1
|
Heude E, Dutel H, Sanchez-Garrido F, Prummel KD, Lalonde R, Lam F, Mosimann C, Herrel A, Tajbakhsh S. Co-option of neck muscles supported the vertebrate water-to-land transition. Nat Commun 2024; 15:10564. [PMID: 39632846 PMCID: PMC11618326 DOI: 10.1038/s41467-024-54724-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 11/19/2024] [Indexed: 12/07/2024] Open
Abstract
A major event in vertebrate evolution was the separation of the skull from the pectoral girdle and the acquisition of a functional neck, transitions that required profound developmental rearrangements of the musculoskeletal system. The neck is a hallmark of the tetrapod body plan and allows for complex head movements on land. While head and trunk muscles arise from distinct embryonic mesoderm populations, the origins of neck muscles remain elusive. Here, we combine comparative embryology and anatomy to reconstruct the mesodermal contribution to neck evolution. We demonstrate that head/trunk-connecting muscle groups have conserved mesodermal origins in fishes and tetrapods and that the neck evolved from muscle groups present in fishes. We propose that expansions of mesodermal populations into head and trunk domains during embryonic development underpinned the emergence and adaptation of the tetrapod neck. Our results provide evidence for the exaptation of archetypal muscle groups in ancestral fishes, which were co-opted to acquire novel functions adapted to a terrestrial lifestyle.
Collapse
Affiliation(s)
- Eglantine Heude
- Institut de Génomique Fonctionnelle de Lyon, École Normale Supérieure de Lyon, CNRS UMR5242 Université Claude Bernard Lyon-1, Lyon, France.
- PHYMA, Département Adaptations du Vivant, Muséum national d'Histoire naturelle, CNRS UMR 7221, Paris, France.
| | - Hugo Dutel
- Bristol Palaeobiology Research Group, School of Earth Sciences, University of Bristol, Bristol, UK
- Université de Bordeaux, CNRS, MCC, PACEA, UMR 5199, Pessac, France
- Craniofacial Growth and Form, Hôpital Necker - Enfants Malades, Paris, France
| | - Frida Sanchez-Garrido
- PHYMA, Département Adaptations du Vivant, Muséum national d'Histoire naturelle, CNRS UMR 7221, Paris, France
| | - Karin D Prummel
- Department of Molecular Life Sciences, University of Zurich, Zurich, Switzerland
- Department of Pediatrics, Section of Developmental Biology, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, CO, USA
- Molecular Systems Biology Unit, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - Robert Lalonde
- Department of Pediatrics, Section of Developmental Biology, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, CO, USA
- Yale University, New Haven, USA
| | - France Lam
- Core Facilities - Institut de Biologie Paris Seine (IBPS), Sorbonne Universités, Paris, France
| | - Christian Mosimann
- Department of Molecular Life Sciences, University of Zurich, Zurich, Switzerland
- Department of Pediatrics, Section of Developmental Biology, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, CO, USA
| | - Anthony Herrel
- MECADEV, Département Adaptations du Vivant, Muséum national d'Histoire naturelle, CNRS UMR 7179, Paris, France
- Department of Biology, Evolutionary Morphology of Vertebrates, Ghent University, Ghent, Belgium
- Department of Biology, University of Antwerp, Wilrijk, Belgium
- Naturhistorisches Museum Bern, Bern, Switzerland
| | - Shahragim Tajbakhsh
- Department of Developmental & Stem Cell Biology, Stem Cells & Development Unit, Institut Pasteur, Université Paris Cité, Paris, France
- CNRS UMR3738, Institut Pasteur, Paris, France
| |
Collapse
|
2
|
Kuroda S, Lalonde RL, Mansour TA, Mosimann C, Nakamura T. Multiple embryonic sources converge to form the pectoral girdle skeleton in zebrafish. Nat Commun 2024; 15:6313. [PMID: 39060278 PMCID: PMC11282072 DOI: 10.1038/s41467-024-50734-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 07/19/2024] [Indexed: 07/28/2024] Open
Abstract
The morphological transformation of the pectoral/shoulder girdle is fundamental to the water-to-land transition in vertebrate evolution. Although previous studies have resolved the embryonic origins of tetrapod shoulder girdles, those of fish pectoral girdles remain uncharacterized, creating a gap in the understanding of girdle transformation mechanisms from fish to tetrapods. Here, we identify the embryonic origins of the zebrafish pectoral girdle, including the cleithrum as an ancestral girdle element lost in extant tetrapods. Our combinatorial approach of photoconversion and genetic lineage tracing demonstrates that cleithrum development combines four adjoining embryonic populations. A comparison of these pectoral girdle progenitors with extinct and extant vertebrates highlights that cleithrum loss, indispensable for neck evolution, is associated with the disappearance of its unique developmental environment at the head/trunk interface. Overall, our study establishes an embryological framework for pectoral/shoulder girdle formation and provides evolutionary trajectories from their origin in water to diversification on land.
Collapse
Affiliation(s)
- Shunya Kuroda
- Department of Genetics, Rutgers the State University of New Jersey, Piscataway, NJ, 08854, USA.
- Institute for Frontier Science Initiative, Kanazawa University, Kakuma-machi, Kanazawa, 920-1164, Japan.
| | - Robert L Lalonde
- Department of Pediatrics, Section of Developmental Biology, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, CO, USA
| | - Thomas A Mansour
- Department of Genetics, Rutgers the State University of New Jersey, Piscataway, NJ, 08854, USA
| | - Christian Mosimann
- Department of Pediatrics, Section of Developmental Biology, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, CO, USA
| | - Tetsuya Nakamura
- Department of Genetics, Rutgers the State University of New Jersey, Piscataway, NJ, 08854, USA.
| |
Collapse
|
3
|
Liu Y, Du N, Qian B, Zou C, Yu Z, Xu F, Wang L, Qin S, You F, Tan X. Characteristics of Shisa Family Genes in Zebrafish. Int J Mol Sci 2023; 24:14062. [PMID: 37762365 PMCID: PMC10531659 DOI: 10.3390/ijms241814062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/03/2023] [Accepted: 08/12/2023] [Indexed: 09/29/2023] Open
Abstract
Shisa represents a type of single-transmembrane adaptor protein containing an N-terminal cysteine-rich domain and a proline-rich C-terminal region. Nine shisa subfamily genes have been proposed in most vertebrates; however, some might be species-specific. The number of shisa genes present in zebrafish remains unclear. This study aimed to investigate the evolutionary relationships among shisa family genes in zebrafish (TU strain) using phylogenetic and syntenic analyses. The function of shisa-2 was preliminarily examined via CRISPR/Cas13d-mediated knockdown. Following identification in zebrafish, 10 shisa family genes, namely shisa-1, 2, 3, 4, 5, 6, 7, 8, 9a, and 9b, were classified into three main clades and six subclades. Their encoding proteins contained a cysteine-rich N-terminal domain and a proline-rich C-terminal region containing different motifs. A specific syntenic block containing atp8a2 and shisa-2 was observed to be conserved across all species. Furthermore, all these genes were expressed during embryogenesis. Shisa-2 was expressed in the presomitic mesoderm, somites, and so on. Shisa-2 was identified as a regulator of the expression of the somite formation marker mesp-ab. Overall, our study provides new insights into the evolution of shisa family genes and the control of shisa-2 over the convergent extension cells of somitic precursors in zebrafish.
Collapse
Affiliation(s)
- Yansong Liu
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China; (Y.L.)
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China (F.Y.)
- Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, China
| | - Na Du
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China (F.Y.)
- Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, China
- University of Chinese Academy of Sciences, Beijing 10049, China
| | - Beibei Qian
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China (F.Y.)
- Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, China
| | - Congcong Zou
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China (F.Y.)
- Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, China
- University of Chinese Academy of Sciences, Beijing 10049, China
| | - Zhouxin Yu
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao 266109, China; (Y.L.)
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China (F.Y.)
- Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, China
| | - Fei Xu
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China (F.Y.)
- Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, China
| | - Lijuan Wang
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China (F.Y.)
- Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, China
| | - Sishi Qin
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China (F.Y.)
- Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, China
- University of Chinese Academy of Sciences, Beijing 10049, China
| | - Feng You
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China (F.Y.)
- Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, China
| | - Xungang Tan
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China (F.Y.)
- Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, China
| |
Collapse
|
4
|
Sahai-Hernandez P, Pouget C, Eyal S, Svoboda O, Chacon J, Grimm L, Gjøen T, Traver D. Dermomyotome-derived endothelial cells migrate to the dorsal aorta to support hematopoietic stem cell emergence. eLife 2023; 12:e58300. [PMID: 37695317 PMCID: PMC10495111 DOI: 10.7554/elife.58300] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 09/03/2023] [Indexed: 09/12/2023] Open
Abstract
Development of the dorsal aorta is a key step in the establishment of the adult blood-forming system, since hematopoietic stem and progenitor cells (HSPCs) arise from ventral aortic endothelium in all vertebrate animals studied. Work in zebrafish has demonstrated that arterial and venous endothelial precursors arise from distinct subsets of lateral plate mesoderm. Here, we profile the transcriptome of the earliest detectable endothelial cells (ECs) during zebrafish embryogenesis to demonstrate that tissue-specific EC programs initiate much earlier than previously appreciated, by the end of gastrulation. Classic studies in the chick embryo showed that paraxial mesoderm generates a subset of somite-derived endothelial cells (SDECs) that incorporate into the dorsal aorta to replace HSPCs as they exit the aorta and enter circulation. We describe a conserved program in the zebrafish, where a rare population of endothelial precursors delaminates from the dermomyotome to incorporate exclusively into the developing dorsal aorta. Although SDECs lack hematopoietic potential, they act as a local niche to support the emergence of HSPCs from neighboring hemogenic endothelium. Thus, at least three subsets of ECs contribute to the developing dorsal aorta: vascular ECs, hemogenic ECs, and SDECs. Taken together, our findings indicate that the distinct spatial origins of endothelial precursors dictate different cellular potentials within the developing dorsal aorta.
Collapse
Affiliation(s)
- Pankaj Sahai-Hernandez
- Department of Cell and Developmental Biology, University of California, San Diego, La Jolla, United States
| | - Claire Pouget
- Department of Cell and Developmental Biology, University of California, San Diego, La Jolla, United States
| | - Shai Eyal
- Department of Cell and Developmental Biology, University of California, San Diego, La Jolla, United States
| | - Ondrej Svoboda
- Department of Cell and Developmental Biology, University of California, San Diego, La Jolla, United States
- Department of Cell Differentiation, Institute of Molecular Genetics, Academy of Sciences of the Czech Republic v.v.i, Prague, Czech Republic
| | - Jose Chacon
- Department of Cell and Developmental Biology, University of California, San Diego, La Jolla, United States
| | - Lin Grimm
- Department of Cell and Developmental Biology, University of California, San Diego, La Jolla, United States
| | - Tor Gjøen
- Department of Pharmacy, University of Oslo, Oslo, Norway
| | - David Traver
- Department of Cell and Developmental Biology, University of California, San Diego, La Jolla, United States
| |
Collapse
|
5
|
Kahsay A, Rodriguez-Marquez E, López-Pérez A, Hörnblad A, von Hofsten J. Pax3 loss of function delays tumour progression in kRAS-induced zebrafish rhabdomyosarcoma models. Sci Rep 2022; 12:17149. [PMID: 36229514 PMCID: PMC9561152 DOI: 10.1038/s41598-022-21525-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 09/28/2022] [Indexed: 01/04/2023] Open
Abstract
Rhabdomyosarcoma is a soft tissue cancer that arises in skeletal muscle due to mutations in myogenic progenitors that lead to ineffective differentiation and malignant transformation. The transcription factors Pax3 and Pax7 and their downstream target genes are tightly linked with the fusion positive alveolar subtype, whereas the RAS pathway is usually involved in the embryonal, fusion negative variant. Here, we analyse the role of Pax3 in a fusion negative context, by linking alterations in gene expression in pax3a/pax3b double mutant zebrafish with tumour progression in kRAS-induced rhabdomyosarcoma tumours. Several genes in the RAS/MAPK signalling pathway were significantly down-regulated in pax3a/pax3b double mutant zebrafish. Progression of rhabdomyosarcoma tumours was also delayed in the pax3a/pax3b double mutant zebrafish indicating that Pax3 transcription factors have an unappreciated role in mediating malignancy in fusion negative rhabdomyosarcoma.
Collapse
Affiliation(s)
- A. Kahsay
- grid.12650.300000 0001 1034 3451Integrative Medical Biology (IMB), Umeå University, Johan Bures Väg 12, 90187 Umeå, Sweden
| | - E. Rodriguez-Marquez
- grid.12650.300000 0001 1034 3451Integrative Medical Biology (IMB), Umeå University, Johan Bures Väg 12, 90187 Umeå, Sweden
| | - A. López-Pérez
- grid.12650.300000 0001 1034 3451Umeå Centre for Molecular Medicine (UCMM), Umeå University, Johan Bures Väg 12, 90187 Umeå, Sweden
| | - A. Hörnblad
- grid.12650.300000 0001 1034 3451Umeå Centre for Molecular Medicine (UCMM), Umeå University, Johan Bures Väg 12, 90187 Umeå, Sweden
| | - J. von Hofsten
- grid.12650.300000 0001 1034 3451Integrative Medical Biology (IMB), Umeå University, Johan Bures Väg 12, 90187 Umeå, Sweden
| |
Collapse
|
6
|
Nord H, Kahsay A, Dennhag N, Pedrosa Domellöf F, von Hofsten J. Genetic compensation between Pax3 and Pax7 in zebrafish appendicular muscle formation. Dev Dyn 2021; 251:1423-1438. [PMID: 34435397 DOI: 10.1002/dvdy.415] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 08/18/2021] [Accepted: 08/18/2021] [Indexed: 01/26/2023] Open
Abstract
BACKGROUND Migrating muscle progenitors delaminate from the somite and subsequently form muscle tissue in distant anatomical regions such as the paired appendages, or limbs. In amniotes, this process requires a signaling cascade including the transcription factor paired box 3 (Pax3). RESULTS In this study, we found that, unlike in mammals, pax3a/3b double mutant zebrafish develop near to normal appendicular muscle. By analyzing numerous mutant combinations of pax3a, pax3b and pax7a, and pax7b, we determined that there is a feedback system and a compensatory mechanism between Pax3 and Pax7 in this developmental process, even though Pax7 alone is not required for appendicular myogenesis. pax3a/3b/7a/7b quadruple mutant developed muscle-less pectoral fins. CONCLUSIONS We found that Pax3 and Pax7 are redundantly required during appendicular myogenesis in zebrafish, where Pax7 is able to activate the same developmental programs as Pax3 in the premigratory progenitor cells.
Collapse
Affiliation(s)
- Hanna Nord
- Department of Integrative Medical Biology, Umeå University, Umeå, Sweden
| | - Abraha Kahsay
- Department of Integrative Medical Biology, Umeå University, Umeå, Sweden
| | - Nils Dennhag
- Department of Integrative Medical Biology, Umeå University, Umeå, Sweden
| | - Fatima Pedrosa Domellöf
- Department of Integrative Medical Biology, Umeå University, Umeå, Sweden.,Department of Clinical Science, Ophthalmology, Umeå University, Umeå, Sweden
| | - Jonas von Hofsten
- Department of Integrative Medical Biology, Umeå University, Umeå, Sweden
| |
Collapse
|
7
|
Chiba A, Soma K, Watanabe K, Nagashima H, Sato N. Development of fin-innervating motor neurons after peripheral target removal in medaka fish. Dev Neurobiol 2020; 81:110-122. [PMID: 33277778 DOI: 10.1002/dneu.22799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 10/20/2020] [Accepted: 11/27/2020] [Indexed: 11/12/2022]
Abstract
Peripheral targets regulate the development and survival of the nerve centers that serve them, because the elimination of the target normally results in massive death of the developing neurons that innervate it. This widely accepted theory appears to be well supported by developing limbs and their innervation in tetrapods, but it is unclear whether this concept applies to primitive vertebrates that have paired appendages. In this study, we examined the development of spinal motor neurons following pectoral fin bud removal (FBR) in medaka fish. After FBR, motor axons initially extended to the plexus region in a morphologically normal pattern. During the period of fin innervation, motor axons in the FBR-medaka failed to form the normal brachial plexus and elongated ventrally toward the abdominal region. In the ventral horn that would normally innervate the pectoral fin, however, neurons did not undergo cell death following FBR. There were no differences in the numbers of axons in the ventral roots between the FBR and control sides. Motor neuron markers, RALDH2 and FOXP1, that are expressed in limb-innervating motor neurons in the lateral motor column in tetrapods, were also expressed in the ventral horns of both the control and FBR sides in medaka fish. These results suggest that, although both tetrapod and medaka motor neurons share the same molecular characteristics for innervating paired appendages, the fates of neurons differ following the removal of their peripheral target. Therefore, the relationship between the peripheral target and its nerve center may be altered among vertebrates.
Collapse
Affiliation(s)
- Akina Chiba
- Division of Gross Anatomy and Morphogenesis, Department of Regenerative and Transplant Medicine, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Kenichi Soma
- Division of Gross Anatomy and Morphogenesis, Department of Regenerative and Transplant Medicine, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Keisuke Watanabe
- Division of Gross Anatomy and Morphogenesis, Department of Regenerative and Transplant Medicine, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Hiroshi Nagashima
- Division of Gross Anatomy and Morphogenesis, Department of Regenerative and Transplant Medicine, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Noboru Sato
- Division of Gross Anatomy and Morphogenesis, Department of Regenerative and Transplant Medicine, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| |
Collapse
|
8
|
Chong JX, Talbot JC, Teets EM, Previs S, Martin BL, Shively KM, Marvin CT, Aylsworth AS, Saadeh-Haddad R, Schatz UA, Inzana F, Ben-Omran T, Almusafri F, Al-Mulla M, Buckingham KJ, Harel T, Mor-Shaked H, Radhakrishnan P, Girisha KM, Nayak SS, Shukla A, Dieterich K, Faure J, Rendu J, Capri Y, Latypova X, Nickerson DA, Warshaw DM, Janssen PM, Amacher SL, Bamshad MJ, Bamshad MJ. Mutations in MYLPF Cause a Novel Segmental Amyoplasia that Manifests as Distal Arthrogryposis. Am J Hum Genet 2020; 107:293-310. [PMID: 32707087 DOI: 10.1016/j.ajhg.2020.06.014] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Accepted: 06/18/2020] [Indexed: 02/06/2023] Open
Abstract
We identified ten persons in six consanguineous families with distal arthrogryposis (DA) who had congenital contractures, scoliosis, and short stature. Exome sequencing revealed that each affected person was homozygous for one of two different rare variants (c.470G>T [p.Cys157Phe] or c.469T>C [p.Cys157Arg]) affecting the same residue of myosin light chain, phosphorylatable, fast skeletal muscle (MYLPF). In a seventh family, a c.487G>A (p.Gly163Ser) variant in MYLPF arose de novo in a father, who transmitted it to his son. In an eighth family comprised of seven individuals with dominantly inherited DA, a c.98C>T (p.Ala33Val) variant segregated in all four persons tested. Variants in MYLPF underlie both dominant and recessively inherited DA. Mylpf protein models suggest that the residues associated with dominant DA interact with myosin whereas the residues altered in families with recessive DA only indirectly impair this interaction. Pathological and histological exam of a foot amputated from an affected child revealed complete absence of skeletal muscle (i.e., segmental amyoplasia). To investigate the mechanism for this finding, we generated an animal model for partial MYLPF impairment by knocking out zebrafish mylpfa. The mylpfa mutant had reduced trunk contractile force and complete pectoral fin paralysis, demonstrating that mylpf impairment most severely affects limb movement. mylpfa mutant muscle weakness was most pronounced in an appendicular muscle and was explained by reduced myosin activity and fiber degeneration. Collectively, our findings demonstrate that partial loss of MYLPF function can lead to congenital contractures, likely as a result of degeneration of skeletal muscle in the distal limb.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Michael J Bamshad
- Division of Genetic Medicine, Department of Pediatrics, University of Washington, Seattle, WA 98195, USA; Brotman-Baty Institute, Seattle, WA 98195, USA; Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA; Seattle Children's Hospital, Seattle, WA 98105, USA.
| |
Collapse
|
9
|
MESHIDA KEIKO, LIN STEPHEN, DOMNING DARYLP, REIDENBERG JOYS, WANG PAUL, GILLAND EDWIN. Cetacean Orbital Muscles: Anatomy and Function of the Circular Layers. Anat Rec (Hoboken) 2020; 303:1792-1811. [PMID: 31587496 PMCID: PMC7131895 DOI: 10.1002/ar.24278] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 08/10/2019] [Accepted: 08/13/2019] [Indexed: 12/21/2022]
Abstract
Dissections of cetacean orbits identified two distinct circular muscle layers that are uniquely more elaborate than the orbitalis muscles described in numerous mammals. The circular orbital muscles in cetaceans form layers that lie both external and internal to the rectus extra ocular muscles (EOMs). A cone-shaped external circular muscle (ECM) that invests the external surface of the rectus EOMs was found in all cetacean specimens examined. The cetacean ECM corresponds generally to descriptions of the musculus orbitalis in various mammals but is more strongly developed and has more layers than in noncetaceans. A newly identified internal circular muscle (ICM) is located internal to the rectus EOMs and external to the retractor bulbi (RB). The RB is massive in cetaceans and is encased in a connective tissue layer containing convoluted bundles of blood vessels. The most robust ECM and ICM layers were in sperm whale (Physeter macrocephalus) where they form complete rings. Surprisingly, histological analysis showed the sperm whale ECM to contain both smooth and striated (skeletal) muscle layers while the ICM appeared to contain solely skeletal muscle fibers. The extreme development of the ECM (orbitalis) and RB suggest a co-evolved system mediating high degrees of protrusion and retraction in cetaceans. We know of no homolog of the ICM but its function seems likely related to the complex vascular structures surrounding and deep to the retractor muscle. Skeletal muscle components in orbital circular muscles appear to be highly derived specializations unknown outside of cetaceans. Anat Rec, 2019. © 2019 American Association for Anatomy Anat Rec, 303:1792-1811, 2020. © 2019 American Association for Anatomy.
Collapse
Affiliation(s)
- KEIKO MESHIDA
- Department of Anatomy, College of Medicine, Howard University, Washington, District of Columbia
| | - STEPHEN LIN
- Department of Radiology, College of Medicine, Howard University, Washington, District of Columbia
| | - DARYL P. DOMNING
- Department of Anatomy, College of Medicine, Howard University, Washington, District of Columbia
| | - JOY S. REIDENBERG
- Center for Anatomy and Functional Morphology, Icahn School of Medicine at Mount Sinai, New York, New York
| | - PAUL WANG
- Department of Radiology, College of Medicine, Howard University, Washington, District of Columbia
- College of Science and Engineering, Fu Jen Catholic University, Taipei, Taiwan, New Taipei City, Taiwan
| | - EDWIN GILLAND
- Department of Anatomy, College of Medicine, Howard University, Washington, District of Columbia
| |
Collapse
|
10
|
Wang Y, Liu W, Yuan B, Yin X, Li Y, Li Z, Cui J, Yuan X, Li Y. The Application of Methylprednisolone Nanoscale Zirconium-Porphyrin Metal-Organic Framework (MPS-NPMOF) in the Treatment of Photoreceptor Degeneration. Int J Nanomedicine 2019; 14:9763-9776. [PMID: 31849467 PMCID: PMC6911332 DOI: 10.2147/ijn.s225992] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Accepted: 11/13/2019] [Indexed: 12/23/2022] Open
Abstract
Background Photoreceptor degeneration is one of the most refractory oculopathy in the world, leading to vision loss in severe cases. Methyprednisolone is one of the most commonly prescribed medications for the treatment of retinal degenerative diseases, either by oral administration or repeated intraocular injections. However, the efficacy was unsatisfactory due to its systemic or local side effects and short retention time within the retina. Methods Nanoscale zirconium-porphyrin metal-organic framework (NPMOF) was synthesized and characterized. The biotoxicity and imaging capability of NPMOF were evaluated using zebrafish embryos and larvae. NPMOF was then used as a skeleton and loaded with methylprednisolone (MPS) to prepare a novel kind of nanoparticle, MPS-NPMOF. Photoreceptor degeneration was induced by high-intensity light exposure in adult zebrafish. MPS-NPMOF was delivered to the injured retina by intraocular injection. The photoreceptor regeneration and its underlying mechanism were explored by immunohistochemistry, quantitative real-time polymerase chain reaction and behavioral test. Results NPMOF not only had low biotoxicity but also emitted bright fluorescence. Following a single MPS-NPMOF intraocular injection, the injured retina exhibited the faster photoreceptor regeneration with better visual function by promoting the cell proliferation. Conclusion NPMOF is an ideal carrier and could be applied in tracking and delivering medications. By intraocular injection, the novel drug delivery system, MPS-NPMOF, accomplishes the sustained release of drug and plays a therapeutic role in photoreceptor degeneration.
Collapse
Affiliation(s)
- Yajie Wang
- Tianjin Key Laboratory of Tumor Microenvironment and Neurovascular Regulation, Nankai University School of Medicine, Tianjin 300071, People's Republic of China.,Tianjin Eye Hospital, Tianjin Key Laboratory of Ophthalmology and Visual Science, Nankai University Eye Hospital, Tianjin 300020, People's Republic of China
| | - Wei Liu
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Nankai University College of Chemistry, Tianjin 300071, People's Republic of China.,Tianjin University School of Science, Tianjin 300072, People's Republic of China
| | - Bo Yuan
- Tianjin Key Laboratory of Tumor Microenvironment and Neurovascular Regulation, Nankai University School of Medicine, Tianjin 300071, People's Republic of China.,Tianjin Eye Hospital, Tianjin Key Laboratory of Ophthalmology and Visual Science, Nankai University Eye Hospital, Tianjin 300020, People's Republic of China
| | - Xuebo Yin
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Nankai University College of Chemistry, Tianjin 300071, People's Republic of China
| | - Yiming Li
- Tianjin Key Laboratory of Tumor Microenvironment and Neurovascular Regulation, Nankai University School of Medicine, Tianjin 300071, People's Republic of China
| | - Zongjin Li
- Tianjin Key Laboratory of Tumor Microenvironment and Neurovascular Regulation, Nankai University School of Medicine, Tianjin 300071, People's Republic of China
| | - Jianlin Cui
- Tianjin Key Laboratory of Tumor Microenvironment and Neurovascular Regulation, Nankai University School of Medicine, Tianjin 300071, People's Republic of China
| | - Xiaoyong Yuan
- Tianjin Eye Hospital, Tianjin Key Laboratory of Ophthalmology and Visual Science, Nankai University Eye Hospital, Tianjin 300020, People's Republic of China
| | - Yuhao Li
- Tianjin Key Laboratory of Tumor Microenvironment and Neurovascular Regulation, Nankai University School of Medicine, Tianjin 300071, People's Republic of China.,Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Tianjin 300192, People's Republic of China
| |
Collapse
|
11
|
Sagarin KA, Redgrave AC, Mosimann C, Burke AC, Devoto SH. Anterior trunk muscle shows mix of axial and appendicular developmental patterns. Dev Dyn 2019; 248:961-968. [PMID: 31386244 DOI: 10.1002/dvdy.95] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 07/04/2019] [Accepted: 07/10/2019] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Skeletal muscle in the trunk derives from the somites, paired segments of paraxial mesoderm. Whereas axial musculature develops within the somite, appendicular muscle develops following migration of muscle precursors into lateral plate mesoderm. The development of muscles bridging axial and appendicular systems appears mixed. RESULTS We examine development of three migratory muscle precursor-derived muscles in zebrafish: the sternohyoideus (SH), pectoral fin (PF), and posterior hypaxial (PHM) muscles. We show there is an anterior to posterior gradient to the developmental gene expression and maturation of these three muscles. SH muscle precursors exhibit a long delay between migration and differentiation, PF muscle precursors exhibit a moderate delay in differentiation, and PHM muscle precursors show virtually no delay between migration and differentiation. Using lineage tracing, we show that lateral plate contribution to the PHM muscle is minor, unlike its known extensive contribution to the PF muscle and absence in the ventral extension of axial musculature. CONCLUSIONS We propose that PHM development is intermediate between a migratory muscle mode and an axial muscle mode of development, wherein the PHM differentiates after a very short migration of its precursors and becomes more anterior primarily by elongation of differentiated muscle fibers.
Collapse
Affiliation(s)
| | - Anna C Redgrave
- Department of Biology, Wesleyan University, Middletown, Connecticut.,Biology Department, Boston College, Chestnut Hill, Massachusetts
| | - Christian Mosimann
- Institute of Molecular Life Sciences, University of Zürich, Zürich, Switzerland
| | - Ann C Burke
- Department of Biology, Wesleyan University, Middletown, Connecticut
| | - Stephen H Devoto
- Department of Biology, Wesleyan University, Middletown, Connecticut
| |
Collapse
|
12
|
Nord H, Dennhag N, Tydinger H, von Hofsten J. The zebrafish HGF receptor met controls migration of myogenic progenitor cells in appendicular development. PLoS One 2019; 14:e0219259. [PMID: 31287821 PMCID: PMC6615617 DOI: 10.1371/journal.pone.0219259] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Accepted: 06/20/2019] [Indexed: 12/16/2022] Open
Abstract
The hepatocyte growth factor receptor C-met plays an important role in cellular migration, which is crucial for many developmental processes as well as for cancer cell metastasis. C-met has been linked to the development of mammalian appendicular muscle, which are derived from migrating muscle progenitor cells (MMPs) from within the somite. Mammalian limbs are homologous to the teleost pectoral and pelvic fins. In this study we used Crispr/Cas9 to mutate the zebrafish met gene and found that the MMP derived musculature of the paired appendages was severely affected. The mutation resulted in a reduced muscle fibre number, in particular in the pectoral abductor, and in a disturbed pectoral fin function. Other MMP derived muscles, such as the sternohyoid muscle and posterior hypaxial muscle were also affected in met mutants. This indicates that the role of met in MMP function and appendicular myogenesis is conserved within vertebrates.
Collapse
Affiliation(s)
- Hanna Nord
- Department of Integrative Medical Biology, Umeå University, Umeå, Sweden
| | - Nils Dennhag
- Department of Integrative Medical Biology, Umeå University, Umeå, Sweden
| | - Hanna Tydinger
- Department of Integrative Medical Biology, Umeå University, Umeå, Sweden
| | - Jonas von Hofsten
- Department of Integrative Medical Biology, Umeå University, Umeå, Sweden
- Umeå Centre for Molecular Medicine, Umeå University, Umeå, Sweden
- * E-mail:
| |
Collapse
|
13
|
Talbot JC, Teets EM, Ratnayake D, Duy PQ, Currie PD, Amacher SL. Muscle precursor cell movements in zebrafish are dynamic and require Six family genes. Development 2019; 146:dev171421. [PMID: 31023879 PMCID: PMC6550023 DOI: 10.1242/dev.171421] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Accepted: 04/16/2019] [Indexed: 01/09/2023]
Abstract
Muscle precursors need to be correctly positioned during embryonic development for proper body movement. In zebrafish, a subset of hypaxial muscle precursors from the anterior somites undergo long-range migration, moving away from the trunk in three streams to form muscles in distal locations such as the fin. We mapped long-distance muscle precursor migrations with unprecedented resolution using live imaging. We identified conserved genes necessary for normal precursor motility (six1a, six1b, six4a, six4b and met). These genes are required for movement away from somites and later to partition two muscles within the fin bud. During normal development, the middle muscle precursor stream initially populates the fin bud, then the remainder of this stream contributes to the posterior hypaxial muscle. When we block fin bud development by impairing retinoic acid synthesis or Fgfr function, the entire stream contributes to the posterior hypaxial muscle indicating that muscle precursors are not committed to the fin during migration. Our findings demonstrate a conserved muscle precursor motility pathway, identify dynamic cell movements that generate posterior hypaxial and fin muscles, and demonstrate flexibility in muscle precursor fates.
Collapse
Affiliation(s)
- Jared C Talbot
- Department of Molecular Genetics, The Ohio State University, Columbus, OH 43210, USA
- Center for Muscle Health and Neuromuscular Disorders, The Ohio State University and Nationwide Children's Hospital, Columbus, OH 43210, USA
| | - Emily M Teets
- Department of Molecular Genetics, The Ohio State University, Columbus, OH 43210, USA
| | - Dhanushika Ratnayake
- Australian Regenerative Medicine Institute, Monash University, Clayton, VIC, 3800, Australia
- EMBL Australia, Monash University, Clayton, VIC, 3800, Australia
| | - Phan Q Duy
- Department of Molecular Genetics, The Ohio State University, Columbus, OH 43210, USA
| | - Peter D Currie
- Australian Regenerative Medicine Institute, Monash University, Clayton, VIC, 3800, Australia
- EMBL Australia, Monash University, Clayton, VIC, 3800, Australia
| | - Sharon L Amacher
- Department of Molecular Genetics, The Ohio State University, Columbus, OH 43210, USA
- Center for Muscle Health and Neuromuscular Disorders, The Ohio State University and Nationwide Children's Hospital, Columbus, OH 43210, USA
- Department of Biological Chemistry and Pharmacology, The Ohio State University, Columbus, OH 43210, USA
- Center for RNA Biology, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
14
|
Myogenin promotes myocyte fusion to balance fibre number and size. Nat Commun 2018; 9:4232. [PMID: 30315160 PMCID: PMC6185967 DOI: 10.1038/s41467-018-06583-6] [Citation(s) in RCA: 88] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Accepted: 08/31/2018] [Indexed: 01/01/2023] Open
Abstract
Each skeletal muscle acquires its unique size before birth, when terminally differentiating myocytes fuse to form a defined number of multinucleated myofibres. Although mice in which the transcription factor Myogenin is mutated lack most myogenesis and die perinatally, a specific cell biological role for Myogenin has remained elusive. Here we report that loss of function of zebrafish myog prevents formation of almost all multinucleated muscle fibres. A second, Myogenin-independent, fusion pathway in the deep myotome requires Hedgehog signalling. Lack of Myogenin does not prevent terminal differentiation; the smaller myotome has a normal number of myocytes forming more mononuclear, thin, albeit functional, fast muscle fibres. Mechanistically, Myogenin binds to the myomaker promoter and is required for expression of myomaker and other genes essential for myocyte fusion. Adult myog mutants display reduced muscle mass, decreased fibre size and nucleation. Adult-derived myog mutant myocytes show persistent defective fusion ex vivo. Myogenin is therefore essential for muscle homeostasis, regulating myocyte fusion to determine both muscle fibre number and size. Loss of the transcription factor Myogenin in mice reduces skeletal myogenesis and leads to perinatal death but how Myogenin regulates muscle formation is unclear. Here, the authors show that zebrafish Myogenin enhances Myomaker expression, muscle cell fusion and myotome size, yet decreases fast muscle fibre number.
Collapse
|
15
|
Migratory appendicular muscles precursor cells in the common ancestor to all vertebrates. Nat Ecol Evol 2017; 1:1731-1736. [DOI: 10.1038/s41559-017-0330-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2016] [Accepted: 08/30/2017] [Indexed: 11/08/2022]
|
16
|
Roy SD, Williams VC, Pipalia TG, Li K, Hammond CL, Knappe S, Knight RD, Hughes SM. Myotome adaptability confers developmental robustness to somitic myogenesis in response to fibre number alteration. Dev Biol 2017; 431:321-335. [PMID: 28887016 PMCID: PMC5667637 DOI: 10.1016/j.ydbio.2017.08.029] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Revised: 05/22/2017] [Accepted: 08/26/2017] [Indexed: 12/31/2022]
Abstract
Balancing the number of stem cells and their progeny is crucial for tissue development and repair. Here we examine how cell numbers and overall muscle size are tightly regulated during zebrafish somitic muscle development. Muscle stem/precursor cell (MPCs) expressing Pax7 are initially located in the dermomyotome (DM) external cell layer, adopt a highly stereotypical distribution and thereafter a proportion of MPCs migrate into the myotome. Regional variations in the proliferation and terminal differentiation of MPCs contribute to growth of the myotome. To probe the robustness of muscle size control and spatiotemporal regulation of MPCs, we compared the behaviour of wild type (wt) MPCs with those in mutant zebrafish that lack the muscle regulatory factor Myod. Myodfh261 mutants form one third fewer multinucleate fast muscle fibres than wt and show a significant expansion of the Pax7+ MPC population in the DM. Subsequently, myodfh261 mutant fibres generate more cytoplasm per nucleus, leading to recovery of muscle bulk. In addition, relative to wt siblings, there is an increased number of MPCs in myodfh261 mutants and these migrate prematurely into the myotome, differentiate and contribute to the hypertrophy of existing fibres. Thus, homeostatic reduction of the excess MPCs returns their number to normal levels, but fibre numbers remain low. The GSK3 antagonist BIO prevents MPC migration into the deep myotome, suggesting that canonical Wnt pathway activation maintains the DM in zebrafish, as in amniotes. BIO does not, however, block recovery of the myodfh261 mutant myotome, indicating that homeostasis acts on fibre intrinsic growth to maintain muscle bulk. The findings suggest the existence of a critical window for early fast fibre formation followed by a period in which homeostatic mechanisms regulate myotome growth by controlling fibre size. The feedback controls we reveal in muscle help explain the extremely precise grading of myotome size along the body axis irrespective of fish size, nutrition and genetic variation and may form a paradigm for wider matching of organ size. A critical window for early muscle fibre formation is proposed. Fish lacking MyoD1 form fewer muscle fibres, but have more myogenic stem cells. Stem cell numbers rapidly return to normal during subsequent development. GSK3 activity promotes and MyoD1 delays myoblast migration into the myotome. Compensatory fibre size increase ensures robustness of overall muscle size.
Collapse
Affiliation(s)
- Shukolpa D Roy
- Randall Division of Cell and Molecular Biophysics, New Hunt's House, Guy's Campus, King's College London, London SE1 1UL, UK
| | - Victoria C Williams
- Randall Division of Cell and Molecular Biophysics, New Hunt's House, Guy's Campus, King's College London, London SE1 1UL, UK
| | - Tapan G Pipalia
- Randall Division of Cell and Molecular Biophysics, New Hunt's House, Guy's Campus, King's College London, London SE1 1UL, UK
| | - Kuoyu Li
- Randall Division of Cell and Molecular Biophysics, New Hunt's House, Guy's Campus, King's College London, London SE1 1UL, UK
| | - Christina L Hammond
- Randall Division of Cell and Molecular Biophysics, New Hunt's House, Guy's Campus, King's College London, London SE1 1UL, UK
| | - Stefanie Knappe
- Division of Craniofacial Development and Stem Cell Biology, Guy's Hospital, King's College London, UK
| | - Robert D Knight
- Division of Craniofacial Development and Stem Cell Biology, Guy's Hospital, King's College London, UK
| | - Simon M Hughes
- Randall Division of Cell and Molecular Biophysics, New Hunt's House, Guy's Campus, King's College London, London SE1 1UL, UK.
| |
Collapse
|
17
|
Allen JR, Bhattacharyya KD, Asante E, Almadi B, Schafer K, Davis J, Cox J, Voigt M, Viator JA, Chandrasekhar A. Role of branchiomotor neurons in controlling food intake of zebrafish larvae. J Neurogenet 2017; 31:128-137. [PMID: 28812416 PMCID: PMC5942883 DOI: 10.1080/01677063.2017.1358270] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Accepted: 07/18/2017] [Indexed: 10/19/2022]
Abstract
The physical act of eating or feeding involves the coordinated action of several organs like eyes and jaws, and associated neural networks. Moreover, the activity of the neural networks controlling jaw movements (branchiomotor circuits) is regulated by the visual, olfactory, gustatory and hypothalamic systems, which are largely well characterized at the physiological level. By contrast, the behavioral output of the branchiomotor circuits and the functional consequences of disruption of these circuits by abnormal neural development are poorly understood. To begin to address these questions, we sought to evaluate the feeding ability of zebrafish larvae, a direct output of the branchiomotor circuits, and developed a qualitative assay for measuring food intake in zebrafish larvae at 7 days post-fertilization. We validated the assay by examining the effects of ablating the branchiomotor neurons. Metronidazole-mediated ablation of nitroreductase-expressing branchiomotor neurons resulted in a predictable reduction in food intake without significantly affecting swimming ability, indicating that the assay is robust. Laser-mediated ablation of trigeminal motor neurons resulted in a significant decrease in food intake, indicating that the assay is sensitive. Importantly, in larvae of a genetic mutant with severe loss of branchiomotor neurons, food intake was abolished. These studies establish a foundation for dissecting the neural circuits driving a motor behavior essential for survival.
Collapse
Affiliation(s)
- James R. Allen
- Division of Biological Sciences, and Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA
| | - Kiran D. Bhattacharyya
- Department of Biological Engineering, and Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA
| | - Emilia Asante
- Division of Biological Sciences, and Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA
| | - Badr Almadi
- Division of Biological Sciences, and Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA
| | - Kyle Schafer
- Division of Biological Sciences, and Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA
| | - Jeremy Davis
- Division of Biological Sciences, and Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA
| | - Jane Cox
- Department of Pharmacology and Physiology, St. Louis University School of Medicine, St. Louis, MO 63104, USA
| | - Mark Voigt
- Department of Pharmacology and Physiology, St. Louis University School of Medicine, St. Louis, MO 63104, USA
| | - John A. Viator
- Department of Biological Engineering, and Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA
- Biomedical Engineering Program, Duquesne University, Pittsburgh, PA 15282, USA
| | - Anand Chandrasekhar
- Division of Biological Sciences, and Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA
| |
Collapse
|
18
|
Jiao S, Wu Z, Tan X, Sui Y, Wang L, You F. Characterization of pax3a and pax3b genes in artificially induced polyploid and gynogenetic olive flounder (Paralichthys olivaceus) during embryogenesis. FISH PHYSIOLOGY AND BIOCHEMISTRY 2017; 43:385-395. [PMID: 27677482 DOI: 10.1007/s10695-016-0294-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Accepted: 09/21/2016] [Indexed: 06/06/2023]
Abstract
Although chromosome set manipulation techniques including polyploidy induction and gynogentic induction in flatfish are becoming increasingly mature, there exists a poor understanding of their effects on embryonic development. PAX3 plays crucial roles during embryonic myogenesis and neurogenesis. In olive flounder (Paralichthys olivaceus), there are two duplicated pax3 genes (pax3a, pax3b), and both of them are expressed in the brain and muscle regions with some subtle regional differences. We utilized pax3a and pax3b as indicators to preliminarily investigate whether chromosome set manipulation affects embryonic neurogenesis and myogenesis using whole-mount in situ hybridization. In the polyploid induction groups, 94 % of embryos in the triploid induction group had normal pax3a/3b expression patterns; however, 45 % of embryos in the tetraploid induction group showed abnormal pax3a/3b expression patterns from the tailbud formation stage to the hatching stage. Therefore, the artificial induction of triploidy and tetraploidy had a small or a moderate effect on flounder embryonic myogenesis and neurogenesis, respectively. In the gynogenetic induction groups, 87 % of embryos in the meiogynogenetic diploid induction group showed normal pax3a/3b expression patterns. However, almost 100 % of embryos in the gynogenetic haploid induction group and 63 % of embryos in the mitogynogenetic diploid induction group showed abnormal pax3a/3b expression patterns. Therefore, the induction of gynogenetic haploidy and mitogynogenetic diploidy had large effects on flounder embryonic myogenesis and neurogenesis. In conclusion, the differential expression of pax3a and pax3b may provide new insights for consideration of fish chromosome set manipulation.
Collapse
Affiliation(s)
- Shuang Jiao
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao, 266071, Shandong, People's Republic of China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, 7 Nanhai Road, Qingdao, 266071, Shandong, People's Republic of China
| | - Zhihao Wu
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao, 266071, Shandong, People's Republic of China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, 7 Nanhai Road, Qingdao, 266071, Shandong, People's Republic of China
| | - Xungang Tan
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao, 266071, Shandong, People's Republic of China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, 7 Nanhai Road, Qingdao, 266071, Shandong, People's Republic of China
| | - Yulei Sui
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao, 266071, Shandong, People's Republic of China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, 7 Nanhai Road, Qingdao, 266071, Shandong, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Lijuan Wang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao, 266071, Shandong, People's Republic of China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, 7 Nanhai Road, Qingdao, 266071, Shandong, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Feng You
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao, 266071, Shandong, People's Republic of China.
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, 7 Nanhai Road, Qingdao, 266071, Shandong, People's Republic of China.
| |
Collapse
|
19
|
Abstract
Skeletal muscle performs an essential function in human physiology with defects in genes encoding a variety of cellular components resulting in various types of inherited muscle disorders. Muscular dystrophies (MDs) are a severe and heterogeneous type of human muscle disease, manifested by progressive muscle wasting and degeneration. The disease pathogenesis and therapeutic options for MDs have been investigated for decades using rodent models, and considerable knowledge has been accumulated on the cause and pathogenetic mechanisms of this group of human disorders. However, due to some differences between disease severity and progression, what is learned in mammalian models does not always transfer to humans, prompting the desire for additional and alternative models. More recently, zebrafish have emerged as a novel and robust animal model for the study of human muscle disease. Zebrafish MD models possess a number of distinct advantages for modeling human muscle disorders, including the availability and ease of generating mutations in homologous disease-causing genes, the ability to image living muscle tissue in an intact animal, and the suitability of zebrafish larvae for large-scale chemical screens. In this chapter, we review the current understanding of molecular and cellular mechanisms involved in MDs, the process of myogenesis in zebrafish, and the structural and functional characteristics of zebrafish larval muscles. We further discuss the insights gained from the key zebrafish MD models that have been so far generated, and we summarize the attempts that have been made to screen for small molecules inhibitors of the dystrophic phenotypes using these models. Overall, these studies demonstrate that zebrafish is a useful in vivo system for modeling aspects of human skeletal muscle disorders. Studies using these models have contributed both to the understanding of the pathogenesis of muscle wasting disorders and demonstrated their utility as highly relevant models to implement therapeutic screening regimens.
Collapse
Affiliation(s)
- M Li
- Monash University, Clayton, VIC, Australia
| | - K J Hromowyk
- The Ohio State University, Columbus, OH, United States
| | - S L Amacher
- The Ohio State University, Columbus, OH, United States
| | - P D Currie
- Monash University, Clayton, VIC, Australia
| |
Collapse
|
20
|
Krauss RS, Chihara D, Romer AI. Embracing change: striated-for-smooth muscle replacement in esophagus development. Skelet Muscle 2016; 6:27. [PMID: 27504178 PMCID: PMC4976477 DOI: 10.1186/s13395-016-0099-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Accepted: 07/11/2016] [Indexed: 12/30/2022] Open
Abstract
The esophagus functions to transport food from the oropharyngeal region to the stomach via waves of peristalsis and transient relaxation of the lower esophageal sphincter. The gastrointestinal tract, including the esophagus, is ensheathed by the muscularis externa (ME). However, while the ME of the gastrointestinal tract distal to the esophagus is exclusively smooth muscle, the esophageal ME of many vertebrate species comprises a variable amount of striated muscle. The esophageal ME is initially composed only of smooth muscle, but its developmental maturation involves proximal-to-distal replacement of smooth muscle with striated muscle. This fascinating phenomenon raises two important questions: what is the developmental origin of the striated muscle precursor cells, and what are the cellular and morphogenetic mechanisms underlying the process? Studies addressing these questions have provided controversial answers. In this review, we discuss the development of ideas in this area and recent work that has shed light on these issues. A working model has emerged that should permit deeper understanding of the role of ME development and maturation in esophageal disorders and in the functional and evolutionary underpinnings of the variable degree of esophageal striated myogenesis in vertebrate species.
Collapse
Affiliation(s)
- Robert S Krauss
- Department of Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1020, New York, NY 10029 USA
| | - Daisuke Chihara
- Department of Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1020, New York, NY 10029 USA
| | - Anthony I Romer
- Department of Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1020, New York, NY 10029 USA ; Present address: Department of Genetics and Development, Columbia University, 701 West 168th Street, HHSC 1602, New York, NY 10032 USA
| |
Collapse
|
21
|
Pipalia TG, Koth J, Roy SD, Hammond CL, Kawakami K, Hughes SM. Cellular dynamics of regeneration reveals role of two distinct Pax7 stem cell populations in larval zebrafish muscle repair. Dis Model Mech 2016; 9:671-84. [PMID: 27149989 PMCID: PMC4920144 DOI: 10.1242/dmm.022251] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Accepted: 04/27/2016] [Indexed: 12/25/2022] Open
Abstract
Heterogeneity of stem cells or their niches is likely to influence tissue regeneration. Here we reveal stem/precursor cell diversity during wound repair in larval zebrafish somitic body muscle using time-lapse 3D confocal microscopy on reporter lines. Skeletal muscle with incision wounds rapidly regenerates both slow and fast muscle fibre types. A swift immune response is followed by an increase in cells at the wound site, many of which express the muscle stem cell marker Pax7. Pax7(+) cells proliferate and then undergo terminal differentiation involving Myogenin accumulation and subsequent loss of Pax7 followed by elongation and fusion to repair fast muscle fibres. Analysis of pax7a and pax7b transgenic reporter fish reveals that cells expressing each of the duplicated pax7 genes are distinctly localised in uninjured larvae. Cells marked by pax7a only or by both pax7a and pax7b enter the wound rapidly and contribute to muscle wound repair, but each behaves differently. Low numbers of pax7a-only cells form nascent fibres. Time-lapse microscopy revealed that the more numerous pax7b-marked cells frequently fuse to pre-existing fibres, contributing more strongly than pax7a-only cells to repair of damaged fibres. pax7b-marked cells are more often present in rows of aligned cells that are observed to fuse into a single fibre, but more rarely contribute to nascent regenerated fibres. Ablation of a substantial portion of nitroreductase-expressing pax7b cells with metronidazole prior to wounding triggered rapid pax7a-only cell accumulation, but this neither inhibited nor augmented pax7a-only cell-derived myogenesis and thus altered the cellular repair dynamics during wound healing. Moreover, pax7a-only cells did not regenerate pax7b cells, suggesting a lineage distinction. We propose a modified founder cell and fusion-competent cell model in which pax7a-only cells initiate fibre formation and pax7b cells contribute to fibre growth. This newly discovered cellular complexity in muscle wound repair raises the possibility that distinct populations of myogenic cells contribute differentially to repair in other vertebrates.
Collapse
Affiliation(s)
- Tapan G Pipalia
- Randall Division of Cell and Molecular Biophysics, Guy's Campus, King's College London, London SE1 1UL, UK
| | - Jana Koth
- Randall Division of Cell and Molecular Biophysics, Guy's Campus, King's College London, London SE1 1UL, UK Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, Oxford University, Oxford OX3 9DS, UK
| | - Shukolpa D Roy
- Randall Division of Cell and Molecular Biophysics, Guy's Campus, King's College London, London SE1 1UL, UK
| | - Christina L Hammond
- Randall Division of Cell and Molecular Biophysics, Guy's Campus, King's College London, London SE1 1UL, UK
| | - Koichi Kawakami
- Division of Molecular and Developmental Biology, National Institute of Genetics, and Department of Genetics, SOKENDAI (The Graduate University for Advanced Studies), Mishima, Shizuoka 411-8540, Japan
| | - Simon M Hughes
- Randall Division of Cell and Molecular Biophysics, Guy's Campus, King's College London, London SE1 1UL, UK
| |
Collapse
|
22
|
Chihara D, Romer AI, Bentzinger CF, Rudnicki MA, Krauss RS. PAX7 is required for patterning the esophageal musculature. Skelet Muscle 2015; 5:39. [PMID: 26635949 PMCID: PMC4668666 DOI: 10.1186/s13395-015-0068-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Accepted: 11/07/2015] [Indexed: 12/12/2022] Open
Abstract
Background The mammalian esophageal musculature is unique in that it makes a transition from smooth to skeletal muscle, with most of this process occurring after birth. In order to better understand the mechanisms that control esophageal musculature development, we investigated the roles in this process of the paired box transcription factor, PAX7, a principal regulator of skeletal myogenic progenitor cells. Previous studies showed that Pax7 is important for determining the esophageal muscle composition. Results We characterized the postnatal development of the esophageal musculature in Pax7−/− mice by analyzing morphology, muscle composition, and the expression of markers of myogenesis, cell proliferation, and apoptosis. Pax7−/− mice displayed megaesophagus with a severe defect in the postnatal developmental process whereby esophageal smooth muscle is replaced by skeletal muscle. Pax7−/− esophagi have substantially reduced skeletal muscle, most likely due to diminished proliferation and premature differentiation of skeletal muscle precursor cells. This impaired the proximal-to-distal progression of skeletal myogenesis and indirectly affected the patterning of the smooth muscle-containing portion of the esophageal musculature. Conclusions Postnatal patterning of the esophageal musculature appears to require robust, PAX7-dependent cell proliferation to drive the proximal-to-distal progression of skeletal myogenesis. This process in turn influences distal smooth muscle morphogenesis and development of the mature pattern of the esophageal musculature. Electronic supplementary material The online version of this article (doi:10.1186/s13395-015-0068-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Daisuke Chihara
- Department of Developmental and Regenerative Biology, Mount Sinai School of Medicine, New York, NY 10029 USA
| | - Anthony I Romer
- Department of Developmental and Regenerative Biology, Mount Sinai School of Medicine, New York, NY 10029 USA ; Graduate School of Biological Sciences, One Gustave L. Levy Place, Icahn School of Medicine at Mount Sinai, New York, NY 10029 USA ; Present address: Department of Genetics and Development, Columbia University, 701 West 168th Street, HHSC 1602, New York, NY 10032 USA
| | - C Florian Bentzinger
- Regenerative Medicine Program, Ottawa Hospital Research Institute, 501 Smyth Road, Ottawa, K1H 8L6 ON Canada ; Department of Cellular and Molecular Medicine, University of Ottawa, 451 Smyth Road, Ottawa, K1H 8M5 ON Canada ; Present address: Nestlé Institute of Health Sciences, EPFL Campus, 1015 Lausanne, Switzerland
| | - Michael A Rudnicki
- Regenerative Medicine Program, Ottawa Hospital Research Institute, 501 Smyth Road, Ottawa, K1H 8L6 ON Canada ; Department of Cellular and Molecular Medicine, University of Ottawa, 451 Smyth Road, Ottawa, K1H 8M5 ON Canada
| | - Robert S Krauss
- Department of Developmental and Regenerative Biology, Mount Sinai School of Medicine, New York, NY 10029 USA ; Graduate School of Biological Sciences, One Gustave L. Levy Place, Icahn School of Medicine at Mount Sinai, New York, NY 10029 USA
| |
Collapse
|
23
|
A Cranial Mesoderm Origin for Esophagus Striated Muscles. Dev Cell 2015; 34:694-704. [PMID: 26387456 DOI: 10.1016/j.devcel.2015.07.003] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Revised: 06/08/2015] [Accepted: 07/10/2015] [Indexed: 11/21/2022]
Abstract
The esophagus links the oral cavity to the stomach and facilitates the transfer of bolus. Using genetic tracing and mouse mutants, we demonstrate that esophagus striated muscles (ESMs) are not derived from somites but are of cranial origin. Tbx1 and Isl1 act as key regulators of ESMs, which we now identify as a third derivative of cardiopharyngeal mesoderm that contributes to second heart field derivatives and head muscles. Isl1-derived ESM progenitors colonize the mouse esophagus in an anterior-posterior direction but are absent in the developing chick esophagus, thus providing evolutionary insight into the lack of ESMs in avians. Strikingly, different from other myogenic regions, in which embryonic myogenesis establishes a scaffold for fetal fiber formation, ESMs are established directly by fetal myofibers. We propose that ESM progenitors use smooth muscle as a scaffold, thereby bypassing the embryonic program. These findings have important implications in understanding esophageal dysfunctions, including dysphagia, and congenital disorders, such as DiGeorge syndrome.
Collapse
|
24
|
Jiao S, Tan X, Li M, Sui Y, Du SJ, You F. The duplicated paired box protein 7 (pax7) genes differentially transcribed during Japanese flounder (Paralichthys olivaceus) embryogenesis. Comp Biochem Physiol B Biochem Mol Biol 2015; 189:62-8. [PMID: 26275626 DOI: 10.1016/j.cbpb.2015.08.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Revised: 07/29/2015] [Accepted: 08/04/2015] [Indexed: 11/16/2022]
Abstract
PAX are important regulators of developmental processes. PAX7 plays crucial roles in patterning of the dorsal central nervous system (CNS), neural crest (NC), and skeletal muscle. Here, we identified six spliced isoforms of pax7a and one pax7b and characterized their expression patterns. All of flounder Pax7a-1, Pax7a-2, Pax7a-3, and Pax7b contain a conserved paired domain (PD), an octapeptide motif (OP), and a paired type homeodomain (HD). However, the PD of Pax7a-4 and the HD of Pax7a-5 are not intact, and there is no HD in Pax7a-4 and Pax7a-6. pax7a and pax7b show distinct spatiotemporal expression patterns during embryogenesis. Whole-mount in situ hybridization demonstrates that the expression patterns of pax7a and pax7b are overlapping but distinguishable in the dorsal central nervous system. pax7a is expressed in most part of the brain and the neural tube, while pax7b is expressed exclusively in the diencephalon and the midbrain. In addition, pax7a is also expressed in the cranial NC and the trunk NC. RT-PCR results show that there were different expression patterns between the different isoforms. These results indicate subfunction partitioning of the duplicated pax7 genes. The duplicated pax7 may provide additional flexibility in fine-tuning neurogenesis and somitogenesis.
Collapse
Affiliation(s)
- Shuang Jiao
- Key Laboratory of Experimental Marine Biology, National and Local Joint Engineering Laboratory of Ecological Mariculture, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao, Shandong 266071, People's Republic of China
| | - Xungang Tan
- Key Laboratory of Experimental Marine Biology, National and Local Joint Engineering Laboratory of Ecological Mariculture, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao, Shandong 266071, People's Republic of China.
| | - Meijie Li
- Key Laboratory of Experimental Marine Biology, National and Local Joint Engineering Laboratory of Ecological Mariculture, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao, Shandong 266071, People's Republic of China; University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Yulei Sui
- Key Laboratory of Experimental Marine Biology, National and Local Joint Engineering Laboratory of Ecological Mariculture, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao, Shandong 266071, People's Republic of China; University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Shao Jun Du
- Department of Biochemistry and Molecular Biology, School of Medicine, University of Maryland, 701 E. Pratt St., Baltimore, MD 21202, USA
| | - Feng You
- Key Laboratory of Experimental Marine Biology, National and Local Joint Engineering Laboratory of Ecological Mariculture, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao, Shandong 266071, People's Republic of China
| |
Collapse
|
25
|
Diogo R, Ziermann JM. Development, metamorphosis, morphology, and diversity: The evolution of chordate muscles and the origin of vertebrates. Dev Dyn 2015; 244:1046-1057. [PMID: 26095777 DOI: 10.1002/dvdy.24245] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Revised: 11/29/2014] [Accepted: 12/01/2014] [Indexed: 01/12/2023] Open
Abstract
Recent findings that urochordates are the closest sister-group of vertebrates have dramatically changed our understanding of chordate evolution and vertebrate origins. To continue to deepen our understanding of chordate evolution and diversity, in particular the morphological and taxonomical diversity of the vertebrate clade, one must explore the origin, development, and comparative anatomy of not only hard tissues, but also soft tissues such as muscles. Building on a recent overview of the discovery of a cardiopharyngeal field in urochordates and the profound implications for reconstructing the origin and early evolution of vertebrates, in this study we focus on the broader comparative and developmental anatomy of chordate cephalic muscles and their relation to life history, and to developmental, morphological and taxonomical diversity. We combine our recent findings on cephalochordates, urochordates, and vertebrates with a literature review and suggest that developmental changes related to metamorphosis and/or heterochrony (e.g., peramorphosis) played a crucial role in the early evolution of chordates and vertebrates. Recent studies reviewed here supported de Beer's "law of diversity" that peramorphic animals (e.g., ascidians, lampreys) are taxonomically and morphologically less diverse than nonperamorphic animals (e.g., gnathostomes), probably because their "too specialized" development and adult anatomy constrain further developmental and evolutionary innovations. Developmental Dynamics 244:1046-1057, 2015. © 2014 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Rui Diogo
- Department of Anatomy, Howard University College of Medicine, Washington, DC
| | - Janine M Ziermann
- Department of Anatomy, Howard University College of Medicine, Washington, DC
| |
Collapse
|
26
|
A new heart for a new head in vertebrate cardiopharyngeal evolution. Nature 2015; 520:466-73. [PMID: 25903628 DOI: 10.1038/nature14435] [Citation(s) in RCA: 166] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2014] [Accepted: 11/25/2014] [Indexed: 12/22/2022]
Abstract
It has been more than 30 years since the publication of the new head hypothesis, which proposed that the vertebrate head is an evolutionary novelty resulting from the emergence of neural crest and cranial placodes. Neural crest generates the skull and associated connective tissues, whereas placodes produce sensory organs. However, neither crest nor placodes produce head muscles, which are a crucial component of the complex vertebrate head. We discuss emerging evidence for a surprising link between the evolution of head muscles and chambered hearts - both systems arise from a common pool of mesoderm progenitor cells within the cardiopharyngeal field of vertebrate embryos. We consider the origin of this field in non-vertebrate chordates and its evolution in vertebrates.
Collapse
|
27
|
Wotton KR, Schubert FR, Dietrich S. Hypaxial muscle: controversial classification and controversial data? Results Probl Cell Differ 2015; 56:25-48. [PMID: 25344665 DOI: 10.1007/978-3-662-44608-9_2] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Hypaxial muscle is the anatomical term commonly used when referring to all the ventrally located musculature in the body of vertebrates, including muscles of the body wall and the limbs. Yet these muscles had very humble beginnings when vertebrates evolved from their chordate ancestors, and complex anatomical changes and changes in underlying gene regulatory networks occurred. This review summarises the current knowledge and controversies regarding the development and evolution of hypaxial muscles.
Collapse
Affiliation(s)
- Karl R Wotton
- EMBL/CRG Systems Biology Research Unit, Centre for Genomic Regulation (CRG), Dr. Aiguader 88, 08003, Barcelona, Spain
| | | | | |
Collapse
|
28
|
Jiao S, Tan X, Wang Q, Li M, Du SJ. The olive flounder (Paralichthys olivaceus) Pax3 homologues are highly conserved, encode multiple isoforms and show unique expression patterns. Comp Biochem Physiol B Biochem Mol Biol 2014; 180:7-15. [PMID: 25448050 DOI: 10.1016/j.cbpb.2014.10.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2014] [Revised: 10/03/2014] [Accepted: 10/03/2014] [Indexed: 01/10/2023]
Abstract
Pax genes encode a highly conserved family of transcription factors that play crucial roles in the formation of tissues and organs during development. Pax3 plays crucial roles in patterning of the dorsal central nervous system (CNS), neural crest and skeletal muscle. Here, we identified two spliced isoforms of Pax3a and three spliced isoforms of Pax3b and characterized their expression patterns. Both of flounder Pax3a-1 and Pax3b-1 contain the conserved paired domain (PD), an octapeptide motif (OP), and a paired type homeodomain (HD). But the PD domain in Pax3a-2 and Pax3b-3 is not intact and there is no HD in Pax3b-2 and Pax3b-3. Pax3a and Pax3b show distinct temporal expression patterns during embryogenesis. Whole-mount in situ hybridization demonstrates that Pax3a and Pax3b are expressed in overlapping patterns in the dorsal central nervous system, with some subtle regional differences between the two genes. In addition, Pax3a is scattered in the somites while Pax3b is specifically expressed in the newly forming somites. RT-PCR results have shown that there were different expression patterns between the different isoforms. These results indicate subfunction partitioning of the duplicated Pax3 genes. The duplicated Pax3 may provide additional flexibility in fine-tuning neurogenesis and somitogenesis.
Collapse
Affiliation(s)
- Shuang Jiao
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, Shandong, People's Republic of China
| | - Xungang Tan
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, Shandong, People's Republic of China.
| | - Qian Wang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, Shandong, People's Republic of China; University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Meijie Li
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, Shandong, People's Republic of China; University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Shao Jun Du
- Department of Biochemistry and Molecular Biology, School of Medicine, University of Maryland, 701 E. Pratt St, Baltimore, MD 21202, USA
| |
Collapse
|