1
|
Easa Y, Loza O, Cohen R, Sprinzak D. Fat4 intracellular domain controls internalization of Fat4/Dchs1 planar polarity membrane complexes. Biophys J 2025; 124:1024-1033. [PMID: 39955614 PMCID: PMC11947466 DOI: 10.1016/j.bpj.2025.02.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 11/16/2024] [Accepted: 02/12/2025] [Indexed: 02/17/2025] Open
Abstract
The Fat/Dachsous (Ft/Ds) pathway is a highly conserved pathway regulating planar cell polarity (PCP) across different animal species. Proteins from the Ft and Ds family are large transmembrane protocadherins that form heterophilic complexes on the boundaries between cells. Fat4 and Dchs1, the main mammalian homologs of this pathway, have been implicated in PCP in various epithelial tissues and were shown to form extremely stable complexes at the boundaries between cells. It is unclear, however, what are the dynamics controlling such stable boundary complexes, and how the formation and internalization of these complexes is regulated. Here, we use quantitative live imaging to elucidate the role of the intracellular domains (ICDs) of Fat4 and Dchs1 in regulating Fat4/Dchs1 complex dynamics. We show that removing the ICD of Fat4 results in a reduction of both trans-endocytosis of Dchs1 into the Fat4 cells and boundary accumulation of Fat4/Dchs1 complexes, but does not affect the diffusion of the complexes at the boundary. We further show that the ICD of Fat4 controls the internalization rate of Fat4/Dchs1 complexes. Finally, we find that while actin polymerization is required for the accumulation at the boundary of Fat4/Dchs1 complexes, we do not identify correlations between Fat4/Dchs1 complexes and local actin accumulation. Overall, we suggest that the Fat4 ICD is important for the internalization and plasticity of the highly stable Fat4/Dchs1 complexes associated with PCP.
Collapse
Affiliation(s)
- Yathreb Easa
- George S. Wise Faculty of Life Sciences, School of Neurobiology, Biochemistry, and Biophysics, Tel Aviv University, Tel Aviv 69978, Israel
| | - Olga Loza
- George S. Wise Faculty of Life Sciences, School of Neurobiology, Biochemistry, and Biophysics, Tel Aviv University, Tel Aviv 69978, Israel
| | - Roie Cohen
- George S. Wise Faculty of Life Sciences, School of Neurobiology, Biochemistry, and Biophysics, Tel Aviv University, Tel Aviv 69978, Israel
| | - David Sprinzak
- George S. Wise Faculty of Life Sciences, School of Neurobiology, Biochemistry, and Biophysics, Tel Aviv University, Tel Aviv 69978, Israel.
| |
Collapse
|
2
|
Tripathi BK, Irvine KD. Contributions of the Dachsous intracellular domain to Dachsous-Fat signaling. Development 2024; 151:dev202919. [PMID: 39503213 PMCID: PMC11634027 DOI: 10.1242/dev.202919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Accepted: 10/09/2024] [Indexed: 11/08/2024]
Abstract
The protocadherins Fat and Dachsous regulate organ growth, shape, patterning, and planar cell polarity. Although Dachsous and Fat have been described as ligand and receptor, respectively, in a signal transduction pathway, there is also evidence for bidirectional signaling. Here, we assess signaling downstream of Dachsous through analysis of its intracellular domain. Genomic deletions of conserved sequences within dachsous identified regions of the intracellular domain that contribute to Dachsous activity. Deletion of the A motif increased Dachsous protein levels and decreased wing size. Deletion of the D motif decreased Dachsous levels at cell membranes, increased wing size, and disrupted wing, leg and hindgut patterning and planar cell polarity. Co-immunoprecipitation experiments established that the D motif is necessary and sufficient for association of Dachsous with key partners, including Lowfat, Dachs, Spiny-legs, Fat and MyoID. Subdivision of the D motif identified distinct regions that preferentially contribute to different Dachsous activities. Our results identify motifs that are essential for Dachsous function and are consistent with the hypothesis that the key function of Dachsous is regulation of Fat.
Collapse
Affiliation(s)
- Bipin Kumar Tripathi
- Waksman Institute and Department of Molecular Biology and Biochemistry, Rutgers University, Piscataway, NJ 08854, USA
| | - Kenneth D. Irvine
- Waksman Institute and Department of Molecular Biology and Biochemistry, Rutgers University, Piscataway, NJ 08854, USA
| |
Collapse
|
3
|
Tripathi BK, Irvine KD. Contributions of the Dachsous intracellular domain to Dachsous-Fat signaling. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.03.587940. [PMID: 38617303 PMCID: PMC11014530 DOI: 10.1101/2024.04.03.587940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/16/2024]
Abstract
The protocadherins Fat and Dachsous regulate organ growth, shape, patterning, and planar cell polarity. Although Dachsous and Fat have been described as ligand and receptor, respectively, in a signal transduction pathway, there is also evidence for bidirectional signaling. Here we assess signaling downstream of Dachsous through analysis of its intracellular domain. Genomic deletions of conserved sequences within dachsous identified regions of the intracellular domain required for normal development. Deletion of the A motif increased Dachsous protein levels and decreased wing size. Deletion of the D motif decreased Dachsous levels at cell membranes, increased wing size, and disrupted wing, leg and hindgut patterning and planar cell polarity. Co-immunoprecipitation experiments established that the D motif is necessary and sufficient for association of Dachsous with four key partners: Lowfat, Dachs, Spiny-legs, and MyoID. Subdivision of the D motif identified distinct regions that are preferentially responsible for association with Lft versus Dachs. Our results identify motifs that are essential for Dachsous function and are consistent with the hypothesis that the key function of Dachsous is regulation of Fat.
Collapse
|
4
|
Fulford AD, Enderle L, Rusch J, Hodzic D, Holder MV, Earl A, Oh RH, Tapon N, McNeill H. Expanded directly binds conserved regions of Fat to restrain growth via the Hippo pathway. J Cell Biol 2023; 222:e202204059. [PMID: 37071483 PMCID: PMC10120405 DOI: 10.1083/jcb.202204059] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 11/26/2022] [Accepted: 02/09/2023] [Indexed: 04/19/2023] Open
Abstract
The Hippo pathway is a conserved and critical regulator of tissue growth. The FERM protein Expanded is a key signaling hub that promotes activation of the Hippo pathway, thereby inhibiting the transcriptional co-activator Yorkie. Previous work identified the polarity determinant Crumbs as a primary regulator of Expanded. Here, we show that the giant cadherin Fat also regulates Expanded directly and independently of Crumbs. We show that direct binding between Expanded and a highly conserved region of the Fat cytoplasmic domain recruits Expanded to the apicolateral junctional zone and stabilizes Expanded. In vivo deletion of Expanded binding regions in Fat causes loss of apical Expanded and promotes tissue overgrowth. Unexpectedly, we find Fat can bind its ligand Dachsous via interactions of their cytoplasmic domains, in addition to the known extracellular interactions. Importantly, Expanded is stabilized by Fat independently of Dachsous binding. These data provide new mechanistic insights into how Fat regulates Expanded, and how Hippo signaling is regulated during organ growth.
Collapse
Affiliation(s)
- Alexander D. Fulford
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, USA
| | - Leonie Enderle
- Department of Molecular Genetics, University of Toronto, Toronto, Canada
| | - Jannette Rusch
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, USA
| | - Didier Hodzic
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, USA
| | - Maxine V. Holder
- Apoptosis and Proliferation Control Laboratory, The Francis Crick Institute, London, UK
| | - Alex Earl
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, USA
| | - Robin Hyunseo Oh
- Department of Molecular Genetics, University of Toronto, Toronto, Canada
| | - Nicolas Tapon
- Apoptosis and Proliferation Control Laboratory, The Francis Crick Institute, London, UK
| | - Helen McNeill
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, USA
- Department of Molecular Genetics, University of Toronto, Toronto, Canada
| |
Collapse
|
5
|
Kasiah J, McNeill H. Fat and Dachsous cadherins in mammalian development. Curr Top Dev Biol 2023; 154:223-244. [PMID: 37100519 DOI: 10.1016/bs.ctdb.2023.02.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/28/2023]
Abstract
Cell growth and patterning are critical for tissue development. Here we discuss the evolutionarily conserved cadherins, Fat and Dachsous, and the roles they play during mammalian tissue development and disease. In Drosophila, Fat and Dachsous regulate tissue growth via the Hippo pathway and planar cell polarity (PCP). The Drosophila wing has been an ideal tissue to observe how mutations in these cadherins affect tissue development. In mammals, there are multiple Fat and Dachsous cadherins, which are expressed in many tissues, but mutations in these cadherins that affect growth and tissue organization are context dependent. Here we examine how mutations in the Fat and Dachsous mammalian genes affect development in mammals and contribute to human disease.
Collapse
Affiliation(s)
- Jennysue Kasiah
- Department of Developmental Biology, Washington University School of Medicine in St. Louis, St. Louis, MO, United States
| | - Helen McNeill
- Department of Developmental Biology, Washington University School of Medicine in St. Louis, St. Louis, MO, United States.
| |
Collapse
|
6
|
Fu M, Hu Y, Lan T, Guan KL, Luo T, Luo M. The Hippo signalling pathway and its implications in human health and diseases. Signal Transduct Target Ther 2022; 7:376. [PMID: 36347846 PMCID: PMC9643504 DOI: 10.1038/s41392-022-01191-9] [Citation(s) in RCA: 257] [Impact Index Per Article: 85.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 09/09/2022] [Accepted: 09/09/2022] [Indexed: 11/11/2022] Open
Abstract
As an evolutionarily conserved signalling network, the Hippo pathway plays a crucial role in the regulation of numerous biological processes. Thus, substantial efforts have been made to understand the upstream signals that influence the activity of the Hippo pathway, as well as its physiological functions, such as cell proliferation and differentiation, organ growth, embryogenesis, and tissue regeneration/wound healing. However, dysregulation of the Hippo pathway can cause a variety of diseases, including cancer, eye diseases, cardiac diseases, pulmonary diseases, renal diseases, hepatic diseases, and immune dysfunction. Therefore, therapeutic strategies that target dysregulated Hippo components might be promising approaches for the treatment of a wide spectrum of diseases. Here, we review the key components and upstream signals of the Hippo pathway, as well as the critical physiological functions controlled by the Hippo pathway. Additionally, diseases associated with alterations in the Hippo pathway and potential therapies targeting Hippo components will be discussed.
Collapse
Affiliation(s)
- Minyang Fu
- Breast Disease Center, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, South of Renmin Road, 610041, Chengdu, China
| | - Yuan Hu
- Department of Pediatric Nephrology Nursing, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second Hospital, Sichuan University, 610041, Chengdu, China
| | - Tianxia Lan
- Breast Disease Center, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, South of Renmin Road, 610041, Chengdu, China
| | - Kun-Liang Guan
- Department of Pharmacology and Moores Cancer Center, University of California, San Diego, La Jolla, CA, USA
| | - Ting Luo
- Breast Disease Center, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, South of Renmin Road, 610041, Chengdu, China.
| | - Min Luo
- Breast Disease Center, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, South of Renmin Road, 610041, Chengdu, China.
| |
Collapse
|
7
|
Gridnev A, Misra JR. Emerging Mechanisms of Growth and Patterning Regulation by Dachsous and Fat Protocadherins. Front Cell Dev Biol 2022; 10:842593. [PMID: 35372364 PMCID: PMC8967653 DOI: 10.3389/fcell.2022.842593] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 02/08/2022] [Indexed: 01/14/2023] Open
Abstract
Dachsous (Ds) and Fat are evolutionarily conserved cell adhesion molecules that play a critical role in development of multiple organ systems, where they coordinate tissue growth and morphogenesis. Much of our understanding of Ds-Fat signaling pathway comes from studies in Drosophila, where they initiate a signaling pathway that regulate growth by influencing Hippo signaling and morphogenesis by regulating Planar Cell Polarity (PCP). In this review, we discuss recent advances in our understanding of the mechanisms by which Ds-Fat signaling pathway regulates these critical developmental processes. Further, we discuss the progress in our understanding about how they function in mammals.
Collapse
|
8
|
Strutt H, Strutt D. How do the Fat-Dachsous and core planar polarity pathways act together and independently to coordinate polarized cell behaviours? Open Biol 2021; 11:200356. [PMID: 33561385 PMCID: PMC8061702 DOI: 10.1098/rsob.200356] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Planar polarity describes the coordinated polarization of cells within the plane of a tissue. This is controlled by two main pathways in Drosophila: the Frizzled-dependent core planar polarity pathway and the Fat–Dachsous pathway. Components of both of these pathways become asymmetrically localized within cells in response to long-range upstream cues, and form intercellular complexes that link polarity between neighbouring cells. This review examines if and when the two pathways are coupled, focusing on the Drosophila wing, eye and abdomen. There is strong evidence that the pathways are molecularly coupled in tissues that express a specific isoform of the core protein Prickle, namely Spiny-legs. However, in other contexts, the linkages between the pathways are indirect. We discuss how the two pathways act together and independently to mediate a diverse range of effects on polarization of cell structures and behaviours.
Collapse
Affiliation(s)
- Helen Strutt
- Department of Biomedical Science, University of Sheffield, Western Bank, Sheffield S10 2TN, UK
| | - David Strutt
- Department of Biomedical Science, University of Sheffield, Western Bank, Sheffield S10 2TN, UK
| |
Collapse
|
9
|
Early girl is a novel component of the Fat signaling pathway. PLoS Genet 2019; 15:e1007955. [PMID: 30699121 PMCID: PMC6370246 DOI: 10.1371/journal.pgen.1007955] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 02/11/2019] [Accepted: 01/11/2019] [Indexed: 01/05/2023] Open
Abstract
The Drosophila protocadherins Dachsous and Fat regulate growth and tissue polarity by modulating the levels, membrane localization and polarity of the atypical myosin Dachs. Localization to the apical junctional membrane is critical for Dachs function, and the adapter protein Vamana/Dlish and palmitoyl transferase Approximated are required for Dachs membrane localization. However, how Dachs levels are regulated is poorly understood. Here we identify the early girl gene as playing an essential role in Fat signaling by limiting the levels of Dachs protein. early girl mutants display overgrowth of the wings and reduced cross vein spacing, hallmark features of mutations affecting Fat signaling. Genetic experiments reveal that it functions in parallel with Fat to regulate Dachs. early girl encodes an E3 ubiquitin ligase, physically interacts with Dachs, and regulates its protein stability. Concomitant loss of early girl and approximated results in accumulation of Dachs and Vamana in cytoplasmic punctae, suggesting that it also regulates their trafficking to the apical membrane. Our findings establish a crucial role for early girl in Fat signaling, involving regulation of Dachs and Vamana, two key downstream effectors of this pathway. During development, organs grow to achieve a consistent final size. The evolutionarily conserved Hippo signaling network plays a central role in organ size control, and when dysregulated can be associated with cancer and other diseases. Fat signaling is one of several upstream pathways that impinge on Hippo signaling to regulate organ growth. We describe here identification of the Drosophila early girl gene as a new component of the Fat signaling pathway. We show that Early girl controls Fat signaling by regulating the levels of the Dachs protein. However Early girl differs from other Fat signaling regulators in that it doesn’t influence planar cell polarity or control the polarity of Dachs localization. early girl encodes a conserved protein that is predicted to influence protein stability, and it can physically associate with Dachs. We also discovered that Early girl acts together with another protein, called Approximated, to regulate the sub-cellular localization of Dachs and a Dachs-interacting protein called Vamana. Altogether, our observations establish Early girl as an essential component of Fat signaling that acts to regulate the levels and localization of Dachs and Vamana.
Collapse
|
10
|
Fat-regulated adaptor protein Dlish binds the growth suppressor Expanded and controls its stability and ubiquitination. Proc Natl Acad Sci U S A 2019; 116:1319-1324. [PMID: 30606799 PMCID: PMC6347691 DOI: 10.1073/pnas.1811891116] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
To regulate the growth and size of organs, cells can use information from their neighbors to modify intracellular mediators of cell proliferation. The intracellular Hippo pathway is a widely utilized nexus for growth control in animals, but its regulation by extracellular signals is not fully understood. We here identify a pathway that regulates organ size in Drosophila, triggered by the transmembrane receptor, the giant protocadherin Fat. We show that the Fat-regulated SH3 domain adaptor protein Dlish binds to and reduces the stability of the growth suppressor Expanded, a known regulator of the Hippo pathway. The destabilization of Expanded by Dlish works in parallel to a previously established pathway in which Dlish increases levels of the growth-stimulating protein Dachs. The Drosophila protocadherin Fat controls organ size through the Hippo pathway, but the biochemical links to the Hippo pathway components are still poorly defined. We previously identified Dlish, an SH3 domain protein that physically interacts with Fat and the type XX myosin Dachs, and showed that Fat’s regulation of Dlish levels and activity helps limit Dachs-mediated inhibition of Hippo pathway activity. We here characterize a parallel growth control pathway downstream of Fat and Dlish. Using immunoprecipitation and mass spectrometry to search for Dlish partners, we find that Dlish binds the FERM domain growth repressor Expanded (Ex); Dlish SH3 domains directly bind sites in the Ex C terminus. We further show that, in vivo, Dlish reduces the subapical accumulation of Ex, and that loss of Dlish blocks the destabilization of Ex caused by loss of Fat. Moreover, Dlish can bind the F-box E3 ubiquitin ligase Slimb and promote Slimb-mediated ubiquitination of Expanded in vitro. Both the in vitro and in vivo effects of Dlish on Ex require Slimb, strongly suggesting that Dlish destabilizes Ex by helping recruit Slimb-containing E3 ubiquitin ligase complexes to Ex.
Collapse
|
11
|
Abstract
Hippo signaling is an evolutionarily conserved network that has a central role in regulating cell proliferation and cell fate to control organ growth and regeneration. It promotes activation of the LATS kinases, which control gene expression by inhibiting the activity of the transcriptional coactivator proteins YAP and TAZ in mammals and Yorkie in Drosophila. Diverse upstream inputs, including both biochemical cues and biomechanical cues, regulate Hippo signaling and enable it to have a key role as a sensor of cells' physical environment and an integrator of growth control signals. Several components of this pathway localize to cell-cell junctions and contribute to regulation of Hippo signaling by cell polarity, cell contacts, and the cytoskeleton. Downregulation of Hippo signaling promotes uncontrolled cell proliferation, impairs differentiation, and is associated with cancer. We review the current understanding of Hippo signaling and highlight progress in the elucidation of its regulatory mechanisms and biological functions.
Collapse
Affiliation(s)
- Jyoti R Misra
- Waksman Institute and Department of Molecular Biology and Biochemistry, Rutgers University, Piscataway, New Jersey 08854, USA;
| | - Kenneth D Irvine
- Waksman Institute and Department of Molecular Biology and Biochemistry, Rutgers University, Piscataway, New Jersey 08854, USA;
| |
Collapse
|
12
|
Casal J, Ibáñez-Jiménez B, Lawrence PA. Planar cell polarity: the prickle gene acts independently on both the Ds/Ft and the Stan/Fz systems. Development 2018; 145:dev.168112. [PMID: 30154173 PMCID: PMC6176928 DOI: 10.1242/dev.168112] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Accepted: 08/08/2018] [Indexed: 11/20/2022]
Abstract
Epithelial cells are polarised within the plane of the epithelium, forming oriented structures that have a coordinated and consistent polarity (planar cell polarity, PCP). In Drosophila, at least two separate molecular systems generate and interpret intercellular polarity signals: Dachsous/Fat, and the ‘core’ or Starry night/Frizzled system. Here, we study the prickle gene and its protein products Prickle and Spiny leg. Much research on PCP has focused on the asymmetric localisation of core proteins in the cell and as a result prickle was placed in the heart of the Starry night/Frizzled system. We investigate whether this view is correct and how the prickle gene relates to the two systems. We find that prickle can affect, separately, both systems; however, neither Prickle nor Spiny leg are essential components of the Dachsous/Fat or the Starry night/Frizzled system, nor do they act as a functional link between the two systems. Summary:Drosophilaprickle can affect, separately, both the Ds/Ft and the Stan/Fz PCP systems; however, Pk and Sple are not essential for either and do not act as a functional link between the two systems.
Collapse
Affiliation(s)
- José Casal
- Department of Zoology, University of Cambridge, Downing Street, Cambridge CB2 3EJ, UK
| | | | - Peter A Lawrence
- Department of Zoology, University of Cambridge, Downing Street, Cambridge CB2 3EJ, UK
| |
Collapse
|
13
|
Gou J, Lin L, Othmer HG. A Model for the Hippo Pathway in the Drosophila Wing Disc. Biophys J 2018; 115:737-747. [PMID: 30041810 PMCID: PMC6103738 DOI: 10.1016/j.bpj.2018.07.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Revised: 06/21/2018] [Accepted: 07/02/2018] [Indexed: 01/18/2023] Open
Abstract
Although significant progress has been made toward understanding morphogen-mediated patterning in development, control of the size and shape of tissues via local and global signaling is poorly understood. In particular, little is known about how cell-cell interactions are involved in the control of tissue size. The Hippo pathway in the Drosophila wing disc involves cell-cell interactions via cadherins, which lead to modulation of Yorkie, a cotranscriptional factor that affects control of the cell cycle and growth, and studies involving over- and underexpression of components of this pathway reveal conditions that lead to tissue over- or undergrowth. Here, we develop a mathematical model of the Hippo pathway that can qualitatively explain these observations, made in both whole-disc mutants and mutant-clone experiments. We find that a number of nonintuitive experimental results can be explained by subtle changes in the balances between inputs to the Hippo pathway and suggest some predictions that can be tested experimentally. We also show that certain components of the pathway are polarized at the single-cell level, which replicates observations of planar cell polarity. Because the signal transduction and growth control pathways are highly conserved between Drosophila and mammalian systems, the model we formulate can be used as a framework to guide future experimental work on the Hippo pathway in both Drosophila and mammalian systems.
Collapse
Affiliation(s)
- Jia Gou
- School of Mathematics, University of Minnesota, Minneapolis, Minnesota
| | - Lin Lin
- School of Mathematics, University of Minnesota, Minneapolis, Minnesota
| | - Hans G Othmer
- School of Mathematics, University of Minnesota, Minneapolis, Minnesota.
| |
Collapse
|
14
|
Abstract
To create an intricately patterned and reproducibly sized and shaped organ, many cellular processes must be tightly regulated. Cell elongation, migration, metabolism, proliferation rates, cell-cell adhesion, planar polarization and junctional contractions all must be coordinated in time and space. Remarkably, a pair of extremely large cell adhesion molecules called Fat (Ft) and Dachsous (Ds), acting largely as a ligand-receptor system, regulate, and likely coordinate, these many diverse processes. Here we describe recent exciting progress on how the Ds-Ft pathway controls these diverse processes, and highlight a few of the many questions remaining as to how these enormous cell adhesion molecules regulate development.
Collapse
Affiliation(s)
- Seth Blair
- Department of Integrative Biology, University of Wisconsin, Madison, USA
| | - Helen McNeill
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO, USA; Department of Molecular Genetics, University of Toronto, Toronto, Canada; Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, Canada.
| |
Collapse
|
15
|
Jiang X, Liu Z, Xia Y, Luo J, Xu J, He X, Tao H. Low FAT4 expression is associated with a poor prognosis in gastric cancer patients. Oncotarget 2017; 9:5137-5154. [PMID: 29435168 PMCID: PMC5797039 DOI: 10.18632/oncotarget.23702] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2017] [Accepted: 12/11/2017] [Indexed: 12/14/2022] Open
Abstract
In this study, we investigated the role of Fat atypical cadherin 4 (FAT4) in gastric cancer (GC) progression. Immunohistochemical analysis showed lower FAT4 expression in tumor tissues from GC patients than in normal gastric epithelium. Lower FAT4 expression was associated with poor prognosis, tumor size and invasion, and lymph node and distant metastases. Multivariate analysis showed that TNM stage, lymph node and distant metastases, Lauren classification, and FAT4 expression were independent prognostic factors in GC. Methylation-specific PCR analysis showed increased FAT4 promoter methylation in GC tumor tissues and cell lines. Higher FAT4 promoter methylation was associated with low FAT4 expression and a poor prognosis. BGC-823 cells showed increased FAT4 expression upon treatment with 5-azacytidine, demethylating agent. FAT4 knockdown in BGC-823 cells led to increased cell proliferation, migration and invasiveness. Moreover, xenografts of BGC-823 cells with FAT4 knockdown showed enhanced tumor growth and metastasis in nude mice. These findings demonstrate that low FAT4 expression is associated with a poor prognosis in GC patients.
Collapse
Affiliation(s)
- Xiaoting Jiang
- Key Laboratory of Gastroenterology of Zhejiang Province, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou 310014, Zhejiang, China
| | - Zhengchuang Liu
- Key Laboratory of Gastroenterology of Zhejiang Province, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou 310014, Zhejiang, China
| | - Yingjie Xia
- Key Laboratory of Gastroenterology of Zhejiang Province, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou 310014, Zhejiang, China
| | - Jungang Luo
- Key Laboratory of Gastroenterology of Zhejiang Province, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou 310014, Zhejiang, China
| | - Ji Xu
- Department of Surgery, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou 310014, Zhejiang, China
| | - Xujun He
- Key Laboratory of Gastroenterology of Zhejiang Province, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou 310014, Zhejiang, China
| | - Houquan Tao
- Key Laboratory of Gastroenterology of Zhejiang Province, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou 310014, Zhejiang, China.,Department of Surgery, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou 310014, Zhejiang, China
| |
Collapse
|
16
|
Kuta A, Mao Y, Martin T, Ferreira de Sousa C, Whiting D, Zakaria S, Crespo-Enriquez I, Evans P, Balczerski B, Mankoo B, Irvine KD, Francis-West PH. Fat4-Dchs1 signalling controls cell proliferation in developing vertebrae. Development 2017; 143:2367-75. [PMID: 27381226 DOI: 10.1242/dev.131037] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Accepted: 05/11/2016] [Indexed: 01/15/2023]
Abstract
The protocadherins Fat4 and Dchs1 act as a receptor-ligand pair to regulate many developmental processes in mice and humans, including development of the vertebrae. Based on conservation of function between Drosophila and mammals, Fat4-Dchs1 signalling has been proposed to regulate planar cell polarity (PCP) and activity of the Hippo effectors Yap and Taz, which regulate cell proliferation, survival and differentiation. There is strong evidence for Fat regulation of PCP in mammals but the link with the Hippo pathway is unclear. In Fat4(-/-) and Dchs1(-/-) mice, many vertebrae are split along the midline and fused across the anterior-posterior axis, suggesting that these defects might arise due to altered cell polarity and/or changes in cell proliferation/differentiation. We show that the somite and sclerotome are specified appropriately, the transcriptional network that drives early chondrogenesis is intact, and that cell polarity within the sclerotome is unperturbed. We find that the key defect in Fat4 and Dchs1 mutant mice is decreased proliferation in the early sclerotome. This results in fewer chondrogenic cells within the developing vertebral body, which fail to condense appropriately along the midline. Analysis of Fat4;Yap and Fat4;Taz double mutants, and expression of their transcriptional target Ctgf, indicates that Fat4-Dchs1 regulates vertebral development independently of Yap and Taz. Thus, we have identified a new pathway crucial for the development of the vertebrae and our data indicate that novel mechanisms of Fat4-Dchs1 signalling have evolved to control cell proliferation within the developing vertebrae.
Collapse
Affiliation(s)
- Anna Kuta
- Department of Craniofacial Development and Stem Cell Biology, King's College London, Dental Institute, Guy's Tower, Floor 27, London SE1 9RT, UK
| | - Yaopan Mao
- Howard Hughes Medical Institute, Waksman Institute and Department of Molecular Biology and Biochemistry, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Tina Martin
- Department of Craniofacial Development and Stem Cell Biology, King's College London, Dental Institute, Guy's Tower, Floor 27, London SE1 9RT, UK
| | - Catia Ferreira de Sousa
- Department of Craniofacial Development and Stem Cell Biology, King's College London, Dental Institute, Guy's Tower, Floor 27, London SE1 9RT, UK
| | - Danielle Whiting
- Department of Craniofacial Development and Stem Cell Biology, King's College London, Dental Institute, Guy's Tower, Floor 27, London SE1 9RT, UK
| | - Sana Zakaria
- Department of Craniofacial Development and Stem Cell Biology, King's College London, Dental Institute, Guy's Tower, Floor 27, London SE1 9RT, UK
| | - Ivan Crespo-Enriquez
- Department of Craniofacial Development and Stem Cell Biology, King's College London, Dental Institute, Guy's Tower, Floor 27, London SE1 9RT, UK
| | - Philippa Evans
- Department of Craniofacial Development and Stem Cell Biology, King's College London, Dental Institute, Guy's Tower, Floor 27, London SE1 9RT, UK
| | - Bartosz Balczerski
- Department of Craniofacial Development and Stem Cell Biology, King's College London, Dental Institute, Guy's Tower, Floor 27, London SE1 9RT, UK
| | - Baljinder Mankoo
- Randall Division of Cell and Molecular Biophysics, Faculty of Life Sciences & Medicine, King's College London, Guy's Campus, London SE1 1UL, UK
| | - Kenneth D Irvine
- Howard Hughes Medical Institute, Waksman Institute and Department of Molecular Biology and Biochemistry, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Philippa H Francis-West
- Department of Craniofacial Development and Stem Cell Biology, King's College London, Dental Institute, Guy's Tower, Floor 27, London SE1 9RT, UK
| |
Collapse
|
17
|
Ebnet K, Kummer D, Steinbacher T, Singh A, Nakayama M, Matis M. Regulation of cell polarity by cell adhesion receptors. Semin Cell Dev Biol 2017; 81:2-12. [PMID: 28739340 DOI: 10.1016/j.semcdb.2017.07.032] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 07/12/2017] [Accepted: 07/20/2017] [Indexed: 01/01/2023]
Abstract
The ability of cells to polarize is an intrinsic property of almost all cells and is required for the devlopment of most multicellular organisms. To develop cell polarity, cells integrate various signals derived from intrinsic as well as extrinsic sources. In the recent years, cell-cell adhesion receptors have turned out as important regulators of cellular polarization. By interacting with conserved cell polarity proteins, they regulate the recruitment of polarity complexes to specific sites of cell-cell adhesion. By initiating intracellular signaling cascades at those sites, they trigger their specific subcellular activation. Not surprisingly, cell-cell adhesion receptors regulate diverse aspects of cell polarity, including apico-basal polarity in epithelial and endothelial cells, front-to-rear polarity in collectively migrating cells, and planar cell polarity during organ development. Here, we review the recent developments highlighting the central roles of cell-cell adhesion molecules in the development of cell polarity.
Collapse
Affiliation(s)
- Klaus Ebnet
- Institute-associated Research Group: Cell adhesion and cell polarity, Institute of Medical Biochemistry, ZMBE, University of Münster, Germany; Interdisciplinary Clinical Research Center (IZKF), University of Münster, Germany; Cells-In-Motion Cluster of Excellence (EXC1003-CiM), University of Münster, Germany.
| | - Daniel Kummer
- Institute-associated Research Group: Cell adhesion and cell polarity, Institute of Medical Biochemistry, ZMBE, University of Münster, Germany; Interdisciplinary Clinical Research Center (IZKF), University of Münster, Germany
| | - Tim Steinbacher
- Institute-associated Research Group: Cell adhesion and cell polarity, Institute of Medical Biochemistry, ZMBE, University of Münster, Germany; Cells-In-Motion Cluster of Excellence (EXC1003-CiM), University of Münster, Germany
| | - Amrita Singh
- Cells-In-Motion Cluster of Excellence (EXC1003-CiM), University of Münster, Germany; Institute of Cell Biology, ZMBE, University of Münster, Germany
| | - Masanori Nakayama
- Laboratory for Cell Polarity and Organogenesis, Max-Planck-Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Maja Matis
- Cells-In-Motion Cluster of Excellence (EXC1003-CiM), University of Münster, Germany; Institute of Cell Biology, ZMBE, University of Münster, Germany.
| |
Collapse
|
18
|
Ragni CV, Diguet N, Le Garrec JF, Novotova M, Resende TP, Pop S, Charon N, Guillemot L, Kitasato L, Badouel C, Dufour A, Olivo-Marin JC, Trouvé A, McNeill H, Meilhac SM. Amotl1 mediates sequestration of the Hippo effector Yap1 downstream of Fat4 to restrict heart growth. Nat Commun 2017; 8:14582. [PMID: 28239148 PMCID: PMC5333361 DOI: 10.1038/ncomms14582] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Accepted: 01/12/2017] [Indexed: 01/15/2023] Open
Abstract
Although in flies the atypical cadherin Fat is an upstream regulator of Hippo signalling, the closest mammalian homologue, Fat4, has been shown to regulate tissue polarity rather than growth. Here we show in the mouse heart that Fat4 modulates Hippo signalling to restrict growth. Fat4 mutant myocardium is thicker, with increased cardiomyocyte size and proliferation, and this is mediated by an upregulation of the transcriptional activity of Yap1, an effector of the Hippo pathway. Fat4 is not required for the canonical activation of Hippo kinases but it sequesters a partner of Yap1, Amotl1, out of the nucleus. The nuclear translocation of Amotl1 is accompanied by Yap1 to promote cardiomyocyte proliferation. We, therefore, identify Amotl1, which is not present in flies, as a mammalian intermediate for non-canonical Hippo signalling, downstream of Fat4. This work uncovers a mechanism for the restriction of heart growth at birth, a process which impedes the regenerative potential of the mammalian heart.
Collapse
Affiliation(s)
- Chiara V Ragni
- Institut Pasteur, Department of Developmental and Stem Cell Biology, 75015 Paris, France.,CNRS URA2578, 75015 Paris, France.,Sorbonne Universités, UPMC Université Paris 06, IFD, 4 Place Jussieu, 75005 Paris, France
| | - Nicolas Diguet
- Institut Pasteur, Department of Developmental and Stem Cell Biology, 75015 Paris, France.,CNRS URA2578, 75015 Paris, France
| | - Jean-François Le Garrec
- Institut Pasteur, Department of Developmental and Stem Cell Biology, 75015 Paris, France.,CNRS URA2578, 75015 Paris, France
| | - Marta Novotova
- Institute of Molecular Physiology and Genetics, Centre of Biosciences, Slovak Academy of Sciences, Dúbravská cesta 9, 84005 Bratislava, Slovak Republic
| | - Tatiana P Resende
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, 4200-135 Porto, Portugal.,Instituto de Engenharia Biomédica (INEB), Universidade do Porto, 4200-135 Porto, Portugal
| | - Sorin Pop
- Institut Pasteur, Quantitative Image Analysis Unit, 75015 Paris, France.,CNRS URA 2582, 75015 Paris, France
| | - Nicolas Charon
- ENS Cachan, Center of Mathematics and Their Applications, 94235 Cachan, France.,CNRS UMR 8536, 94235 Cachan, France
| | - Laurent Guillemot
- Institut Pasteur, Department of Developmental and Stem Cell Biology, 75015 Paris, France
| | - Lisa Kitasato
- Institut Pasteur, Department of Developmental and Stem Cell Biology, 75015 Paris, France
| | - Caroline Badouel
- Samuel Lunenfeld Research Institute, Mt Sinai Hospital, Toronto, Ontario, Canada M5G 1X5
| | - Alexandre Dufour
- Institut Pasteur, Quantitative Image Analysis Unit, 75015 Paris, France.,CNRS URA 2582, 75015 Paris, France
| | | | - Alain Trouvé
- ENS Cachan, Center of Mathematics and Their Applications, 94235 Cachan, France.,CNRS UMR 8536, 94235 Cachan, France
| | - Helen McNeill
- Samuel Lunenfeld Research Institute, Mt Sinai Hospital, Toronto, Ontario, Canada M5G 1X5
| | - Sigolène M Meilhac
- Institut Pasteur, Department of Developmental and Stem Cell Biology, 75015 Paris, France.,CNRS URA2578, 75015 Paris, France
| |
Collapse
|
19
|
Matakatsu H, Blair SS, Fehon RG. The palmitoyltransferase Approximated promotes growth via the Hippo pathway by palmitoylation of Fat. J Cell Biol 2016; 216:265-277. [PMID: 28031421 PMCID: PMC5223609 DOI: 10.1083/jcb.201609094] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Revised: 11/19/2016] [Accepted: 12/09/2016] [Indexed: 01/07/2023] Open
Abstract
The palmitoyl transferase Approximated regulates signaling by the protocadherin Fat to control tissue growth upstream of the Hippo pathway in Drosophila. Matakatsu et al. show that palmitoylation of the intracellular domain of Fat by Approximated negatively regulates Fat and its ability to restrict growth. The large protocadherin Fat functions to promote Hippo pathway activity in restricting tissue growth. Loss of Fat leads to accumulation of the atypical myosin Dachs at the apical junctional region, which in turn promotes growth by inhibiting Warts. We previously identified Approximated (App), a DHHC domain palmitoyltransferase, as a negative regulator of Fat signaling in growth control. We show here that App promotes growth by palmitoylating the intracellular domain of Fat, and that palmitoylation negatively regulates Fat function. Independently, App also recruits Dachs to the apical junctional region through protein–protein association, thereby stimulating Dachs’s activity in promoting growth. Further, we show that palmitoylation by App functions antagonistically to phosphorylation by Discs-overgrown, which activates Fat. Together, these findings suggest a model in which App promotes Dachs activity by simultaneously repressing Fat via posttranslational modification and recruiting Dachs to the apical junctional region, thereby promoting tissue growth.
Collapse
Affiliation(s)
- Hitoshi Matakatsu
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, IL 60637.,Department of Zoology, University of Wisconsin, Madison, WI 53706
| | - Seth S Blair
- Department of Zoology, University of Wisconsin, Madison, WI 53706
| | - Richard G Fehon
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, IL 60637
| |
Collapse
|
20
|
Misra JR, Irvine KD. Vamana Couples Fat Signaling to the Hippo Pathway. Dev Cell 2016; 39:254-266. [PMID: 27746048 DOI: 10.1016/j.devcel.2016.09.017] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Revised: 08/09/2016] [Accepted: 09/15/2016] [Indexed: 01/08/2023]
Abstract
The protocadherins Dachsous and Fat initiate a signaling pathway that controls growth and planar cell polarity by regulating the membrane localization of the atypical myosin Dachs. How Dachs is regulated by Fat signaling has remained unclear. Here we identify the vamana gene as playing a crucial role in regulating membrane localization of Dachs and in linking Fat and Dachsous to Dachs regulation. Vamana, an SH3-domain-containing protein, physically associates with and co-localizes with Dachs and promotes its membrane localization. Vamana also associates with the Dachsous intracellular domain and with a region of the Fat intracellular domain that is essential for controlling Hippo signaling and levels of Dachs. Epistasis experiments, structure-function analysis, and physical interaction experiments argue that Fat negatively regulates Dachs in a Vamana-dependent process. Our findings establish Vamana as a crucial component of the Dachsous-Fat pathway that transmits Fat signaling by regulating Dachs.
Collapse
Affiliation(s)
- Jyoti R Misra
- Department of Molecular Biology and Biochemistry, Howard Hughes Medical Institute, Waksman Institute, Rutgers University, Piscataway NJ 08854, USA
| | - Kenneth D Irvine
- Department of Molecular Biology and Biochemistry, Howard Hughes Medical Institute, Waksman Institute, Rutgers University, Piscataway NJ 08854, USA.
| |
Collapse
|
21
|
Zhang Y, Wang X, Matakatsu H, Fehon R, Blair SS. The novel SH3 domain protein Dlish/CG10933 mediates fat signaling in Drosophila by binding and regulating Dachs. eLife 2016; 5. [PMID: 27692068 PMCID: PMC5047748 DOI: 10.7554/elife.16624] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2016] [Accepted: 09/15/2016] [Indexed: 01/07/2023] Open
Abstract
Much of the Hippo and planar cell polarity (PCP) signaling mediated by the Drosophila protocadherin Fat depends on its ability to change the subcellular localization, levels and activity of the unconventional myosin Dachs. To better understand this process, we have performed a structure-function analysis of Dachs, and used this to identify a novel and important mediator of Fat and Dachs activities, a Dachs-binding SH3 protein we have named Dlish. We found that Dlish is regulated by Fat and Dachs, that Dlish also binds Fat and the Dachs regulator Approximated, and that Dlish is required for Dachs localization, levels and activity in both wild type and fat mutant tissue. Our evidence supports dual roles for Dlish. Dlish tethers Dachs to the subapical cell cortex, an effect partly mediated by the palmitoyltransferase Approximated under the control of Fat. Conversely, Dlish promotes the Fat-mediated degradation of Dachs. DOI:http://dx.doi.org/10.7554/eLife.16624.001
Collapse
Affiliation(s)
- Yifei Zhang
- Department of Zoology, University of Wisconsin-Madison, Madison, United States
| | - Xing Wang
- Department of Zoology, University of Wisconsin-Madison, Madison, United States
| | - Hitoshi Matakatsu
- Department of Zoology, University of Wisconsin-Madison, Madison, United States.,Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, United States
| | - Richard Fehon
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, United States
| | - Seth S Blair
- Department of Zoology, University of Wisconsin-Madison, Madison, United States
| |
Collapse
|
22
|
Fletcher KIG, van West P, Gachon CMM. Nonagonal cadherins: A new protein family found within the Stramenopiles. Gene 2016; 593:64-75. [PMID: 27498181 DOI: 10.1016/j.gene.2016.08.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Revised: 07/30/2016] [Accepted: 08/03/2016] [Indexed: 12/21/2022]
Abstract
Cadherins, a group of molecules typically associated with planar cell polarity and Wnt signalling, have been little reported outside of the animal kingdom. Here, we identify a new family of cadherins in the Stramenopiles, termed Nonagonal after their 9 transmembrane passes, which contrast to the one or seven passes found in other known cadherin families. Manual curation and experimental validation reveal two subclasses of nonagonal cadherins, depending on the number of uninterrupted extracellular cadherin (EC) modules presented. Firstly, shorter mono-exonic, unimodular, protein models, with 3 to 12 EC domains occur as duplicate paralogs in the saprotrophic Labyrinthulomycetes Aurantiochytrium limanicum and Schizochytrium aggregatum, the gastrointestinal Blastocystis hominis (Blastocystae) and as a single copy gene in the autotrophic Pelagophyte Aureococcus anophagefferens. Larger, single copy, multi-exonal, tri-modular protein models, with up to 72 EC domain in total, are found in the Oomycete genera Albugo, Phytophthora, Pythium and Eurychasma. No homolog was found in the closely related autotrophic Phaeophyceae (brown algae) or Bacillariophyceae (diatoms), nor in several genera of plant and animal pathogenic oomycetes (Aphanomyces, Saprolegnia and Hyaloperonospora). This potential absence was further investigated by synteny analysis of the genome regions flanking the cadherin gene models, which are found to be highly variable. Novel to this new cadherin family is the presence of intercalated laminin and putative carbohydrate binding in tri-modular oomycete cadherins and at the N-terminus of thraustochytrid proteins. As we were unable to detect any homologs of proteins involved in signalling pathways where other cadherin families are involved, we present a conceptual hypothesis on the function of nonagonal cadherin based around the presence of putative carbohydrate binding domains.
Collapse
Affiliation(s)
- Kyle I G Fletcher
- Oceanlab, University of Aberdeen, Newburgh, Aberdeenshire AB41 6AA, United Kingdom; Aberdeen Oomycete Laboratory, Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, United Kingdom; Culture Collection for Algae and Protozoa, Scottish Marine Institute, Scottish Association for Marine Science, Dunstaffnage, Oban, Argyll PA37 1QA, United Kingdom.
| | - Pieter van West
- Aberdeen Oomycete Laboratory, Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, United Kingdom.
| | - Claire M M Gachon
- Culture Collection for Algae and Protozoa, Scottish Marine Institute, Scottish Association for Marine Science, Dunstaffnage, Oban, Argyll PA37 1QA, United Kingdom.
| |
Collapse
|
23
|
Dchs1-Fat4 regulation of polarized cell behaviours during skeletal morphogenesis. Nat Commun 2016; 7:11469. [PMID: 27145737 PMCID: PMC4858749 DOI: 10.1038/ncomms11469] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Accepted: 03/30/2016] [Indexed: 01/12/2023] Open
Abstract
Skeletal shape varies widely across species as adaptation to specialized modes of feeding and locomotion, but how skeletal shape is established is unknown. An example of extreme diversity in the shape of a skeletal structure can be seen in the sternum, which varies considerably across species. Here we show that the Dchs1–Fat4 planar cell polarity pathway controls cell orientation in the early skeletal condensation to define the shape and relative dimensions of the mouse sternum. These changes fit a model of cell intercalation along differential Dchs1–Fat4 activity that drives a simultaneous narrowing, thickening and elongation of the sternum. Our results identify the regulation of cellular polarity within the early pre-chondrogenic mesenchyme, when skeletal shape is established, and provide the first demonstration that Fat4 and Dchs1 establish polarized cell behaviour intrinsically within the mesenchyme. Our data also reveal the first indication that cell intercalation processes occur during ventral body wall elongation and closure. How the shape of the sternum is regulated is unclear. Here, the authors identify the Dchs1-Fat4-planar cell polarity pathway as controlling cell orientation and cell intercalation of mesenchymal cells that form skeletal condensations for the mouse sternum, which defines the relative dimensions of the sternum.
Collapse
|
24
|
Saavedra P, Brittle A, Palacios IM, Strutt D, Casal J, Lawrence PA. Planar cell polarity: the Dachsous/Fat system contributes differently to the embryonic and larval stages of Drosophila. Biol Open 2016; 5:397-408. [PMID: 26935392 PMCID: PMC4890672 DOI: 10.1242/bio.017152] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Accepted: 02/01/2016] [Indexed: 11/20/2022] Open
Abstract
The epidermal patterns of all three larval instars (L1-L3) ofDrosophilaare made by one unchanging set of cells. The seven rows of cuticular denticles of all larval stages are consistently planar polarised, some pointing forwards, others backwards. In L1 all the predenticles originate at the back of the cells but, in L2 and L3, they form at the front or the back of the cell depending on the polarity of the forthcoming denticles. We find that, to polarise all rows, the Dachsous/Fat system is differentially utilised; in L1 it is active in the placement of the actin-based predenticles but is not crucial for the final orientation of the cuticular denticles, in L2 and L3 it is needed for placement and polarity. We find Four-jointed to be strongly expressed in the tendon cells and show how this might explain the orientation of all seven rows. Unexpectedly, we find that L3 that lack Dachsous differ from larvae lacking Fat and we present evidence that this is due to differently mislocalised Dachs. We make some progress in understanding how Dachs contributes to phenotypes of wildtype and mutant larvae and adults.
Collapse
Affiliation(s)
- Pedro Saavedra
- Department of Zoology, University of Cambridge, Downing Street, Cambridge CB2 2EJ, UK
| | - Amy Brittle
- Department of Biomedical Science, The University of Sheffield, Sheffield S10 2TN, UK
| | - Isabel M Palacios
- Department of Zoology, University of Cambridge, Downing Street, Cambridge CB2 2EJ, UK
| | - David Strutt
- Department of Biomedical Science, The University of Sheffield, Sheffield S10 2TN, UK
| | - José Casal
- Department of Zoology, University of Cambridge, Downing Street, Cambridge CB2 2EJ, UK
| | - Peter A Lawrence
- Department of Zoology, University of Cambridge, Downing Street, Cambridge CB2 2EJ, UK
| |
Collapse
|
25
|
Transcriptional analysis of the dachsous gene uncovers novel isoforms expressed during development in Drosophila. FEBS Lett 2015; 589:3595-603. [PMID: 26497083 DOI: 10.1016/j.febslet.2015.10.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Revised: 09/27/2015] [Accepted: 10/14/2015] [Indexed: 11/23/2022]
Abstract
The Drosophila cadherin-related protein Dachsous (Ds) plays a prominent role in planar cell polarity (PCP) and growth. The regulation of these two processes is based on the interaction between Ds and Fat proteins, generating an intracellular response required for tissue polarization and modulation of Hippo pathway activity. Here we have performed a comprehensive molecular study of the ds gene during larval development that has shown an unexpected complexity in its transcriptional regulation and revealed the expression of hitherto unsuspected transcripts. Also, knockdown of several isoforms provides new evidence on the importance of the cytoplasmic domain in the mechanism of action of Ds during development.
Collapse
|
26
|
Ambegaonkar AA, Irvine KD. Coordination of planar cell polarity pathways through Spiny-legs. eLife 2015; 4. [PMID: 26505959 PMCID: PMC4764577 DOI: 10.7554/elife.09946] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Accepted: 10/23/2015] [Indexed: 12/11/2022] Open
Abstract
Morphogenesis and physiology of tissues and organs requires planar cell polarity (PCP) systems that orient and coordinate cells and their behaviors, but the relationship between PCP systems has been controversial. We have characterized how the Frizzled and Dachsous-Fat PCP systems are connected through the Spiny-legs isoform of the Prickle-Spiny-legs locus. Two different components of the Dachsous-Fat system, Dachsous and Dachs, can each independently interact with Spiny-legs and direct its localization in vivo. Through characterization of the contributions of Prickle, Spiny-legs, Dachsous, Fat, and Dachs to PCP in the Drosophila wing, eye, and abdomen, we define where Dachs-Spiny-legs and Dachsous-Spiny-legs interactions contribute to PCP, and provide a new understanding of the orientation of polarity and the basis of PCP phenotypes. Our results support the direct linkage of PCP systems through Sple in specific locales, while emphasizing that cells can be subject to and must ultimately resolve distinct, competing PCP signals. DOI:http://dx.doi.org/10.7554/eLife.09946.001 Animals have many asymmetric organs. Wings, for example, are aerodynamically shaped and have a clear front, back, top and bottom, and even additions to these organs, such as feathers on the wing, often need to be oriented in a specific manner. This kind of orientation arises when cells divide and grow asymmetrically in a flat plane. The asymmetry is established at the level of single cells when proteins are not equally spread throughout a cell, but rather asymmetrically distributed. Such cells are said to be ‘planar polarized’; and many experiments addressing this so-called planar cell polarity have been conducted in fruit flies, because they can be genetically altered easily. Previous studies have shown that two signaling pathways—called Frizzled and Dachsous-Fat—regulate how individual cells orient themselves within a flat sheet of cells that forms fruit fly’s wing. The two pathways are not independent, but it is unclear how they are linked. In particular, there has been conflicting evidence as to whether the Dachsous-Fat pathway controls the Frizzled pathway or whether the two act in parallel. Now, Ambegaonkar and Irvine have discovered new roles for a protein that is involved in both pathways, called 'Spiny-legs'. This protein was known to be important in the Frizzled pathway, but, when it was tracked with a fluorescent tag in developing wing cells it also accumulated in areas where two proteins that make up part of the Dachsous-Fat pathway were located. Biochemical experiments showed that both of these proteins (which are called Dachs or Dachsous) could physically interact with Spiny-legs. Ambegaonkar and Irvine therefore deleted the genes for Dachs or Dachsous in fruit flies and observed that Spiny-legs no longer organized itself in the proper way, implying that Dachs and Dachsous control where Spiny-legs goes within cells. When this analysis was extended to other fruit fly organs, such as the eyes, Ambegaonkar and Irvine found that Dachsous was more important than Dachs for the correct localization of Spiny-legs. Additionally, the Frizzled and Dachsous-Fat pathways seemed to compete for interactions with Spiny-legs. This connection between the two pathways helps to explain how cells behave when several different signals reach them. It also shows how different organs can reuse conserved components of the pathways to make different end products. Future studies should aim to work out the number of systems that polarize cells and how they are connected in different tissues. DOI:http://dx.doi.org/10.7554/eLife.09946.002
Collapse
Affiliation(s)
- Abhijit A Ambegaonkar
- Howard Hughes Medical Institute, Rutgers University, Piscataway, United States.,Waksman Institute of Microbiology, Rutgers University, Piscataway, United States.,Department of Molecular Biology and Biochemistry, Rutgers University, Piscataway, United States
| | - Kenneth D Irvine
- Howard Hughes Medical Institute, Rutgers University, Piscataway, United States.,Waksman Institute of Microbiology, Rutgers University, Piscataway, United States.,Department of Molecular Biology and Biochemistry, Rutgers University, Piscataway, United States
| |
Collapse
|
27
|
Badouel C, Zander MA, Liscio N, Bagherie-Lachidan M, Sopko R, Coyaud E, Raught B, Miller FD, McNeill H. Fat1 interacts with Fat4 to regulate neural tube closure, neural progenitor proliferation and apical constriction during mouse brain development. Development 2015. [PMID: 26209645 DOI: 10.1242/dev.123539] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Mammalian brain development requires coordination between neural precursor proliferation, differentiation and cellular organization to create the intricate neuronal networks of the adult brain. Here, we examined the role of the atypical cadherins Fat1 and Fat4 in this process. We show that mutation of Fat1 in mouse embryos causes defects in cranial neural tube closure, accompanied by an increase in the proliferation of cortical precursors and altered apical junctions, with perturbations in apical constriction and actin accumulation. Similarly, knockdown of Fat1 in cortical precursors by in utero electroporation leads to overproliferation of radial glial precursors. Fat1 interacts genetically with the related cadherin Fat4 to regulate these processes. Proteomic analysis reveals that Fat1 and Fat4 bind different sets of actin-regulating and junctional proteins. In vitro data suggest that Fat1 and Fat4 form cis-heterodimers, providing a mechanism for bringing together their diverse interactors. We propose a model in which Fat1 and Fat4 binding coordinates distinct pathways at apical junctions to regulate neural progenitor proliferation, neural tube closure and apical constriction.
Collapse
Affiliation(s)
- Caroline Badouel
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, M5G 1X5, Canada
| | - Mark A Zander
- Neuroscience and Mental Health Program, Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada Institute of Medical Sciences, University of Toronto, Toronto, Ontario, Canada
| | - Nicole Liscio
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, M5G 1X5, Canada
| | | | - Richelle Sopko
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Etienne Coyaud
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, M5G 2M9, Canada
| | - Brian Raught
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, M5G 2M9, Canada
| | - Freda D Miller
- Neuroscience and Mental Health Program, Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada Institute of Medical Sciences, University of Toronto, Toronto, Ontario, Canada Department of Molecular Genetics, University of Toronto, Toronto, Ontario, M5S 1A8, Canada
| | - Helen McNeill
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, M5G 1X5, Canada Department of Molecular Genetics, University of Toronto, Toronto, Ontario, M5S 1A8, Canada
| |
Collapse
|
28
|
Bagherie-Lachidan M, Reginensi A, Pan Q, Zaveri HP, Scott DA, Blencowe BJ, Helmbacher F, McNeill H. Stromal Fat4 acts non-autonomously with Dchs1/2 to restrict the nephron progenitor pool. Development 2015; 142:2564-73. [PMID: 26116661 DOI: 10.1242/dev.122648] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Accepted: 06/18/2015] [Indexed: 01/10/2023]
Abstract
Regulation of the balance between progenitor self-renewal and differentiation is crucial to development. In the mammalian kidney, reciprocal signalling between three lineages (stromal, mesenchymal and ureteric) ensures correct nephron progenitor self-renewal and differentiation. Loss of either the atypical cadherin FAT4 or its ligand Dachsous 1 (DCHS1) results in expansion of the mesenchymal nephron progenitor pool, called the condensing mesenchyme (CM). This has been proposed to be due to misregulation of the Hippo kinase pathway transcriptional co-activator YAP. Here, we use tissue-specific deletions to prove that FAT4 acts non-autonomously in the renal stroma to control nephron progenitors. We show that loss of Yap from the CM in Fat4-null mice does not reduce the expanded CM, indicating that FAT4 regulates the CM independently of YAP. Analysis of Six2(-/-);Fat4(-/-) double mutants demonstrates that excess progenitors in Fat4 mutants are dependent on Six2, a crucial regulator of nephron progenitor self-renewal. Electron microscopy reveals that cell organisation is disrupted in Fat4 mutants. Gene expression analysis demonstrates that the expression of Notch and FGF pathway components are altered in Fat4 mutants. Finally, we show that Dchs1, and its paralogue Dchs2, function in a partially redundant fashion to regulate the number of nephron progenitors. Our data support a model in which FAT4 in the stroma binds to DCHS1/2 in the mouse CM to restrict progenitor self-renewal.
Collapse
Affiliation(s)
- Mazdak Bagherie-Lachidan
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada M5S 1A8 Lunenfeld-Tanenbaum Research Institute, Mt. Sinai Hospital, Toronto, Ontario, Canada M5G 1X5
| | - Antoine Reginensi
- Lunenfeld-Tanenbaum Research Institute, Mt. Sinai Hospital, Toronto, Ontario, Canada M5G 1X5
| | - Qun Pan
- Terrence Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario, Canada M5S 3E1
| | - Hitisha P Zaveri
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Daryl A Scott
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Benjamin J Blencowe
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada M5S 1A8 Terrence Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario, Canada M5S 3E1
| | | | - Helen McNeill
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada M5S 1A8 Lunenfeld-Tanenbaum Research Institute, Mt. Sinai Hospital, Toronto, Ontario, Canada M5G 1X5
| |
Collapse
|
29
|
Mao Y, Francis-West P, Irvine KD. Fat4/Dchs1 signaling between stromal and cap mesenchyme cells influences nephrogenesis and ureteric bud branching. Development 2015; 142:2574-85. [PMID: 26116666 DOI: 10.1242/dev.122630] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Accepted: 06/18/2015] [Indexed: 12/25/2022]
Abstract
Formation of the kidney requires reciprocal signaling among the ureteric tubules, cap mesenchyme and surrounding stromal mesenchyme to orchestrate complex morphogenetic events. The protocadherin Fat4 influences signaling from stromal to cap mesenchyme cells to regulate their differentiation into nephrons. Here, we characterize the role of a putative binding partner of Fat4, the protocadherin Dchs1. Mutation of Dchs1 in mice leads to increased numbers of cap mesenchyme cells, which are abnormally arranged around the ureteric bud tips, and impairment of nephron morphogenesis. Mutation of Dchs1 also reduces branching of the ureteric bud and impairs differentiation of ureteric bud tip cells into trunk cells. Genetically, Dchs1 is required specifically within cap mesenchyme cells. The similarity of Dchs1 phenotypes to stromal-less kidneys and to those of Fat4 mutants implicates Dchs1 in Fat4-dependent stroma-to-cap mesenchyme signaling. Antibody staining of genetic mosaics reveals that Dchs1 protein localization is polarized within cap mesenchyme cells, where it accumulates at the interface with stromal cells, implying that it interacts directly with a stromal protein. Our observations identify a role for Fat4 and Dchs1 in signaling between cell layers, implicate Dchs1 as a Fat4 receptor for stromal signaling that is essential for kidney development, and establish that vertebrate Dchs1 can be molecularly polarized in vivo.
Collapse
Affiliation(s)
- Yaopan Mao
- Howard Hughes Medical Institute, Waksman Institute and Department of Molecular Biology and Biochemistry, Rutgers University, Piscataway, NJ 08854, USA
| | - Philippa Francis-West
- Department of Craniofacial Development and Stem Cell Biology, King's College London, Floor 27, Guy's Tower, London SE1 9RT, UK
| | - Kenneth D Irvine
- Howard Hughes Medical Institute, Waksman Institute and Department of Molecular Biology and Biochemistry, Rutgers University, Piscataway, NJ 08854, USA
| |
Collapse
|
30
|
Control of organ growth by patterning and hippo signaling in Drosophila. Cold Spring Harb Perspect Biol 2015; 7:7/6/a019224. [PMID: 26032720 DOI: 10.1101/cshperspect.a019224] [Citation(s) in RCA: 92] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Control of organ size is of fundamental importance and is controlled by genetic, environmental, and mechanical factors. Studies in many species have pointed to the existence of both organ-extrinsic and -intrinsic size-control mechanisms, which ultimately must coordinate to regulate organ size. Here, we discuss organ size control by organ patterning and the Hippo pathway, which both act in an organ-intrinsic fashion. The influence of morphogens and other patterning molecules couples growth and patterning, whereas emerging evidence suggests that the Hippo pathway controls growth in response to mechanical stimuli and signals emanating from cell-cell interactions. Several points of cross talk have been reported between signaling pathways that control organ patterning and the Hippo pathway, both at the level of membrane receptors and transcriptional regulators. However, despite substantial progress in the past decade, key questions in the growth-control field remain, including precisely how and when organ patterning and the Hippo pathway communicate to control size, and whether these communication mechanisms are organ specific or general. In addition, elucidating mechanisms by which organ-intrinsic cues, such as patterning factors and the Hippo pathway, interface with extrinsic cues, such as hormones to control organ size, remain unresolved.
Collapse
|
31
|
Abstract
BACKGROUND Characterisation of colorectal cancer (CRC) genomes by next-generation sequencing has led to the discovery of novel recurrently mutated genes. Nevertheless, genomic data has not yet been used for CRC prognostication. OBJECTIVE To identify recurrent somatic mutations with prognostic significance in patients with CRC. METHOD Exome sequencing was performed to identify somatic mutations in tumour tissues of 22 patients with CRC, followed by validation of 187 recurrent and pathway-related genes using targeted capture sequencing in additional 160 cases. RESULTS Seven significantly mutated genes, including four reported (APC, TP53, KRAS and SMAD4) and three novel recurrently mutated genes (CDH10, FAT4 and DOCK2), exhibited high mutation prevalence (6-14% for novel cancer genes) and higher-than-expected number of non-silent mutations in our CRC cohort. For prognostication, a five-gene-signature (CDH10, COL6A3, SMAD4, TMEM132D, VCAN) was devised, in which mutation(s) in one or more of these genes was significantly associated with better overall survival independent of tumor-node-metastasis (TNM) staging. The median survival time was 80.4 months in the mutant group versus 42.4 months in the wild type group (p=0.0051). The prognostic significance of this signature was successfully verified using the data set from the Cancer Genome Atlas study. CONCLUSIONS The application of next-generation sequencing has led to the identification of three novel significantly mutated genes in CRC and a mutation signature that predicts survival outcomes for stratifying patients with CRC independent of TNM staging.
Collapse
|
32
|
Yu J, Wu WKK, Li X, He J, Li XX, Ng SSM, Yu C, Gao Z, Yang J, Li M, Wang Q, Liang Q, Pan Y, Tong JH, To KF, Wong N, Zhang N, Chen J, Lu Y, Lai PBS, Chan FKL, Li Y, Kung HF, Yang H, Wang J, Sung JJY. Novel recurrently mutated genes and a prognostic mutation signature in colorectal cancer. Gut 2015; 64:636-45. [PMID: 24951259 PMCID: PMC4392212 DOI: 10.1136/gutjnl-2013-306620] [Citation(s) in RCA: 143] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND Characterisation of colorectal cancer (CRC) genomes by next-generation sequencing has led to the discovery of novel recurrently mutated genes. Nevertheless, genomic data has not yet been used for CRC prognostication. OBJECTIVE To identify recurrent somatic mutations with prognostic significance in patients with CRC. METHOD Exome sequencing was performed to identify somatic mutations in tumour tissues of 22 patients with CRC, followed by validation of 187 recurrent and pathway-related genes using targeted capture sequencing in additional 160 cases. RESULTS Seven significantly mutated genes, including four reported (APC, TP53, KRAS and SMAD4) and three novel recurrently mutated genes (CDH10, FAT4 and DOCK2), exhibited high mutation prevalence (6-14% for novel cancer genes) and higher-than-expected number of non-silent mutations in our CRC cohort. For prognostication, a five-gene-signature (CDH10, COL6A3, SMAD4, TMEM132D, VCAN) was devised, in which mutation(s) in one or more of these genes was significantly associated with better overall survival independent of tumor-node-metastasis (TNM) staging. The median survival time was 80.4 months in the mutant group versus 42.4 months in the wild type group (p=0.0051). The prognostic significance of this signature was successfully verified using the data set from the Cancer Genome Atlas study. CONCLUSIONS The application of next-generation sequencing has led to the identification of three novel significantly mutated genes in CRC and a mutation signature that predicts survival outcomes for stratifying patients with CRC independent of TNM staging.
Collapse
Affiliation(s)
- Jun Yu
- Department of Medicine & Therapeutics, State Key Laboratory of Digestive Disease, Institute of Digestive Disease and LKS Institute of Health Sciences, CUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong
| | - William K K Wu
- Department of Medicine & Therapeutics, State Key Laboratory of Digestive Disease, Institute of Digestive Disease and LKS Institute of Health Sciences, CUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong
| | - Xiangchun Li
- Department of Medicine & Therapeutics, State Key Laboratory of Digestive Disease, Institute of Digestive Disease and LKS Institute of Health Sciences, CUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong,Beijing Genomics Institute at Shenzhen, Shenzhen, China
| | - Jun He
- Department of Medicine & Therapeutics, State Key Laboratory of Digestive Disease, Institute of Digestive Disease and LKS Institute of Health Sciences, CUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong,Beijing Genomics Institute at Shenzhen, Shenzhen, China
| | - Xiao-Xing Li
- Department of Medicine & Therapeutics, State Key Laboratory of Digestive Disease, Institute of Digestive Disease and LKS Institute of Health Sciences, CUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong
| | - Simon S M Ng
- Department of Surgery, The Chinese University of Hong Kong, Hong Kong
| | - Chang Yu
- Department of Medicine & Therapeutics, State Key Laboratory of Digestive Disease, Institute of Digestive Disease and LKS Institute of Health Sciences, CUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong,Beijing Genomics Institute at Shenzhen, Shenzhen, China
| | - Zhibo Gao
- Department of Medicine & Therapeutics, State Key Laboratory of Digestive Disease, Institute of Digestive Disease and LKS Institute of Health Sciences, CUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong,Beijing Genomics Institute at Shenzhen, Shenzhen, China
| | - Jie Yang
- Beijing Genomics Institute at Shenzhen, Shenzhen, China
| | - Miao Li
- Beijing Genomics Institute at Shenzhen, Shenzhen, China
| | - Qiaoxiu Wang
- Beijing Genomics Institute at Shenzhen, Shenzhen, China
| | - Qiaoyi Liang
- Department of Medicine & Therapeutics, State Key Laboratory of Digestive Disease, Institute of Digestive Disease and LKS Institute of Health Sciences, CUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong
| | - Yi Pan
- Department of Anatomical & Cellular Pathology, The Chinese University of Hong Kong, Hong Kong
| | - Joanna H Tong
- Department of Anatomical & Cellular Pathology, The Chinese University of Hong Kong, Hong Kong
| | - Ka F To
- Department of Anatomical & Cellular Pathology, The Chinese University of Hong Kong, Hong Kong
| | - Nathalie Wong
- Department of Anatomical & Cellular Pathology, The Chinese University of Hong Kong, Hong Kong
| | - Ning Zhang
- Department of Medicine & Therapeutics, State Key Laboratory of Digestive Disease, Institute of Digestive Disease and LKS Institute of Health Sciences, CUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong,Department of Gastroenterology, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Jie Chen
- Department of Gastroenterology, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Youyong Lu
- Laboratory of Molecular Oncology, Peking University Cancer Hospital and Institute, Beijing, China
| | - Paul B S Lai
- Department of Surgery, The Chinese University of Hong Kong, Hong Kong
| | - Francis K L Chan
- Department of Medicine & Therapeutics, State Key Laboratory of Digestive Disease, Institute of Digestive Disease and LKS Institute of Health Sciences, CUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong
| | - Yingrui Li
- Beijing Genomics Institute at Shenzhen, Shenzhen, China
| | - Hsiang-Fu Kung
- Stanley Ho Centre for Emerging Infectious Diseases, The Chinese University of Hong Kong, Hong Kong
| | - Huanming Yang
- Beijing Genomics Institute at Shenzhen, Shenzhen, China
| | - Jun Wang
- Beijing Genomics Institute at Shenzhen, Shenzhen, China
| | - Joseph J Y Sung
- Department of Medicine & Therapeutics, State Key Laboratory of Digestive Disease, Institute of Digestive Disease and LKS Institute of Health Sciences, CUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong
| |
Collapse
|
33
|
Rodrigues-Campos M, Thompson BJ. The ubiquitin ligase FbxL7 regulates the Dachsous-Fat-Dachs system in Drosophila. Development 2014; 141:4098-103. [PMID: 25256343 PMCID: PMC4302899 DOI: 10.1242/dev.113498] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2014] [Accepted: 08/22/2014] [Indexed: 11/20/2022]
Abstract
The atypical cadherins Dachsous (Ds) and Fat (Ft) are required to control the size and shape of tissues and organs in animals. In Drosophila, a key effector of Ds and Ft is the atypical myosin Dachs, which becomes planar polarised along the proximal-distal axis in developing epithelia to regulate tissue size via the Hippo pathway and tissue shape via modulating tension at junctions. How Ds and Ft control Dachs polarisation remains unclear. Here, we identify a ubiquitin ligase, FbxL7, as a novel component of the Ds-Ft-Dachs system that is required to control the level and localisation of Dachs. Loss of FbxL7 results in accumulation of Dachs, similar to loss of Ft. Overexpression of FbxL7 causes downregulation of Dachs, similar to overexpression of the Ft intracellular domain. In addition to regulating Dachs, FbxL7 also influences Ds in a similar manner. GFP-tagged FbxL7 localises to the plasma membrane in a Ft-dependent manner and is planar polarised. We propose that Ft recruits FbxL7 to the proximal side of the cell to help restrict Ds and Dachs to the distal side of the cell.
Collapse
Affiliation(s)
- Mariana Rodrigues-Campos
- Cancer Research UK - London Research Institute, Lincoln's Inn Fields, London WC2A 3LY, UK GABBA, ICBAS, Universidade do Porto, 4050-313 Porto, Portugal
| | - Barry J Thompson
- Cancer Research UK - London Research Institute, Lincoln's Inn Fields, London WC2A 3LY, UK
| |
Collapse
|
34
|
Le Pabic P, Ng C, Schilling TF. Fat-Dachsous signaling coordinates cartilage differentiation and polarity during craniofacial development. PLoS Genet 2014; 10:e1004726. [PMID: 25340762 PMCID: PMC4207671 DOI: 10.1371/journal.pgen.1004726] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2014] [Accepted: 09/02/2014] [Indexed: 11/19/2022] Open
Abstract
Organogenesis requires coordinated regulation of cellular differentiation and morphogenesis. Cartilage cells in the vertebrate skeleton form polarized stacks, which drive the elongation and shaping of skeletal primordia. Here we show that an atypical cadherin, Fat3, and its partner Dachsous-2 (Dchs2), control polarized cell-cell intercalation of cartilage precursors during craniofacial development. In zebrafish embryos deficient in Fat3 or Dchs2, chondrocytes fail to stack and misregulate expression of sox9a. Similar morphogenetic defects occur in rerea/atr2a−/− mutants, and Fat3 binds REREa, consistent with a model in which Fat3, Dchs2 and REREa interact to control polarized cell-cell intercalation and simultaneously control differentiation through Sox9. Chimaeric analyses support such a model, and reveal long-range influences of all three factors, consistent with the activation of a secondary signal that regulates polarized cell-cell intercalation. This coordinates the spatial and temporal morphogenesis of chondrocytes to shape skeletal primordia and defects in these processes underlie human skeletal malformations. Similar links between cell polarity and differentiation mechanisms are also likely to control organ formation in other contexts. Little is known about the mechanisms of cell-cell communication necessary to assemble skeletal elements of appropriate size and shape. In this study, we investigate the roles of genetic factors belonging to a developmental pathway that affects skeletal progenitor behavior: the atypical cadherins Fat3 and Dachsous2 (Dchs2), and REREa/Atr2a. We show that cartilage precursors fail to rearrange into linear stacks and at the same time misregulate expression of sox9a, a key regulator of cartilage differentiation, in zebrafish embryos deficient in Fat3 or its partner Dchs2. Similar cartilage defects are observed in rerea−/− mutants, and Fat3 interacts physically and genetically with REREa. Our results suggest that Fat3, Dchs2 and REREa interact to control polarized cell-cell intercalation and simultaneously control skeletal differentiation through Sox9. By transplanting cartilage precursors between wild-type and Fat3, Dchs2 or REREa deficient embryos we demonstrate that all three factors exert long-range influences on neighboring cells, most likely mediated by another polarizing signal. We propose a model in which this coordinates the polarity and differentiation of chondrocytes to shape skeletal primordia, and that defects in these processes underlie human skeletal malformations.
Collapse
Affiliation(s)
- Pierre Le Pabic
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, California, United States of America
| | - Carrie Ng
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, California, United States of America
| | - Thomas F. Schilling
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, California, United States of America
- * E-mail:
| |
Collapse
|
35
|
Huang Y, McNeil GP, Jackson FR. Translational regulation of the DOUBLETIME/CKIδ/ε kinase by LARK contributes to circadian period modulation. PLoS Genet 2014; 10:e1004536. [PMID: 25211129 PMCID: PMC4161311 DOI: 10.1371/journal.pgen.1004536] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2013] [Accepted: 06/12/2014] [Indexed: 12/02/2022] Open
Abstract
The Drosophila homolog of Casein Kinase I δ/ε, DOUBLETIME (DBT), is required for Wnt, Hedgehog, Fat and Hippo signaling as well as circadian clock function. Extensive studies have established a critical role of DBT in circadian period determination. However, how DBT expression is regulated remains largely unexplored. In this study, we show that translation of dbt transcripts are directly regulated by a rhythmic RNA-binding protein (RBP) called LARK (known as RBM4 in mammals). LARK promotes translation of specific alternative dbt transcripts in clock cells, in particular the dbt-RC transcript. Translation of dbt-RC exhibits circadian changes under free-running conditions, indicative of clock regulation. Translation of a newly identified transcript, dbt-RE, is induced by light in a LARK-dependent manner and oscillates under light/dark conditions. Altered LARK abundance affects circadian period length, and this phenotype can be modified by different dbt alleles. Increased LARK delays nuclear degradation of the PERIOD (PER) clock protein at the beginning of subjective day, consistent with the known role of DBT in PER dynamics. Taken together, these data support the idea that LARK influences circadian period and perhaps responses of the clock to light via the regulated translation of DBT. Our study is the first to investigate translational control of the DBT kinase, revealing its regulation by LARK and a novel role of this RBP in Drosophila circadian period modulation. The CKI family of serine/threonine kinase regulates diverse cellular processes, through binding to and phosphorylation of a variety of protein substrates. In mammals, mutations in two members of the family, CKIε and CKIδ were found to affect circadian period length, causing phenotypes such as altered circadian period in rodents and the Familial Advanced Sleep Phase Syndrome (FASPS) in human. The Drosophila CKI δ/ε homolog DOUBLETIME (DBT) is known to have important roles in development and circadian clock function. Despite extensive studies of DBT function, little is known about how its expression is regulated. In a previous genome-wide study, we identified dbt mRNAs as potential targets of the LARK RBP. Here we describe a detailed study of the regulation of DBT expression by LARK. We found that LARK binds to and regulates translation of dbt mRNA, promoting expression of a smaller isoform; we suggest this regulatory mechanism contributes to circadian period determination. In addition, we have identified a dbt mRNA that exhibits light-induced changes in translational status, in a LARK-dependent manner. Our study is the first to analyze the translational regulation of DBT, setting the stage for similar studies in other contexts and model systems.
Collapse
Affiliation(s)
- Yanmei Huang
- Department of Neuroscience, Sackler School of Biomedical Sciences, Tufts University School of Medicine, Boston, Massachusetts, United States of America
| | - Gerard P McNeil
- Department of Biology, York College, Jamaica, New York, New York, United States of America
| | - F Rob Jackson
- Department of Neuroscience, Sackler School of Biomedical Sciences, Tufts University School of Medicine, Boston, Massachusetts, United States of America
| |
Collapse
|
36
|
The Atypical Cadherin Fat Directly Regulates Mitochondrial Function and Metabolic State. Cell 2014; 158:1293-1308. [DOI: 10.1016/j.cell.2014.07.036] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2014] [Revised: 06/09/2014] [Accepted: 07/10/2014] [Indexed: 11/21/2022]
|
37
|
Matis M, Russler-Germain DA, Hu Q, Tomlin CJ, Axelrod JD. Microtubules provide directional information for core PCP function. eLife 2014; 3:e02893. [PMID: 25124458 PMCID: PMC4151085 DOI: 10.7554/elife.02893] [Citation(s) in RCA: 95] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Planar cell polarity (PCP) signaling controls the polarization of cells within the plane of an epithelium. Two molecular modules composed of Fat(Ft)/Dachsous(Ds)/Four-jointed(Fj) and a ‘PCP-core’ including Frizzled(Fz) and Dishevelled(Dsh) contribute to polarization of individual cells. How polarity is globally coordinated with tissue axes is unresolved. Consistent with previous results, we find that the Ft/Ds/Fj-module has an effect on a MT-cytoskeleton. Here, we provide evidence for the model that the Ft/Ds/Fj-module provides directional information to the core-module through this MT organizing function. We show Ft/Ds/Fj-dependent initial polarization of the apical MT-cytoskeleton prior to global alignment of the core-module, reveal that the anchoring of apical non-centrosomal MTs at apical junctions is polarized, observe that directional trafficking of vesicles containing Dsh depends on Ft, and demonstrate the feasibility of this model by mathematical simulation. Together, these results support the hypothesis that Ft/Ds/Fj provides a signal to orient core PCP function via MT polarization. DOI:http://dx.doi.org/10.7554/eLife.02893.001 Almost all cells exhibit some sort of polarity: the epithelial cells that line the digestive tract, for example, have an apical domain, which faces out, and a basal domain, which faces the tissue underneath. Some epithelial cells also exhibit planar cell polarity: this involves key structures within the cell being oriented along an axis within the plane of an epithelium. Disruption of planar cell polarity is associated with various developmental defects. It is known that the planar polarity of epithelial cells relies on two molecular complexes—a ‘core’ complex and a signaling complex called the Ft/Ds/Fj system—working together. While each of these complexes contributes to whole tissues having the correct polarity, the way they interact to achieve this is not fully understood. Now, by studying epithelial cells in the wings of fruit flies, Matis et al. have provided evidence for a specific model for this interaction. The process starts with the Ft/Ds/Fj signaling complex, which orients structures called microtubules inside the cell. Microtubules are involved in providing structural support for cells, and also in the transport of organelles within cells. Once the microtubules are oriented in the correct direction, they help to orient the core complex by moving some of the proteins that make up this complex in a specified direction. An important future challenge will be to understand how the proteins in the Ft/Ds/Fj system interact with microtubules to give them their orientation. DOI:http://dx.doi.org/10.7554/eLife.02893.002
Collapse
Affiliation(s)
- Maja Matis
- Department of Pathology, Stanford University School of Medicine, Stanford, United States
| | | | - Qie Hu
- Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, Berkeley, United States
| | - Claire J Tomlin
- Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, Berkeley, United States
| | - Jeffrey D Axelrod
- Department of Pathology, Stanford University School of Medicine, Stanford, United States
| |
Collapse
|
38
|
Bosch JA, Sumabat TM, Hafezi Y, Pellock BJ, Gandhi KD, Hariharan IK. The Drosophila F-box protein Fbxl7 binds to the protocadherin fat and regulates Dachs localization and Hippo signaling. eLife 2014; 3:e03383. [PMID: 25107277 PMCID: PMC4144329 DOI: 10.7554/elife.03383] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The Drosophila protocadherin Fat (Ft) regulates growth, planar cell polarity (PCP) and proximodistal patterning. A key downstream component of Ft signaling is the atypical myosin Dachs (D). Multiple regions of the intracellular domain of Ft have been implicated in regulating growth and PCP but how Ft regulates D is not known. Mutations in Fbxl7, which encodes an F-box protein, result in tissue overgrowth and abnormalities in proximodistal patterning that phenocopy deleting a specific portion of the intracellular domain (ICD) of Ft that regulates both growth and PCP. Fbxl7 binds to this same portion of the Ft ICD, co-localizes with Ft to the proximal edge of cells and regulates the levels and asymmetry of D at the apical membrane. Fbxl7 can also regulate the trafficking of proteins between the apical membrane and intracellular vesicles. Thus Fbxl7 functions in a subset of pathways downstream of Ft and links Ft to D localization. DOI:http://dx.doi.org/10.7554/eLife.03383.001 Multi-cellular organisms are made up of cells that are organized into tissues and organs that reach a predictable size and shape at the end of their development. To do this, cells must be able to sense their position and orientation within the body and know when to stop growing. Epithelial cells—which make up the outer surface of an animal's body and line the cavities of its internal organs—connect to each other to form flat sheets. These sheets of cells contain structures that are oriented along the plane of the sheet. However, how this so-called ‘planar cell polarity’ coordinates with cell growth in order to build complex tissues and organs remains to be discovered. A protein called Fat is a major player in both planar cell polarity and the Hippo signaling pathway, which controls cell growth. As such, the Fat protein appears to be crucial for controlling the size and shape of organs. Mutations in the Fat protein cause massive tissue overgrowth, prevent planar cell polarity being established correctly, and stop the legs and wings of fruit flies developing normally. The Fat protein also plays a role in distributing another protein called Dachs—which is also part of the Hippo signaling pathway. In epithelial cells of the developing wing, Dachs is mostly located on the side of the cell that is closest to the tip of the developing wing (the so-called ‘distal surface’). How Fat and Dachs work together is not understood, but it is known that they do not bind to each other directly. Now, Bosch et al. show that in the fruit fly Drosophila, the Fat protein binds to another protein called Fbxl7. Flies that cannot produce working Fbxl7 have defects in some aspects of planar cell polarity and a modest increase in tissue growth. Fbxl7 seems to account for part, but not all, of the ability of Fat to restrict tissue growth. Furthermore, a lack of the Fbxl7 protein results in a spreading of Dachs protein across the apical surface—which faces out of the epithelial sheet—of epithelial cells. On the other hand, if Fbxl7 is over-expressed, Dachs is driven to the interior of each cell. Hence, a normal level of Fbxl7 protein restricts the Dachs protein to the correct parts of the cell surface. Together, the findings of Bosch et al. show that the Fbxl7 protein is a key link between the Fat and Dachs proteins. These results also provide an understanding of how growth and planar cell polarity—two processes that are essential for normal development of all multi-cellular organisms—are coordinated. DOI:http://dx.doi.org/10.7554/eLife.03383.002
Collapse
Affiliation(s)
- Justin A Bosch
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
| | - Taryn M Sumabat
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
| | - Yassi Hafezi
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
| | - Brett J Pellock
- Department of Biology, Providence College, Providence, United States
| | - Kevin D Gandhi
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
| | - Iswar K Hariharan
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
| |
Collapse
|
39
|
Zakaria S, Mao Y, Kuta A, de Sousa CF, Gaufo GO, McNeill H, Hindges R, Guthrie S, Irvine KD, Francis-West PH. Regulation of neuronal migration by Dchs1-Fat4 planar cell polarity. Curr Biol 2014; 24:1620-1627. [PMID: 24998526 PMCID: PMC4193925 DOI: 10.1016/j.cub.2014.05.067] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Revised: 05/14/2014] [Accepted: 05/23/2014] [Indexed: 01/02/2023]
Abstract
Planar cell polarity (PCP) describes the polarization of cell structures and behaviors within the plane of a tissue. PCP is essential for the generation of tissue architecture during embryogenesis and for postnatal growth and tissue repair, yet how it is oriented to coordinate cell polarity remains poorly understood [1]. In Drosophila, PCP is mediated via the Frizzled-Flamingo (Fz-PCP) and Dachsous-Fat (Fat-PCP) pathways [1-3]. Fz-PCP is conserved in vertebrates, but an understanding in vertebrates of whether and how Fat-PCP polarizes cells, and its relationship to Fz-PCP signaling, is lacking. Mutations in human FAT4 and DCHS1, key components of Fat-PCP signaling, cause Van Maldergem syndrome, characterized by severe neuronal abnormalities indicative of altered neuronal migration [4]. Here, we investigate the role and mechanisms of Fat-PCP during neuronal migration using the murine facial branchiomotor (FBM) neurons as a model. We find that Fat4 and Dchs1 are expressed in complementary gradients and are required for the collective tangential migration of FBM neurons and for their PCP. Fat4 and Dchs1 are required intrinsically within the FBM neurons and extrinsically within the neuroepithelium. Remarkably, Fat-PCP and Fz-PCP regulate FBM neuron migration along orthogonal axes. Disruption of the Dchs1 gradients by mosaic inactivation of Dchs1 alters FBM neuron polarity and migration. This study implies that PCP in vertebrates can be regulated via gradients of Fat4 and Dchs1 expression, which establish intracellular polarity across FBM cells during their migration. Our results also identify Fat-PCP as a novel neuronal guidance system and reveal that Fat-PCP and Fz-PCP can act along orthogonal axes.
Collapse
Affiliation(s)
- Sana Zakaria
- Department of Craniofacial Development and Stem Cell Biology, King's College London, Dental Institute, Guy's Tower, Floor 27, London Bridge, London, SE1 9RT, UK
| | - Yaopan Mao
- Howard Hughes Medical Institute, Waksman Institute and Department of Molecular Biology and Biochemistry, Rutgers The State University of New Jersey, Piscataway NJ 08854, USA
| | - Anna Kuta
- Department of Craniofacial Development and Stem Cell Biology, King's College London, Dental Institute, Guy's Tower, Floor 27, London Bridge, London, SE1 9RT, UK
| | - Catia Ferreira de Sousa
- Department of Craniofacial Development and Stem Cell Biology, King's College London, Dental Institute, Guy's Tower, Floor 27, London Bridge, London, SE1 9RT, UK
| | - Gary O Gaufo
- Department of Biology, The University of Texas at San Antonio, One UTSA circle, San Antonio, Texas, 78249 USA
| | - Helen McNeill
- The Samuel Lunenfeld Research Institute, Mount Sinai Hospital, 600 University Avenue, Toronto, M5G 1X5, Canada
| | - Robert Hindges
- MRC Centre for Developmental Neurobiology, 4th Floor New Hunt's House, King's College, Guy's Campus, London SE1 1UL, UK
| | - Sarah Guthrie
- MRC Centre for Developmental Neurobiology, 4th Floor New Hunt's House, King's College, Guy's Campus, London SE1 1UL, UK
| | - Kenneth D Irvine
- Howard Hughes Medical Institute, Waksman Institute and Department of Molecular Biology and Biochemistry, Rutgers The State University of New Jersey, Piscataway NJ 08854, USA
| | - Philippa H Francis-West
- Department of Craniofacial Development and Stem Cell Biology, King's College London, Dental Institute, Guy's Tower, Floor 27, London Bridge, London, SE1 9RT, UK
| |
Collapse
|
40
|
Abstract
Planar cell polarity (PCP) in epithelia, orthogonal to the apical-basal axis, is essential for numerous developmental events and physiological functions. Drosophila model systems have been at the forefront of studies revealing insights into mechanisms regulating PCP and have revealed distinct signaling modules. One of these, involving the atypical cadherins Fat and Dachsous and the ectokinase Four-jointed, appears to link the direction of cell polarization to the tissue axes. We discuss models for the function of this signaling module as well as several unanswered questions that may guide future investigations.
Collapse
Affiliation(s)
- Maja Matis
- Department of Pathology, Stanford University School of Medicine, Stanford, California 94305, USA
| | | |
Collapse
|
41
|
Abstract
The Hippo pathway is a kinase cascade, formed by Hippo, Salvador, Warts, and Mats, that regulates the subcellular distribution and transcriptional activity of Yorkie. Yorkie is a transcriptional coactivator that promotes the expression of genes that inhibit apoptosis and drive cell proliferation. We review recent studies indicating that activity of the Hippo pathway is controlled by cell-cell junctions, cell adhesion molecules, scaffolding proteins, and cytoskeletal proteins, as well as by regulators of apical-basal polarity and extracellular tension.
Collapse
Affiliation(s)
- Leonie Enderle
- 1Biozentrum, University of Basel, 4056 Basel, Switzerland
| | | |
Collapse
|
42
|
Cappello S, Gray MJ, Badouel C, Lange S, Einsiedler M, Srour M, Chitayat D, Hamdan FF, Jenkins ZA, Morgan T, Preitner N, Uster T, Thomas J, Shannon P, Morrison V, Di Donato N, Van Maldergem L, Neuhann T, Newbury-Ecob R, Swinkells M, Terhal P, Wilson LC, Zwijnenburg PJG, Sutherland-Smith AJ, Black MA, Markie D, Michaud JL, Simpson MA, Mansour S, McNeill H, Götz M, Robertson SP. Mutations in genes encoding the cadherin receptor-ligand pair DCHS1 and FAT4 disrupt cerebral cortical development. Nat Genet 2013; 45:1300-8. [DOI: 10.1038/ng.2765] [Citation(s) in RCA: 182] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2012] [Accepted: 08/26/2013] [Indexed: 02/08/2023]
|
43
|
Lawlor KT, Ly DC, DiNardo S. Drosophila Dachsous and Fat polarize actin-based protrusions over a restricted domain of the embryonic denticle field. Dev Biol 2013; 383:285-94. [PMID: 24051227 DOI: 10.1016/j.ydbio.2013.09.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2013] [Revised: 09/02/2013] [Accepted: 09/05/2013] [Indexed: 12/16/2022]
Abstract
Atypical cadherins Dachsous (Ds) and Fat coordinate the establishment of planar polarity, essential for the patterning of complex tissues and organs. The precise mechanisms by which this system acts, particularly in cases where Ds and Fat act independently of the 'core' frizzled system, are still the subject of investigation. Examining the deployment of the Ds-Fat system in different tissues of the model organism Drosophila, has provided insights into the general mechanisms by which polarity is established and propagated to coordinate outcomes across a field of cells. The Drosophila embryonic epidermis provides a simple model epithelia where the establishment of polarity can be observed from start to finish, and in the absence of proliferation, over a fixed number of cells. Using the asymmetric placement of f-actin during denticle assembly as a read-out of polarity, we examine the requirement for Ds and Fat in establishing polarity across the denticle field. Comparing detailed phenotypic analysis with steady state protein enrichment revealed a spatially restricted requirement for the Ds-Fat system within the posterior denticle field. Ectopic Ds signaling provides evidence for a model whereby Ds acts to asymmetrically enrich Fat in a neighboring cell, in turn polarizing the cell to specify the position of the actin-based protrusions at the cell cortex.
Collapse
Affiliation(s)
- Kynan T Lawlor
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104-6058, United States
| | | | | |
Collapse
|
44
|
Sharma P, McNeill H. Regulation of long-range planar cell polarity by Fat-Dachsous signaling. Development 2013; 140:3869-81. [PMID: 23946440 DOI: 10.1242/dev.094730] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Fat (Ft) and Dachsous (Ds) are large cadherins that bind each other and have conserved roles in regulating planar cell polarity (PCP). We quantitatively analyzed Ft-Ds pathway mutant clones for their effects on ommatidial polarity in the Drosophila eye. Our findings suggest that the Ft-Ds pathway regulates PCP propagation independently of asymmetric cellular accumulation of Ft or Ds. We find that the Ft effector Atrophin has a position-specific role in regulating polarity in the eye, and that asymmetric accumulation of the atypical myosin Dachs is not essential for production and propagation of a long-range PCP signal. Our observations suggest that Ft and Ds interact to modulate a secondary signal that regulates long-range polarity, that signaling by the Ds intracellular domain is dependent on Ft, and that ommatidial fate specification is genetically separable from long-range signaling.
Collapse
Affiliation(s)
- Praveer Sharma
- Samuel Lunenfeld Research Institute, Mount Sinai Hospital, Toronto, ON M5G 1X5, Canada
| | | |
Collapse
|
45
|
Sadeqzadeh E, de Bock CE, Thorne RF. Sleeping giants: emerging roles for the fat cadherins in health and disease. Med Res Rev 2013; 34:190-221. [PMID: 23720094 DOI: 10.1002/med.21286] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The vertebrate Fat cadherins comprise a small gene family of four members, Fat1-Fat4, all closely related in structure to Drosophila ft and ft2. Over the past decade, knock-out mouse studies, genetic manipulation, and large sequencing projects has aided our understanding of the function of vertebrate Fat cadherins in tissue development and disease. The majority of studies of this family have focused on Fat1, with evidence now showing it can bind enable (ENA)/Vasodilator-stimulated phosphoprotein (VASP), β-catenin and Atrophin proteins to influence cell polarity and motility; HOMER-1 and HOMER-3 proteins to regulate actin accumulation in neuronal synapses; and scribble to influence the Hippo signaling pathway. Fat2 and Fat3 can regulate cell migration in a tissue specific manner and Fat4 appears to influence both planar cell polarity and Hippo signaling recapitulating the activity of Drosophila ft. Knowledge about the exact downstream signaling pathways activated by each family member remains in its infancy, but it is becoming clearer that they have tissue specific and redundant roles in development and may be lost or gained in cancer. In this review, we summarize the recent progress on understanding the role of the Fat cadherin family, integrating the current knowledge of molecular interactions and tissue distributions, together with the accumulating evidence of their changed expression in human disease. The latter is now beginning to promote interest in these molecules as both biomarkers and new targets for therapeutic intervention.
Collapse
Affiliation(s)
- Elham Sadeqzadeh
- Cancer Research Unit, School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, NSW, 2308, Australia; Hunter Medical Research Institute, New Lambton Heights, NSW, 2305, Australia
| | | | | |
Collapse
|
46
|
Zhao X, Yang CH, Simon MA. The Drosophila Cadherin Fat regulates tissue size and planar cell polarity through different domains. PLoS One 2013; 8:e62998. [PMID: 23667559 PMCID: PMC3647076 DOI: 10.1371/journal.pone.0062998] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2012] [Accepted: 04/01/2013] [Indexed: 01/15/2023] Open
Abstract
The Drosophila Cadherin Fat (Ft) has been identified as a crucial regulator of tissue size and Planar Cell Polarity (PCP). However, the precise mechanism by which Ft regulates these processes remains unclear. In order to advance our understanding of the action of Ft, we have sought to identify the crucial Ft effector domains. Here we report that a small region of the Ft cytoplasmic domain (H2 region) is both necessary and sufficient, when membrane localized, to support viability and prevent tissue overgrowth. Interestingly, the H2 region is dispensable for regulating PCP signaling, whereas the mutant Ft lacking the H2 region is fully capable of directing PCP. This result suggests that Ft's roles in PCP signaling and tissue size control are separable, and each can be carried out independently. Surprisingly, the crucial regions of Ft identified in our structure-function study do not overlap with the previously reported interaction regions with Atrophin, Dco, or Lowfat.
Collapse
Affiliation(s)
- Xuesong Zhao
- Department of Biology, Stanford University, Stanford, California, United States of America
| | - Chung-hui Yang
- Department of Biology, Stanford University, Stanford, California, United States of America
| | - Michael A. Simon
- Department of Biology, Stanford University, Stanford, California, United States of America
| |
Collapse
|
47
|
Lawrence PA, Casal J. The mechanisms of planar cell polarity, growth and the Hippo pathway: some known unknowns. Dev Biol 2013; 377:1-8. [PMID: 23592229 PMCID: PMC3677094 DOI: 10.1016/j.ydbio.2013.01.030] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2012] [Revised: 01/26/2013] [Accepted: 01/28/2013] [Indexed: 01/12/2023]
Abstract
Planar cell polarity (PCP) is a small but important area of research. In this review we discuss a limited number of topics within the PCP field, chosen because they are difficult, unsolved, controversial or just because we find them interesting. Because Drosophila is the best studied and technically most amenable system we have concentrated on it, but also consider some examples from work on vertebrates. Topics discussed include the number of genetic pathways involved in PCP, as well as the causal relationship between embryonic axes, gradients of morphogens and PCP itself. We consider the vexed question of the roles of the Wnt genes in PCP in both vertebrates and Drosophila. We discuss whether the proteins involved in PCP need to be localised asymmetrically in cells in order to function. We criticise the way the Hippo pathway is described in the literature and ask what its wildtype function is. We explore afresh how the Hippo pathway might be linked both to growth and to PCP through the gigantic cadherin molecule Fat. We offer some new ways of making sense of published results, particularly those relating to the Frizzled/Starry night and Dachsous/Fat systems of PCP.
Collapse
Affiliation(s)
- Peter A Lawrence
- Department of Zoology, University of Cambridge, Downing Street, Cambridge CB2 3 EJ, United Kingdom.
| | | |
Collapse
|
48
|
Pan G, Feng Y, Ambegaonkar AA, Sun G, Huff M, Rauskolb C, Irvine KD. Signal transduction by the Fat cytoplasmic domain. J Cell Sci 2013. [DOI: 10.1242/jcs.131441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
49
|
Sharma P, McNeill H. Fat and Dachsous cadherins. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2013; 116:215-35. [PMID: 23481197 DOI: 10.1016/b978-0-12-394311-8.00010-8] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Fat and Dachsous (Ds) are very large cell adhesion molecules. They bind each other and have important, highly conserved roles in planar cell polarity (PCP) and growth control. PCP is defined as the directionally coordinated development of cellular structures or behavior. Cellular and tissue growth needs to be modulated in terms of rate and final size, and the Hippo pathway regulates growth in a variety of developmental contexts. Fat and Ds are important upstream regulators of these pathways. There are two Fat proteins in Drosophila, Fat and Fat2, and four in vertebrates, Fat1-4. There is one Ds protein in Drosophila and two in vertebrates, Dachsous1-2. In this chapter, we discuss the roles of Fat and Ds family members, focusing on Drosophila and mouse development.
Collapse
|