1
|
Dinsmore CJ, Soriano P. Differential regulation of cranial and cardiac neural crest by serum response factor and its cofactors. eLife 2022; 11:e75106. [PMID: 35044299 PMCID: PMC8806183 DOI: 10.7554/elife.75106] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 01/18/2022] [Indexed: 11/13/2022] Open
Abstract
Serum response factor (SRF) is an essential transcription factor that influences many cellular processes including cell proliferation, migration, and differentiation. SRF directly regulates and is required for immediate early gene (IEG) and actin cytoskeleton-related gene expression. SRF coordinates these competing transcription programs through discrete sets of cofactors, the ternary complex factors (TCFs) and myocardin-related transcription factors (MRTFs). The relative contribution of these two programs to in vivo SRF activity and mutant phenotypes is not fully understood. To study how SRF utilizes its cofactors during development, we generated a knock-in SrfaI allele in mice harboring point mutations that disrupt SRF-MRTF-DNA complex formation but leave SRF-TCF activity unaffected. Homozygous SrfaI/aI mutants die at E10.5 with notable cardiovascular phenotypes, and neural crest conditional mutants succumb at birth to defects of the cardiac outflow tract but display none of the craniofacial phenotypes associated with complete loss of SRF in that lineage. Our studies further support an important role for MRTF mediating SRF function in cardiac neural crest and suggest new mechanisms by which SRF regulates transcription during development.
Collapse
Affiliation(s)
- Colin J Dinsmore
- Department of Cell, Development and Regenerative Biology, Icahn School of Medicine at Mount SinaiNew YorkUnited States
| | - Philippe Soriano
- Department of Cell, Development and Regenerative Biology, Icahn School of Medicine at Mount SinaiNew YorkUnited States
| |
Collapse
|
2
|
López-Cortés R, Vázquez-Estévez S, Fernández JÁ, Núñez C. Proteomics as a Complementary Technique to Characterize Bladder Cancer. Cancers (Basel) 2021; 13:cancers13215537. [PMID: 34771699 PMCID: PMC8582709 DOI: 10.3390/cancers13215537] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 10/21/2021] [Accepted: 10/21/2021] [Indexed: 12/11/2022] Open
Abstract
Simple Summary Although immunohistochemistry is a routine technique in clinics, and genomics has been rapidly incorporated, proteomics is a step behind. This general situation is also the norm in bladder cancer research. This review shows the contributions of proteomics to the molecular classification of bladder cancer, and to the study of histopathology due to tissue insults caused by tumors. Furthermore, the importance of proteomics for understanding the cellular and molecular changes as a consequence of the therapy of bladder cancer cannot be neglected. Abstract Bladder cancer (BC) is the most common tumor of the urinary tract and is conventionally classified as either non-muscle invasive or muscle invasive. In addition, histological variants exist, as organized by the WHO-2016 classification. However, innovations in next-generation sequencing have led to molecular classifications of BC. These innovations have also allowed for the tracing of major tumorigenic pathways and, therefore, are positioned as strong supporters of precision medicine. In parallel, immunohistochemistry is still the clinical reference to discriminate histological layers and to stage BC. Key contributions have been made to enlarge the panel of protein immunomarkers. Moreover, the analysis of proteins in liquid biopsy has also provided potential markers. Notwithstanding, their clinical adoption is still low, with very few approved tests. In this context, mass spectrometry-based proteomics has remained a step behind; hence, we aimed to develop them in the community. Herein, the authors introduce the epidemiology and the conventional classifications to review the molecular classification of BC, highlighting the contributions of proteomics. Then, the advances in mass spectrometry techniques focusing on maintaining the integrity of the biological structures are presented, a milestone for the emergence of histoproteomics. Within this field, the review then discusses selected proteins for the comprehension of the pathophysiological mechanisms of BC. Finally, because there is still insufficient knowledge, this review considers proteomics as an important source for the development of BC therapies.
Collapse
Affiliation(s)
- Rubén López-Cortés
- Research Unit, Hospital Universitario Lucus Augusti (HULA), Servizo Galego de Saúde (SERGAS), 27002 Lugo, Spain;
| | - Sergio Vázquez-Estévez
- Oncology Division, Hospital Universitario Lucus Augusti (HULA), Servizo Galego de Saúde (SERGAS), 27002 Lugo, Spain; (S.V.-E.); (J.Á.F.)
| | - Javier Álvarez Fernández
- Oncology Division, Hospital Universitario Lucus Augusti (HULA), Servizo Galego de Saúde (SERGAS), 27002 Lugo, Spain; (S.V.-E.); (J.Á.F.)
| | - Cristina Núñez
- Research Unit, Hospital Universitario Lucus Augusti (HULA), Servizo Galego de Saúde (SERGAS), 27002 Lugo, Spain;
- Correspondence:
| |
Collapse
|
3
|
Chignon A, Rosa M, Boulanger MC, Argaud D, Devillers R, Bon-Baret V, Mkannez G, Li Z, Rufiange A, Gaudreault N, Gosselin D, Thériault S, Bossé Y, Mathieu P. Enhancer-associated aortic valve stenosis risk locus 1p21.2 alters NFATC2 binding site and promotes fibrogenesis. iScience 2021; 24:102241. [PMID: 33748722 PMCID: PMC7970363 DOI: 10.1016/j.isci.2021.102241] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 02/01/2021] [Accepted: 02/24/2021] [Indexed: 11/24/2022] Open
Abstract
Genome-wide association studies for calcific aortic valve stenosis (CAVS) previously reported strong signal for noncoding variants at 1p21.2. Previous study using Mendelian randomization suggested that the locus controls the expression of PALMD encoding Palmdelphin (PALMD). However, the molecular regulation at the locus and the impact of PALMD on the biology of the aortic valve is presently unknown. 3D genetic mapping and CRISPR activation identified rs6702619 as being located in a distant-acting enhancer, which controls the expression of PALMD. DNA-binding assay showed that the risk variant modified the DNA shape, which prevented the recruitment of NFATC2 and lowered the expression of PALMD. In co-expression network analysis, a module encompassing PALMD was enriched in actin-based process. Mass spectrometry and functional assessment showed that PALMD is a regulator of actin polymerization. In turn, lower level of PALMD promoted the activation of myocardin-related transcription factor and fibrosis, a key pathobiological process underpinning CAVS.
Collapse
Affiliation(s)
- Arnaud Chignon
- Laboratory of Cardiovascular Pathobiology, Quebec Heart and Lung Institute/Research Center, Department of Surgery, Laval University, 2725 Chemin Ste-Foy, G1V-4G5, Québec City, QC, Canada
| | - Mickael Rosa
- Laboratory of Cardiovascular Pathobiology, Quebec Heart and Lung Institute/Research Center, Department of Surgery, Laval University, 2725 Chemin Ste-Foy, G1V-4G5, Québec City, QC, Canada
| | - Marie-Chloé Boulanger
- Laboratory of Cardiovascular Pathobiology, Quebec Heart and Lung Institute/Research Center, Department of Surgery, Laval University, 2725 Chemin Ste-Foy, G1V-4G5, Québec City, QC, Canada
| | - Déborah Argaud
- Laboratory of Cardiovascular Pathobiology, Quebec Heart and Lung Institute/Research Center, Department of Surgery, Laval University, 2725 Chemin Ste-Foy, G1V-4G5, Québec City, QC, Canada
| | - Romain Devillers
- Laboratory of Cardiovascular Pathobiology, Quebec Heart and Lung Institute/Research Center, Department of Surgery, Laval University, 2725 Chemin Ste-Foy, G1V-4G5, Québec City, QC, Canada
| | - Valentin Bon-Baret
- Laboratory of Cardiovascular Pathobiology, Quebec Heart and Lung Institute/Research Center, Department of Surgery, Laval University, 2725 Chemin Ste-Foy, G1V-4G5, Québec City, QC, Canada
| | - Ghada Mkannez
- Laboratory of Cardiovascular Pathobiology, Quebec Heart and Lung Institute/Research Center, Department of Surgery, Laval University, 2725 Chemin Ste-Foy, G1V-4G5, Québec City, QC, Canada
| | - Zhonglin Li
- Laboratory of Cardiovascular Pathobiology, Quebec Heart and Lung Institute/Research Center, Department of Surgery, Laval University, 2725 Chemin Ste-Foy, G1V-4G5, Québec City, QC, Canada
| | - Anne Rufiange
- Laboratory of Cardiovascular Pathobiology, Quebec Heart and Lung Institute/Research Center, Department of Surgery, Laval University, 2725 Chemin Ste-Foy, G1V-4G5, Québec City, QC, Canada
| | - Nathalie Gaudreault
- Laboratory of Cardiovascular Pathobiology, Quebec Heart and Lung Institute/Research Center, Department of Surgery, Laval University, 2725 Chemin Ste-Foy, G1V-4G5, Québec City, QC, Canada
| | - David Gosselin
- Department of Molecular Medicine, Laval University, Québec City, QC, Canada
| | - Sébastien Thériault
- Department of Molecular Biology, Medical Biochemistry and Pathology, Laval University, Québec City, QC, Canada
| | - Yohan Bossé
- Department of Molecular Medicine, Laval University, Québec City, QC, Canada
| | - Patrick Mathieu
- Laboratory of Cardiovascular Pathobiology, Quebec Heart and Lung Institute/Research Center, Department of Surgery, Laval University, 2725 Chemin Ste-Foy, G1V-4G5, Québec City, QC, Canada
| |
Collapse
|
4
|
Chen J, Ding ZY, Li S, Liu S, Xiao C, Li Z, Zhang BX, Chen XP, Yang X. Targeting transforming growth factor-β signaling for enhanced cancer chemotherapy. Theranostics 2021; 11:1345-1363. [PMID: 33391538 PMCID: PMC7738904 DOI: 10.7150/thno.51383] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Accepted: 10/29/2020] [Indexed: 12/14/2022] Open
Abstract
During the past decades, drugs targeting transforming growth factor-β (TGFβ) signaling have received tremendous attention for late-stage cancer treatment since TGFβ signaling has been recognized as a prime driver for tumor progression and metastasis. Nonetheless, in healthy and pre-malignant tissues, TGFβ functions as a potent tumor suppressor. Furthermore, TGFβ signaling plays a key role in normal development and homeostasis by regulating cell proliferation, differentiation, migration, apoptosis, and immune evasion, and by suppressing tumor-associated inflammation. Therefore, targeting TGFβ signaling for cancer therapy is challenging. Recently, we and others showed that blocking TGFβ signaling increased chemotherapy efficacy, particularly for nanomedicines. In this review, we briefly introduce the TGFβ signaling pathway, and the multifaceted functions of TGFβ signaling in cancer, including regulating the tumor microenvironment (TME) and the behavior of cancer cells. We also summarize TGFβ targeting agents. Then, we highlight TGFβ inhibition strategies to restore the extracellular matrix (ECM), regulate the tumor vasculature, reverse epithelial-mesenchymal transition (EMT), and impair the stemness of cancer stem-like cells (CSCs) to enhance cancer chemotherapy efficacy. Finally, the current challenges and future opportunities in targeting TGFβ signaling for cancer therapy are discussed.
Collapse
Affiliation(s)
- Jitang Chen
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Ze-yang Ding
- Hepatic Surgery Center, and Hubei Key Laboratory of Hepatic-Biliary-Pancreatic Diseases, National Medical Center for Major Public Health Events, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Si Li
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Sha Liu
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
- Hepatic Surgery Center, and Hubei Key Laboratory of Hepatic-Biliary-Pancreatic Diseases, National Medical Center for Major Public Health Events, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chen Xiao
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Zifu Li
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medical, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Bi-xiang Zhang
- Hepatic Surgery Center, and Hubei Key Laboratory of Hepatic-Biliary-Pancreatic Diseases, National Medical Center for Major Public Health Events, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiao-ping Chen
- Hepatic Surgery Center, and Hubei Key Laboratory of Hepatic-Biliary-Pancreatic Diseases, National Medical Center for Major Public Health Events, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiangliang Yang
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medical, Huazhong University of Science and Technology, Wuhan, 430074, China
- GBA Research Innovation Institute for Nanotechnology, Guangdong, 510530, China
| |
Collapse
|
5
|
Liu R, Xiong X, Nam D, Yechoor V, Ma K. SRF-MRTF signaling suppresses brown adipocyte development by modulating TGF-β/BMP pathway. Mol Cell Endocrinol 2020; 515:110920. [PMID: 32603734 PMCID: PMC7484394 DOI: 10.1016/j.mce.2020.110920] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 06/05/2020] [Accepted: 06/19/2020] [Indexed: 12/21/2022]
Abstract
The SRF/MRTF and upstream signaling cascade play key roles in actin cytoskeleton organization and myocyte development. To date, how this signaling axis may function in brown adipocyte lineage commitment and maturation has not been delineated. Here we report that MRTF-SRF signaling exerts inhibitory actions on brown adipogenesis, and suppressing this negative regulation promotes brown adipocyte lineage development. During brown adipogenic differentiation, protein expressions of SRF, MRTFA/B and its transcription targets were down-regulated, and MRTFA/B shuttled from nucleus to cytoplasm. Silencing of SRF or MRTF-A/MRTF-B enhanced two distinct stages of brown adipocyte development, mesenchymal stem cell determination to brown adipocytes and terminal differentiation of brown adipogenic progenitors. We further demonstrate that the MRTF-SRF axis exerts transcriptional regulations of the TGF-β and BMP signaling pathway, critical developmental cues for brown adipocyte development. TGF-β signaling activity was significantly attenuated, whereas that of the BMP pathway augmented by inhibition of SRF or MRTF-A/MRTF-B, leading to enhanced brown adipocyte differentiation. Our study demonstrates the MRTF-SRF transcriptional cascade as a negative regulator of brown adipogenesis, through its transcriptional control of the TGF-β/BMP signaling pathways.
Collapse
Affiliation(s)
- Ruya Liu
- Diabetes and Beta Cell Biology Center, Division of Endocrinology, Diabetes & Metabolism, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, 15213, USA.
| | - Xuekai Xiong
- Department of Diabetes Complications & Metabolism, Beckman Research Institute of City of Hope, Duarte, CA, 91010, USA
| | - Deokhwa Nam
- Center for Bioenergetics, Houston Methodist Research Institute, Houston, TX, 77030, USA
| | - Vijay Yechoor
- Diabetes and Beta Cell Biology Center, Division of Endocrinology, Diabetes & Metabolism, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Ke Ma
- Department of Diabetes Complications & Metabolism, Beckman Research Institute of City of Hope, Duarte, CA, 91010, USA.
| |
Collapse
|
6
|
Davidsen J, Jessen SB, Watt SK, Larsen S, Dahlgaard K, Kirkegaard T, Gögenur I, Troelsen JT. CDX2 expression and perioperative patient serum affects the adhesion properties of cultured colon cancer cells. BMC Cancer 2020; 20:426. [PMID: 32408894 PMCID: PMC7227097 DOI: 10.1186/s12885-020-06941-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 05/10/2020] [Indexed: 02/28/2023] Open
Abstract
Background Colon cancer is one of the most commonly diagnosed types of cancer with surgical resection of the tumor being the primary choice of treatment. However, the surgical stress response induced during treatment may be related to a higher risk of recurrence. The aim of this study was to examine the effect of surgery on adhesion of cultured colon cancer cells with or without expression of the tumour suppressor CDX2. Method We enrolled 30 patients undergoing elective, curatively intended laparoscopic surgery for colon cancer in this study. Blood samples were drawn 1 day prior to surgery and 24 h after surgery. The samples of pre- and postoperative serum was applied to wild type colon cancer LS174T cells and CDX2 inducible LS174T cells and adhesion was measured with Real-Time Cell-Analysis iCELLigence using electrical impedance as a readout to monitor changes in the cellular adhesion. Results Adhesion abilities of wild type LS174T cells seeded in postoperative serum was significantly increased compared to cells seeded in preoperative serum. When seeding the CDX2 inducible LS174T cells without CDX2 expression in pre- and postoperative serum, no significant difference in adhesion was found. However, when inducing CDX2 expression in these cells, the adhesion abilities in pre- and postoperative serum resembled those of the LS174T wild type cell line. Conclusions We found that the adhesion of colon cancer cells was significantly increased in postoperative versus preoperative serum, and that CDX2 expression affected the adhesive ability of cancer cells. The results of this study may help to elucidate the pro-metastatic mechanisms in the perioperative phase and the role of CDX2 in colon cancer metastasis.
Collapse
Affiliation(s)
- Johanne Davidsen
- Department of Science and Environment, Enhanced Perioperative Oncology (EPeOnc) Consortium, Roskilde University, Universitetsvej 1, 4000, Roskilde, Denmark.,Center for Surgical Science, Enhanced Perioperative Oncology (EPeOnc) Consortium, Department of Surgery, Zealand University Hospital, Lykkebækvej 1, 4600, Køge, Denmark
| | - Stine Bull Jessen
- Department of Science and Environment, Enhanced Perioperative Oncology (EPeOnc) Consortium, Roskilde University, Universitetsvej 1, 4000, Roskilde, Denmark.,Center for Surgical Science, Enhanced Perioperative Oncology (EPeOnc) Consortium, Department of Surgery, Zealand University Hospital, Lykkebækvej 1, 4600, Køge, Denmark
| | - Sara Kehlet Watt
- Center for Surgical Science, Enhanced Perioperative Oncology (EPeOnc) Consortium, Department of Surgery, Zealand University Hospital, Lykkebækvej 1, 4600, Køge, Denmark
| | - Sylvester Larsen
- Department of Science and Environment, Enhanced Perioperative Oncology (EPeOnc) Consortium, Roskilde University, Universitetsvej 1, 4000, Roskilde, Denmark.,Department of Clinical Immunology, Naestved Hospital, Ringstedgade 77B, 4700, Naestved, Denmark
| | - Katja Dahlgaard
- Department of Science and Environment, Enhanced Perioperative Oncology (EPeOnc) Consortium, Roskilde University, Universitetsvej 1, 4000, Roskilde, Denmark
| | - Tove Kirkegaard
- Center for Surgical Science, Enhanced Perioperative Oncology (EPeOnc) Consortium, Department of Surgery, Zealand University Hospital, Lykkebækvej 1, 4600, Køge, Denmark
| | - Ismail Gögenur
- Center for Surgical Science, Enhanced Perioperative Oncology (EPeOnc) Consortium, Department of Surgery, Zealand University Hospital, Lykkebækvej 1, 4600, Køge, Denmark
| | - Jesper T Troelsen
- Department of Science and Environment, Enhanced Perioperative Oncology (EPeOnc) Consortium, Roskilde University, Universitetsvej 1, 4000, Roskilde, Denmark.
| |
Collapse
|
7
|
MRTFB suppresses colorectal cancer development through regulating SPDL1 and MCAM. Proc Natl Acad Sci U S A 2019; 116:23625-23635. [PMID: 31690663 DOI: 10.1073/pnas.1910413116] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Myocardin-related transcription factor B (MRTFB) is a candidate tumor-suppressor gene identified in transposon mutagenesis screens of the intestine, liver, and pancreas. Using a combination of cell-based assays, in vivo tumor xenograft assays, and Mrtfb knockout mice, we demonstrate here that MRTFB is a human and mouse colorectal cancer (CRC) tumor suppressor that functions in part by inhibiting cell invasion and migration. To identify possible MRTFB transcriptional targets, we performed whole transcriptome RNA sequencing in MRTFB siRNA knockdown primary human colon cells and identified 15 differentially expressed genes. Among the top candidate tumor-suppressor targets were melanoma cell adhesion molecule (MCAM), a known tumor suppressor, and spindle apparatus coiled-coil protein 1 (SPDL1), which has no confirmed role in cancer. To determine whether these genes play a role in CRC, we knocked down the expression of MCAM and SPDL1 in human CRC cells and showed significantly increased invasion and migration of tumor cells. We also showed that Spdl1 expression is significantly down-regulated in Mrtfb knockout mouse intestine, while lower SPDL1 expression levels are significantly associated with reduced survival in CRC patients. Finally, we show that depletion of MCAM and SPDL1 in human CRC cells significantly increases tumor development in xenograft assays, further confirming their tumor-suppressive roles in CRC. Collectively, our findings demonstrate the tumor-suppressive role of MRTFB in CRC and identify several genes, including 2 tumor suppressors, that act downstream of MRTFB to regulate tumor growth and survival in CRC patients.
Collapse
|
8
|
Cerqueira DM, Hemker SL, Bodnar AJ, Ortiz DM, Oladipupo FO, Mukherjee E, Gong Z, Appolonia C, Muzumdar R, Sims-Lucas S, Ho J. In utero exposure to maternal diabetes impairs nephron progenitor differentiation. Am J Physiol Renal Physiol 2019; 317:F1318-F1330. [PMID: 31509011 PMCID: PMC6879946 DOI: 10.1152/ajprenal.00204.2019] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 08/23/2019] [Accepted: 09/03/2019] [Indexed: 01/08/2023] Open
Abstract
The incidence of diabetes mellitus has significantly increased among women of childbearing age, and it has been shown that prenatal exposure to maternal diabetes increases the risk of associated congenital anomalies of the kidney. Congenital anomalies of the kidney are among the leading causes of chronic kidney disease in children. To better understand the effect of maternal diabetes on kidney development, we analyzed wild-type offspring (DM_Exp) of diabetic Ins2+/C96Y mice (Akita mice). DM_Exp mice at postnatal day 34 have a reduction of ~20% in the total nephron number compared with controls, using the gold standard physical dissector/fractionator method. At the molecular level, the expression of the nephron progenitor markers sine oculis homeobox homolog 2 and Cited1 was increased in DM_Exp kidneys at postnatal day 2. Conversely, the number of early developing nephrons was diminished in DM_Exp kidneys. This was associated with decreased expression of the intracellular domain of Notch1 and the canonical Wnt target lymphoid enhancer binding factor 1. Together, these data suggest that the diabetic intrauterine environment impairs the differentiation of nephron progenitors into nephrons, possibly by perturbing the Notch and Wnt/β-catenin signaling pathways.
Collapse
Affiliation(s)
- Débora M Cerqueira
- Division of Nephrology, Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
- Rangos Research Center, University of Pittsburgh Medical Center Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania
| | - Shelby L Hemker
- Division of Nephrology, Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
- Rangos Research Center, University of Pittsburgh Medical Center Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania
| | - Andrew J Bodnar
- Division of Nephrology, Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
- Rangos Research Center, University of Pittsburgh Medical Center Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania
| | - Daniella M Ortiz
- Division of Nephrology, Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
- Rangos Research Center, University of Pittsburgh Medical Center Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania
| | - Favour O Oladipupo
- Division of Nephrology, Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
- Rangos Research Center, University of Pittsburgh Medical Center Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania
| | - Elina Mukherjee
- Division of Nephrology, Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
- Rangos Research Center, University of Pittsburgh Medical Center Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania
| | - Zhenwei Gong
- Rangos Research Center, University of Pittsburgh Medical Center Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania
- Division of Endocrinology, Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Corynn Appolonia
- Division of Nephrology, Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
- Rangos Research Center, University of Pittsburgh Medical Center Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania
| | - Radhika Muzumdar
- Rangos Research Center, University of Pittsburgh Medical Center Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania
- Division of Endocrinology, Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Sunder Sims-Lucas
- Division of Nephrology, Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
- Rangos Research Center, University of Pittsburgh Medical Center Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania
| | - Jacqueline Ho
- Division of Nephrology, Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
- Rangos Research Center, University of Pittsburgh Medical Center Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania
| |
Collapse
|
9
|
A non-autonomous role of MKL1 in the activation of hepatic stellate cells. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2019; 1862:609-618. [DOI: 10.1016/j.bbagrm.2019.03.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 01/07/2019] [Accepted: 03/30/2019] [Indexed: 01/20/2023]
|
10
|
Vähätupa M, Nättinen J, Jylhä A, Aapola U, Kataja M, Kööbi P, Järvinen TAH, Uusitalo H, Uusitalo-Järvinen H. SWATH-MS Proteomic Analysis of Oxygen-Induced Retinopathy Reveals Novel Potential Therapeutic Targets. Invest Ophthalmol Vis Sci 2019; 59:3294-3306. [PMID: 30025079 DOI: 10.1167/iovs.18-23831] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Purpose Oxygen-induced retinopathy (OIR) is the most widely used model for ischemic retinopathies such as retinopathy of prematurity (ROP), proliferative diabetic retinopathy (PDR), and retinal vein occlusion (RVO). The purpose of this study was to perform the most comprehensive characterization of OIR by a recently developed technique, sequential window acquisition of all theoretical mass spectra (SWATH-MS) proteomics. Methods Control and OIR retina samples collected from various time points were subjected to SWATH-MS and detailed data analysis. Immunohistochemistry from mouse retinas as well as neovascular membranes from human PDR and RVO patients were used for the detection of the localization of the proteins showing altered expression in the retina and to address their relevance to human ischemic retinopathies. Results We report the most extensive proteomic profiling of OIR to date by quantifying almost 3000 unique proteins and their expression differences between control and OIR retinas. Crystallins were the most prominent proteins induced by hypoxia in the retina, while angiogenesis related proteins such as Filamin A and nonmuscle myosin IIA stand out at the peak of angiogenesis. Majority of the changes in protein expression return to normal at P42, but there is evidence to suggest that proteins involved in neurotransmission remain at reduced level. Conclusions The results reveal new potential therapeutic targets to address hypoxia-induced pathological angiogenesis taking place in number of retinal diseases. The extensive proteomic profiling combined with pathway analysis also identifies novel molecular networks that could contribute to the pathogenesis of retinal diseases.
Collapse
Affiliation(s)
- Maria Vähätupa
- Faculty of Medicine & Life Sciences, University of Tampere, Tampere, Finland
| | - Janika Nättinen
- Faculty of Medicine & Life Sciences, University of Tampere, Tampere, Finland.,The Center for Proteomics and Personalized Medicine, Tampere, Finland
| | - Antti Jylhä
- Faculty of Medicine & Life Sciences, University of Tampere, Tampere, Finland.,The Center for Proteomics and Personalized Medicine, Tampere, Finland
| | - Ulla Aapola
- Faculty of Medicine & Life Sciences, University of Tampere, Tampere, Finland.,The Center for Proteomics and Personalized Medicine, Tampere, Finland
| | - Marko Kataja
- Eye Centre, Tampere University Hospital, Tampere, Finland
| | - Peeter Kööbi
- Faculty of Medicine & Life Sciences, University of Tampere, Tampere, Finland.,Eye Centre, Tampere University Hospital, Tampere, Finland
| | - Tero A H Järvinen
- Faculty of Medicine & Life Sciences, University of Tampere, Tampere, Finland.,Department of Musculoskeletal Disorders, Tampere University Hospital, Tampere, Finland
| | - Hannu Uusitalo
- Faculty of Medicine & Life Sciences, University of Tampere, Tampere, Finland.,The Center for Proteomics and Personalized Medicine, Tampere, Finland.,Eye Centre, Tampere University Hospital, Tampere, Finland
| | - Hannele Uusitalo-Järvinen
- Faculty of Medicine & Life Sciences, University of Tampere, Tampere, Finland.,Eye Centre, Tampere University Hospital, Tampere, Finland
| |
Collapse
|
11
|
Alajbegovic A, Holmberg J, Albinsson S. Molecular Regulation of Arterial Aneurysms: Role of Actin Dynamics and microRNAs in Vascular Smooth Muscle. Front Physiol 2017; 8:569. [PMID: 28848449 PMCID: PMC5554360 DOI: 10.3389/fphys.2017.00569] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Accepted: 07/21/2017] [Indexed: 12/21/2022] Open
Abstract
Aortic aneurysms are defined as an irreversible increase in arterial diameter by more than 50% relative to the normal vessel diameter. The incidence of aneurysm rupture is about 10 in 100,000 persons per year and ruptured arterial aneurysms inevitably results in serious complications, which are fatal in about 40% of cases. There is also a hereditary component of the disease and dilation of the ascending thoracic aorta is often associated with congenital heart disease such as bicuspid aortic valves (BAV). Furthermore, specific mutations that have been linked to aneurysm affect polymerization of actin filaments. Polymerization of actin is important to maintain a contractile phenotype of smooth muscle cells enabling these cells to resist mechanical stress on the vascular wall caused by the blood pressure according to the law of Laplace. Interestingly, polymerization of actin also promotes smooth muscle specific gene expression via the transcriptional co-activator MRTF, which is translocated to the nucleus when released from monomeric actin. In addition to genes encoding for proteins involved in the contractile machinery, recent studies have revealed that several non-coding microRNAs (miRNAs) are regulated by this mechanism. The importance of these miRNAs for aneurysm development is only beginning to be understood. This review will summarize our current understanding about the influence of smooth muscle miRNAs and actin polymerization for the development of arterial aneurysms.
Collapse
Affiliation(s)
- Azra Alajbegovic
- Department of Experimental Medical Science, Lund UniversityLund, Sweden
| | - Johan Holmberg
- Department of Experimental Medical Science, Lund UniversityLund, Sweden
| | | |
Collapse
|
12
|
McDonald ME, Li C, Bian H, Smith BD, Layne MD, Farmer SR. Myocardin-related transcription factor A regulates conversion of progenitors to beige adipocytes. Cell 2015; 160:105-18. [PMID: 25579684 DOI: 10.1016/j.cell.2014.12.005] [Citation(s) in RCA: 116] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2013] [Revised: 09/17/2014] [Accepted: 11/19/2014] [Indexed: 10/24/2022]
Abstract
Adipose tissue is an essential regulator of metabolic homeostasis. In contrast with white adipose tissue, which stores excess energy in the form of triglycerides, brown adipose tissue is thermogenic, dissipating energy as heat via the unique expression of the mitochondrial uncoupling protein UCP1. A subset of UCP1+ adipocytes develops within white adipose tissue in response to physiological stimuli; however, the developmental origin of these "brite" or "beige" adipocytes is unclear. Here, we report the identification of a BMP7-ROCK signaling axis regulating beige adipocyte formation via control of the G-actin-regulated transcriptional coactivator myocardin-related transcription factor A, MRTFA. White adipose tissue from MRTFA(-/-) mice contains more multilocular adipocytes and expresses enhanced levels of brown-selective proteins, including UCP1. MRTFA(-/-) mice also show improved metabolic profiles and protection from diet-induced obesity and insulin resistance. Our study hence unravels a central pathway driving the development of physiologically functional beige adipocytes.
Collapse
Affiliation(s)
- Meghan E McDonald
- Department of Biochemistry, Boston University School of Medicine, Boston, MA 02118, USA
| | - Chendi Li
- Department of Biochemistry, Boston University School of Medicine, Boston, MA 02118, USA
| | - Hejiao Bian
- Department of Biochemistry, Boston University School of Medicine, Boston, MA 02118, USA
| | - Barbara D Smith
- Department of Biochemistry, Boston University School of Medicine, Boston, MA 02118, USA
| | - Matthew D Layne
- Department of Biochemistry, Boston University School of Medicine, Boston, MA 02118, USA.
| | - Stephen R Farmer
- Department of Biochemistry, Boston University School of Medicine, Boston, MA 02118, USA.
| |
Collapse
|
13
|
Takeda H, Wei Z, Koso H, Rust AG, Yew CCK, Mann MB, Ward JM, Adams DJ, Copeland NG, Jenkins NA. Transposon mutagenesis identifies genes and evolutionary forces driving gastrointestinal tract tumor progression. Nat Genet 2015; 47:142-50. [PMID: 25559195 DOI: 10.1038/ng.3175] [Citation(s) in RCA: 93] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2014] [Accepted: 12/04/2014] [Indexed: 12/14/2022]
Abstract
To provide a more comprehensive understanding of the genes and evolutionary forces driving colorectal cancer (CRC) progression, we performed Sleeping Beauty (SB) transposon mutagenesis screens in mice carrying sensitizing mutations in genes that act at different stages of tumor progression. This approach allowed us to identify a set of genes that appear to be highly relevant for CRC and to provide a better understanding of the evolutionary forces and systems properties of CRC. We also identified six genes driving malignant tumor progression and a new human CRC tumor-suppressor gene, ZNF292, that might also function in other types of cancer. Our comprehensive CRC data set provides a resource with which to develop new therapies for treating CRC.
Collapse
Affiliation(s)
- Haruna Takeda
- 1] Division of Genomics and Genetics, Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Singapore. [2] Department of Oncologic Pathology, School of Medicine, Kanazawa Medical University, Ishikawa, Japan
| | - Zhubo Wei
- Cancer Research Program, Houston Methodist Research Institute, Houston, Texas, USA
| | - Hideto Koso
- 1] Division of Genomics and Genetics, Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Singapore. [2] Division of Molecular and Developmental Biology, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - Alistair G Rust
- Experimental Cancer Genetics, Wellcome Trust Sanger Institute, Hinxton, UK
| | - Christopher Chin Kuan Yew
- Division of Genomics and Genetics, Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Singapore
| | - Michael B Mann
- 1] Division of Genomics and Genetics, Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Singapore. [2] Cancer Research Program, Houston Methodist Research Institute, Houston, Texas, USA
| | - Jerrold M Ward
- Division of Genomics and Genetics, Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Singapore
| | - David J Adams
- Experimental Cancer Genetics, Wellcome Trust Sanger Institute, Hinxton, UK
| | - Neal G Copeland
- 1] Division of Genomics and Genetics, Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Singapore. [2] Cancer Research Program, Houston Methodist Research Institute, Houston, Texas, USA
| | - Nancy A Jenkins
- 1] Division of Genomics and Genetics, Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Singapore. [2] Cancer Research Program, Houston Methodist Research Institute, Houston, Texas, USA
| |
Collapse
|
14
|
Yuan Z, Chen J, Chen D, Xu G, Xia M, Xu Y, Gao Y. Megakaryocytic leukemia 1 (MKL1) regulates hypoxia induced pulmonary hypertension in rats. PLoS One 2014; 9:e83895. [PMID: 24647044 PMCID: PMC3960100 DOI: 10.1371/journal.pone.0083895] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2013] [Accepted: 11/18/2013] [Indexed: 11/19/2022] Open
Abstract
Hypoxia induced pulmonary hypertension (HPH) represents a complex pathology that involves active vascular remodeling, loss of vascular tone, enhanced pulmonary inflammation, and increased deposition of extracellular matrix proteins. Megakaryocytic leukemia 1 (MKL1) is a transcriptional regulator known to influence cellular response to stress signals in the vasculature. We report here that in response to chronic hypobaric hypoxia, MKL1 expression was up-regulated in the lungs in rats. Short hairpin RNA (shRNA) mediated depletion of MKL1 significantly ameliorated the elevation of pulmonary arterial pressure in vivo with a marked alleviation of vascular remodeling. MKL1 silencing also restored the expression of NO, a key vasoactive molecule necessary for the maintenance of vascular tone. In addition, hypoxia induced pulmonary inflammation was dampened in the absence of MKL1 as evidenced by normalized levels of pro-inflammatory cytokines and chemokines as well as reduced infiltration of pro-inflammatory immune cells in the lungs. Of note, MKL1 knockdown attenuated fibrogenesis in the lungs as indicated by picrosirius red staining. Finally, we demonstrate that MKL1 mediated transcriptional activation of type I collagen genes in smooth muscle cells under hypoxic conditions. In conclusion, we data highlight a previously unidentified role for MKL1 in the pathogenesis of HPH and as such lay down groundwork for future investigation and drug development.
Collapse
MESH Headings
- Animals
- Collagen Type I/genetics
- Collagen Type I/metabolism
- Cytokines/biosynthesis
- Gene Expression Regulation
- Hypertension, Pulmonary/etiology
- Hypertension, Pulmonary/genetics
- Hypertension, Pulmonary/physiopathology
- Hypoxia/complications
- Hypoxia/genetics
- Hypoxia/physiopathology
- Male
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/pathology
- Pulmonary Artery/metabolism
- Pulmonary Artery/physiopathology
- RNA, Messenger/antagonists & inhibitors
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- RNA, Small Interfering/genetics
- RNA, Small Interfering/metabolism
- Rats
- Rats, Sprague-Dawley
- Signal Transduction
- Transcription Factors/antagonists & inhibitors
- Transcription Factors/genetics
- Transcription Factors/metabolism
- Vascular Resistance
Collapse
Affiliation(s)
- Zhibin Yuan
- Department of Pathophysiology and High Altitude Physiology, College of High Altitude Military Medicine, Third Military Medical University, Chongqing, China
- Key Laboratory of High Altitude Medicine, Ministry of Education, Third Military Medical University, Chongqing, China
- Key Laboratory of High Altitude Medicine, PLA, Third Military Medical University, Chongqing, China
| | - Jian Chen
- Department of Pathophysiology and High Altitude Physiology, College of High Altitude Military Medicine, Third Military Medical University, Chongqing, China
- Key Laboratory of High Altitude Medicine, Ministry of Education, Third Military Medical University, Chongqing, China
- Key Laboratory of High Altitude Medicine, PLA, Third Military Medical University, Chongqing, China
| | - Dewei Chen
- Department of Pathophysiology and High Altitude Physiology, College of High Altitude Military Medicine, Third Military Medical University, Chongqing, China
- Key Laboratory of High Altitude Medicine, Ministry of Education, Third Military Medical University, Chongqing, China
- Key Laboratory of High Altitude Medicine, PLA, Third Military Medical University, Chongqing, China
| | - Gang Xu
- Department of Pathophysiology and High Altitude Physiology, College of High Altitude Military Medicine, Third Military Medical University, Chongqing, China
- Key Laboratory of High Altitude Medicine, Ministry of Education, Third Military Medical University, Chongqing, China
- Key Laboratory of High Altitude Medicine, PLA, Third Military Medical University, Chongqing, China
| | - Minjie Xia
- Key Laboratory of Cardiovascular Disease, Department of Pathophysiology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yong Xu
- Key Laboratory of Cardiovascular Disease, Department of Pathophysiology, Nanjing Medical University, Nanjing, Jiangsu, China
- * E-mail: (YX); (YQG)
| | - Yuqi Gao
- Department of Pathophysiology and High Altitude Physiology, College of High Altitude Military Medicine, Third Military Medical University, Chongqing, China
- Key Laboratory of High Altitude Medicine, Ministry of Education, Third Military Medical University, Chongqing, China
- Key Laboratory of High Altitude Medicine, PLA, Third Military Medical University, Chongqing, China
- * E-mail: (YX); (YQG)
| |
Collapse
|
15
|
Franco CA, Blanc J, Parlakian A, Blanco R, Aspalter IM, Kazakova N, Diguet N, Mylonas E, Gao-Li J, Vaahtokari A, Penard-Lacronique V, Fruttiger M, Rosewell I, Mericskay M, Gerhardt H, Li Z. SRF selectively controls tip cell invasive behavior in angiogenesis. Development 2013; 140:2321-33. [PMID: 23674601 DOI: 10.1242/dev.091074] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Efficient angiogenic sprouting is essential for embryonic, postnatal and tumor development. Serum response factor (SRF) is known to be important for embryonic vascular development. Here, we studied the effect of inducible endothelial-specific deletion of Srf in postnatal and adult mice. We find that endothelial SRF activity is vital for postnatal growth and survival, and is equally required for developmental and pathological angiogenesis, including during tumor growth. Our results demonstrate that SRF is selectively required for endothelial filopodia formation and cell contractility during sprouting angiogenesis, but seems dispensable for vascular remodeling. At the molecular level, we observe that vascular endothelial growth factor A induces nuclear accumulation of myocardin-related transcription factors (MRTFs) and regulates MRTF/SRF-dependent target genes including Myl9, which is important for endothelial cell migration in vitro. We conclude that SRF has a unique function in regulating migratory tip cell behavior during sprouting angiogenesis. We hypothesize that targeting the SRF pathway could provide an opportunity to selectively target tip cell filopodia-driven angiogenesis to restrict tumor growth.
Collapse
Affiliation(s)
- Claudio A Franco
- UPMC Univ Paris 06, UR 4, Aging, Stress and Inflammation, 75005 Paris, France.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Ramos EI, Bien-Willner GA, Li J, Hughes AEO, Giacalone J, Chasnoff S, Kulkarni S, Parmacek M, Cole FS, Druley TE. Genetic variation in MKL2 and decreased downstream PCTAIRE1 expression in extreme, fatal primary human microcephaly. Clin Genet 2013; 85:423-32. [PMID: 23692340 PMCID: PMC3929543 DOI: 10.1111/cge.12197] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2013] [Revised: 05/16/2013] [Accepted: 05/16/2013] [Indexed: 11/26/2022]
Abstract
The genetic mechanisms driving normal brain development remain largely unknown. We performed genomic and immunohistochemical characterization of a novel, fatal human phenotype including extreme microcephaly with cerebral growth arrest at 14-18 weeks gestation in three full sisters born to healthy, non-consanguineous parents. Analysis of index cases and parents included familial exome sequencing, karyotyping, and genome-wide single nucleotide polymorphism (SNP) array. From proband, control and unrelated microcephalic fetal cortical tissue, we compared gene expression of RNA and targeted immunohistochemistry. Each daughter was homozygous for a rare, non-synonymous, deleterious variant in the MKL2 gene and heterozygous for a private 185 kb deletion on the paternal allele, upstream and in cis with his MKL2 variant allele, eliminating 24 CArG transcription factor binding sites and MIR4718. MKL1 was underexpressed in probands. Dysfunction of MKL2 and its transcriptional coactivation partner, serum response factor (SRF), was supported by a decrease in gene and protein expression of PCTAIRE1, a downstream target of MKL2:SRF heterodimer transcriptional activation, previously shown to result in severe microcephaly in murine models. While disruption of the MKL2:SRF axis has been associated with severe microcephaly and disordered brain development in multiple model systems, the role of this transcription factor complex has not been previously demonstrated in human brain development.
Collapse
Affiliation(s)
- E I Ramos
- Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO, USA; Department of Pediatrics
| | | | | | | | | | | | | | | | | | | |
Collapse
|