07.05.547775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2024]
Abstract
AbstractMutations in DNA damage response (DDR) factors are associated with human infertility, which affects up to 15% of the population. It remains unclear if the role of DDR is solely in meiosis. One pathway implicated in human fertility is DNA translesion synthesis (TLS), which allows replication impediments to be bypassed. We find that TLS is essential for pre-meiotic germ cell development in the embryo. Loss of the central TLS component, REV1, significantly inhibits the induction of human PGC-like cells (hPGCLCs). This is recapitulated in mice, where deficiencies in TLS initiation (Rev1-/-orPcnaK164R/K164R) or extension (Rev7-/-) result in a >150-fold reduction in the number of primordial germ cells (PGCs) and complete sterility. In contrast, the absence of TLS does not impact the growth, function, or homeostasis of somatic tissues. Surprisingly, we find a complete failure in both activation of the germ cell transcriptional program and in DNA demethylation, a critical step in germline epigenetic reprogramming. Our findings show that for normal fertility, DNA repair is required not only for meiotic recombination but for progression through the earliest stages of germ cell development in mammals.
Collapse
|
12
|
Al Adhami H, Vallet J, Schaal C, Schumacher P, Bardet AF, Dumas M, Chicher J, Hammann P, Daujat S, Weber M. Systematic identification of factors involved in the silencing of germline genes in mouse embryonic stem cells. Nucleic Acids Res 2023; 51:3130-3149. [PMID: 36772830 PMCID: PMC10123117 DOI: 10.1093/nar/gkad071] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 12/29/2022] [Accepted: 01/23/2023] [Indexed: 02/12/2023] Open
Abstract
In mammals, many germline genes are epigenetically repressed to prevent their illegitimate expression in somatic cells. To advance our understanding of the mechanisms restricting the expression of germline genes, we analyzed their chromatin signature and performed a CRISPR-Cas9 knock-out screen for genes involved in germline gene repression using a Dazl-GFP reporter system in mouse embryonic stem cells (mESCs). We show that the repression of germline genes mainly depends on the polycomb complex PRC1.6 and DNA methylation, which function additively in mESCs. Furthermore, we validated novel genes involved in the repression of germline genes and characterized three of them: Usp7, Shfm1 (also known as Sem1) and Erh. Inactivation of Usp7, Shfm1 or Erh led to the upregulation of germline genes, as well as retrotransposons for Shfm1, in mESCs. Mechanistically, USP7 interacts with PRC1.6 components, promotes PRC1.6 stability and presence at germline genes, and facilitates DNA methylation deposition at germline gene promoters for long term repression. Our study provides a global view of the mechanisms and novel factors required for silencing germline genes in embryonic stem cells.
Collapse
Affiliation(s)
- Hala Al Adhami
- University of Strasbourg, Strasbourg, France.,CNRS UMR7242, Biotechnology and Cell Signaling, 300 Bd Sébastien Brant, 67412, Illkirch Cedex, France
| | - Judith Vallet
- University of Strasbourg, Strasbourg, France.,CNRS UMR7242, Biotechnology and Cell Signaling, 300 Bd Sébastien Brant, 67412, Illkirch Cedex, France
| | - Celia Schaal
- University of Strasbourg, Strasbourg, France.,CNRS UMR7242, Biotechnology and Cell Signaling, 300 Bd Sébastien Brant, 67412, Illkirch Cedex, France
| | - Paul Schumacher
- University of Strasbourg, Strasbourg, France.,CNRS UMR7242, Biotechnology and Cell Signaling, 300 Bd Sébastien Brant, 67412, Illkirch Cedex, France.,Karlsruhe Institute of Technology (KIT), IAB, Department of Food Chemistry and Toxicology, 76131 Karlsruhe, Germany
| | - Anaïs Flore Bardet
- University of Strasbourg, Strasbourg, France.,CNRS UMR7242, Biotechnology and Cell Signaling, 300 Bd Sébastien Brant, 67412, Illkirch Cedex, France
| | - Michael Dumas
- University of Strasbourg, Strasbourg, France.,CNRS UMR7242, Biotechnology and Cell Signaling, 300 Bd Sébastien Brant, 67412, Illkirch Cedex, France
| | - Johana Chicher
- Plateforme protéomique Strasbourg Esplanade, CNRS, University of Strasbourg, 67000 Strasbourg, France
| | - Philippe Hammann
- Plateforme protéomique Strasbourg Esplanade, CNRS, University of Strasbourg, 67000 Strasbourg, France
| | - Sylvain Daujat
- University of Strasbourg, Strasbourg, France.,CNRS UMR7242, Biotechnology and Cell Signaling, 300 Bd Sébastien Brant, 67412, Illkirch Cedex, France
| | - Michael Weber
- University of Strasbourg, Strasbourg, France.,CNRS UMR7242, Biotechnology and Cell Signaling, 300 Bd Sébastien Brant, 67412, Illkirch Cedex, France
| |
Collapse
|
13
|
Ramakrishna NB, Battistoni G, Surani MA, Hannon GJ, Miska EA. Mouse primordial germ-cell-like cells lack piRNAs. Dev Cell 2022; 57:2661-2668.e5. [PMID: 36473462 DOI: 10.1016/j.devcel.2022.11.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 08/03/2022] [Accepted: 11/03/2022] [Indexed: 12/12/2022]
Abstract
PIWI-interacting RNAs (piRNAs) are small RNAs bound by PIWI-clade Argonaute proteins that function to silence transposable elements (TEs). Following mouse primordial germ cell (mPGC) specification around E6.25, fetal piRNAs emerge in male gonocytes from E13.5 onward. The in vitro differentiation of mPGC-like cells (mPGCLCs) has raised the possibility of studying the fetal piRNA pathway in greater depth. However, using single-cell RNA-seq and RT-qPCR along mPGCLC differentiation, we find that piRNA pathway factors are not fully expressed in Day 6 mPGCLCs. Moreover, we do not detect piRNAs across a panel of Day 6 mPGCLC lines using small RNA-seq. Our combined efforts highlight that in vitro differentiated Day 6 mPGCLCs do not yet resemble E13.5 or later mouse gonocytes where the piRNA pathway is active. This Matters Arising paper is in response to von Meyenn et al. (2016), published in Developmental Cell. See also the correction by von Meyenn et al. published in this issue.
Collapse
Affiliation(s)
- Navin B Ramakrishna
- Wellcome/CRUK Gurdon Institute, University of Cambridge, Cambridge CB2 1QN, UK; Department of Genetics, University of Cambridge, Cambridge CB2 3EH, UK; Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3EL, UK
| | - Giorgia Battistoni
- CRUK Cambridge Institute, Li Ka Shing Centre, University of Cambridge, Cambridge CB2 0RE, UK
| | - M Azim Surani
- Wellcome/CRUK Gurdon Institute, University of Cambridge, Cambridge CB2 1QN, UK; Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3EL, UK; Wellcome/MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge CB2 0AW, UK.
| | - Gregory J Hannon
- CRUK Cambridge Institute, Li Ka Shing Centre, University of Cambridge, Cambridge CB2 0RE, UK.
| | - Eric A Miska
- Wellcome/CRUK Gurdon Institute, University of Cambridge, Cambridge CB2 1QN, UK; Department of Genetics, University of Cambridge, Cambridge CB2 3EH, UK; Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge CB10 1SA, UK.
| |
Collapse
|
14
|
Al Adhami H, Bardet AF, Dumas M, Cleroux E, Guibert S, Fauque P, Acloque H, Weber M. A comparative methylome analysis reveals conservation and divergence of DNA methylation patterns and functions in vertebrates. BMC Biol 2022; 20:70. [PMID: 35317801 PMCID: PMC8941758 DOI: 10.1186/s12915-022-01270-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 03/04/2022] [Indexed: 12/24/2022] Open
Abstract
Background Cytosine DNA methylation is a heritable epigenetic mark present in most eukaryotic groups. While the patterns and functions of DNA methylation have been extensively studied in mouse and human, their conservation in other vertebrates remains poorly explored. In this study, we interrogated the distribution and function of DNA methylation in primary fibroblasts of seven vertebrate species including bio-medical models and livestock species (human, mouse, rabbit, dog, cow, pig, and chicken). Results Our data highlight both divergence and conservation of DNA methylation patterns and functions. We show that the chicken genome is hypomethylated compared to other vertebrates. Furthermore, compared to mouse, other species show a higher frequency of methylation of CpG-rich DNA. We reveal the conservation of large unmethylated valleys and patterns of DNA methylation associated with X-chromosome inactivation through vertebrate evolution and make predictions of conserved sets of imprinted genes across mammals. Finally, using chemical inhibition of DNA methylation, we show that the silencing of germline genes and endogenous retroviruses (ERVs) are conserved functions of DNA methylation in vertebrates. Conclusions Our data highlight conserved properties of DNA methylation in vertebrate genomes but at the same time point to differences between mouse and other vertebrate species. Supplementary Information The online version contains supplementary material available at 10.1186/s12915-022-01270-x.
Collapse
Affiliation(s)
- Hala Al Adhami
- University of Strasbourg, Strasbourg, France.,CNRS UMR7242, Biotechnology and Cell Signaling, 300 Bd Sébastien Brant, 67412, Illkirch Cedex, France
| | - Anaïs Flore Bardet
- University of Strasbourg, Strasbourg, France.,CNRS UMR7242, Biotechnology and Cell Signaling, 300 Bd Sébastien Brant, 67412, Illkirch Cedex, France
| | - Michael Dumas
- University of Strasbourg, Strasbourg, France.,CNRS UMR7242, Biotechnology and Cell Signaling, 300 Bd Sébastien Brant, 67412, Illkirch Cedex, France
| | - Elouan Cleroux
- University of Strasbourg, Strasbourg, France.,CNRS UMR7242, Biotechnology and Cell Signaling, 300 Bd Sébastien Brant, 67412, Illkirch Cedex, France
| | - Sylvain Guibert
- University of Strasbourg, Strasbourg, France.,CNRS UMR7242, Biotechnology and Cell Signaling, 300 Bd Sébastien Brant, 67412, Illkirch Cedex, France
| | - Patricia Fauque
- Université Bourgogne Franche-Comté, Equipe Génétique des Anomalies du Développement (GAD) INSERM UMR1231, 2 Rue Angélique Ducoudray, 21000, Dijon, France.,CHU Dijon Bourgogne, Laboratoire de Biologie de la Reproduction - CECOS, 14 rue Gaffarel, 21000, Dijon, France
| | - Hervé Acloque
- Université Paris-Saclay, INRAE, AgroParisTech, GABI, 78350, Jouy-en-Josas, France
| | - Michael Weber
- University of Strasbourg, Strasbourg, France. .,CNRS UMR7242, Biotechnology and Cell Signaling, 300 Bd Sébastien Brant, 67412, Illkirch Cedex, France.
| |
Collapse
|
15
|
Rcor2 Is Required for Somatic Differentiation and Represses Germline Cell Fate. Stem Cells Int 2022; 2022:5283615. [PMID: 35345626 PMCID: PMC8957467 DOI: 10.1155/2022/5283615] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 01/07/2022] [Accepted: 01/19/2022] [Indexed: 11/18/2022] Open
Abstract
Rcor2, the corepressor 2 of REST, a transcriptional repressor, is predominantly expressed in embryonic stem cells (ESCs) and plays a major role in regulating ESC pluripotency and neurogenesis. The function of Rcor2 in development of other germ layers is yet unclear. We utilized a Rcor2-/- mouse embryonic stem cell (mESC) line to investigate the role of Rcor2 in mESC differentiation. Rcor2-/- mESC shows reduced proliferation and severely compromised capacity to differentiate to all three germ layers. In contrast, Rcor2 knockout promotes primordial germ cells (PGCs) specific gene expression and possibly PGC formation. Mechanistically, we revealed that Rcor2 inhibits expression of genes required for PGC development, such as Dppa3 and Dazl, by associating to their promoters and enhancing local suppressive H3K9me3 modifications. Our results suggest that Rcor2 plays an important role in somatic cell fate determination by suppressing PGC differentiation through regulating epigenetic modifications of PGC specific genes.
Collapse
|
16
|
CGRP: A New Endogenous Cell Stemness Maintenance Molecule. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:4107433. [PMID: 35132349 PMCID: PMC8817839 DOI: 10.1155/2022/4107433] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 01/11/2022] [Indexed: 12/17/2022]
Abstract
Stem cells have the ability of self-replication and multidirectional differentiation, but the mechanism of how stem cells “maintain” this ability and how to “decide” to give up this state and differentiate into cells with specific functions is still unknown. The Nobel Prize in physiology and medicine in 2021 was awarded to “temperature and tactile receptor,” which made the pain receptor TRPV1-calcitonin gene-related peptide (CGRP) pathway active again. The activation and blocking technology of CGRP has been applied to many clinical diseases. CGRP gene has complex structure and transcription process, with multiple methylation and other modification sites. It has been considered as a research hotspot and difficulty since its discovery. Drug manipulation of TRPV1 and inhibition of CGRP might improve metabolism and prolong longevity. However, whether the TRPV1-neuropeptide-CGRP pathway is directly or indirectly involved in stem cell self-replication and multidirectional differentiation is unclear. Recent studies have found that CGRP is closely related to the migration and differentiation of tumor stem cells, which may be realized by turning off or turning on the CGRP gene expression in stem cells and activating a variety of ways to regulate stem cell niches. In this study, we reviewed the advances in researches concentrated on the biological effects of CGRP as a new endogenous switching of cell stemness.
Collapse
|
17
|
Kaur D, Agrahari M, Bhattacharya A, Bhattacharya S. The non-LTR retrotransposons of Entamoeba histolytica: genomic organization and biology. Mol Genet Genomics 2022; 297:1-18. [PMID: 34999963 DOI: 10.1007/s00438-021-01843-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Accepted: 11/26/2021] [Indexed: 11/24/2022]
Abstract
Genome sequence analysis of Entamoeba species revealed various classes of transposable elements. While E. histolytica and E. dispar are rich in non-long terminal repeat (LTR) retrotransposons, E. invadens contains predominantly DNA transposons. Non-LTR retrotransposons of E. histolytica constitute three families of long interspersed nuclear elements (LINEs), and their short, nonautonomous partners, SINEs. They occupy ~ 11% of the genome. The EhLINE1/EhSINE1 family is the most abundant and best studied. EhLINE1 is 4.8 kb, with two ORFs that encode functions needed for retrotransposition. ORF1 codes for the nucleic acid-binding protein, and ORF2 has domains for reverse transcriptase (RT) and endonuclease (EN). Most copies of EhLINEs lack complete ORFs. ORF1p is expressed constitutively, but ORF2p is not detected. Retrotransposition could be demonstrated upon ectopic over expression of ORF2p, showing that retrotransposition machinery is functional. The newly retrotransposed sequences showed a high degree of recombination. In transcriptomic analysis, RNA-Seq reads were mapped to individual EhLINE1 copies. Although full-length copies were transcribed, no full-length 4.8 kb transcripts were seen. Rather, sense transcripts mapped to ORF1, RT and EN domains. Intriguingly, there was strong antisense transcription almost exclusively from the RT domain. These unique features of EhLINE1 could serve to attenuate retrotransposition in E. histolytica.
Collapse
|
18
|
IKEDA S, TANAKA K, OHTANI R, KANDA A, SOTOMARU Y, KONO T, OBATA Y. Disruption of piRNA machinery by deletion of ASZ1/GASZ results in the expression of aberrant chimeric transcripts in gonocytes. J Reprod Dev 2022; 68:125-136. [PMID: 35095021 PMCID: PMC8979798 DOI: 10.1262/jrd.2021-146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Affiliation(s)
- Shinya IKEDA
- Department of Bioscience, Tokyo University of Agriculture, Tokyo 156-8502, Japan
| | - Koki TANAKA
- Department of Bioscience, Tokyo University of Agriculture, Tokyo 156-8502, Japan
| | - Reiko OHTANI
- Department of Bioscience, Tokyo University of Agriculture, Tokyo 156-8502, Japan
| | - Akifumi KANDA
- Natural Science Center for Basic Research and Development, Hiroshima University, Hiroshima 734-8551, Japan
| | - Yusuke SOTOMARU
- Natural Science Center for Basic Research and Development, Hiroshima University, Hiroshima 734-8551, Japan
| | - Tomohiro KONO
- Department of Bioscience, Tokyo University of Agriculture, Tokyo 156-8502, Japan
| | - Yayoi OBATA
- Department of Bioscience, Tokyo University of Agriculture, Tokyo 156-8502, Japan
| |
Collapse
|
19
|
Azevedo Portilho N, Saini D, Hossain I, Sirois J, Moraes C, Pastor WA. The DNMT1 inhibitor GSK-3484862 mediates global demethylation in murine embryonic stem cells. Epigenetics Chromatin 2021; 14:56. [PMID: 34906184 PMCID: PMC8672470 DOI: 10.1186/s13072-021-00429-0] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 11/26/2021] [Indexed: 12/16/2022] Open
Abstract
Background DNA methylation plays an important role in regulating gene expression in mammals. The covalent DNMT1 inhibitors 5-azacytidine and decitabine are widely used in research to reduce DNA methylation levels, but they impart severe cytotoxicity which limits their demethylation capability and confounds interpretation of experiments. Recently, a non-covalent inhibitor of DNMT1 called GSK-3484862 was developed by GlaxoSmithKline. We sought to determine whether GSK-3484862 can induce demethylation more effectively than 5-azanucleosides. Murine embryonic stem cells (mESCs) are an ideal cell type in which to conduct such experiments, as they have a high degree of DNA methylation but tolerate dramatic methylation loss. Results We determined the cytotoxicity and optimal concentration of GSK-3484862 by treating wild-type (WT) or Dnmt1/3a/3b triple knockout (TKO) mESC with different concentrations of the compound, which was obtained from two commercial sources. Concentrations of 10 µM or below were readily tolerated for 14 days of culture. Known DNA methylation targets such as germline genes and GLN-family transposons were upregulated within 2 days of the start of GSK-3484862 treatment. By contrast, 5-azacytidine and decitabine induced weaker upregulation of methylated genes and extensive cell death. Whole-genome bisulfite sequencing showed that treatment with GSK-3484862 induced dramatic DNA methylation loss, with global CpG methylation levels falling from near 70% in WT mESC to less than 18% after 6 days of treatment with GSK-3484862. The treated cells showed a methylation level and pattern similar to that observed in Dnmt1-deficient mESCs. Conclusions GSK-3484862 mediates striking demethylation in mESCs with minimal non-specific toxicity. Supplementary Information The online version contains supplementary material available at 10.1186/s13072-021-00429-0.
Collapse
Affiliation(s)
- Nathalia Azevedo Portilho
- Department of Biochemistry, McGill University, Montreal, QC, H3G 1Y6, Canada.,Department of Chemical Engineering, McGill University, Montreal, QC, H3A 0C5, Canada
| | - Deepak Saini
- Department of Biochemistry, McGill University, Montreal, QC, H3G 1Y6, Canada.,The Rosalind and Morris Goodman Cancer Institute, McGill University, Montreal, QC, H3A 1A3, Canada
| | - Ishtiaque Hossain
- Department of Biochemistry, McGill University, Montreal, QC, H3G 1Y6, Canada.,The Rosalind and Morris Goodman Cancer Institute, McGill University, Montreal, QC, H3A 1A3, Canada
| | - Jacinthe Sirois
- Department of Biochemistry, McGill University, Montreal, QC, H3G 1Y6, Canada.,The Rosalind and Morris Goodman Cancer Institute, McGill University, Montreal, QC, H3A 1A3, Canada
| | - Christopher Moraes
- Department of Chemical Engineering, McGill University, Montreal, QC, H3A 0C5, Canada.,The Rosalind and Morris Goodman Cancer Institute, McGill University, Montreal, QC, H3A 1A3, Canada
| | - William A Pastor
- Department of Biochemistry, McGill University, Montreal, QC, H3G 1Y6, Canada. .,The Rosalind and Morris Goodman Cancer Institute, McGill University, Montreal, QC, H3A 1A3, Canada.
| |
Collapse
|
20
|
Mochizuki K, Sharif J, Shirane K, Uranishi K, Bogutz AB, Janssen SM, Suzuki A, Okuda A, Koseki H, Lorincz MC. Repression of germline genes by PRC1.6 and SETDB1 in the early embryo precedes DNA methylation-mediated silencing. Nat Commun 2021; 12:7020. [PMID: 34857746 PMCID: PMC8639735 DOI: 10.1038/s41467-021-27345-x] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 11/08/2021] [Indexed: 01/10/2023] Open
Abstract
Silencing of a subset of germline genes is dependent upon DNA methylation (DNAme) post-implantation. However, these genes are generally hypomethylated in the blastocyst, implicating alternative repressive pathways before implantation. Indeed, in embryonic stem cells (ESCs), an overlapping set of genes, including germline "genome-defence" (GGD) genes, are upregulated following deletion of the H3K9 methyltransferase SETDB1 or subunits of the non-canonical PRC1 complex PRC1.6. Here, we show that in pre-implantation embryos and naïve ESCs (nESCs), hypomethylated promoters of germline genes bound by the PRC1.6 DNA-binding subunits MGA/MAX/E2F6 are enriched for RING1B-dependent H2AK119ub1 and H3K9me3. Accordingly, repression of these genes in nESCs shows a greater dependence on PRC1.6 than DNAme. In contrast, GGD genes are hypermethylated in epiblast-like cells (EpiLCs) and their silencing is dependent upon SETDB1, PRC1.6/RING1B and DNAme, with H3K9me3 and DNAme establishment dependent upon MGA binding. Thus, GGD genes are initially repressed by PRC1.6, with DNAme subsequently engaged in post-implantation embryos.
Collapse
Affiliation(s)
- Kentaro Mochizuki
- Department of Medical Genetics, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Jafar Sharif
- Laboratory for Developmental Genetics, RIKEN Center for Integrative Medical Sciences (IMS), Yokohama, Kanagawa, Japan
| | - Kenjiro Shirane
- Department of Medical Genetics, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Stem Cell Biology and Medicine, Graduate School of Medical Sciences, Kyushu University, Higashi-ku, Fukuoka, Japan
| | - Kousuke Uranishi
- Division of Biomedical Sciences, Research Center for Genomic Medicine, Saitama Medical University, Hidaka, Saitama, Japan
| | - Aaron B Bogutz
- Department of Medical Genetics, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Sanne M Janssen
- Department of Medical Genetics, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Ayumu Suzuki
- Division of Biomedical Sciences, Research Center for Genomic Medicine, Saitama Medical University, Hidaka, Saitama, Japan
| | - Akihiko Okuda
- Division of Biomedical Sciences, Research Center for Genomic Medicine, Saitama Medical University, Hidaka, Saitama, Japan
| | - Haruhiko Koseki
- Laboratory for Developmental Genetics, RIKEN Center for Integrative Medical Sciences (IMS), Yokohama, Kanagawa, Japan
- Department of Cellular and Molecular Medicine, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo ward, Chiba, Japan
| | - Matthew C Lorincz
- Department of Medical Genetics, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada.
| |
Collapse
|
21
|
Ramakrishna NB, Murison K, Miska EA, Leitch HG. Epigenetic Regulation during Primordial Germ Cell Development and Differentiation. Sex Dev 2021; 15:411-431. [PMID: 34847550 DOI: 10.1159/000520412] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 10/10/2021] [Indexed: 11/19/2022] Open
Abstract
Germline development varies significantly across metazoans. However, mammalian primordial germ cell (PGC) development has key conserved landmarks, including a critical period of epigenetic reprogramming that precedes sex-specific differentiation and gametogenesis. Epigenetic alterations in the germline are of unique importance due to their potential to impact the next generation. Therefore, regulation of, and by, the non-coding genome is of utmost importance during these epigenomic events. Here, we detail the key chromatin changes that occur during mammalian PGC development and how these interact with the expression of non-coding RNAs alongside broader epitranscriptomic changes. We identify gaps in our current knowledge, in particular regarding epigenetic regulation in the human germline, and we highlight important areas of future research.
Collapse
Affiliation(s)
- Navin B Ramakrishna
- Wellcome/CRUK Gurdon Institute, University of Cambridge, Cambridge, United Kingdom
- Department of Genetics, University of Cambridge, Cambridge, United Kingdom
- Genome Institute of Singapore, A*STAR, Biopolis, Singapore, Singapore
| | - Keir Murison
- MRC London Institute of Medical Sciences, London, United Kingdom
- Institute of Clinical Sciences, Imperial College London, London, United Kingdom
| | - Eric A Miska
- Wellcome/CRUK Gurdon Institute, University of Cambridge, Cambridge, United Kingdom
- Department of Genetics, University of Cambridge, Cambridge, United Kingdom
- Wellcome Sanger Institute, Wellcome Trust Genome Campus, Cambridge, United Kingdom
| | - Harry G Leitch
- MRC London Institute of Medical Sciences, London, United Kingdom
- Institute of Clinical Sciences, Imperial College London, London, United Kingdom
- Centre for Paediatrics and Child Health, Faculty of Medicine, Imperial College London, London, United Kingdom
| |
Collapse
|
22
|
TET2 as a tumor suppressor and therapeutic target in T-cell acute lymphoblastic leukemia. Proc Natl Acad Sci U S A 2021; 118:2110758118. [PMID: 34413196 PMCID: PMC8403940 DOI: 10.1073/pnas.2110758118] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Pediatric T-cell acute lymphoblastic leukemia (T-ALL) is an aggressive malignancy in need of novel targeted therapies to prevent relapse and lessen treatment toxicity. We reveal frequent (∼88%) transcriptional silencing or repression of the tumor suppressor TET2 in T-ALL. We show that loss of TET2 in T-ALL is correlated with hypermethylation of the TET2 promoter and that TET2 expression can be rescued by treatment with the DNA demethylating agent, 5-azacytidine (5-aza). We further reveal that the TET2 cofactor vitamin C exerts a strong synergistic effect on global transcriptional changes when added to 5-aza treatment. Importantly, 5-aza treatment results in increased cell death, specifically in T-ALL cells lacking TET2. Thus, we clearly identify 5-aza as a potentially targeted therapy for TET2-silenced T-ALL. Pediatric T-cell acute lymphoblastic leukemia (T-ALL) is an aggressive malignancy resulting from overproduction of immature T-cells in the thymus and is typified by widespread alterations in DNA methylation. As survival rates for relapsed T-ALL remain dismal (10 to 25%), development of targeted therapies to prevent relapse is key to improving prognosis. Whereas mutations in the DNA demethylating enzyme TET2 are frequent in adult T-cell malignancies, TET2 mutations in T-ALL are rare. Here, we analyzed RNA-sequencing data of 321 primary T-ALLs, 20 T-ALL cell lines, and 25 normal human tissues, revealing that TET2 is transcriptionally repressed or silenced in 71% and 17% of T-ALL, respectively. Furthermore, we show that TET2 silencing is often associated with hypermethylation of the TET2 promoter in primary T-ALL. Importantly, treatment with the DNA demethylating agent, 5-azacytidine (5-aza), was significantly more toxic to TET2-silenced T-ALL cells and resulted in stable re-expression of the TET2 gene. Additionally, 5-aza led to up-regulation of methylated genes and human endogenous retroviruses (HERVs), which was further enhanced by the addition of physiological levels of vitamin C, a potent enhancer of TET activity. Together, our results clearly identify 5-aza as a potential targeted therapy for TET2-silenced T-ALL.
Collapse
|
23
|
Lyu H, Xu G, Peng X, Gong C, Peng Y, Song Q, Feng Q, Zheng S. Interacting C/EBPg and YBP regulate DNA methyltransferase 1 expression in Bombyx mori embryos and ovaries. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2021; 134:103583. [PMID: 34010702 DOI: 10.1016/j.ibmb.2021.103583] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 04/05/2021] [Accepted: 04/20/2021] [Indexed: 06/12/2023]
Abstract
DNA methylation is an important epigenetic modification. DNA methyltransferases (Dnmts), which catalyze the formation of 5-methylcytosine, play a role in ovarian and embryonic development in some insects. However, the underlying mechanism of Dnmt in mediating ovarian and embryonic development remains unclear. In this study, the regulation and function of Bombyx mori Dnmt1 were investigated. By progressively deleting the sequence upstream of Dnmt1, a region located between -580 and -560 region from the transcription initiation site was found to have the most transcriptional activity. Electrophoretic mobility shift assay and chromatin immunoprecipitation demonstrated that transcription factor Y box binding protein (YBP), a homolog of human Y box binding protein 1 (YBX1), bound to the -580 to -560 region. YBP knockdown and overexpression in a Bombyx cell line indicated that YBP activates Dnmt1 expression. Furthermore, GST-pulldown and co-immunoprecipitation demonstrated that YBP and ovarian CCAAT/enhancer binding protein (C/EBPg) could bind each other. Simultaneous knockdown of C/EBPg and YBP was more effective than single-gene RNAi in inhibiting Dnmt1 expression and reducing the hatching rate. These results demonstrated that the interaction of C/EBPg and YBP activated Dnmt1 expression. Correlated with the expression profiles of the studies genes, our results suggest that high-level expression and interaction of C/EBPg and YBP in ovaries and embryos enhance the expression of Dnmt1, thus ensuring high reproduction rate in B. mori.
Collapse
Affiliation(s)
- Hao Lyu
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, 510631, China; Guangzhou Key Laboratory of Insect Development Regulation and Applied Research, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, 510631, China
| | - Guanfeng Xu
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, 510631, China; Guangzhou Key Laboratory of Insect Development Regulation and Applied Research, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, 510631, China
| | - Xuezhen Peng
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, 510631, China; Guangzhou Key Laboratory of Insect Development Regulation and Applied Research, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, 510631, China
| | - Chengcheng Gong
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, 510631, China; Guangzhou Key Laboratory of Insect Development Regulation and Applied Research, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, 510631, China
| | - Yuling Peng
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, 510631, China; Guangzhou Key Laboratory of Insect Development Regulation and Applied Research, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, 510631, China
| | - Qisheng Song
- Division of Plant Sciences, College of Agriculture, Food and Natural Resources, University of Missouri, Columbia, MO, 65211, USA
| | - Qili Feng
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, 510631, China; Guangzhou Key Laboratory of Insect Development Regulation and Applied Research, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, 510631, China
| | - Sichun Zheng
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, 510631, China; Guangzhou Key Laboratory of Insect Development Regulation and Applied Research, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, 510631, China.
| |
Collapse
|
24
|
Dahlet T, Truss M, Frede U, Al Adhami H, Bardet AF, Dumas M, Vallet J, Chicher J, Hammann P, Kottnik S, Hansen P, Luz U, Alvarez G, Auclair G, Hecht J, Robinson PN, Hagemeier C, Weber M. E2F6 initiates stable epigenetic silencing of germline genes during embryonic development. Nat Commun 2021; 12:3582. [PMID: 34117224 PMCID: PMC8195999 DOI: 10.1038/s41467-021-23596-w] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 05/04/2021] [Indexed: 11/24/2022] Open
Abstract
In mouse development, long-term silencing by CpG island DNA methylation is specifically targeted to germline genes; however, the molecular mechanisms of this specificity remain unclear. Here, we demonstrate that the transcription factor E2F6, a member of the polycomb repressive complex 1.6 (PRC1.6), is critical to target and initiate epigenetic silencing at germline genes in early embryogenesis. Genome-wide, E2F6 binds preferentially to CpG islands in embryonic cells. E2F6 cooperates with MGA to silence a subgroup of germline genes in mouse embryonic stem cells and in embryos, a function that critically depends on the E2F6 marked box domain. Inactivation of E2f6 leads to a failure to deposit CpG island DNA methylation at these genes during implantation. Furthermore, E2F6 is required to initiate epigenetic silencing in early embryonic cells but becomes dispensable for the maintenance in differentiated cells. Our findings elucidate the mechanisms of epigenetic targeting of germline genes and provide a paradigm for how transient repression signals by DNA-binding factors in early embryonic cells are translated into long-term epigenetic silencing during mouse development. DNA methylation targets CpG island promoters of germline genes to repress their expression in mouse somatic cells. Here the authors show that a transcription factor E2F6 is required to target CpG island DNA methylation and epigenetic silencing to germline genes during early mouse development.
Collapse
Affiliation(s)
- Thomas Dahlet
- University of Strasbourg, Strasbourg, France.,CNRS UMR7242, Biotechnology and Cell Signaling, Illkirch, France
| | - Matthias Truss
- Pediatric Oncology, Labor für Pädiatrische Molekularbiologie, Charité - Universitätsmedizin Berlin, Berlin, Germany.
| | - Ute Frede
- Pediatric Oncology, Labor für Pädiatrische Molekularbiologie, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Hala Al Adhami
- University of Strasbourg, Strasbourg, France.,CNRS UMR7242, Biotechnology and Cell Signaling, Illkirch, France
| | - Anaïs F Bardet
- University of Strasbourg, Strasbourg, France.,CNRS UMR7242, Biotechnology and Cell Signaling, Illkirch, France
| | - Michael Dumas
- University of Strasbourg, Strasbourg, France.,CNRS UMR7242, Biotechnology and Cell Signaling, Illkirch, France
| | - Judith Vallet
- University of Strasbourg, Strasbourg, France.,CNRS UMR7242, Biotechnology and Cell Signaling, Illkirch, France
| | - Johana Chicher
- Plateforme protéomique Strasbourg Esplanade, CNRS, University of Strasbourg, Strasbourg, France
| | - Philippe Hammann
- Plateforme protéomique Strasbourg Esplanade, CNRS, University of Strasbourg, Strasbourg, France
| | - Sarah Kottnik
- Pediatric Oncology, Labor für Pädiatrische Molekularbiologie, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Peter Hansen
- Berlin Brandenburg Center for Regenerative Therapies (BCRT), Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Uschi Luz
- Pediatric Oncology, Labor für Pädiatrische Molekularbiologie, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Gonzalo Alvarez
- Pediatric Oncology, Labor für Pädiatrische Molekularbiologie, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Ghislain Auclair
- University of Strasbourg, Strasbourg, France.,CNRS UMR7242, Biotechnology and Cell Signaling, Illkirch, France
| | - Jochen Hecht
- Berlin Brandenburg Center for Regenerative Therapies (BCRT), Charité Universitätsmedizin Berlin, Berlin, Germany.,Centre for Genomic Regulation, Barcelona, Spain
| | - Peter N Robinson
- Berlin Brandenburg Center for Regenerative Therapies (BCRT), Charité Universitätsmedizin Berlin, Berlin, Germany.,Jackson Laboratory for Genomic Medicine, Farmington, CT, USA
| | - Christian Hagemeier
- Pediatric Oncology, Labor für Pädiatrische Molekularbiologie, Charité - Universitätsmedizin Berlin, Berlin, Germany.
| | - Michael Weber
- University of Strasbourg, Strasbourg, France. .,CNRS UMR7242, Biotechnology and Cell Signaling, Illkirch, France.
| |
Collapse
|
25
|
Gómez-Redondo I, Planells B, Cánovas S, Ivanova E, Kelsey G, Gutiérrez-Adán A. Genome-wide DNA methylation dynamics during epigenetic reprogramming in the porcine germline. Clin Epigenetics 2021; 13:27. [PMID: 33536045 PMCID: PMC7860200 DOI: 10.1186/s13148-021-01003-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 01/04/2021] [Indexed: 01/03/2023] Open
Abstract
Background Prior work in mice has shown that some retrotransposed elements remain substantially methylated during DNA methylation reprogramming of germ cells. In the pig, however, information about this process is scarce. The present study was designed to examine the methylation profiles of porcine germ cells during the time course of epigenetic reprogramming. Results Sows were artificially inseminated, and their fetuses were collected 28, 32, 36, 39, and 42 days later. At each time point, genital ridges were dissected from the mesonephros and germ cells were isolated through magnetic-activated cell sorting using an anti-SSEA-1 antibody, and recovered germ cells were subjected to whole-genome bisulphite sequencing. Methylation levels were quantified using SeqMonk software by performing an unbiased analysis, and persistently methylated regions (PMRs) in each sex were determined to extract those regions showing 50% or more methylation. Most genomic elements underwent a dramatic loss of methylation from day 28 to day 36, when the lowest levels were shown. By day 42, there was evidence for the initiation of genomic re-methylation. We identified a total of 1456 and 1122 PMRs in male and female germ cells, respectively, and large numbers of transposable elements (SINEs, LINEs, and LTRs) were found to be located within these PMRs. Twenty-one percent of the introns located in these PMRs were found to be the first introns of a gene, suggesting their regulatory role in the expression of these genes. Interestingly, most of the identified PMRs were demethylated at the blastocyst stage. Conclusions Our findings indicate that methylation reprogramming in pig germ cells follows the general dynamics shown in mice and human, unveiling genomic elements that behave differently between male and female germ cells.
Collapse
Affiliation(s)
| | | | - Sebastián Cánovas
- Physiology of Reproduction Group, Department of Physiology, Universidad de Murcia, Campus Mare Nostrum, Murcia, Spain.,Instituto Murciano de Investigación Biosanitaria, IMIB-Arrixaca-UMU, Murcia, Spain
| | - Elena Ivanova
- Epigenetics Programme, The Babraham Institute, Cambridge, UK
| | - Gavin Kelsey
- Epigenetics Programme, The Babraham Institute, Cambridge, UK.,Centre for Trophoblast Research, University of Cambridge, Cambridge, UK
| | | |
Collapse
|
26
|
Choi WY, Hwang JH, Cho AN, Lee AJ, Lee J, Jung I, Cho SW, Kim LK, Kim YJ. DNA Methylation of Intragenic CpG Islands are Required for Differentiation from iPSC to NPC. Stem Cell Rev Rep 2020; 16:1316-1327. [PMID: 32975781 DOI: 10.1007/s12015-020-10041-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/08/2020] [Indexed: 12/30/2022]
Abstract
The effects of gene body DNA methylation on gene regulation still remains highly controversial. In this study, we generated whole genome bisulfite sequencing (WGBS) data with high sequencing depth in induced pluripotent stem cell (iPSC) and neuronal progentior cell (NPC), and investigated the relationship between DNA methylation changes in CpG islands (CGIs) and corresponding gene expression during NPC differentiation. Interestingly, differentially methylated CGIs were more abundant in intragenic regions compared to promoters and these methylated intragenic CGIs (iCGIs) were associated with neuronal development-related genes. When we compared gene expression level of methylated and unmethylated CGIs in intragenic regions, DNA methylation of iCGI was positively correlated with gene expression in contrast with promoter CGIs (pCGIs). To gain insight into regulatory mechanism mediated by iCGI DNA methylation, we executed motif searching in hypermethylated iCGIs and found NEUROD1 as a hypermethylated iCGI binding transcription factor. This study highlights give rise to possibility of activating role of hypermethylation in iCGIs and involvement of neuronal development related TFs. Graphical Abstract The relationship between iCGI DNA methylation and expression of associated genes in neuronal developmental process. During iPSC to NPCdifferentiation, iCGI containing neural developmental genes show iCGI's DNA hypermethylation which is accompanied by gene activation and NEUROD1which is one of the core neuronal TFs interacts with hypermethylated iCGI regions.
Collapse
Affiliation(s)
- Won-Young Choi
- Interdisciplinary Program of Integrated OMICS for Biomedical Science, The Graduate School, Yonsei University, Seoul, 03722, Republic of Korea
| | - Ji-Hyun Hwang
- Interdisciplinary Program of Integrated OMICS for Biomedical Science, The Graduate School, Yonsei University, Seoul, 03722, Republic of Korea
| | - Ann-Na Cho
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, 03722, Republic of Korea
| | - Andrew J Lee
- Department of Biological Sciences, KAIST, Daejeon, Republic of Korea
| | - Jungwoo Lee
- Interdisciplinary Program of Integrated OMICS for Biomedical Science, The Graduate School, Yonsei University, Seoul, 03722, Republic of Korea
| | - Inkyung Jung
- Department of Biological Sciences, KAIST, Daejeon, Republic of Korea
| | - Seung-Woo Cho
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, 03722, Republic of Korea
| | - Lark Kyun Kim
- Severance Biomedical Science Institute and BK21 PLUS Project for Medical Sciences, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, 06230, Republic of Korea.
| | - Young-Joon Kim
- Interdisciplinary Program of Integrated OMICS for Biomedical Science, The Graduate School, Yonsei University, Seoul, 03722, Republic of Korea. .,Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, 03722, Republic of Korea.
| |
Collapse
|
27
|
Shukla R, Mjoseng HK, Thomson JP, Kling S, Sproul D, Dunican DS, Ramsahoye B, Wongtawan T, Treindl F, Templin MF, Adams IR, Pennings S, Meehan RR. Activation of transcription factor circuity in 2i-induced ground state pluripotency is independent of repressive global epigenetic landscapes. Nucleic Acids Res 2020; 48:7748-7766. [PMID: 32585002 PMCID: PMC7641322 DOI: 10.1093/nar/gkaa529] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 06/02/2020] [Accepted: 06/15/2020] [Indexed: 01/07/2023] Open
Abstract
Mouse embryonic stem cells (mESCs) cultured with MEK/ERK and GSK3β (2i) inhibitors transition to ground state pluripotency. Gene expression changes, redistribution of histone H3K27me3 profiles and global DNA hypomethylation are hallmarks of 2i exposure, but it is unclear whether epigenetic alterations are required to achieve and maintain ground state or occur as an outcome of 2i signal induced changes. Here we show that ESCs with three epitypes, WT, constitutively methylated, or hypomethylated, all undergo comparable morphological, protein expression and transcriptome changes independently of global alterations of DNA methylation levels or changes in H3K27me3 profiles. Dazl and Fkbp6 expression are induced by 2i in all three epitypes, despite exhibiting hypermethylated promoters in constitutively methylated ESCs. We identify a number of activated gene promoters that undergo 2i dependent loss of H3K27me3 in all three epitypes, however genetic and pharmaceutical inhibition experiments show that H3K27me3 is not required for their silencing in non-2i conditions. By separating and defining their contributions, our data suggest that repressive epigenetic systems play minor roles in mESC self-renewal and naïve ground state establishment by core sets of dominant pluripotency associated transcription factor networks, which operate independently from these epigenetic processes.
Collapse
Affiliation(s)
- Ruchi Shukla
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, WGH, University of Edinburgh, Edinburgh EH4 2XU, UK
- Newcastle University Centre for Cancer, Biosciences Institute, Newcastle University, Newcastle-upon-Tyne NE2 4HH, UK
| | - Heidi K Mjoseng
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, WGH, University of Edinburgh, Edinburgh EH4 2XU, UK
| | - John P Thomson
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, WGH, University of Edinburgh, Edinburgh EH4 2XU, UK
| | - Simon Kling
- NMI Natural and Medical Sciences Institute, Tübingen University, Reutlingen, Germany
| | - Duncan Sproul
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, WGH, University of Edinburgh, Edinburgh EH4 2XU, UK
| | - Donncha S Dunican
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, WGH, University of Edinburgh, Edinburgh EH4 2XU, UK
| | - Bernard Ramsahoye
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Molecular Medicine, WGH, University of Edinburgh, Edinburgh EH4 2XU, UK
| | - Tuempong Wongtawan
- Centre for Cardiovascular Science, Queen's Medical Research Institute, University of Edinburgh, Edinburgh EH16 4TJ, UK
| | - Fridolin Treindl
- NMI Natural and Medical Sciences Institute, Tübingen University, Reutlingen, Germany
- Pharmaceutical Biotechnology, Tübingen University, Tübingen, Germany
| | - Markus F Templin
- NMI Natural and Medical Sciences Institute, Tübingen University, Reutlingen, Germany
- Pharmaceutical Biotechnology, Tübingen University, Tübingen, Germany
| | - Ian R Adams
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, WGH, University of Edinburgh, Edinburgh EH4 2XU, UK
| | - Sari Pennings
- Centre for Cardiovascular Science, Queen's Medical Research Institute, University of Edinburgh, Edinburgh EH16 4TJ, UK
| | - Richard R Meehan
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, WGH, University of Edinburgh, Edinburgh EH4 2XU, UK
| |
Collapse
|
28
|
Dahlet T, Argüeso Lleida A, Al Adhami H, Dumas M, Bender A, Ngondo RP, Tanguy M, Vallet J, Auclair G, Bardet AF, Weber M. Genome-wide analysis in the mouse embryo reveals the importance of DNA methylation for transcription integrity. Nat Commun 2020; 11:3153. [PMID: 32561758 PMCID: PMC7305168 DOI: 10.1038/s41467-020-16919-w] [Citation(s) in RCA: 91] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Accepted: 05/29/2020] [Indexed: 12/20/2022] Open
Abstract
Mouse embryos acquire global DNA methylation of their genome during implantation. However the exact roles of DNA methyltransferases (DNMTs) in embryos have not been studied comprehensively. Here we systematically analyze the consequences of genetic inactivation of Dnmt1, Dnmt3a and Dnmt3b on the methylome and transcriptome of mouse embryos. We find a strict division of function between DNMT1, responsible for maintenance methylation, and DNMT3A/B, solely responsible for methylation acquisition in development. By analyzing severely hypomethylated embryos, we uncover multiple functions of DNA methylation that is used as a mechanism of repression for a panel of genes including not only imprinted and germline genes, but also lineage-committed genes and 2-cell genes. DNA methylation also suppresses multiple retrotransposons and illegitimate transcripts from cryptic promoters in transposons and gene bodies. Our work provides a thorough analysis of the roles of DNA methyltransferases and the importance of DNA methylation for transcriptome integrity in mammalian embryos.
Collapse
Affiliation(s)
- Thomas Dahlet
- University of Strasbourg, Strasbourg, France
- Biotechnology and Cell Signaling, CNRS UMR7242, 300 Bd Sébastien Brant, 67412, Illkirch, Cedex, France
| | - Andrea Argüeso Lleida
- University of Strasbourg, Strasbourg, France
- Biotechnology and Cell Signaling, CNRS UMR7242, 300 Bd Sébastien Brant, 67412, Illkirch, Cedex, France
| | - Hala Al Adhami
- University of Strasbourg, Strasbourg, France
- Biotechnology and Cell Signaling, CNRS UMR7242, 300 Bd Sébastien Brant, 67412, Illkirch, Cedex, France
| | - Michael Dumas
- University of Strasbourg, Strasbourg, France
- Biotechnology and Cell Signaling, CNRS UMR7242, 300 Bd Sébastien Brant, 67412, Illkirch, Cedex, France
| | - Ambre Bender
- University of Strasbourg, Strasbourg, France
- Biotechnology and Cell Signaling, CNRS UMR7242, 300 Bd Sébastien Brant, 67412, Illkirch, Cedex, France
| | - Richard P Ngondo
- University of Strasbourg, Strasbourg, France
- Biotechnology and Cell Signaling, CNRS UMR7242, 300 Bd Sébastien Brant, 67412, Illkirch, Cedex, France
- IBMP, CNRS UPR2357, 67084, Strasbourg, France
| | - Manon Tanguy
- University of Strasbourg, Strasbourg, France
- Biotechnology and Cell Signaling, CNRS UMR7242, 300 Bd Sébastien Brant, 67412, Illkirch, Cedex, France
| | - Judith Vallet
- University of Strasbourg, Strasbourg, France
- Biotechnology and Cell Signaling, CNRS UMR7242, 300 Bd Sébastien Brant, 67412, Illkirch, Cedex, France
| | - Ghislain Auclair
- University of Strasbourg, Strasbourg, France
- Biotechnology and Cell Signaling, CNRS UMR7242, 300 Bd Sébastien Brant, 67412, Illkirch, Cedex, France
| | - Anaïs F Bardet
- University of Strasbourg, Strasbourg, France
- Biotechnology and Cell Signaling, CNRS UMR7242, 300 Bd Sébastien Brant, 67412, Illkirch, Cedex, France
| | - Michael Weber
- University of Strasbourg, Strasbourg, France.
- Biotechnology and Cell Signaling, CNRS UMR7242, 300 Bd Sébastien Brant, 67412, Illkirch, Cedex, France.
| |
Collapse
|
29
|
Wang X, Kadarmideen HN. Characterization of Global DNA Methylation in Different Gene Regions Reveals Candidate Biomarkers in Pigs with High and Low Levels of Boar Taint. Vet Sci 2020; 7:E77. [PMID: 32545802 PMCID: PMC7356388 DOI: 10.3390/vetsci7020077] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 06/09/2020] [Indexed: 12/11/2022] Open
Abstract
DNA methylation of different gene components, including different exons and introns, or different lengths of exons and introns is associated with differences in gene expression. To investigate the methylation of porcine gene components associated with the boar taint (BT) trait, this study used reduced representation bisulfite sequencing (RRBS) data from nine porcine testis samples in three BT groups (low, medium and high BT). The results showed that the methylation levels of the first exons and first introns were lower than those of the other exons and introns. The first exons/introns of CpG island regions had even lower levels of methylation. A total of 123 differentially methylated promoters (DMPs), 194 differentially methylated exons (DMEs) and 402 differentially methylated introns (DMIs) were identified, of which 80 DMPs (DMP-CpGis), 112 DMEs (DME-CpGis) and 166 DMIs (DMI-CpGis) were discovered in CpG islands. Importantly, GPX1 contained one each of DMP, DME, DMI, DMP-CpGi, DME-CpGi and DMI-CpGi. Gene-GO term relationships and pathways analysis showed DMP-CpGi-related genes are mainly involved in methylation-related biological functions. In addition, gene-gene interaction networks consisted of nodes that were hypo-methylated GPX1, hypo-methylated APP, hypo-methylated ATOX1, hyper-methylated ADRB2, hyper-methylated RPS6KA1 and hyper-methylated PNMT. They could be used as candidate biomarkers for reducing boar taint in pigs, after further validation in large cohorts.
Collapse
Affiliation(s)
| | - Haja N. Kadarmideen
- Quantitative Genomics, Bioinformatics and Computational Biology Group, Department of Applied Mathematics and Computer Science, Technical University of Denmark, 2800 Kongens Lyngby, Denmark;
| |
Collapse
|
30
|
Reichmann J, Dobie K, Lister LM, Crichton JH, Best D, MacLennan M, Read D, Raymond ES, Hung CC, Boyle S, Shirahige K, Cooke HJ, Herbert M, Adams IR. Tex19.1 inhibits the N-end rule pathway and maintains acetylated SMC3 cohesin and sister chromatid cohesion in oocytes. J Cell Biol 2020; 219:e201702123. [PMID: 32232464 PMCID: PMC7199850 DOI: 10.1083/jcb.201702123] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2017] [Revised: 12/31/2019] [Accepted: 02/11/2020] [Indexed: 12/14/2022] Open
Abstract
Age-dependent oocyte aneuploidy, a major cause of Down syndrome, is associated with declining sister chromatid cohesion in postnatal oocytes. Here we show that cohesion in postnatal mouse oocytes is regulated by Tex19.1. We show Tex19.1-/- oocytes have defects maintaining chiasmata, missegregate their chromosomes during meiosis, and transmit aneuploidies to the next generation. Furthermore, we show that mouse Tex19.1 inhibits N-end rule protein degradation mediated by its interacting partner UBR2, and that Ubr2 itself has a previously undescribed role in negatively regulating the acetylated SMC3 subpopulation of cohesin in mitotic somatic cells. Lastly, we show that acetylated SMC3 is associated with meiotic chromosome axes in mouse oocytes, and that this population of cohesin is specifically depleted in the absence of Tex19.1. These findings indicate that Tex19.1 regulates UBR protein activity to maintain acetylated SMC3 and sister chromatid cohesion in postnatal oocytes and prevent aneuploidy from arising in the female germline.
Collapse
Affiliation(s)
- Judith Reichmann
- Medical Research Council Human Genetics Unit, Medical Research Council Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Crewe Road, Edinburgh, UK
| | - Karen Dobie
- Medical Research Council Human Genetics Unit, Medical Research Council Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Crewe Road, Edinburgh, UK
| | - Lisa M. Lister
- Institute for Genetic Medicine, Newcastle University, Biomedicine West Wing, Centre for Life, Newcastle upon Tyne, UK
| | - James H. Crichton
- Medical Research Council Human Genetics Unit, Medical Research Council Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Crewe Road, Edinburgh, UK
| | - Diana Best
- Medical Research Council Human Genetics Unit, Medical Research Council Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Crewe Road, Edinburgh, UK
| | - Marie MacLennan
- Medical Research Council Human Genetics Unit, Medical Research Council Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Crewe Road, Edinburgh, UK
| | - David Read
- Medical Research Council Human Genetics Unit, Medical Research Council Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Crewe Road, Edinburgh, UK
| | - Eleanor S. Raymond
- Medical Research Council Human Genetics Unit, Medical Research Council Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Crewe Road, Edinburgh, UK
| | - Chao-Chun Hung
- Medical Research Council Human Genetics Unit, Medical Research Council Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Crewe Road, Edinburgh, UK
| | - Shelagh Boyle
- Medical Research Council Human Genetics Unit, Medical Research Council Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Crewe Road, Edinburgh, UK
| | - Katsuhiko Shirahige
- Institute for Quantitative Biosciences, The University of Tokyo, Tokyo, Japan
| | - Howard J. Cooke
- Medical Research Council Human Genetics Unit, Medical Research Council Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Crewe Road, Edinburgh, UK
| | - Mary Herbert
- Institute for Genetic Medicine, Newcastle University, Biomedicine West Wing, Centre for Life, Newcastle upon Tyne, UK
- Newcastle Fertility Centre, Biomedicine West Wing, Centre for Life, Newcastle upon Tyne, UK
| | - Ian R. Adams
- Medical Research Council Human Genetics Unit, Medical Research Council Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Crewe Road, Edinburgh, UK
| |
Collapse
|
31
|
Menelaou K, Prater M, Tunster S, Blake G, Geary Joo C, Cross JC, Hamilton R, Watson E. Blastocyst transfer in mice alters the placental transcriptome and growth. Reproduction 2019; 159:115-132. [PMID: 31751309 PMCID: PMC6993209 DOI: 10.1530/rep-19-0293] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Accepted: 11/18/2019] [Indexed: 12/18/2022]
Abstract
Assisted reproduction technologies (ART) are becoming increasingly common. Therefore, how these procedures influence gene regulation and feto-placental development are important to explore. Here, we assess the effects of blastocyst transfer on mouse placental growth and transcriptome. C57Bl/6 blastocysts were transferred into uteri of B6D2F1 pseudopregnant females and dissected at embryonic day 10.5 for analysis. Compared to non-transferred controls, placentas from transferred conceptuses weighed less even though the embryos were larger on average. This suggested a compensatory increase in placental efficiency. RNA-sequencing of whole male placentas revealed 543 differentially expressed genes (DEGs) after blastocyst transfer: 188 and 355 genes were down-regulated and up-regulated, respectively. DEGs were independently validated in male and female placentas. Bioinformatic analyses revealed that DEGs represented expression in all major placental cell types and included genes that are critical for placenta development and/or function. Furthermore, the direction of transcriptional change in response to blastocyst transfer implied an adaptive response to improve placental function to maintain fetal growth. Our analysis revealed that CpG methylation at regulatory regions of two DEGs was unchanged in female transferred placentas and that DEGs had fewer gene-associated CpG islands (within ~20 kb region) compared to the larger genome. These data suggested that altered methylation at proximal promoter regions might not lead to transcriptional disruption in transferred placentas. Genomic clustering of some DEGs warrants further investigation of long-range, cis-acting epigenetic mechanisms including histone modifications together with DNA methylation. We conclude that embryo transfer, a protocol required for ART, significantly impacts the placental transcriptome and growth.
Collapse
Affiliation(s)
- Katerina Menelaou
- K Menelaou, Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom of Great Britain and Northern Ireland
| | - Malwina Prater
- M Prater, Centre for Trophoblast Research, University of Cambridge, Cambridge, United Kingdom of Great Britain and Northern Ireland
| | - Simon Tunster
- S Tunster, Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom of Great Britain and Northern Ireland
| | - Georgina Blake
- G Blake, Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom of Great Britain and Northern Ireland
| | - Colleen Geary Joo
- C Geary Joo, Clara Christie Centre for Mouse Genomics, University of Calgary, Calgary, Canada
| | - James C Cross
- J Cross, Comparative Biology and Experimental Medicine, University of Calgary, Calgary, Canada
| | - Russell Hamilton
- R Hamilton, Centre for Trophoblast Research, University of Cambridge, Cambridge, United Kingdom of Great Britain and Northern Ireland
| | - Erica Watson
- E Watson, Physiology, Development and Neuroscience, University of Cambridge, Cambridge, CB2 3EG, United Kingdom of Great Britain and Northern Ireland
| |
Collapse
|
32
|
Nowialis P, Lopusna K, Opavska J, Haney SL, Abraham A, Sheng P, Riva A, Natarajan A, Guryanova O, Simpson M, Hlady R, Xie M, Opavsky R. Catalytically inactive Dnmt3b rescues mouse embryonic development by accessory and repressive functions. Nat Commun 2019; 10:4374. [PMID: 31558711 PMCID: PMC6763448 DOI: 10.1038/s41467-019-12355-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Accepted: 09/04/2019] [Indexed: 01/19/2023] Open
Abstract
DNA methylation regulates gene expression in a variety of processes, including mouse embryonic development. Four catalytically active enzymes function in mice as DNA methyltransferases (Dnmts) and as transcriptional regulators. Inactivation of Dnmt3b results in mouse embryonic lethality, but which activities are involved is unclear. Here we show that catalytically inactive Dnmt3b restores a majority of methylation and expression changes deregulated in the absence of Dnmt3b, and as a result, mice survive embryonic development. Thus, Dnmt3b functions as an accessory cofactor supporting catalytic activities performed by other Dnmts. We further demonstrate that Dnmt3b is linked to a control of major developmental pathways, including Wnt and hedgehog signaling. Dnmt3b directly represses Wnt9b whose aberrant up-regulation contributes to embryonic lethality of Dnmt3b knockout embryos. Our results highlight that Dnmt3b is a multifaceted protein that serves as an enzyme, an accessory factor for other methyltransferases, and as a transcriptional repressor in mouse embryogenesis.
Collapse
Affiliation(s)
- Pawel Nowialis
- Department of Anatomy and Cell Biology, University of Florida College of Medicine, 2033 Mowry Rd, CGRC 258, Gainesville, FL, 32610, USA
- UF Health Cancer Center, University of Florida, Gainesville, FL, 32610, USA
| | - Katarina Lopusna
- Department of Anatomy and Cell Biology, University of Florida College of Medicine, 2033 Mowry Rd, CGRC 258, Gainesville, FL, 32610, USA
- UF Health Cancer Center, University of Florida, Gainesville, FL, 32610, USA
| | - Jana Opavska
- Department of Anatomy and Cell Biology, University of Florida College of Medicine, 2033 Mowry Rd, CGRC 258, Gainesville, FL, 32610, USA
- UF Health Cancer Center, University of Florida, Gainesville, FL, 32610, USA
| | - Staci L Haney
- Department of Internal Medicine, University of Nebraska Medical Center, 985950 Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Ajay Abraham
- Department of Anatomy and Cell Biology, University of Florida College of Medicine, 2033 Mowry Rd, CGRC 258, Gainesville, FL, 32610, USA
- UF Health Cancer Center, University of Florida, Gainesville, FL, 32610, USA
| | - Peike Sheng
- Department of Biochemistry and Molecular Biology, University of Florida College of Medicine, 2033 Mowry Rd, CGRC 263, Gainesville, FL, 32610, USA
| | - Alberto Riva
- ICBR Bioinformatics, Cancer and Genetics Research Complex, University of Florida, P.O. Box 103622, Gainesville, FL, 32610, USA
| | - Amarnath Natarajan
- University of Nebraska Medical Center, The Eppley Institute for Research in Cancer and Allied Diseases, Fred & Pamela Buffett Cancer Center, 986805 Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Olga Guryanova
- Department of Pharmacology and Therapeutics, University of Florida College of Medicine, 2033 Mowry Rd, CGRC 260, Gainesville, FL, 32610, USA
| | - Melanie Simpson
- Molecular and Structural Biochemistry, NC State University, Raleigh, NC, 27695, USA
| | - Ryan Hlady
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, 55901, USA
| | - Mingyi Xie
- UF Health Cancer Center, University of Florida, Gainesville, FL, 32610, USA
- Department of Biochemistry and Molecular Biology, University of Florida College of Medicine, 2033 Mowry Rd, CGRC 263, Gainesville, FL, 32610, USA
| | - Rene Opavsky
- Department of Anatomy and Cell Biology, University of Florida College of Medicine, 2033 Mowry Rd, CGRC 258, Gainesville, FL, 32610, USA.
- UF Health Cancer Center, University of Florida, Gainesville, FL, 32610, USA.
| |
Collapse
|
33
|
Hill RJ, Crossan GP. DNA cross-link repair safeguards genomic stability during premeiotic germ cell development. Nat Genet 2019; 51:1283-1294. [PMID: 31367016 PMCID: PMC6675612 DOI: 10.1038/s41588-019-0471-2] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Accepted: 06/24/2019] [Indexed: 11/09/2022]
Abstract
Germline de novo mutations are the basis of evolutionary diversity but also of genetic disease. However, the molecular origin, mechanisms and timing of germline mutagenesis are not fully understood. Here, we define a fundamental role for DNA interstrand cross-link repair in the germline. This repair process is essential for primordial germ cell (PGC) maturation during embryonic development. Inactivation of cross-link repair leads to genetic instability that is restricted to PGCs within the genital ridge during a narrow temporal window. Having successfully activated the PGC transcriptional program, a potent quality control mechanism detects and drives damaged PGCs into apoptosis. Therefore, these findings define a source of DNA damage and the nature of the subsequent DNA repair response in germ cells, which ensures faithful transmission of the genome between generations.
Collapse
Affiliation(s)
- Ross J Hill
- MRC Laboratory of Molecular Biology, Cambridge, UK
| | | |
Collapse
|
34
|
Abstract
Maintenance of genome stability requires control over the expression of transposable elements (TEs), whose activity can have substantial deleterious effects on the host. Chemical modification of DNA is a commonly used strategy to achieve this, and it has long been argued that the emergence of 5-methylcytosine (5mC) in many species was driven by the requirement to silence TEs. Potential roles in TE regulation have also been suggested for other DNA modifications, such as N6-methyladenine and oxidation derivatives of 5mC, although the underlying mechanistic relationships are poorly understood. Here, we discuss current evidence implicating DNA modifications and DNA-modifying enzymes in TE regulation across different species.
Collapse
Affiliation(s)
- Özgen Deniz
- Blizard Institute, Barts and The London School of Medicine and Dentistry, QMUL, London, UK
| | - Jennifer M Frost
- Blizard Institute, Barts and The London School of Medicine and Dentistry, QMUL, London, UK
| | - Miguel R Branco
- Blizard Institute, Barts and The London School of Medicine and Dentistry, QMUL, London, UK.
| |
Collapse
|
35
|
Liberti DC, Zepp JA, Bartoni CA, Liberti KH, Zhou S, Lu M, Morley MP, Morrisey EE. Dnmt1 is required for proximal-distal patterning of the lung endoderm and for restraining alveolar type 2 cell fate. Dev Biol 2019; 454:108-117. [PMID: 31242446 DOI: 10.1016/j.ydbio.2019.06.019] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 06/21/2019] [Accepted: 06/21/2019] [Indexed: 12/28/2022]
Abstract
Lung endoderm development occurs through a series of finely coordinated transcriptional processes that are regulated by epigenetic mechanisms. However, the role of DNA methylation in regulating lung endoderm development remains poorly understood. We demonstrate that DNA methyltransferase 1 (Dnmt1) is required for early branching morphogenesis of the lungs and for restraining epithelial fate specification. Loss of Dnmt1 leads to an early branching defect, a loss of epithelial polarity and proximal endodermal cell differentiation, and an expansion of the distal endoderm compartment. Dnmt1 deficiency also disrupts epithelial-mesenchymal crosstalk and leads to precocious distal endodermal cell differentiation with premature expression of alveolar type 2 cell restricted genes. These data reveal an important requirement for Dnmt1 mediated DNA methylation in early lung development to promote proper branching morphogenesis, maintain proximal endodermal cell fate, and suppress premature activation of the distal epithelial fate.
Collapse
Affiliation(s)
- Derek C Liberti
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA; Penn Cardiovascular Institute, University of Pennsylvania, Philadelphia, PA, 19104, USA; Penn Center for Pulmonary Biology, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Jarod A Zepp
- Penn Cardiovascular Institute, University of Pennsylvania, Philadelphia, PA, 19104, USA; Penn Center for Pulmonary Biology, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Christina A Bartoni
- Penn Cardiovascular Institute, University of Pennsylvania, Philadelphia, PA, 19104, USA; Penn Center for Pulmonary Biology, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Kyle H Liberti
- Middleware Engineering, Red Hat, Westford, MA, 01886, USA
| | - Su Zhou
- Penn Center for Pulmonary Biology, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Minmin Lu
- Penn Center for Pulmonary Biology, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Michael P Morley
- Penn Cardiovascular Institute, University of Pennsylvania, Philadelphia, PA, 19104, USA; Penn Center for Pulmonary Biology, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Edward E Morrisey
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA; Penn Cardiovascular Institute, University of Pennsylvania, Philadelphia, PA, 19104, USA; Penn Center for Pulmonary Biology, University of Pennsylvania, Philadelphia, PA, 19104, USA; Department of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA; Penn-CHOP Lung Biology Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| |
Collapse
|
36
|
Rocha-da-Silva L, Armelin-Correa L, Cantão IH, Flister VJF, Nunes M, Stumpp T. Expression of genome defence protein members in proliferating and quiescent rat male germ cells and the Nuage dynamics. PLoS One 2019; 14:e0217941. [PMID: 31181099 PMCID: PMC6557511 DOI: 10.1371/journal.pone.0217941] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Accepted: 05/21/2019] [Indexed: 11/21/2022] Open
Abstract
During epigenetic reprogramming germ cells activate alternative mechanisms to maintain the repression retrotransposons. This mechanism involves the recruitment of genome defence proteins such as MAEL, PIWIL4 and TDRD9, which associate with piRNAs and promote Line-1 silencing. MAEL, PIWIL4 and TDRD9 form the piP-bodies, which organization and dynamics vary according to the stage of germ cell epigenetic reprogramming. Although these data have been well documented in mice, it is not known how this mechanism operates in the rat. Thus, the aim of this study was to describe the distribution and interaction of MAEL, PIWIL4, TDRD9 and DAZL during rat germ cell development and check whether specific localization of these proteins is related to the distribution of Line-1 aggregates. Rat embryo gonads at 15 days post-conception (dpc), 16dpc and 19dpc were submitted to MAEL, PIWIL4, TDRD9 and DAZL immunolabelling. The gonads of 19dpc embryos were submitted to the double-labelling of MAEL/DAZL, TDRD9/MAEL and PIWIL4/MAEL. The 19dpc gonads were submitted to co-immunoprecipitation assays and fluorescent in situ hybridization for Line-1 detection. MAEL and TDRD9 showed very similar localization at all ages, whereas DAZL and PIWIL4 showed specific distribution, with PIWIL4 showing shuttling from the nucleus to the cytoplasm by the end epigenetic reprogramming. In quiescent 19dpc gonocytes all proteins colocalized in a nuage adjacent to the nucleus. DAZL interacts with PIWIL4 and MAEL, suggesting that DAZL acts with these proteins to repress Line-1. TDRD9, however, does not interact with DAZL or MAEL despite their colocalization. Line-1 aggregates were detected predominantly in the nuclear periphery, although did not show homogeneous distribution as observed for the nuage. In conclusion, the nuage in quiescent rat gonocytes show a very distinguished organization that might be related to the organization of Line-1 clusters and describe the association of DAZL with proteins responsible for Line-1 repression.
Collapse
Affiliation(s)
- Letícia Rocha-da-Silva
- Laboratory of Developmental Biology, Department of Morphology and Genetics, Escola Paulista de Medicina, Universidade Federal de São Paulo (EPM/UNIFESP), São Paulo, Brazil
| | - Lucia Armelin-Correa
- Department of Biological Sciences, Universidade Federal de São Paulo (UNIFESP), Diadema, Brazil
| | - Isabelle Hernandez Cantão
- Laboratory of Developmental Biology, Department of Morphology and Genetics, Escola Paulista de Medicina, Universidade Federal de São Paulo (EPM/UNIFESP), São Paulo, Brazil
| | - Verena Julia Flaiz Flister
- Laboratory of Developmental Biology, Department of Morphology and Genetics, Escola Paulista de Medicina, Universidade Federal de São Paulo (EPM/UNIFESP), São Paulo, Brazil
| | - Marina Nunes
- Laboratory of Developmental Biology, Department of Morphology and Genetics, Escola Paulista de Medicina, Universidade Federal de São Paulo (EPM/UNIFESP), São Paulo, Brazil
| | - Taiza Stumpp
- Laboratory of Developmental Biology, Department of Morphology and Genetics, Escola Paulista de Medicina, Universidade Federal de São Paulo (EPM/UNIFESP), São Paulo, Brazil
- * E-mail: ,
| |
Collapse
|
37
|
Kong Q, Quan X, Du J, Tai Y, Liu W, Zhang J, Zhang X, Mu Y, Liu Z. Endo-siRNAs regulate early embryonic development by inhibiting transcription of long terminal repeat sequence in pig†. Biol Reprod 2019; 100:1431-1439. [PMID: 30883641 DOI: 10.1093/biolre/ioz042] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 02/21/2019] [Accepted: 03/16/2019] [Indexed: 11/12/2022] Open
Abstract
Activity of some endogenous retroviruses (ERVs) has been proven to be important for development of early mammalian embryo. However, abnormal activation of ERVs can also cause genetic diseases due to their ability to retrotranspose, so the regulatory mechanism to limit transcription of ERVs needs to be clarified. Endogenous small interfering RNA (endo-siRNA) has been reported to protect cells against transposable elements (TEs). Here, we determined the role of ERVs long terminal repeat sequences (LTRs) derived endo-siRNAs (LTR-siRNAs) on inhibition of the activity of ERVs during early embryonic development in pig. Seven most highly expressed LTR-siRNAs were identified in porcine zygote by high-throughput small RNA sequencing. We verified that the biogenesis of the LTR-siRNAs was DICER-dependent and they were generated from double-stranded RNA (dsRNA) formed by sense and antisense transcripts of LTRs. And, the expression of sense and antisense of LTRs might be due to the loss of DNA methylation at some LTR loci. Furthermore, we showed that the LTR-siRNAs could regulate early embryonic development by repression of LTRs expression at a post-transcriptional level. So, we propose here, during early embryonic development when epigenetic reprogramming occurs, the endo-siRNA pathway acts as a sophisticated balance of regulatory mechanism for ERV activity.
Collapse
Affiliation(s)
- Qingran Kong
- Key Laboratory of Animal Cellular and Genetics Engineering of Heilongjiang Province, College of Life Science, Northeast Agricultural University, Harbin, Harbin, China
| | - Xue Quan
- Key Laboratory of Animal Cellular and Genetics Engineering of Heilongjiang Province, College of Life Science, Northeast Agricultural University, Harbin, Harbin, China
| | - Jiawei Du
- Key Laboratory of Animal Cellular and Genetics Engineering of Heilongjiang Province, College of Life Science, Northeast Agricultural University, Harbin, Harbin, China
| | - Yurong Tai
- Key Laboratory of Animal Cellular and Genetics Engineering of Heilongjiang Province, College of Life Science, Northeast Agricultural University, Harbin, Harbin, China
| | - Wanxin Liu
- Key Laboratory of Animal Cellular and Genetics Engineering of Heilongjiang Province, College of Life Science, Northeast Agricultural University, Harbin, Harbin, China
| | - Jiaming Zhang
- Key Laboratory of Animal Cellular and Genetics Engineering of Heilongjiang Province, College of Life Science, Northeast Agricultural University, Harbin, Harbin, China
| | - Xiaolei Zhang
- Key Laboratory of Animal Cellular and Genetics Engineering of Heilongjiang Province, College of Life Science, Northeast Agricultural University, Harbin, Harbin, China
| | - Yanshuang Mu
- Key Laboratory of Animal Cellular and Genetics Engineering of Heilongjiang Province, College of Life Science, Northeast Agricultural University, Harbin, Harbin, China
| | - Zhonghua Liu
- Key Laboratory of Animal Cellular and Genetics Engineering of Heilongjiang Province, College of Life Science, Northeast Agricultural University, Harbin, Harbin, China
| |
Collapse
|
38
|
King SE, McBirney M, Beck D, Sadler-Riggleman I, Nilsson E, Skinner MK. Sperm epimutation biomarkers of obesity and pathologies following DDT induced epigenetic transgenerational inheritance of disease. ENVIRONMENTAL EPIGENETICS 2019; 5:dvz008. [PMID: 31186947 PMCID: PMC6536675 DOI: 10.1093/eep/dvz008] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 03/28/2019] [Accepted: 04/25/2019] [Indexed: 05/26/2023]
Abstract
Dichlorodiphenyltrichloroethane (DDT) has previously been shown to promote the epigenetic transgenerational inheritance of adult onset disease in rats. The current study investigated the potential that sperm epimutation biomarkers can be used to identify ancestral induced transgenerational obesity and associated pathologies. Gestating F0 generational female rats were transiently exposed to DDT during fetal gonadal sex determination, and the incidence of adult-onset pathologies was assessed in the subsequent F1, F2, and F3 generations. In addition, sperm differential DNA methylation regions (DMRs) that were associated with specific pathologies in the transgenerational F3 generation males were investigated. There was an increase of testis disease and early-onset puberty in the F2 generation DDT lineage males. The F3 generation males and females had significant increases in the incidence of obesity and multiple disease. The F3 generation DDT males also had significant increases in testis disease, prostate disease, and late onset puberty. The F3 generation DDT females had increases in ovarian and kidney disease. Epigenetic alterations of the germline are required for the transgenerational inheritance of pathology. Therefore, the F3 generation sperm was collected to examine DMRs for the ancestrally exposed DDT male population. Unique sets of DMRs were associated with late onset puberty, prostate disease, kidney disease, testis disease, obesity, and multiple disease pathologies. Gene associations with the DMR were also identified. The epigenetic DMR signatures identified for these pathologies provide potential biomarkers for transgenerationally inherited disease susceptibility.
Collapse
Affiliation(s)
- Stephanie E King
- Center for Reproductive Biology, School of Biological Sciences, Washington State University, Pullman, WA 99164-4236, USA
| | - Margaux McBirney
- Center for Reproductive Biology, School of Biological Sciences, Washington State University, Pullman, WA 99164-4236, USA
| | - Daniel Beck
- Center for Reproductive Biology, School of Biological Sciences, Washington State University, Pullman, WA 99164-4236, USA
| | - Ingrid Sadler-Riggleman
- Center for Reproductive Biology, School of Biological Sciences, Washington State University, Pullman, WA 99164-4236, USA
| | - Eric Nilsson
- Center for Reproductive Biology, School of Biological Sciences, Washington State University, Pullman, WA 99164-4236, USA
| | - Michael K Skinner
- Center for Reproductive Biology, School of Biological Sciences, Washington State University, Pullman, WA 99164-4236, USA
| |
Collapse
|
39
|
Li SY, Park J, Guan Y, Chung K, Shrestha R, Palmer MB, Susztak K. DNMT1 in Six2 Progenitor Cells Is Essential for Transposable Element Silencing and Kidney Development. J Am Soc Nephrol 2019; 30:594-609. [PMID: 30850438 PMCID: PMC6442333 DOI: 10.1681/asn.2018070687] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Accepted: 02/03/2019] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Cytosine methylation of regulatory regions, such as promoters and enhancers, plays a key role in regulating gene expression, however, its role in kidney development has not been analyzed. METHODS To identify functionally important epigenome-modifying enzymes and genome regions where methylation modifications are functionally important for kidney development, we performed genome-wide methylation analysis, expression profiling, and systematic genetic targeting of DNA methyltransferases (Dnmt1, Dnmt3a, and Dnmt3b) and Ten-eleven translocation methylcytosine hydroxylases (Tet2) in nephron progenitor cells (Six2Cre) in mice. RESULTS Genome-wide methylome analysis indicated dynamic changes on promoters and enhancers during development. Six2CreDnmt3af/f, Six2CreDnmt3bf/f, and Six2CreTet2f/f mice showed no significant structural or functional renal abnormalities. In contrast, Six2CreDnmt1f/f mice died within 24 hours of birth, from a severe kidney developmental defect. Genome-wide methylation analysis indicated a marked loss of methylation of transposable elements. RNA sequencing detected endogenous retroviral transcripts. Expression of intracellular viral sensing pathways (RIG-I), early embryonic, nonrenal lineage genes and increased cell death contributed to the phenotype development. In podocytes, loss of Dnmt1, Dnmt3a, Dnmt3b, or Tet2 did not lead to functional or structural differences at baseline or after toxic injury. CONCLUSIONS Genome-wide cytosine methylation and gene expression profiling showed that by silencing embryonic, nonrenal lineage genes and transposable elements, DNMT1-mediated cytosine methylation is essential for kidney development.
Collapse
Affiliation(s)
- Szu-Yuan Li
- Renal-Electrolyte and Hypertension Division, Department of Medicine
- Department of Genetics, and
- Division of Nephrology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan; and
- School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Jihwan Park
- Renal-Electrolyte and Hypertension Division, Department of Medicine
- Department of Genetics, and
| | - Yuting Guan
- Renal-Electrolyte and Hypertension Division, Department of Medicine
- Department of Genetics, and
| | - Kiwung Chung
- Renal-Electrolyte and Hypertension Division, Department of Medicine
- Department of Genetics, and
| | - Rojesh Shrestha
- Renal-Electrolyte and Hypertension Division, Department of Medicine
- Department of Genetics, and
| | - Matthew B Palmer
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Katalin Susztak
- Renal-Electrolyte and Hypertension Division, Department of Medicine,
- Department of Genetics, and
| |
Collapse
|
40
|
Pennings S, Revuelta A, McLaughlin KA, Abd Hadi NA, Petchreing P, Ottaviano R, Meehan RR. Dynamics and Mechanisms of DNA Methylation Reprogramming. EPIGENETICS AND REGENERATION 2019:19-45. [DOI: 10.1016/b978-0-12-814879-2.00002-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
|
41
|
Tatsumi D, Hayashi Y, Endo M, Kobayashi H, Yoshioka T, Kiso K, Kanno S, Nakai Y, Maeda I, Mochizuki K, Tachibana M, Koseki H, Okuda A, Yasui A, Kono T, Matsui Y. DNMTs and SETDB1 function as co-repressors in MAX-mediated repression of germ cell-related genes in mouse embryonic stem cells. PLoS One 2018; 13:e0205969. [PMID: 30403691 PMCID: PMC6221296 DOI: 10.1371/journal.pone.0205969] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Accepted: 09/28/2018] [Indexed: 11/19/2022] Open
Abstract
In embryonic stem cells (ESCs), the expression of development-related genes, including germ cell-related genes, is globally repressed. The transcription factor MAX represses germ cell-related gene expression in ESCs via PCGF6-polycomb repressive complex 1 (PRC1), which consists of several epigenetic factors. However, we predicted that MAX represses germ cell-related gene expression through several additional mechanisms because PCGF6-PRC1 regulates the expression of only a subset of genes repressed by MAX. Here, we report that MAX associated with DNA methyltransferases (DNMTs) and the histone methyltransferase SETDB1 cooperatively control germ cell-related gene expression in ESCs. Both DNA methylation and histone H3 lysine 9 tri-methylation of the promoter regions of several germ cell-related genes were not affected by knockout of the PRC1 components, indicating that the MAX-DNMT and MAX-SETDB1 pathways are independent of the PCGF6-PRC1 pathway. Our findings provide insights into our understanding of MAX-based repressive mechanisms of germ cell-related genes in ESCs.
Collapse
Affiliation(s)
- Daiki Tatsumi
- Cell Resource Center for Biomedical Research, Institute of Development, Aging and Cancer (IDAC), Tohoku University, Sendai, Miyagi, Japan
- Graduate School of Life Sciences, Tohoku University, Sendai, Miyagi, Japan
| | - Yohei Hayashi
- Cell Resource Center for Biomedical Research, Institute of Development, Aging and Cancer (IDAC), Tohoku University, Sendai, Miyagi, Japan
- Graduate School of Life Sciences, Tohoku University, Sendai, Miyagi, Japan
- The Japan Agency for Medical Research and Development-Core Research for Evolutional Science and Technology (AMED-CREST), Chuo-ku, Tokyo, Japan
| | - Mai Endo
- Cell Resource Center for Biomedical Research, Institute of Development, Aging and Cancer (IDAC), Tohoku University, Sendai, Miyagi, Japan
- Graduate School of Life Sciences, Tohoku University, Sendai, Miyagi, Japan
| | - Hisato Kobayashi
- NODAI Genome Research Center, Tokyo University of Agriculture, Setagaya-ku, Tokyo, Japan
| | - Takumi Yoshioka
- Department of Bioscience, Tokyo University of Agriculture, Setagaya-ku, Tokyo, Japan
| | - Kohei Kiso
- Cell Resource Center for Biomedical Research, Institute of Development, Aging and Cancer (IDAC), Tohoku University, Sendai, Miyagi, Japan
- Tohoku University School of Medicine, Sendai, Miyagi, Japan
| | - Shinichiro Kanno
- Division of Dynamic Proteome in Cancer and Aging, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Miyagi, Japan
| | - Yuji Nakai
- Institute for Food Sciences, Hirosaki University, Hirosaki, Aomori, Japan
| | - Ikuma Maeda
- Cell Resource Center for Biomedical Research, Institute of Development, Aging and Cancer (IDAC), Tohoku University, Sendai, Miyagi, Japan
| | - Kentaro Mochizuki
- Cell Resource Center for Biomedical Research, Institute of Development, Aging and Cancer (IDAC), Tohoku University, Sendai, Miyagi, Japan
- Graduate School of Life Sciences, Tohoku University, Sendai, Miyagi, Japan
- Center for Environmental Conservation and Research Safety, Tohoku University, Sendai, Miyagi, Japan
| | - Makoto Tachibana
- Department of Enzyme Chemistry, Institute for Enzyme Research, Tokushima University, Shinkura-cho, Tokushima, Japan
| | - Haruhiko Koseki
- Laboratory for Developmental Genetics, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, Japan
- Core Research for Evolutional Science and Technology, Yokohama, Kanagawa, Japan
| | - Akihiko Okuda
- Division of Developmental Biology, Research Center for Genomic Medicine, Saitama Medical University, Yamane Hidaka, Saitama, Japan
| | - Akira Yasui
- Division of Dynamic Proteome in Cancer and Aging, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Miyagi, Japan
| | - Tomohiro Kono
- Department of Bioscience, Tokyo University of Agriculture, Setagaya-ku, Tokyo, Japan
| | - Yasuhisa Matsui
- Cell Resource Center for Biomedical Research, Institute of Development, Aging and Cancer (IDAC), Tohoku University, Sendai, Miyagi, Japan
- Graduate School of Life Sciences, Tohoku University, Sendai, Miyagi, Japan
- The Japan Agency for Medical Research and Development-Core Research for Evolutional Science and Technology (AMED-CREST), Chuo-ku, Tokyo, Japan
- Center for Regulatory Epigenome and Diseases, Tohoku University School of Medicine, Sendai, Miyagi, Japan
| |
Collapse
|
42
|
Gagliardi M, Strazzullo M, Matarazzo MR. DNMT3B Functions: Novel Insights From Human Disease. Front Cell Dev Biol 2018; 6:140. [PMID: 30406101 PMCID: PMC6204409 DOI: 10.3389/fcell.2018.00140] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Accepted: 10/02/2018] [Indexed: 11/13/2022] Open
Abstract
DNA methylation plays important roles in gene expression regulation and chromatin structure. Its proper establishment and maintenance are essential for mammalian development and cellular differentiation. DNMT3B is the major de novo DNA methyltransferase expressed and active during the early stage of embryonic development, including implantation. In addition to its well-known role to methylate centromeric, pericentromeric, and subtelomeric repeats, recent observations suggest that DNMT3B acts as the main enzyme methylating intragenic regions of active genes. Although largely studied, much remains unknown regarding how these specific patterns of de novo CpG methylation are established in mammalian cells, and which are the rules governing DNMT3B recruitment and activity. Latest evidence indicates that DNMT3B recruitment is regulated by numerous mechanisms including chromatin modifications, transcription levels, non-coding RNAs, and the presence of DNA-binding factors. DNA methylation abnormalities are a common mark of human diseases involving chromosomal and genomic instabilities, such as inherited disease and cancer. The autosomal recessive Immunodeficiency, Centromeric instability and Facial anomalies syndrome, type I (ICF-1), is associated to hypomorphic mutations in DNMT3B gene, while its altered expression has been correlated with the development of tumors. In both cases, this implies that abnormal DNA hypomethylation and hypermethylation patterns affect gene expression and genomic architecture contributing to the pathological states. We will provide an overview of the most recent research aimed at deciphering the molecular mechanisms by which DNMT3B abnormalities are associated with the onset and progression of these pathologies.
Collapse
Affiliation(s)
- Miriam Gagliardi
- Institute of Genetics and Biophysics "Adriano Buzzati Traverso", CNR, Naples, Italy.,Max Planck Institute of Psychiatry, Munich, Germany
| | - Maria Strazzullo
- Institute of Genetics and Biophysics "Adriano Buzzati Traverso", CNR, Naples, Italy
| | - Maria R Matarazzo
- Institute of Genetics and Biophysics "Adriano Buzzati Traverso", CNR, Naples, Italy
| |
Collapse
|
43
|
Wu X, Li G, Xie R. Decoding the role of TET family dioxygenases in lineage specification. Epigenetics Chromatin 2018; 11:58. [PMID: 30290828 PMCID: PMC6172806 DOI: 10.1186/s13072-018-0228-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Accepted: 09/28/2018] [Indexed: 02/07/2023] Open
Abstract
Since the discovery of methylcytosine oxidase ten-eleven translocation (TET) proteins, we have witnessed an exponential increase in studies examining their roles in epigenetic regulation. TET family proteins catalyze the sequential oxidation of 5-methylcytosine (5mC) to oxidized methylcytosines including 5-hydroxymethylcytosine (5hmC), 5-formylcytosine, and 5-carboxylcytosine. TETs contribute to the regulation of lineage-specific gene expression via modulating DNA 5mC/5hmC balances at the proximal and distal regulatory elements of cell identity genes, and therefore enhance chromatin accessibility and gene transcription. Emerging evidence suggests that TET dioxygenases participate in the establishment and/or maintenance of hypomethylated bivalent domains at multiple differentiation-associated genes, and thus ensure developmental plasticity. Here, we review the current state of knowledge concerning TET family proteins, DNA hydroxymethylation, their distribution, and function in endoderm, mesoderm, and neuroectoderm specification. We will summarize the evidence pertaining to their crucial regulatory roles in lineage commitment and development.
Collapse
Affiliation(s)
- Xinwei Wu
- Centre of Reproduction, Development & Aging, Faculty of Health Sciences, University of Macau, Macau SAR, 999078, China
| | - Gang Li
- Centre of Reproduction, Development & Aging, Faculty of Health Sciences, University of Macau, Macau SAR, 999078, China
| | - Ruiyu Xie
- Centre of Reproduction, Development & Aging, Faculty of Health Sciences, University of Macau, Macau SAR, 999078, China.
| |
Collapse
|
44
|
Fujita K, Hashimoto M. Separation-free single-base extension assay with fluorescence resonance energy transfer for rapid and convenient determination of DNA methylation status at specific cytosine and guanine dinucleotide sites. Electrophoresis 2018; 40:281-288. [PMID: 30280389 DOI: 10.1002/elps.201800144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 09/15/2018] [Accepted: 09/29/2018] [Indexed: 11/08/2022]
Abstract
A separation-free single-base extension (SBE) assay utilizing fluorescence resonance energy transfer (FRET) was developed for rapid and convenient interrogation of DNA methylation status at specific cytosine and guanine dinucleotide sites. In this assay, the SBE was performed in a tube using an allele-specific oligonucleotide primer (i.e., extension primer) labeled with Cy3 as a FRET donor fluorophore at the 5'-end, a nucleotide terminator (dideoxynucleotide triphosphate) labeled with Cy5 as a FRET acceptor, a PCR amplicon derived from bisulfite-converted genomic DNA, and a DNA polymerase. A single base-extended primer (i.e., SBE product) that was 5'-Cy3- and 3'-Cy5-tagged was formed by incorporation of the Cy5-labeled terminator into the 3'-end of the extension primer, but only if the terminator added was complementary to the target nucleotide. The resulting SBE product brought the Cy3 donor and the Cy5 acceptor into close proximity. Illumination of the Cy3 donor resulted in successful FRET and excitation of the Cy5 acceptor, generating fluorescence emission from the acceptor. The capacity of the developed assay to discriminate as low as 10% methylation from a mixture of methylated and unmethylated DNA was demonstrated at multiple cytosine and guanine dinucleotide sites.
Collapse
Affiliation(s)
- Keisuke Fujita
- Department of Chemical Engineering and Materials Science, Faculty of Science and Engineering, Doshisha University, Kyotanabe, Kyoto, Japan
| | - Masahiko Hashimoto
- Department of Chemical Engineering and Materials Science, Faculty of Science and Engineering, Doshisha University, Kyotanabe, Kyoto, Japan
| |
Collapse
|
45
|
Stringer JM, Forster SC, Qu Z, Prokopuk L, O'Bryan MK, Gardner DK, White SJ, Adelson D, Western PS. Reduced PRC2 function alters male germline epigenetic programming and paternal inheritance. BMC Biol 2018; 16:104. [PMID: 30236109 PMCID: PMC6149058 DOI: 10.1186/s12915-018-0569-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Accepted: 08/28/2018] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Defining the mechanisms that establish and regulate the transmission of epigenetic information from parent to offspring is critical for understanding disease heredity. Currently, the molecular pathways that regulate epigenetic information in the germline and its transmission to offspring are poorly understood. RESULTS Here we provide evidence that Polycomb Repressive Complex 2 (PRC2) regulates paternal inheritance. Reduced PRC2 function in mice resulted in male sub-fertility and altered epigenetic and transcriptional control of retrotransposed elements in foetal male germ cells. Males with reduced PRC2 function produced offspring that over-expressed retrotransposed pseudogenes and had altered preimplantation embryo cleavage rates and cell cycle control. CONCLUSION This study reveals a novel role for the histone-modifying complex, PRC2, in paternal intergenerational transmission of epigenetic effects on offspring, with important implications for understanding disease inheritance.
Collapse
Affiliation(s)
- Jessica M Stringer
- Centre for Reproductive Health, Hudson Institute of Medical Research, Clayton, Victoria, 3168, Australia
- Department of Anatomy and Developmental Biology, Ovarian Biology Laboratory, Biomedicine Discovery Institute, Monash University, Melbourne, 3168, Australia
| | - Samuel C Forster
- Host-Microbiota Interactions Laboratory, Wellcome Trust Sanger Institute, Hinxton, CB10 1SA, UK
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, Victoria, 3168, Australia
- Molecular and Translational Science, Monash University, Clayton, Victoria, 3168, Australia
| | - Zhipeng Qu
- Bioinformatics and Computational Genetics, School of Biological Sciences, The University of Adelaide, Adelaide, South Australia, 5005, Australia
| | - Lexie Prokopuk
- Centre for Reproductive Health, Hudson Institute of Medical Research, Clayton, Victoria, 3168, Australia
- Molecular and Translational Science, Monash University, Clayton, Victoria, 3168, Australia
| | - Moira K O'Bryan
- School of Biological Sciences, Monash University, Clayton, Victoria, 3168, Australia
| | - David K Gardner
- School of BioSciences, University of Melbourne, Parkville, Australia
| | - Stefan J White
- Department of Human Genetics, Leiden Genome Technology Centre, Leiden University Medical Center, Leiden, the Netherlands
| | - David Adelson
- Bioinformatics and Computational Genetics, School of Biological Sciences, The University of Adelaide, Adelaide, South Australia, 5005, Australia
| | - Patrick S Western
- Centre for Reproductive Health, Hudson Institute of Medical Research, Clayton, Victoria, 3168, Australia.
- Molecular and Translational Science, Monash University, Clayton, Victoria, 3168, Australia.
| |
Collapse
|
46
|
Chromatin dynamics at the core of kidney fibrosis. Matrix Biol 2018; 68-69:194-229. [DOI: 10.1016/j.matbio.2018.02.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2018] [Revised: 02/16/2018] [Accepted: 02/17/2018] [Indexed: 02/06/2023]
|
47
|
Crichton JH, Read D, Adams IR. Defects in meiotic recombination delay progression through pachytene in Tex19.1 -/- mouse spermatocytes. Chromosoma 2018; 127:437-459. [PMID: 29907896 PMCID: PMC6208735 DOI: 10.1007/s00412-018-0674-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Revised: 04/21/2018] [Accepted: 06/01/2018] [Indexed: 02/08/2023]
Abstract
Recombination, synapsis, chromosome segregation and gene expression are co-ordinately regulated during meiosis to ensure successful execution of this specialised cell division. Studies with multiple mutant mouse lines have shown that mouse spermatocytes possess quality control checkpoints that eliminate cells with persistent defects in chromosome synapsis. In addition, studies on Trip13mod/mod mice suggest that pachytene spermatocytes that successfully complete chromosome synapsis can undergo meiotic arrest in response to defects in recombination. Here, we present additional support for a meiotic recombination-dependent checkpoint using a different mutant mouse line, Tex19.1-/-. The appearance of early recombination foci is delayed in Tex19.1-/- spermatocytes during leptotene/zygotene, but some Tex19.1-/- spermatocytes still successfully synapse their chromosomes and we show that these spermatocytes are enriched for early recombination foci. Furthermore, we show that patterns of axis elongation, chromatin modifications and histone H1t expression are also all co-ordinately skewed towards earlier substages of pachytene in these autosomally synapsed Tex19.1-/- spermatocytes. We also show that this skew towards earlier pachytene substages occurs in the absence of elevated spermatocyte death in the population, that spermatocytes with features of early pachytene are present in late stage Tex19.1-/- testis tubules and that the delay in histone H1t expression in response to loss of Tex19.1 does not occur in a Spo11 mutant background. Taken together, these data suggest that a recombination-dependent checkpoint may be able to modulate pachytene progression in mouse spermatocytes to accommodate some types of recombination defect.
Collapse
Affiliation(s)
- James H Crichton
- MRC Human Genetics Unit, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Crewe Road, Edinburgh, EH4 2XU, UK
| | - David Read
- MRC Human Genetics Unit, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Crewe Road, Edinburgh, EH4 2XU, UK
| | - Ian R Adams
- MRC Human Genetics Unit, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Crewe Road, Edinburgh, EH4 2XU, UK.
| |
Collapse
|
48
|
Cartier J, Smith T, Thomson JP, Rose CM, Khulan B, Heger A, Meehan RR, Drake AJ. Investigation into the role of the germline epigenome in the transmission of glucocorticoid-programmed effects across generations. Genome Biol 2018; 19:50. [PMID: 29636086 PMCID: PMC5891941 DOI: 10.1186/s13059-018-1422-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Accepted: 03/16/2018] [Indexed: 12/13/2022] Open
Abstract
Background Early life exposure to adverse environments affects cardiovascular and metabolic systems in the offspring. These programmed effects are transmissible to a second generation through both male and female lines, suggesting germline transmission. We have previously shown that prenatal overexposure to the synthetic glucocorticoid dexamethasone (Dex) in rats reduces birth weight in the first generation (F1), a phenotype which is transmitted to a second generation (F2), particularly through the male line. We hypothesize that Dex exposure affects developing germ cells, resulting in transmissible alterations in DNA methylation, histone marks and/or small RNA in the male germline. Results We profile epigenetic marks in sperm from F1 Sprague Dawley rats expressing a germ cell-specific GFP transgene following Dex or vehicle treatment of the mothers, using methylated DNA immunoprecipitation sequencing, small RNA sequencing and chromatin immunoprecipitation sequencing for H3K4me3, H3K4me1, H3K27me3 and H3K9me3. Although effects on birth weight are transmitted to the F2 generation through the male line, no differences in DNA methylation, histone modifications or small RNA were detected between germ cells and sperm from Dex-exposed animals and controls. Conclusions Although the phenotype is transmitted to a second generation, we are unable to detect specific changes in DNA methylation, common histone modifications or small RNA profiles in sperm. Dex exposure is associated with more variable 5mC levels, particularly at non-promoter loci. Although this could be one mechanism contributing to the observed phenotype, other germline epigenetic modifications or non-epigenetic mechanisms may be responsible for the transmission of programmed effects across generations in this model. Electronic supplementary material The online version of this article (10.1186/s13059-018-1422-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jessy Cartier
- University/British Heart Foundation Centre for Cardiovascular Science, University of Edinburgh, The Queen's Medical Research Institute, 47 Little France Crescent, Edinburgh, EH16 4TJ, UK
| | - Thomas Smith
- MRC Computational Genomics Analysis and Training Programme, University of Oxford, MRC WIMM Centre for Computational Biology, The Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, Headley Way, Oxford, OX3 9DS, UK
| | - John P Thomson
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Crewe Road, Edinburgh, EH4 2XU, UK
| | - Catherine M Rose
- University/British Heart Foundation Centre for Cardiovascular Science, University of Edinburgh, The Queen's Medical Research Institute, 47 Little France Crescent, Edinburgh, EH16 4TJ, UK
| | - Batbayar Khulan
- University/British Heart Foundation Centre for Cardiovascular Science, University of Edinburgh, The Queen's Medical Research Institute, 47 Little France Crescent, Edinburgh, EH16 4TJ, UK
| | - Andreas Heger
- MRC Computational Genomics Analysis and Training Programme, University of Oxford, MRC WIMM Centre for Computational Biology, The Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, Headley Way, Oxford, OX3 9DS, UK
| | - Richard R Meehan
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Crewe Road, Edinburgh, EH4 2XU, UK
| | - Amanda J Drake
- University/British Heart Foundation Centre for Cardiovascular Science, University of Edinburgh, The Queen's Medical Research Institute, 47 Little France Crescent, Edinburgh, EH16 4TJ, UK.
| |
Collapse
|
49
|
Abstract
Germ cell tumors (GCTs) arising in infants, children, and adolescents present a set of special challenges. GCTs make up about 3% of malignancies in children aged 0–18 and nearly 15% of cancers in adolescents. Epidemiologic and molecular evidence suggests that GCTs in young children likely represent a distinct biologic group as compared to GCTs of older adolescents and adults. Despite this difference, pediatric GCTs are typically treated with cisplatin-based multiagent regimens similar to those used in adults. There is evidence that children are particularly vulnerable to late effects of conventional therapy, including ototoxicity, pulmonary abnormalities, and secondary malignancies, motivating the search for molecular targets for novel therapies. Evidence is accumulating that the genes and mechanisms controlling normal germ cell development are particularly relevant to the understanding of germ cell tumorigenesis. Perturbations in the epigenetic program of germ cell differentiation, with resulting effects on the regulation of pluripotency, may contribute to the marked histologic variability of GCTs. Perturbations in the KIT receptor signaling pathway have been identified via next-generation sequencing studies and in genome-wide association studies of testicular cancer susceptibility. Here, we review these and other biological insights that may fuel further translational and clinical research in childhood GCTs.
Collapse
|
50
|
Klein SJ, O'Neill RJ. Transposable elements: genome innovation, chromosome diversity, and centromere conflict. Chromosome Res 2018; 26:5-23. [PMID: 29332159 PMCID: PMC5857280 DOI: 10.1007/s10577-017-9569-5] [Citation(s) in RCA: 115] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Revised: 12/05/2017] [Accepted: 12/12/2017] [Indexed: 12/21/2022]
Abstract
Although it was nearly 70 years ago when transposable elements (TEs) were first discovered “jumping” from one genomic location to another, TEs are now recognized as contributors to genomic innovations as well as genome instability across a wide variety of species. In this review, we illustrate the ways in which active TEs, specifically retroelements, can create novel chromosome rearrangements and impact gene expression, leading to disease in some cases and species-specific diversity in others. We explore the ways in which eukaryotic genomes have evolved defense mechanisms to temper TE activity and the ways in which TEs continue to influence genome structure despite being rendered transpositionally inactive. Finally, we focus on the role of TEs in the establishment, maintenance, and stabilization of critical, yet rapidly evolving, chromosome features: eukaryotic centromeres. Across centromeres, specific types of TEs participate in genomic conflict, a balancing act wherein they are actively inserting into centromeric domains yet are harnessed for the recruitment of centromeric histones and potentially new centromere formation.
Collapse
Affiliation(s)
- Savannah J Klein
- Institute for Systems Genomics and Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT, 06269, USA
| | - Rachel J O'Neill
- Institute for Systems Genomics and Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT, 06269, USA.
| |
Collapse
|